Search Results

Search found 45316 results on 1813 pages for 'class literals'.

Page 254/1813 | < Previous Page | 250 251 252 253 254 255 256 257 258 259 260 261  | Next Page >

  • jquery ui dialog open multiple dialog boxes using the same class on the button and the content div

    - by MichaelAntoni
    Hello there, i want to open multiple dialog boxes by using the same class on both the button and the content div. The below works but only for the first time. jQuery('.helpDialog').hide(); jQuery('.helpButton').click(function() { jQuery(this).next('.helpDialog').dialog({ autoOpen: true, title: 'Help', width: 500, height: 300, position: [180,10], draggable: true, resizable: false, modal: false }); return false; }); we know the reason for this http://blog.nemikor.com/2009/04/08/basic-usage-of-the-jquery-ui-dialog/ "the second call is ignored because the dialog has already been instantiated on that element." But when i fix that problem by trying the code below, the dialog box no longer opens. Can anyone help? Thanks in advance jQuery('.helpDialog').hide(); jQuery(function() { jQuery('.helpDialog').dialog({ autoOpen: false, modal: true, title: 'Info', width: 600, height: 400, position: [200,0], draggable: false }); }); jQuery('.helpButton').click(function() { jQuery(this).next('.helpDialog').dialog('open'); return false; });

    Read the article

  • I have a question about variable release in global class.

    - by Beomseok
    + (void)findAndCopyOfDatabaseIfNeeded{ NSArray *path = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask, YES); NSString *documentsDirectory = [path objectAtIndex:0]; NSFileManager *fileManager = [NSFileManager defaultManager]; NSString *databasePath = [documentsDirectory stringByAppendingPathComponent:@"DB"]; BOOL success = [fileManager fileExistsAtPath:databasePath]; if(!success){ NSString *resourcePath = [[[NSBundle mainBundle] resourcePath] stringByAppendingPathComponent:@"DB"]; [fileManager copyItemAtPath:resourcePath toPath:databasePath error:NULL]; } NSString *tracePath = [documentsDirectory stringByAppendingPathComponent:@"Trace"]; BOOL traceDir = [fileManager fileExistsAtPath:tracePath]; if(!traceDir){ NSString *resourcePath = [[[NSBundle mainBundle] resourcePath] stringByAppendingPathComponent:@"Trace"]; [fileManager copyItemAtPath:resourcePath toPath:tracePath error:NULL]; } NSDateFormatter *dateFormatter = [[NSDateFormatter alloc]init]; [dateFormatter setDateFormat:@"yyyy"]; NSDate *today = [[NSDate alloc]init]; NSString *resultYear = [dateFormatter stringFromDate:today]; NSString *traceYearPath = [tracePath stringByAppendingPathComponent:resultYear]; BOOL yearDir = [fileManager fileExistsAtPath:tracePath]; if (!yearDir) { [fileManager createDirectoryAtPath:traceYearPath attributes:nil]; } //[resultYear release]; ? //[today release]; ? //[dateFormatter release]; ? } I'm using global class like this [ + (void)findAndCopyOfDatabaseIfNeeded ]. hm,, I don't know NSArray, NSString and NSFileManager are released. Variable release or Not release ? please advice for me.

    Read the article

  • How can I store and access a filehandle in a Perl class?

    - by Haiyuan Zhang
    please look at the following code first. #! /usr/bin/perl package foo; sub new { my $pkg = shift; my $self = {}; my $self->{_fd} = undef; bless $self, $pkg; return $self; } sub Setfd { my $self = shift; my $fd = shift; $self_->{_fd} = $fd; } sub write { my $self = shift; print $self->{_fd} "hello word"; } my $foo = new foo; My intention is to store a file handle within a class using hash. the file handle is undefined at first, but can be initilized afterwards by calling Setfd function. then write can be called to actually write string "hello word" to a file indicated by the file handle, supposed that the file handle is the result of a success "write" open. but, perl compiler just complains that there are syntax error in the "print" line. can anyone of you tells me what's wrong here? thanks in advance.

    Read the article

  • How would you update 100+ variables if something is changed in a different class?

    - by N. Lucas
    I have a class Grid which produces a graph paper like grid on in the drawing area. I then have 5 other classes for different shapes to draw with; Line, Polygon, Ellipse, Curve, Arc Now, these 5 classes use an instance of Grid because Grid has a resolution and a scale. Inside Grid I have: public function set resolution(x:Number):void { _gap = (modBy10(x) / 10); _scale = (modBy10(x) / (this.resolution * _scale)); draw(); } public function get resolution():Number { return (_gap * 10); } public function set scale(x:Number):void { _scale = (this.resolution / x); } public function get scale():Number { return _scale; } /**/ public function scaleLength(x:Number):Number { return (x * this.scale); } public function scaleLengthDown(x:Number):Number { return (x / this.scale); } public function scaleArea(x:Number):Number { return (x / Math.pow(this.scale, 2)); } I'm just lost for a solution on how to update every instance of my 5 drawing classes when Grid is changed. For instance, Polygon is made up of multiple instances of Line, Line(length, angle) where "length" is in either in, ft, cm, or m. If the user wishes to change the scale from say 10ft per 100px resolution.. Is there an easier way than re-drawing every Line inside Polygon?

    Read the article

  • C# What is the best way to determine the type of an inherited interface class?

    - by Martijn
    In my application I work with criterias. I have one base Criteria interface and and other interfaces who inherits from this base interface: ICriteria | | ---------------------- | | ITextCriteria IChoices What I'd like to know is, what is the best way to know what Type the class is? In my code I have a dropdown box and based on that I have to determine the type: // Get selected criteria var selectedCriteria = cmbType.SelectedItem as ICriteria; if (selectedCriteria is IChoices) { //selectedCriteria = cmbType.SelectedItem as IChoices; Doesn't work IChoices criteria = selectedCriteria as IChoices;//cmbType.SelectedItem as IChoices; SaveMultipleChoiceValues(criteria); //_category.AddCriteria(criteria); } else { //ICriteria criteria = selectedCriteria; //cmbType.SelectedItem as ICriteria; if (selectedCriteria.GetCriteriaType() == CriteriaTypes.None) { return; } //_category.AddCriteria(criteria); } _category.AddCriteria(selectedCriteria); selectedCriteria.LabelText = txtLabeltext.Text; this.Close(); My question is, is this the best way? Or is there a better way to achieve this? The chance is big that there are coming more interfaces based on ICriteria.

    Read the article

  • Custom class deallocated as soon as the app starts.

    - by Tangrs
    Heya, I've added a class object to the nib file. All connections are made. But for some reason, the object is deallocated as soon as it's created. Here's the code: control.h: #import <Foundation/Foundation.h> @interface control : NSObject { IBOutlet UILabel *PlayerScore; } -(IBAction) addPoint: sender; -(void) dealloc; @end control.m: #import "control.h" @implementation control -(IBAction)addPoint: sender { NSLog(@"Ohhai. Didn't crash."); //Doesn't even make it to this stage. int i = [PlayerScore.text intValue]; PlayerScore.text=[NSString stringWithFormat: @"%d",++i]; } -(void) dealloc { NSLog(@"ZOMGWTF?"); [super dealloc]; } @end Here is the console log: [Session started at 2010-06-09 19:47:57 +1000.] 2010-06-09 19:47:58.771 App[91100:207] ZOMGWTF? And after I click the button which messages addPoint, of course, it crashes. 2010-06-09 19:47:59.703 App[91100:207] * -[control] performSelector:withObject:withObject:]: message sent to deallocated instance 0x3843d80 Does anyone have any ideas?

    Read the article

  • how to pass instance variables between handlers (routes) in sinatra (without flash, sessions, class variable or db)?

    - by jj_
    Say you have: get '/' do haml :index end get '/form' do haml :form end post '/form' do @message = params[:message] redirect to ('/') --- how to pass @message here? end I'd like the @message instance variable to be available (passed to) in "/" action as well, so I can show it in haml view. How can I do that without using session, flash, a @@class_variable, or db persistence ? I'd simply like to pass values as if I was working with passing values between methods. I don't want to use session cookies because user could have them turned off, I don't like it being a class variable which is exposed to all code, and I don't need to overhead of a db. Thanks edit: This is another question explaining a very easy way to deal with this in rails Passing parameters in rails redirect_to This is some more info i gathered around from forums. The following works for rails, i've tried it in Sinatra but no luck, but please try it, maybe I did something wrong, I don't know, and if this code help someone come up with a new idea, please share it If you are redirecting to action2 at the end of action1, just append the value to the end of the redirect: my_var = <some logic> redirect_to :action => 'action2', :my_var => my_var on the same thread another user proposes the folowing: def action1 redirect_to :action => 'action2', :value => params[:current_varaible] end def action2 puts params[:value].inspect end source: http://www.ruby-forum.com/topic/134953 Can something like this work in Sinatra? Thanks

    Read the article

  • What's New in ASP.NET 4

    - by Navaneeth
    The .NET Framework version 4 includes enhancements for ASP.NET 4 in targeted areas. Visual Studio 2010 and Microsoft Visual Web Developer Express also include enhancements and new features for improved Web development. This document provides an overview of many of the new features that are included in the upcoming release. This topic contains the following sections: ASP.NET Core Services ASP.NET Web Forms ASP.NET MVC Dynamic Data ASP.NET Chart Control Visual Web Developer Enhancements Web Application Deployment with Visual Studio 2010 Enhancements to ASP.NET Multi-Targeting ASP.NET Core Services ASP.NET 4 introduces many features that improve core ASP.NET services such as output caching and session state storage. Extensible Output Caching Since the time that ASP.NET 1.0 was released, output caching has enabled developers to store the generated output of pages, controls, and HTTP responses in memory. On subsequent Web requests, ASP.NET can serve content more quickly by retrieving the generated output from memory instead of regenerating the output from scratch. However, this approach has a limitation — generated content always has to be stored in memory. On servers that experience heavy traffic, the memory requirements for output caching can compete with memory requirements for other parts of a Web application. ASP.NET 4 adds extensibility to output caching that enables you to configure one or more custom output-cache providers. Output-cache providers can use any storage mechanism to persist HTML content. These storage options can include local or remote disks, cloud storage, and distributed cache engines. Output-cache provider extensibility in ASP.NET 4 lets you design more aggressive and more intelligent output-caching strategies for Web sites. For example, you can create an output-cache provider that caches the "Top 10" pages of a site in memory, while caching pages that get lower traffic on disk. Alternatively, you can cache every vary-by combination for a rendered page, but use a distributed cache so that the memory consumption is offloaded from front-end Web servers. You create a custom output-cache provider as a class that derives from the OutputCacheProvider type. You can then configure the provider in the Web.config file by using the new providers subsection of the outputCache element For more information and for examples that show how to configure the output cache, see outputCache Element for caching (ASP.NET Settings Schema). For more information about the classes that support caching, see the documentation for the OutputCache and OutputCacheProvider classes. By default, in ASP.NET 4, all HTTP responses, rendered pages, and controls use the in-memory output cache. The defaultProvider attribute for ASP.NET is AspNetInternalProvider. You can change the default output-cache provider used for a Web application by specifying a different provider name for defaultProvider attribute. In addition, you can select different output-cache providers for individual control and for individual requests and programmatically specify which provider to use. For more information, see the HttpApplication.GetOutputCacheProviderName(HttpContext) method. The easiest way to choose a different output-cache provider for different Web user controls is to do so declaratively by using the new providerName attribute in a page or control directive, as shown in the following example: <%@ OutputCache Duration="60" VaryByParam="None" providerName="DiskCache" %> Preloading Web Applications Some Web applications must load large amounts of data or must perform expensive initialization processing before serving the first request. In earlier versions of ASP.NET, for these situations you had to devise custom approaches to "wake up" an ASP.NET application and then run initialization code during the Application_Load method in the Global.asax file. To address this scenario, a new application preload manager (autostart feature) is available when ASP.NET 4 runs on IIS 7.5 on Windows Server 2008 R2. The preload feature provides a controlled approach for starting up an application pool, initializing an ASP.NET application, and then accepting HTTP requests. It lets you perform expensive application initialization prior to processing the first HTTP request. For example, you can use the application preload manager to initialize an application and then signal a load-balancer that the application was initialized and ready to accept HTTP traffic. To use the application preload manager, an IIS administrator sets an application pool in IIS 7.5 to be automatically started by using the following configuration in the applicationHost.config file: <applicationPools> <add name="MyApplicationPool" startMode="AlwaysRunning" /> </applicationPools> Because a single application pool can contain multiple applications, you specify individual applications to be automatically started by using the following configuration in the applicationHost.config file: <sites> <site name="MySite" id="1"> <application path="/" serviceAutoStartEnabled="true" serviceAutoStartProvider="PrewarmMyCache" > <!-- Additional content --> </application> </site> </sites> <!-- Additional content --> <serviceAutoStartProviders> <add name="PrewarmMyCache" type="MyNamespace.CustomInitialization, MyLibrary" /> </serviceAutoStartProviders> When an IIS 7.5 server is cold-started or when an individual application pool is recycled, IIS 7.5 uses the information in the applicationHost.config file to determine which Web applications have to be automatically started. For each application that is marked for preload, IIS7.5 sends a request to ASP.NET 4 to start the application in a state during which the application temporarily does not accept HTTP requests. When it is in this state, ASP.NET instantiates the type defined by the serviceAutoStartProvider attribute (as shown in the previous example) and calls into its public entry point. You create a managed preload type that has the required entry point by implementing the IProcessHostPreloadClient interface, as shown in the following example: public class CustomInitialization : System.Web.Hosting.IProcessHostPreloadClient { public void Preload(string[] parameters) { // Perform initialization. } } After your initialization code runs in the Preload method and after the method returns, the ASP.NET application is ready to process requests. Permanently Redirecting a Page Content in Web applications is often moved over the lifetime of the application. This can lead to links to be out of date, such as the links that are returned by search engines. In ASP.NET, developers have traditionally handled requests to old URLs by using the Redirect method to forward a request to the new URL. However, the Redirect method issues an HTTP 302 (Found) response (which is used for a temporary redirect). This results in an extra HTTP round trip. ASP.NET 4 adds a RedirectPermanent helper method that makes it easy to issue HTTP 301 (Moved Permanently) responses, as in the following example: RedirectPermanent("/newpath/foroldcontent.aspx"); Search engines and other user agents that recognize permanent redirects will store the new URL that is associated with the content, which eliminates the unnecessary round trip made by the browser for temporary redirects. Session State Compression By default, ASP.NET provides two options for storing session state across a Web farm. The first option is a session state provider that invokes an out-of-process session state server. The second option is a session state provider that stores data in a Microsoft SQL Server database. Because both options store state information outside a Web application's worker process, session state has to be serialized before it is sent to remote storage. If a large amount of data is saved in session state, the size of the serialized data can become very large. ASP.NET 4 introduces a new compression option for both kinds of out-of-process session state providers. By using this option, applications that have spare CPU cycles on Web servers can achieve substantial reductions in the size of serialized session state data. You can set this option using the new compressionEnabled attribute of the sessionState element in the configuration file. When the compressionEnabled configuration option is set to true, ASP.NET compresses (and decompresses) serialized session state by using the .NET Framework GZipStreamclass. The following example shows how to set this attribute. <sessionState mode="SqlServer" sqlConnectionString="data source=dbserver;Initial Catalog=aspnetstate" allowCustomSqlDatabase="true" compressionEnabled="true" /> ASP.NET Web Forms Web Forms has been a core feature in ASP.NET since the release of ASP.NET 1.0. Many enhancements have been in this area for ASP.NET 4, such as the following: The ability to set meta tags. More control over view state. Support for recently introduced browsers and devices. Easier ways to work with browser capabilities. Support for using ASP.NET routing with Web Forms. More control over generated IDs. The ability to persist selected rows in data controls. More control over rendered HTML in the FormView and ListView controls. Filtering support for data source controls. Enhanced support for Web standards and accessibility Setting Meta Tags with the Page.MetaKeywords and Page.MetaDescription Properties Two properties have been added to the Page class: MetaKeywords and MetaDescription. These two properties represent corresponding meta tags in the HTML rendered for a page, as shown in the following example: <head id="Head1" runat="server"> <title>Untitled Page</title> <meta name="keywords" content="keyword1, keyword2' /> <meta name="description" content="Description of my page" /> </head> These two properties work like the Title property does, and they can be set in the @ Page directive. For more information, see Page.MetaKeywords and Page.MetaDescription. Enabling View State for Individual Controls A new property has been added to the Control class: ViewStateMode. You can use this property to disable view state for all controls on a page except those for which you explicitly enable view state. View state data is included in a page's HTML and increases the amount of time it takes to send a page to the client and post it back. Storing more view state than is necessary can cause significant decrease in performance. In earlier versions of ASP.NET, you could reduce the impact of view state on a page's performance by disabling view state for specific controls. But sometimes it is easier to enable view state for a few controls that need it instead of disabling it for many that do not need it. For more information, see Control.ViewStateMode. Support for Recently Introduced Browsers and Devices ASP.NET includes a feature that is named browser capabilities that lets you determine the capabilities of the browser that a user is using. Browser capabilities are represented by the HttpBrowserCapabilities object which is stored in the HttpRequest.Browser property. Information about a particular browser's capabilities is defined by a browser definition file. In ASP.NET 4, these browser definition files have been updated to contain information about recently introduced browsers and devices such as Google Chrome, Research in Motion BlackBerry smart phones, and Apple iPhone. Existing browser definition files have also been updated. For more information, see How to: Upgrade an ASP.NET Web Application to ASP.NET 4 and ASP.NET Web Server Controls and Browser Capabilities. The browser definition files that are included with ASP.NET 4 are shown in the following list: •blackberry.browser •chrome.browser •Default.browser •firefox.browser •gateway.browser •generic.browser •ie.browser •iemobile.browser •iphone.browser •opera.browser •safari.browser A New Way to Define Browser Capabilities ASP.NET 4 includes a new feature referred to as browser capabilities providers. As the name suggests, this lets you build a provider that in turn lets you write custom code to determine browser capabilities. In ASP.NET version 3.5 Service Pack 1, you define browser capabilities in an XML file. This file resides in a machine-level folder or an application-level folder. Most developers do not need to customize these files, but for those who do, the provider approach can be easier than dealing with complex XML syntax. The provider approach makes it possible to simplify the process by implementing a common browser definition syntax, or a database that contains up-to-date browser definitions, or even a Web service for such a database. For more information about the new browser capabilities provider, see the What's New for ASP.NET 4 White Paper. Routing in ASP.NET 4 ASP.NET 4 adds built-in support for routing with Web Forms. Routing is a feature that was introduced with ASP.NET 3.5 SP1 and lets you configure an application to use URLs that are meaningful to users and to search engines because they do not have to specify physical file names. This can make your site more user-friendly and your site content more discoverable by search engines. For example, the URL for a page that displays product categories in your application might look like the following example: http://website/products.aspx?categoryid=12 By using routing, you can use the following URL to render the same information: http://website/products/software The second URL lets the user know what to expect and can result in significantly improved rankings in search engine results. the new features include the following: The PageRouteHandler class is a simple HTTP handler that you use when you define routes. You no longer have to write a custom route handler. The HttpRequest.RequestContext and Page.RouteData properties make it easier to access information that is passed in URL parameters. The RouteUrl expression provides a simple way to create a routed URL in markup. The RouteValue expression provides a simple way to extract URL parameter values in markup. The RouteParameter class makes it easier to pass URL parameter values to a query for a data source control (similar to FormParameter). You no longer have to change the Web.config file to enable routing. For more information about routing, see the following topics: ASP.NET Routing Walkthrough: Using ASP.NET Routing in a Web Forms Application How to: Define Routes for Web Forms Applications How to: Construct URLs from Routes How to: Access URL Parameters in a Routed Page Setting Client IDs The new ClientIDMode property makes it easier to write client script that references HTML elements rendered for server controls. Increasing use of Microsoft Ajax makes the need to do this more common. For example, you may have a data control that renders a long list of products with prices and you want to use client script to make a Web service call and update individual prices in the list as they change without refreshing the entire page. Typically you get a reference to an HTML element in client script by using the document.GetElementById method. You pass to this method the value of the id attribute of the HTML element you want to reference. In the case of elements that are rendered for ASP.NET server controls earlier versions of ASP.NET could make this difficult or impossible. You were not always able to predict what id values ASP.NET would generate, or ASP.NET could generate very long id values. The problem was especially difficult for data controls that would generate multiple rows for a single instance of the control in your markup. ASP.NET 4 adds two new algorithms for generating id attributes. These algorithms can generate id attributes that are easier to work with in client script because they are more predictable and that are easier to work with because they are simpler. For more information about how to use the new algorithms, see the following topics: ASP.NET Web Server Control Identification Walkthrough: Making Data-Bound Controls Easier to Access from JavaScript Walkthrough: Making Controls Located in Web User Controls Easier to Access from JavaScript How to: Access Controls from JavaScript by ID Persisting Row Selection in Data Controls The GridView and ListView controls enable users to select a row. In previous versions of ASP.NET, row selection was based on the row index on the page. For example, if you select the third item on page 1 and then move to page 2, the third item on page 2 is selected. In most cases, is more desirable not to select any rows on page 2. ASP.NET 4 supports Persisted Selection, a new feature that was initially supported only in Dynamic Data projects in the .NET Framework 3.5 SP1. When this feature is enabled, the selected item is based on the row data key. This means that if you select the third row on page 1 and move to page 2, nothing is selected on page 2. When you move back to page 1, the third row is still selected. This is a much more natural behavior than the behavior in earlier versions of ASP.NET. Persisted selection is now supported for the GridView and ListView controls in all projects. You can enable this feature in the GridView control, for example, by setting the EnablePersistedSelection property, as shown in the following example: <asp:GridView id="GridView2" runat="server" PersistedSelection="true"> </asp:GridView> FormView Control Enhancements The FormView control is enhanced to make it easier to style the content of the control with CSS. In previous versions of ASP.NET, the FormView control rendered it contents using an item template. This made styling more difficult in the markup because unexpected table row and table cell tags were rendered by the control. The FormView control supports RenderOuterTable, a property in ASP.NET 4. When this property is set to false, as show in the following example, the table tags are not rendered. This makes it easier to apply CSS style to the contents of the control. <asp:FormView ID="FormView1" runat="server" RenderTable="false"> For more information, see FormView Web Server Control Overview. ListView Control Enhancements The ListView control, which was introduced in ASP.NET 3.5, has all the functionality of the GridView control while giving you complete control over the output. This control has been made easier to use in ASP.NET 4. The earlier version of the control required that you specify a layout template that contained a server control with a known ID. The following markup shows a typical example of how to use the ListView control in ASP.NET 3.5. <asp:ListView ID="ListView1" runat="server"> <LayoutTemplate> <asp:PlaceHolder ID="ItemPlaceHolder" runat="server"></asp:PlaceHolder> </LayoutTemplate> <ItemTemplate> <% Eval("LastName")%> </ItemTemplate> </asp:ListView> In ASP.NET 4, the ListView control does not require a layout template. The markup shown in the previous example can be replaced with the following markup: <asp:ListView ID="ListView1" runat="server"> <ItemTemplate> <% Eval("LastName")%> </ItemTemplate> </asp:ListView> For more information, see ListView Web Server Control Overview. Filtering Data with the QueryExtender Control A very common task for developers who create data-driven Web pages is to filter data. This traditionally has been performed by building Where clauses in data source controls. This approach can be complicated, and in some cases the Where syntax does not let you take advantage of the full functionality of the underlying database. To make filtering easier, a new QueryExtender control has been added in ASP.NET 4. This control can be added to EntityDataSource or LinqDataSource controls in order to filter the data returned by these controls. Because the QueryExtender control relies on LINQ, but you do not to need to know how to write LINQ queries to use the query extender. The QueryExtender control supports a variety of filter options. The following lists QueryExtender filter options. Term Definition SearchExpression Searches a field or fields for string values and compares them to a specified string value. RangeExpression Searches a field or fields for values in a range specified by a pair of values. PropertyExpression Compares a specified value to a property value in a field. If the expression evaluates to true, the data that is being examined is returned. OrderByExpression Sorts data by a specified column and sort direction. CustomExpression Calls a function that defines custom filter in the page. For more information, see QueryExtenderQueryExtender Web Server Control Overview. Enhanced Support for Web Standards and Accessibility Earlier versions of ASP.NET controls sometimes render markup that does not conform to HTML, XHTML, or accessibility standards. ASP.NET 4 eliminates most of these exceptions. For details about how the HTML that is rendered by each control meets accessibility standards, see ASP.NET Controls and Accessibility. CSS for Controls that Can be Disabled In ASP.NET 3.5, when a control is disabled (see WebControl.Enabled), a disabled attribute is added to the rendered HTML element. For example, the following markup creates a Label control that is disabled: <asp:Label id="Label1" runat="server"   Text="Test" Enabled="false" /> In ASP.NET 3.5, the previous control settings generate the following HTML: <span id="Label1" disabled="disabled">Test</span> In HTML 4.01, the disabled attribute is not considered valid on span elements. It is valid only on input elements because it specifies that they cannot be accessed. On display-only elements such as span elements, browsers typically support rendering for a disabled appearance, but a Web page that relies on this non-standard behavior is not robust according to accessibility standards. For display-only elements, you should use CSS to indicate a disabled visual appearance. Therefore, by default ASP.NET 4 generates the following HTML for the control settings shown previously: <span id="Label1" class="aspNetDisabled">Test</span> You can change the value of the class attribute that is rendered by default when a control is disabled by setting the DisabledCssClass property. CSS for Validation Controls In ASP.NET 3.5, validation controls render a default color of red as an inline style. For example, the following markup creates a RequiredFieldValidator control: <asp:RequiredFieldValidator ID="RequiredFieldValidator1" runat="server"   ErrorMessage="Required Field" ControlToValidate="RadioButtonList1" /> ASP.NET 3.5 renders the following HTML for the validator control: <span id="RequiredFieldValidator1"   style="color:Red;visibility:hidden;">RequiredFieldValidator</span> By default, ASP.NET 4 does not render an inline style to set the color to red. An inline style is used only to hide or show the validator, as shown in the following example: <span id="RequiredFieldValidator1"   style"visibility:hidden;">RequiredFieldValidator</span> Therefore, ASP.NET 4 does not automatically show error messages in red. For information about how to use CSS to specify a visual style for a validation control, see Validating User Input in ASP.NET Web Pages. CSS for the Hidden Fields Div Element ASP.NET uses hidden fields to store state information such as view state and control state. These hidden fields are contained by a div element. In ASP.NET 3.5, this div element does not have a class attribute or an id attribute. Therefore, CSS rules that affect all div elements could unintentionally cause this div to be visible. To avoid this problem, ASP.NET 4 renders the div element for hidden fields with a CSS class that you can use to differentiate the hidden fields div from others. The new classvalue is shown in the following example: <div class="aspNetHidden"> CSS for the Table, Image, and ImageButton Controls By default, in ASP.NET 3.5, some controls set the border attribute of rendered HTML to zero (0). The following example shows HTML that is generated by the Table control in ASP.NET 3.5: <table id="Table2" border="0"> The Image control and the ImageButton control also do this. Because this is not necessary and provides visual formatting information that should be provided by using CSS, the attribute is not generated in ASP.NET 4. CSS for the UpdatePanel and UpdateProgress Controls In ASP.NET 3.5, the UpdatePanel and UpdateProgress controls do not support expando attributes. This makes it impossible to set a CSS class on the HTMLelements that they render. In ASP.NET 4 these controls have been changed to accept expando attributes, as shown in the following example: <asp:UpdatePanel runat="server" class="myStyle"> </asp:UpdatePanel> The following HTML is rendered for this markup: <div id="ctl00_MainContent_UpdatePanel1" class="expandoclass"> </div> Eliminating Unnecessary Outer Tables In ASP.NET 3.5, the HTML that is rendered for the following controls is wrapped in a table element whose purpose is to apply inline styles to the entire control: FormView Login PasswordRecovery ChangePassword If you use templates to customize the appearance of these controls, you can specify CSS styles in the markup that you provide in the templates. In that case, no extra outer table is required. In ASP.NET 4, you can prevent the table from being rendered by setting the new RenderOuterTable property to false. Layout Templates for Wizard Controls In ASP.NET 3.5, the Wizard and CreateUserWizard controls generate an HTML table element that is used for visual formatting. In ASP.NET 4 you can use a LayoutTemplate element to specify the layout. If you do this, the HTML table element is not generated. In the template, you create placeholder controls to indicate where items should be dynamically inserted into the control. (This is similar to how the template model for the ListView control works.) For more information, see the Wizard.LayoutTemplate property. New HTML Formatting Options for the CheckBoxList and RadioButtonList Controls ASP.NET 3.5 uses HTML table elements to format the output for the CheckBoxList and RadioButtonList controls. To provide an alternative that does not use tables for visual formatting, ASP.NET 4 adds two new options to the RepeatLayout enumeration: UnorderedList. This option causes the HTML output to be formatted by using ul and li elements instead of a table. OrderedList. This option causes the HTML output to be formatted by using ol and li elements instead of a table. For examples of HTML that is rendered for the new options, see the RepeatLayout enumeration. Header and Footer Elements for the Table Control In ASP.NET 3.5, the Table control can be configured to render thead and tfoot elements by setting the TableSection property of the TableHeaderRow class and the TableFooterRow class. In ASP.NET 4 these properties are set to the appropriate values by default. CSS and ARIA Support for the Menu Control In ASP.NET 3.5, the Menu control uses HTML table elements for visual formatting, and in some configurations it is not keyboard-accessible. ASP.NET 4 addresses these problems and improves accessibility in the following ways: The generated HTML is structured as an unordered list (ul and li elements). CSS is used for visual formatting. The menu behaves in accordance with ARIA standards for keyboard access. You can use arrow keys to navigate menu items. (For information about ARIA, see Accessibility in Visual Studio and ASP.NET.) ARIA role and property attributes are added to the generated HTML. (Attributes are added by using JavaScript instead of included in the HTML, to avoid generating HTML that would cause markup validation errors.) Styles for the Menu control are rendered in a style block at the top of the page, instead of inline with the rendered HTML elements. If you want to use a separate CSS file so that you can modify the menu styles, you can set the Menu control's new IncludeStyleBlock property to false, in which case the style block is not generated. Valid XHTML for the HtmlForm Control In ASP.NET 3.5, the HtmlForm control (which is created implicitly by the <form runat="server"> tag) renders an HTML form element that has both name and id attributes. The name attribute is deprecated in XHTML 1.1. Therefore, this control does not render the name attribute in ASP.NET 4. Maintaining Backward Compatibility in Control Rendering An existing ASP.NET Web site might have code in it that assumes that controls are rendering HTML the way they do in ASP.NET 3.5. To avoid causing backward compatibility problems when you upgrade the site to ASP.NET 4, you can have ASP.NET continue to generate HTML the way it does in ASP.NET 3.5 after you upgrade the site. To do so, you can set the controlRenderingCompatibilityVersion attribute of the pages element to "3.5" in the Web.config file of an ASP.NET 4 Web site, as shown in the following example: <system.web>   <pages controlRenderingCompatibilityVersion="3.5"/> </system.web> If this setting is omitted, the default value is the same as the version of ASP.NET that the Web site targets. (For information about multi-targeting in ASP.NET, see .NET Framework Multi-Targeting for ASP.NET Web Projects.) ASP.NET MVC ASP.NET MVC helps Web developers build compelling standards-based Web sites that are easy to maintain because it decreases the dependency among application layers by using the Model-View-Controller (MVC) pattern. MVC provides complete control over the page markup. It also improves testability by inherently supporting Test Driven Development (TDD). Web sites created using ASP.NET MVC have a modular architecture. This allows members of a team to work independently on the various modules and can be used to improve collaboration. For example, developers can work on the model and controller layers (data and logic), while the designer work on the view (presentation). For tutorials, walkthroughs, conceptual content, code samples, and a complete API reference, see ASP.NET MVC 2. Dynamic Data Dynamic Data was introduced in the .NET Framework 3.5 SP1 release in mid-2008. This feature provides many enhancements for creating data-driven applications, such as the following: A RAD experience for quickly building a data-driven Web site. Automatic validation that is based on constraints defined in the data model. The ability to easily change the markup that is generated for fields in the GridView and DetailsView controls by using field templates that are part of your Dynamic Data project. For ASP.NET 4, Dynamic Data has been enhanced to give developers even more power for quickly building data-driven Web sites. For more information, see ASP.NET Dynamic Data Content Map. Enabling Dynamic Data for Individual Data-Bound Controls in Existing Web Applications You can use Dynamic Data features in existing ASP.NET Web applications that do not use scaffolding by enabling Dynamic Data for individual data-bound controls. Dynamic Data provides the presentation and data layer support for rendering these controls. When you enable Dynamic Data for data-bound controls, you get the following benefits: Setting default values for data fields. Dynamic Data enables you to provide default values at run time for fields in a data control. Interacting with the database without creating and registering a data model. Automatically validating the data that is entered by the user without writing any code. For more information, see Walkthrough: Enabling Dynamic Data in ASP.NET Data-Bound Controls. New Field Templates for URLs and E-mail Addresses ASP.NET 4 introduces two new built-in field templates, EmailAddress.ascx and Url.ascx. These templates are used for fields that are marked as EmailAddress or Url using the DataTypeAttribute attribute. For EmailAddress objects, the field is displayed as a hyperlink that is created by using the mailto: protocol. When users click the link, it opens the user's e-mail client and creates a skeleton message. Objects typed as Url are displayed as ordinary hyperlinks. The following example shows how to mark fields. [DataType(DataType.EmailAddress)] public object HomeEmail { get; set; } [DataType(DataType.Url)] public object Website { get; set; } Creating Links with the DynamicHyperLink Control Dynamic Data uses the new routing feature that was added in the .NET Framework 3.5 SP1 to control the URLs that users see when they access the Web site. The new DynamicHyperLink control makes it easy to build links to pages in a Dynamic Data site. For information, see How to: Create Table Action Links in Dynamic Data Support for Inheritance in the Data Model Both the ADO.NET Entity Framework and LINQ to SQL support inheritance in their data models. An example of this might be a database that has an InsurancePolicy table. It might also contain CarPolicy and HousePolicy tables that have the same fields as InsurancePolicy and then add more fields. Dynamic Data has been modified to understand inherited objects in the data model and to support scaffolding for the inherited tables. For more information, see Walkthrough: Mapping Table-per-Hierarchy Inheritance in Dynamic Data. Support for Many-to-Many Relationships (Entity Framework Only) The Entity Framework has rich support for many-to-many relationships between tables, which is implemented by exposing the relationship as a collection on an Entity object. New field templates (ManyToMany.ascx and ManyToMany_Edit.ascx) have been added to provide support for displaying and editing data that is involved in many-to-many relationships. For more information, see Working with Many-to-Many Data Relationships in Dynamic Data. New Attributes to Control Display and Support Enumerations The DisplayAttribute has been added to give you additional control over how fields are displayed. The DisplayNameAttribute attribute in earlier versions of Dynamic Data enabled you to change the name that is used as a caption for a field. The new DisplayAttribute class lets you specify more options for displaying a field, such as the order in which a field is displayed and whether a field will be used as a filter. The attribute also provides independent control of the name that is used for the labels in a GridView control, the name that is used in a DetailsView control, the help text for the field, and the watermark used for the field (if the field accepts text input). The EnumDataTypeAttribute class has been added to let you map fields to enumerations. When you apply this attribute to a field, you specify an enumeration type. Dynamic Data uses the new Enumeration.ascx field template to create UI for displaying and editing enumeration values. The template maps the values from the database to the names in the enumeration. Enhanced Support for Filters Dynamic Data 1.0 had built-in filters for Boolean columns and foreign-key columns. The filters did not let you specify the order in which they were displayed. The new DisplayAttribute attribute addresses this by giving you control over whether a column appears as a filter and in what order it will be displayed. An additional enhancement is that filtering support has been rewritten to use the new QueryExtender feature of Web Forms. This lets you create filters without requiring knowledge of the data source control that the filters will be used with. Along with these extensions, filters have also been turned into template controls, which lets you add new ones. Finally, the DisplayAttribute class mentioned earlier allows the default filter to be overridden, in the same way that UIHint allows the default field template for a column to be overridden. For more information, see Walkthrough: Filtering Rows in Tables That Have a Parent-Child Relationship and QueryableFilterRepeater. ASP.NET Chart Control The ASP.NET chart server control enables you to create ASP.NET pages applications that have simple, intuitive charts for complex statistical or financial analysis. The chart control supports the following features: Data series, chart areas, axes, legends, labels, titles, and more. Data binding. Data manipulation, such as copying, splitting, merging, alignment, grouping, sorting, searching, and filtering. Statistical formulas and financial formulas. Advanced chart appearance, such as 3-D, anti-aliasing, lighting, and perspective. Events and customizations. Interactivity and Microsoft Ajax. Support for the Ajax Content Delivery Network (CDN), which provides an optimized way for you to add Microsoft Ajax Library and jQuery scripts to your Web applications. For more information, see Chart Web Server Control Overview. Visual Web Developer Enhancements The following sections provide information about enhancements and new features in Visual Studio 2010 and Visual Web Developer Express. The Web page designer in Visual Studio 2010 has been enhanced for better CSS compatibility, includes additional support for HTML and ASP.NET markup snippets, and features a redesigned version of IntelliSense for JScript. Improved CSS Compatibility The Visual Web Developer designer in Visual Studio 2010 has been updated to improve CSS 2.1 standards compliance. The designer better preserves HTML source code and is more robust than in previous versions of Visual Studio. HTML and JScript Snippets In the HTML editor, IntelliSense auto-completes tag names. The IntelliSense Snippets feature auto-completes whole tags and more. In Visual Studio 2010, IntelliSense snippets are supported for JScript, alongside C# and Visual Basic, which were supported in earlier versions of Visual Studio. Visual Studio 2010 includes over 200 snippets that help you auto-complete common ASP.NET and HTML tags, including required attributes (such as runat="server") and common attributes specific to a tag (such as ID, DataSourceID, ControlToValidate, and Text). You can download additional snippets, or you can write your own snippets that encapsulate the blocks of markup that you or your team use for common tasks. For more information on HTML snippets, see Walkthrough: Using HTML Snippets. JScript IntelliSense Enhancements In Visual 2010, JScript IntelliSense has been redesigned to provide an even richer editing experience. IntelliSense now recognizes objects that have been dynamically generated by methods such as registerNamespace and by similar techniques used by other JavaScript frameworks. Performance has been improved to analyze large libraries of script and to display IntelliSense with little or no processing delay. Compatibility has been significantly increased to support almost all third-party libraries and to support diverse coding styles. Documentation comments are now parsed as you type and are immediately leveraged by IntelliSense. Web Application Deployment with Visual Studio 2010 For Web application projects, Visual Studio now provides tools that work with the IIS Web Deployment Tool (Web Deploy) to automate many processes that had to be done manually in earlier versions of ASP.NET. For example, the following tasks can now be automated: Creating an IIS application on the destination computer and configuring IIS settings. Copying files to the destination computer. Changing Web.config settings that must be different in the destination environment. Propagating changes to data or data structures in SQL Server databases that are used by the Web application. For more information about Web application deployment, see ASP.NET Deployment Content Map. Enhancements to ASP.NET Multi-Targeting ASP.NET 4 adds new features to the multi-targeting feature to make it easier to work with projects that target earlier versions of the .NET Framework. Multi-targeting was introduced in ASP.NET 3.5 to enable you to use the latest version of Visual Studio without having to upgrade existing Web sites or Web services to the latest version of the .NET Framework. In Visual Studio 2008, when you work with a project targeted for an earlier version of the .NET Framework, most features of the development environment adapt to the targeted version. However, IntelliSense displays language features that are available in the current version, and property windows display properties available in the current version. In Visual Studio 2010, only language features and properties available in the targeted version of the .NET Framework are shown. For more information about multi-targeting, see the following topics: .NET Framework Multi-Targeting for ASP.NET Web Projects ASP.NET Side-by-Side Execution Overview How to: Host Web Applications That Use Different Versions of the .NET Framework on the Same Server How to: Deploy Web Site Projects Targeted for Earlier Versions of the .NET Framework

    Read the article

  • With which class to start Test Driven Development of card game application? And what would be the next 5 to 7 tests?

    - by Maxis
    I have started to write card game applications. Some model classes: CardSuit, CardValue, Card Deck, IDeckCreator, RegularDeckCreator, DoubleDeckCreator Board Hand and some game classes: Turn, TurnHandler IPlayer, ComputerPlayer, HumanPlayer IAttackStrategy, SimpleAttachStrategy, IDefenceStrategy, SimpleDefenceStrategy GameData, Game are already written. My idea is to create engine, where two computer players could play game and then later I could add UI part. Already for some time I'm reading about Test Driven Development (TDD) and I have idea to start writing application from scratch, as currently I have tendency to write not needed code, which seems usable in future. Also code doesn't have any tests and it is hard to add them now. Seems that TDD could improve all these issue - minimum of needed code, good test coverage and also could help to come to right application design. But I have one issue - I can't decide from where to start TDD? Should I start from bottom - Card related classes or somewhere on top - Game, TurnHandler, ... ? With which class you would start? And what would be the next 5 to 7 tests? (use the card game you know the best) I would like to start TDD with your help and then continue on my own!

    Read the article

  • Where to stop/destroy threads in Android Service class?

    - by niko
    Hi, I have created a threaded service the following way: public class TCPClientService extends Service{ ... @Override public void onCreate() { ... Measurements = new LinkedList<String>(); enableDataSending(); } @Override public IBinder onBind(Intent intent) { //TODO: Replace with service binding implementation return null; } @Override public void onLowMemory() { Measurements.clear(); super.onLowMemory(); }; @Override public void onDestroy() { Measurements.clear(); super.onDestroy(); try { SendDataThread.stop(); } catch(Exception e) { } }; private Runnable backgrounSendData = new Runnable() { public void run() { doSendData(); } }; private void enableDataSending() { SendDataThread = new Thread(null, backgrounSendData, "send_data"); SendDataThread.start(); } private void addMeasurementToQueue() { if(Measurements.size() <= 100) { String measurement = packData(); Measurements.add(measurement); } } private void doSendData() { while(true) { try { if(Measurements.isEmpty()) { Thread.sleep(1000); continue; } //Log.d("TCP", "C: Connecting..."); Socket socket = new Socket(); socket.setTcpNoDelay(true); socket.connect(new InetSocketAddress(serverAddress, portNumber), 3000); //socket.connect(new InetSocketAddress(serverAddress, portNumber)); if(!socket.isConnected()) { throw new Exception("Server Unavailable!"); } try { //Log.d("TCP", "C: Sending: '" + message + "'"); PrintWriter out = new PrintWriter( new BufferedWriter( new OutputStreamWriter(socket.getOutputStream())),true); String message = Measurements.remove(); out.println(message); Thread.sleep(200); Log.d("TCP", "C: Sent."); Log.d("TCP", "C: Done."); connectionAvailable = true; } catch(Exception e) { Log.e("TCP", "S: Error", e); connectionAvailable = false; } finally { socket.close(); announceNetworkAvailability(connectionAvailable); } } catch (Exception e) { Log.e("TCP", "C: Error", e); connectionAvailable = false; announceNetworkAvailability(connectionAvailable); } } } } After I close the application the phone works really slow and I guess it is due to thread termination failure. Does anyone know what is the best way to terminate all threads before terminating the application?

    Read the article

  • Call HttpWebRequest in another thread as UI with Task class - avoid to dispose object created in Task scope

    - by John
    I would like call HttpWebRequest on another thread as UI, because I must make 200 request or server and downloaded image. My scenation is that I make a request on server, create image and return image. This I make in another thread. I use Task class, but it call automaticaly Dispose method on all object created in task scope. So I return null object from this method. public BitmapImage CreateAvatar(Uri imageUri, int sex) { if (imageUri == null) return CreateDefaultAvatar(sex); BitmapImage image = null; new Task(() => { var request = WebRequest.Create(imageUri); var response = request.GetResponse(); using (var stream = response.GetResponseStream()) { Byte[] buffer = new Byte[response.ContentLength]; int offset = 0, actuallyRead = 0; do { actuallyRead = stream.Read(buffer, offset, buffer.Length - offset); offset += actuallyRead; } while (actuallyRead > 0); image = new BitmapImage { CreateOptions = BitmapCreateOptions.None, CacheOption = BitmapCacheOption.OnLoad }; image.BeginInit(); image.StreamSource = new MemoryStream(buffer); image.EndInit(); image.Freeze(); } }).Start(); return image; } How avoid it? Thank Mr. Jon Skeet try this: private Stream GetImageStream(Uri imageUri) { Byte[] buffer = null; //new Task(() => //{ var request = WebRequest.Create(imageUri); var response = request.GetResponse(); using (var stream = response.GetResponseStream()) { buffer= new Byte[response.ContentLength]; int offset = 0, actuallyRead = 0; do { actuallyRead = stream.Read(buffer, offset, buffer.Length - offset); offset += actuallyRead; } while (actuallyRead > 0); } //}).Start(); return new MemoryStream(buffer); } It return object which is null a than try this: private Stream GetImageStream(Uri imageUri) { Byte[] buffer = null; new Task(() => { var request = WebRequest.Create(imageUri); var response = request.GetResponse(); using (var stream = response.GetResponseStream()) { buffer= new Byte[response.ContentLength]; int offset = 0, actuallyRead = 0; do { actuallyRead = stream.Read(buffer, offset, buffer.Length - offset); offset += actuallyRead; } while (actuallyRead > 0); } }).Start(); return new MemoryStream(buffer); } Method above return null

    Read the article

  • When I overload the assignment operator for my simple class array, I get the wrong answer I espect

    - by user299648
    //output is "01234 00000" but the output should be or what I want it to be is // "01234 01234" because of the assignment overloaded operator #include <iostream> using namespace std; class IntArray { public: IntArray() : size(10), used(0) { a= new int[10]; } IntArray(int s) : size(s), used(0) { a= new int[s]; } int& operator[]( int index ); IntArray& operator =( const IntArray& rightside ); ~IntArray() { delete [] a; } private: int *a; int size; int used;//for array position }; int main() { IntArray copy; if( 2>1) { IntArray arr(5); for( int k=0; k<5; k++) arr[k]=k; copy = arr; for( int j=0; j<5; j++) cout<<arr[j]; } cout<<" "; for( int j=0; j<5; j++) cout<<copy[j]; return 0; } int& IntArray::operator[]( int index ) { if( index >= size ) cout<<"ilegal index in IntArray"<<endl; return a[index]; } IntArray& IntArray::operator =( const IntArray& rightside ) { if( size != rightside.size )//also checks if on both side same object { delete [] a; a= new int[rightside.size]; } size=rightside.size; used=rightside.used; for( int i = 0; i < used; i++ ) a[i]=rightside.a[i]; return *this; }

    Read the article

  • C problem, left of '->' must point to class/struct/union/generic type ??

    - by Patrick
    Hello! Trying to understand why this doesn't work. I keep getting the following errors: left of '-nextNode' must point to class/struct/union/generic type (Also all the lines with a - in the function new_math_struct) Header file #ifndef MSTRUCT_H #define MSTRUCT_H #define PLUS 0 #define MINUS 1 #define DIVIDE 2 #define MULTIPLY 3 #define NUMBER 4 typedef struct math_struct { int type_of_value; int value; int sum; int is_used; struct math_struct* nextNode; } ; typedef struct math_struct* math_struct_ptr; #endif C file int get_input(math_struct_ptr* startNode) { /* character, input by the user */ char input_ch; char* input_ptr; math_struct_ptr* ptr; math_struct_ptr* previousNode; input_ptr = &input_ch; previousNode = startNode; /* as long as input is not ok */ while (1) { input_ch = get_input_character(); if (input_ch == ',') // Carrage return return 1; else if (input_ch == '.') // Illegal character return 0; if (input_ch == '+') ptr = new_math_struct(PLUS, 0); else if (input_ch == '-') ptr = new_math_struct(MINUS, 0); else if (input_ch == '/') ptr = new_math_struct(DIVIDE, 0); else if (input_ch == '*') ptr = new_math_struct(MULTIPLY, 0); else ptr = new_math_struct(NUMBER, atoi(input_ptr)); if (startNode == NULL) { startNode = previousNode = ptr; } else { previousNode->nextNode = ptr; previousNode = ptr; } } return 0; } math_struct_ptr* new_math_struct(int symbol, int value) { math_struct_ptr* ptr; ptr = (math_struct_ptr*)malloc(sizeof(math_struct_ptr)); ptr->type_of_value = symbol; ptr->value = value; ptr->sum = 0; ptr->is_used = 0; return ptr; } char get_input_character() { /* character, input by the user */ char input_ch; /* get the character */ scanf("%c", &input_ch); if (input_ch == '+' || input_ch == '-' || input_ch == '*' || input_ch == '/' || input_ch == ')') return input_ch; // A special character else if (input_ch == '\n') return ','; // A carrage return else if (input_ch < '0' || input_ch > '9') return '.'; // Not a number else return input_ch; // Number } The header for the C file just contains a reference to the struct header and the definitions of the functions. Language C.

    Read the article

  • Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design

    - by SeanMcAlinden
    Creating a dynamic proxy generator – Part 1 – Creating the Assembly builder, Module builder and caching mechanism For the latest code go to http://rapidioc.codeplex.com/ Before getting too involved in generating the proxy, I thought it would be worth while going through the intended design, this is important as the next step is to start creating the constructors for the proxy. Each proxy derives from a specified type The proxy has a corresponding constructor for each of the base type constructors The proxy has overrides for all methods and properties marked as Virtual on the base type For each overridden method, there is also a private method whose sole job is to call the base method. For each overridden method, a delegate is created whose sole job is to call the private method that calls the base method. The following class diagram shows the main classes and interfaces involved in the interception process. I’ll go through each of them to explain their place in the overall proxy.   IProxy Interface The proxy implements the IProxy interface for the sole purpose of adding custom interceptors. This allows the created proxy interface to be cast as an IProxy and then simply add Interceptors by calling it’s AddInterceptor method. This is done internally within the proxy building process so the consumer of the API doesn’t need knowledge of this. IInterceptor Interface The IInterceptor interface has one method: Handle. The handle method accepts a IMethodInvocation parameter which contains methods and data for handling method interception. Multiple classes that implement this interface can be added to the proxy. Each method override in the proxy calls the handle method rather than simply calling the base method. How the proxy fully works will be explained in the next section MethodInvocation. IMethodInvocation Interface & MethodInvocation class The MethodInvocation will contain one main method and multiple helper properties. Continue Method The method Continue() has two functions hidden away from the consumer. When Continue is called, if there are multiple Interceptors, the next Interceptors Handle method is called. If all Interceptors Handle methods have been called, the Continue method then calls the base class method. Properties The MethodInvocation will contain multiple helper properties including at least the following: Method Name (Read Only) Method Arguments (Read and Write) Method Argument Types (Read Only) Method Result (Read and Write) – this property remains null if the method return type is void Target Object (Read Only) Return Type (Read Only) DefaultInterceptor class The DefaultInterceptor class is a simple class that implements the IInterceptor interface. Here is the code: DefaultInterceptor namespace Rapid.DynamicProxy.Interception {     /// <summary>     /// Default interceptor for the proxy.     /// </summary>     /// <typeparam name="TBase">The base type.</typeparam>     public class DefaultInterceptor<TBase> : IInterceptor<TBase> where TBase : class     {         /// <summary>         /// Handles the specified method invocation.         /// </summary>         /// <param name="methodInvocation">The method invocation.</param>         public void Handle(IMethodInvocation<TBase> methodInvocation)         {             methodInvocation.Continue();         }     } } This is automatically created in the proxy and is the first interceptor that each method override calls. It’s sole function is to ensure that if no interceptors have been added, the base method is still called. Custom Interceptor Example A consumer of the Rapid.DynamicProxy API could create an interceptor for logging when the FirstName property of the User class is set. Just for illustration, I have also wrapped a transaction around the methodInvocation.Coninue() method. This means that any overriden methods within the user class will run within a transaction scope. MyInterceptor public class MyInterceptor : IInterceptor<User<int, IRepository>> {     public void Handle(IMethodInvocation<User<int, IRepository>> methodInvocation)     {         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name seting to: " + methodInvocation.Arguments[0]);         }         using (TransactionScope scope = new TransactionScope())         {             methodInvocation.Continue();         }         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name has been set to: " + methodInvocation.Arguments[0]);         }     } } Overridden Method Example To show a taster of what the overridden methods on the proxy would look like, the setter method for the property FirstName used in the above example would look something similar to the following (this is not real code but will look similar): set_FirstName public override void set_FirstName(string value) {     set_FirstNameBaseMethodDelegate callBase =         new set_FirstNameBaseMethodDelegate(this.set_FirstNameProxyGetBaseMethod);     object[] arguments = new object[] { value };     IMethodInvocation<User<IRepository>> methodInvocation =         new MethodInvocation<User<IRepository>>(this, callBase, "set_FirstName", arguments, interceptors);          this.Interceptors[0].Handle(methodInvocation); } As you can see, a delegate instance is created which calls to a private method on the class, the private method calls the base method and would look like the following: calls base setter private void set_FirstNameProxyGetBaseMethod(string value) {     base.set_FirstName(value); } The delegate is invoked when methodInvocation.Continue() is called within an interceptor. The set_FirstName parameters are loaded into an object array. The current instance, delegate, method name and method arguments are passed into the methodInvocation constructor (there will be more data not illustrated here passed in when created including method info, return types, argument types etc.) The DefaultInterceptor’s Handle method is called with the methodInvocation instance as it’s parameter. Obviously methods can have return values, ref and out parameters etc. in these cases the generated method override body will be slightly different from above. I’ll go into more detail on these aspects as we build them. Conclusion I hope this has been useful, I can’t guarantee that the proxy will look exactly like the above, but at the moment, this is pretty much what I intend to do. Always worth downloading the code at http://rapidioc.codeplex.com/ to see the latest. There will also be some tests that you can debug through to help see what’s going on. Cheers, Sean.

    Read the article

  • Parallelism in .NET – Part 15, Making Tasks Run: The TaskScheduler

    - by Reed
    In my introduction to the Task class, I specifically made mention that the Task class does not directly provide it’s own execution.  In addition, I made a strong point that the Task class itself is not directly related to threads or multithreading.  Rather, the Task class is used to implement our decomposition of tasks.  Once we’ve implemented our tasks, we need to execute them.  In the Task Parallel Library, the execution of Tasks is handled via an instance of the TaskScheduler class. The TaskScheduler class is an abstract class which provides a single function: it schedules the tasks and executes them within an appropriate context.  This class is the class which actually runs individual Task instances.  The .NET Framework provides two (internal) implementations of the TaskScheduler class. Since a Task, based on our decomposition, should be a self-contained piece of code, parallel execution makes sense when executing tasks.  The default implementation of the TaskScheduler class, and the one most often used, is based on the ThreadPool.  This can be retrieved via the TaskScheduler.Default property, and is, by default, what is used when we just start a Task instance with Task.Start(). Normally, when a Task is started by the default TaskScheduler, the task will be treated as a single work item, and run on a ThreadPool thread.  This pools tasks, and provides Task instances all of the advantages of the ThreadPool, including thread pooling for reduced resource usage, and an upper cap on the number of work items.  In addition, .NET 4 brings us a much improved thread pool, providing work stealing and reduced locking within the thread pool queues.  By using the default TaskScheduler, our Tasks are run asynchronously on the ThreadPool. There is one notable exception to my above statements when using the default TaskScheduler.  If a Task is created with the TaskCreationOptions set to TaskCreationOptions.LongRunning, the default TaskScheduler will generate a new thread for that Task, at least in the current implementation.  This is useful for Tasks which will persist for most of the lifetime of your application, since it prevents your Task from starving the ThreadPool of one of it’s work threads. The Task Parallel Library provides one other implementation of the TaskScheduler class.  In addition to providing a way to schedule tasks on the ThreadPool, the framework allows you to create a TaskScheduler which works within a specified SynchronizationContext.  This scheduler can be retrieved within a thread that provides a valid SynchronizationContext by calling the TaskScheduler.FromCurrentSynchronizationContext() method. This implementation of TaskScheduler is intended for use with user interface development.  Windows Forms and Windows Presentation Foundation both require any access to user interface controls to occur on the same thread that created the control.  For example, if you want to set the text within a Windows Forms TextBox, and you’re working on a background thread, that UI call must be marshaled back onto the UI thread.  The most common way this is handled depends on the framework being used.  In Windows Forms, Control.Invoke or Control.BeginInvoke is most often used.  In WPF, the equivelent calls are Dispatcher.Invoke or Dispatcher.BeginInvoke. As an example, say we’re working on a background thread, and we want to update a TextBlock in our user interface with a status label.  The code would typically look something like: // Within background thread work... string status = GetUpdatedStatus(); Dispatcher.BeginInvoke(DispatcherPriority.Normal, new Action( () => { statusLabel.Text = status; })); // Continue on in background method .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This works fine, but forces your method to take a dependency on WPF or Windows Forms.  There is an alternative option, however.  Both Windows Forms and WPF, when initialized, setup a SynchronizationContext in their thread, which is available on the UI thread via the SynchronizationContext.Current property.  This context is used by classes such as BackgroundWorker to marshal calls back onto the UI thread in a framework-agnostic manner. The Task Parallel Library provides the same functionality via the TaskScheduler.FromCurrentSynchronizationContext() method.  When setting up our Tasks, as long as we’re working on the UI thread, we can construct a TaskScheduler via: TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); We then can use this scheduler on any thread to marshal data back onto the UI thread.  For example, our code above can then be rewritten as: string status = GetUpdatedStatus(); (new Task(() => { statusLabel.Text = status; })) .Start(uiScheduler); // Continue on in background method This is nice since it allows us to write code that isn’t tied to Windows Forms or WPF, but is still fully functional with those technologies.  I’ll discuss even more uses for the SynchronizationContext based TaskScheduler when I demonstrate task continuations, but even without continuations, this is a very useful construct. In addition to the two implementations provided by the Task Parallel Library, it is possible to implement your own TaskScheduler.  The ParallelExtensionsExtras project within the Samples for Parallel Programming provides nine sample TaskScheduler implementations.  These include schedulers which restrict the maximum number of concurrent tasks, run tasks on a single threaded apartment thread, use a new thread per task, and more.

    Read the article

  • Using jQuery to POST Form Data to an ASP.NET ASMX AJAX Web Service

    - by Rick Strahl
    The other day I got a question about how to call an ASP.NET ASMX Web Service or PageMethods with the POST data from a Web Form (or any HTML form for that matter). The idea is that you should be able to call an endpoint URL, send it regular urlencoded POST data and then use Request.Form[] to retrieve the posted data as needed. My first reaction was that you can’t do it, because ASP.NET ASMX AJAX services (as well as Page Methods and WCF REST AJAX Services) require that the content POSTed to the server is posted as JSON and sent with an application/json or application/x-javascript content type. IOW, you can’t directly call an ASP.NET AJAX service with regular urlencoded data. Note that there are other ways to accomplish this. You can use ASP.NET MVC and a custom route, an HTTP Handler or separate ASPX page, or even a WCF REST service that’s configured to use non-JSON inputs. However if you want to use an ASP.NET AJAX service (or Page Methods) with a little bit of setup work it’s actually quite easy to capture all the form variables on the client and ship them up to the server. The basic steps needed to make this happen are: Capture form variables into an array on the client with jQuery’s .serializeArray() function Use $.ajax() or my ServiceProxy class to make an AJAX call to the server to send this array On the server create a custom type that matches the .serializeArray() name/value structure Create extension methods on NameValue[] to easily extract form variables Create a [WebMethod] that accepts this name/value type as an array (NameValue[]) This seems like a lot of work but realize that steps 3 and 4 are a one time setup step that can be reused in your entire site or multiple applications. Let’s look at a short example that looks like this as a base form of fields to ship to the server: The HTML for this form looks something like this: <div id="divMessage" class="errordisplay" style="display: none"> </div> <div> <div class="label">Name:</div> <div><asp:TextBox runat="server" ID="txtName" /></div> </div> <div> <div class="label">Company:</div> <div><asp:TextBox runat="server" ID="txtCompany"/></div> </div> <div> <div class="label" ></div> <div> <asp:DropDownList runat="server" ID="lstAttending"> <asp:ListItem Text="Attending" Value="Attending"/> <asp:ListItem Text="Not Attending" Value="NotAttending" /> <asp:ListItem Text="Maybe Attending" Value="MaybeAttending" /> <asp:ListItem Text="Not Sure Yet" Value="NotSureYet" /> </asp:DropDownList> </div> </div> <div> <div class="label">Special Needs:<br /> <small>(check all that apply)</small></div> <div> <asp:ListBox runat="server" ID="lstSpecialNeeds" SelectionMode="Multiple"> <asp:ListItem Text="Vegitarian" Value="Vegitarian" /> <asp:ListItem Text="Vegan" Value="Vegan" /> <asp:ListItem Text="Kosher" Value="Kosher" /> <asp:ListItem Text="Special Access" Value="SpecialAccess" /> <asp:ListItem Text="No Binder" Value="NoBinder" /> </asp:ListBox> </div> </div> <div> <div class="label"></div> <div> <asp:CheckBox ID="chkAdditionalGuests" Text="Additional Guests" runat="server" /> </div> </div> <hr /> <input type="button" id="btnSubmit" value="Send Registration" /> The form includes a few different kinds of form fields including a multi-selection listbox to demonstrate retrieving multiple values. Setting up the Server Side [WebMethod] The [WebMethod] on the server we’re going to call is going to be very simple and just capture the content of these values and echo then back as a formatted HTML string. Obviously this is overly simplistic but it serves to demonstrate the simple point of capturing the POST data on the server in an AJAX callback. public class PageMethodsService : System.Web.Services.WebService { [WebMethod] public string SendRegistration(NameValue[] formVars) { StringBuilder sb = new StringBuilder(); sb.AppendFormat("Thank you {0}, <br/><br/>", HttpUtility.HtmlEncode(formVars.Form("txtName"))); sb.AppendLine("You've entered the following: <hr/>"); foreach (NameValue nv in formVars) { // strip out ASP.NET form vars like _ViewState/_EventValidation if (!nv.name.StartsWith("__")) { if (nv.name.StartsWith("txt") || nv.name.StartsWith("lst") || nv.name.StartsWith("chk")) sb.Append(nv.name.Substring(3)); else sb.Append(nv.name); sb.AppendLine(": " + HttpUtility.HtmlEncode(nv.value) + "<br/>"); } } sb.AppendLine("<hr/>"); string[] needs = formVars.FormMultiple("lstSpecialNeeds"); if (needs == null) sb.AppendLine("No Special Needs"); else { sb.AppendLine("Special Needs: <br/>"); foreach (string need in needs) { sb.AppendLine("&nbsp;&nbsp;" + need + "<br/>"); } } return sb.ToString(); } } The key feature of this method is that it receives a custom type called NameValue[] which is an array of NameValue objects that map the structure that the jQuery .serializeArray() function generates. There are two custom types involved in this: The actual NameValue type and a NameValueExtensions class that defines a couple of extension methods for the NameValue[] array type to allow for single (.Form()) and multiple (.FormMultiple()) value retrieval by name. The NameValue class is as simple as this and simply maps the structure of the array elements of .serializeArray(): public class NameValue { public string name { get; set; } public string value { get; set; } } The extension method class defines the .Form() and .FormMultiple() methods to allow easy retrieval of form variables from the returned array: /// <summary> /// Simple NameValue class that maps name and value /// properties that can be used with jQuery's /// $.serializeArray() function and JSON requests /// </summary> public static class NameValueExtensionMethods { /// <summary> /// Retrieves a single form variable from the list of /// form variables stored /// </summary> /// <param name="formVars"></param> /// <param name="name">formvar to retrieve</param> /// <returns>value or string.Empty if not found</returns> public static string Form(this NameValue[] formVars, string name) { var matches = formVars.Where(nv => nv.name.ToLower() == name.ToLower()).FirstOrDefault(); if (matches != null) return matches.value; return string.Empty; } /// <summary> /// Retrieves multiple selection form variables from the list of /// form variables stored. /// </summary> /// <param name="formVars"></param> /// <param name="name">The name of the form var to retrieve</param> /// <returns>values as string[] or null if no match is found</returns> public static string[] FormMultiple(this NameValue[] formVars, string name) { var matches = formVars.Where(nv => nv.name.ToLower() == name.ToLower()).Select(nv => nv.value).ToArray(); if (matches.Length == 0) return null; return matches; } } Using these extension methods it’s easy to retrieve individual values from the array: string name = formVars.Form("txtName"); or multiple values: string[] needs = formVars.FormMultiple("lstSpecialNeeds"); if (needs != null) { // do something with matches } Using these functions in the SendRegistration method it’s easy to retrieve a few form variables directly (txtName and the multiple selections of lstSpecialNeeds) or to iterate over the whole list of values. Of course this is an overly simple example – in typical app you’d probably want to validate the input data and save it to the database and then return some sort of confirmation or possibly an updated data list back to the client. Since this is a full AJAX service callback realize that you don’t have to return simple string values – you can return any of the supported result types (which are most serializable types) including complex hierarchical objects and arrays that make sense to your client code. POSTing Form Variables from the Client to the AJAX Service To call the AJAX service method on the client is straight forward and requires only use of little native jQuery plus JSON serialization functionality. To start add jQuery and the json2.js library to your page: <script src="Scripts/jquery.min.js" type="text/javascript"></script> <script src="Scripts/json2.js" type="text/javascript"></script> json2.js can be found here (be sure to remove the first line from the file): http://www.json.org/json2.js It’s required to handle JSON serialization for those browsers that don’t support it natively. With those script references in the document let’s hookup the button click handler and call the service: $(document).ready(function () { $("#btnSubmit").click(sendRegistration); }); function sendRegistration() { var arForm = $("#form1").serializeArray(); $.ajax({ url: "PageMethodsService.asmx/SendRegistration", type: "POST", contentType: "application/json", data: JSON.stringify({ formVars: arForm }), dataType: "json", success: function (result) { var jEl = $("#divMessage"); jEl.html(result.d).fadeIn(1000); setTimeout(function () { jEl.fadeOut(1000) }, 5000); }, error: function (xhr, status) { alert("An error occurred: " + status); } }); } The key feature in this code is the $("#form1").serializeArray();  call which serializes all the form fields of form1 into an array. Each form var is represented as an object with a name/value property. This array is then serialized into JSON with: JSON.stringify({ formVars: arForm }) The format for the parameter list in AJAX service calls is an object with one property for each parameter of the method. In this case its a single parameter called formVars and we’re assigning the array of form variables to it. The URL to call on the server is the name of the Service (or ASPX Page for Page Methods) plus the name of the method to call. On return the success callback receives the result from the AJAX callback which in this case is the formatted string which is simply assigned to an element in the form and displayed. Remember the result type is whatever the method returns – it doesn’t have to be a string. Note that ASP.NET AJAX and WCF REST return JSON data as a wrapped object so the result has a ‘d’ property that holds the actual response: jEl.html(result.d).fadeIn(1000); Slightly simpler: Using ServiceProxy.js If you want things slightly cleaner you can use the ServiceProxy.js class I’ve mentioned here before. The ServiceProxy class handles a few things for calling ASP.NET and WCF services more cleanly: Automatic JSON encoding Automatic fix up of ‘d’ wrapper property Automatic Date conversion on the client Simplified error handling Reusable and abstracted To add the service proxy add: <script src="Scripts/ServiceProxy.js" type="text/javascript"></script> and then change the code to this slightly simpler version: <script type="text/javascript"> proxy = new ServiceProxy("PageMethodsService.asmx/"); $(document).ready(function () { $("#btnSubmit").click(sendRegistration); }); function sendRegistration() { var arForm = $("#form1").serializeArray(); proxy.invoke("SendRegistration", { formVars: arForm }, function (result) { var jEl = $("#divMessage"); jEl.html(result).fadeIn(1000); setTimeout(function () { jEl.fadeOut(1000) }, 5000); }, function (error) { alert(error.message); } ); } The code is not very different but it makes the call as simple as specifying the method to call, the parameters to pass and the actions to take on success and error. No more remembering which content type and data types to use and manually serializing to JSON. This code also removes the “d” property processing in the response and provides more consistent error handling in that the call always returns an error object regardless of a server error or a communication error unlike the native $.ajax() call. Either approach works and both are pretty easy. The ServiceProxy really pays off if you use lots of service calls and especially if you need to deal with date values returned from the server  on the client. Summary Making Web Service calls and getting POST data to the server is not always the best option – ASP.NET and WCF AJAX services are meant to work with data in objects. However, in some situations it’s simply easier to POST all the captured form data to the server instead of mapping all properties from the input fields to some sort of message object first. For this approach the above POST mechanism is useful as it puts the parsing of the data on the server and leaves the client code lean and mean. It’s even easy to build a custom model binder on the server that can map the array values to properties on an object generically with some relatively simple Reflection code and without having to manually map form vars to properties and do string conversions. Keep in mind though that other approaches also abound. ASP.NET MVC makes it pretty easy to create custom routes to data and the built in model binder makes it very easy to deal with inbound form POST data in its original urlencoded format. The West Wind West Wind Web Toolkit also includes functionality for AJAX callbacks using plain POST values. All that’s needed is a Method parameter to query/form value to specify the method to be called on the server. After that the content type is completely optional and up to the consumer. It’d be nice if the ASP.NET AJAX Service and WCF AJAX Services weren’t so tightly bound to the content type so that you could more easily create open access service endpoints that can take advantage of urlencoded data that is everywhere in existing pages. It would make it much easier to create basic REST endpoints without complicated service configuration. Ah one can dream! In the meantime I hope this article has given you some ideas on how you can transfer POST data from the client to the server using JSON – it might be useful in other scenarios beyond ASP.NET AJAX services as well. Additional Resources ServiceProxy.js A small JavaScript library that wraps $.ajax() to call ASP.NET AJAX and WCF AJAX Services. Includes date parsing extensions to the JSON object, a global dataFilter for processing dates on all jQuery JSON requests, provides cleanup for the .NET wrapped message format and handles errors in a consistent fashion. Making jQuery Calls to WCF/ASMX with a ServiceProxy Client More information on calling ASMX and WCF AJAX services with jQuery and some more background on ServiceProxy.js. Note the implementation has slightly changed since the article was written. ww.jquery.js The West Wind West Wind Web Toolkit also includes ServiceProxy.js in the West Wind jQuery extension library. This version is slightly different and includes embedded json encoding/decoding based on json2.js.© Rick Strahl, West Wind Technologies, 2005-2010Posted in jQuery  ASP.NET  AJAX  

    Read the article

  • Entity Framework Code-First, OData & Windows Phone Client

    - by Jon Galloway
    Entity Framework Code-First is the coolest thing since sliced bread, Windows  Phone is the hottest thing since Tickle-Me-Elmo and OData is just too great to ignore. As part of the Full Stack project, we wanted to put them together, which turns out to be pretty easy… once you know how.   EF Code-First CTP5 is available now and there should be very few breaking changes in the release edition, which is due early in 2011.  Note: EF Code-First evolved rapidly and many of the existing documents and blog posts which were written with earlier versions, may now be obsolete or at least misleading.   Code-First? With traditional Entity Framework you start with a database and from that you generate “entities” – classes that bridge between the relational database and your object oriented program. With Code-First (Magic-Unicorn) (see Hanselman’s write up and this later write up by Scott Guthrie) the Entity Framework looks at classes you created and says “if I had created these classes, the database would have to have looked like this…” and creates the database for you! By deriving your entity collections from DbSet and exposing them via a class that derives from DbContext, you "turn on" database backing for your POCO with a minimum of code and no hidden designer or configuration files. POCO == Plain Old CLR Objects Your entity objects can be used throughout your applications - in web applications, console applications, Silverlight and Windows Phone applications, etc. In our case, we'll want to read and update data from a Windows Phone client application, so we'll expose the entities through a DataService and hook the Windows Phone client application to that data via proxies.  Piece of Pie.  Easy as cake. The Demo Architecture To see this at work, we’ll create an ASP.NET/MVC application which will act as the host for our Data Service.  We’ll create an incredibly simple data layer using EF Code-First on top of SQLCE4 and we’ll expose the data in a WCF Data Service using the oData protocol.  Our Windows Phone 7 client will instantiate  the data context via a URI and load the data asynchronously. Setting up the Server project with MVC 3, EF Code First, and SQL CE 4 Create a new application of type ASP.NET MVC 3 and name it DeadSimpleServer.  We need to add the latest SQLCE4 and Entity Framework Code First CTP's to our project. Fortunately, NuGet makes that really easy. Open the Package Manager Console (View / Other Windows / Package Manager Console) and type in "Install-Package EFCodeFirst.SqlServerCompact" at the PM> command prompt. Since NuGet handles dependencies for you, you'll see that it installs everything you need to use Entity Framework Code First in your project. PM> install-package EFCodeFirst.SqlServerCompact 'SQLCE (= 4.0.8435.1)' not installed. Attempting to retrieve dependency from source... Done 'EFCodeFirst (= 0.8)' not installed. Attempting to retrieve dependency from source... Done 'WebActivator (= 1.0.0.0)' not installed. Attempting to retrieve dependency from source... Done You are downloading SQLCE from Microsoft, the license agreement to which is available at http://173.203.67.148/licenses/SQLCE/EULA_ENU.rtf. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'SQLCE 4.0.8435.1' You are downloading EFCodeFirst from Microsoft, the license agreement to which is available at http://go.microsoft.com/fwlink/?LinkID=206497. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'EFCodeFirst 0.8' Successfully installed 'WebActivator 1.0.0.0' You are downloading EFCodeFirst.SqlServerCompact from Microsoft, the license agreement to which is available at http://173.203.67.148/licenses/SQLCE/EULA_ENU.rtf. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'EFCodeFirst.SqlServerCompact 0.8' Successfully added 'SQLCE 4.0.8435.1' to EfCodeFirst-CTP5 Successfully added 'EFCodeFirst 0.8' to EfCodeFirst-CTP5 Successfully added 'WebActivator 1.0.0.0' to EfCodeFirst-CTP5 Successfully added 'EFCodeFirst.SqlServerCompact 0.8' to EfCodeFirst-CTP5 Note: We're using SQLCE 4 with Entity Framework here because they work really well together from a development scenario, but you can of course use Entity Framework Code First with other databases supported by Entity framework. Creating The Model using EF Code First Now we can create our model class. Right-click the Models folder and select Add/Class. Name the Class Person.cs and add the following code: using System.Data.Entity; namespace DeadSimpleServer.Models { public class Person { public int ID { get; set; } public string Name { get; set; } } public class PersonContext : DbContext { public DbSet<Person> People { get; set; } } } Notice that the entity class Person has no special interfaces or base class. There's nothing special needed to make it work - it's just a POCO. The context we'll use to access the entities in the application is called PersonContext, but you could name it anything you wanted. The important thing is that it inherits DbContext and contains one or more DbSet which holds our entity collections. Adding Seed Data We need some testing data to expose from our service. The simplest way to get that into our database is to modify the CreateCeDatabaseIfNotExists class in AppStart_SQLCEEntityFramework.cs by adding some seed data to the Seed method: protected virtual void Seed( TContext context ) { var personContext = context as PersonContext; personContext.People.Add( new Person { ID = 1, Name = "George Washington" } ); personContext.People.Add( new Person { ID = 2, Name = "John Adams" } ); personContext.People.Add( new Person { ID = 3, Name = "Thomas Jefferson" } ); personContext.SaveChanges(); } The CreateCeDatabaseIfNotExists class name is pretty self-explanatory - when our DbContext is accessed and the database isn't found, a new one will be created and populated with the data in the Seed method. There's one more step to make that work - we need to uncomment a line in the Start method at the top of of the AppStart_SQLCEEntityFramework class and set the context name, as shown here, public static class AppStart_SQLCEEntityFramework { public static void Start() { DbDatabase.DefaultConnectionFactory = new SqlCeConnectionFactory("System.Data.SqlServerCe.4.0"); // Sets the default database initialization code for working with Sql Server Compact databases // Uncomment this line and replace CONTEXT_NAME with the name of your DbContext if you are // using your DbContext to create and manage your database DbDatabase.SetInitializer(new CreateCeDatabaseIfNotExists<PersonContext>()); } } Now our database and entity framework are set up, so we can expose data via WCF Data Services. Note: This is a bare-bones implementation with no administration screens. If you'd like to see how those are added, check out The Full Stack screencast series. Creating the oData Service using WCF Data Services Add a new WCF Data Service to the project (right-click the project / Add New Item / Web / WCF Data Service). We’ll be exposing all the data as read/write.  Remember to reconfigure to control and minimize access as appropriate for your own application. Open the code behind for your service. In our case, the service was called PersonTestDataService.svc so the code behind class file is PersonTestDataService.svc.cs. using System.Data.Services; using System.Data.Services.Common; using System.ServiceModel; using DeadSimpleServer.Models; namespace DeadSimpleServer { [ServiceBehavior( IncludeExceptionDetailInFaults = true )] public class PersonTestDataService : DataService<PersonContext> { // This method is called only once to initialize service-wide policies. public static void InitializeService( DataServiceConfiguration config ) { config.SetEntitySetAccessRule( "*", EntitySetRights.All ); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; config.UseVerboseErrors = true; } } } We're enabling a few additional settings to make it easier to debug if you run into trouble. The ServiceBehavior attribute is set to include exception details in faults, and we're using verbose errors. You can remove both of these when your service is working, as your public production service shouldn't be revealing exception information. You can view the output of the service by running the application and browsing to http://localhost:[portnumber]/PersonTestDataService.svc/: <service xml:base="http://localhost:49786/PersonTestDataService.svc/" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:app="http://www.w3.org/2007/app" xmlns="http://www.w3.org/2007/app"> <workspace> <atom:title>Default</atom:title> <collection href="People"> <atom:title>People</atom:title> </collection> </workspace> </service> This indicates that the service exposes one collection, which is accessible by browsing to http://localhost:[portnumber]/PersonTestDataService.svc/People <?xml version="1.0" encoding="iso-8859-1" standalone="yes"?> <feed xml:base=http://localhost:49786/PersonTestDataService.svc/ xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata" xmlns="http://www.w3.org/2005/Atom"> <title type="text">People</title> <id>http://localhost:49786/PersonTestDataService.svc/People</id> <updated>2010-12-29T01:01:50Z</updated> <link rel="self" title="People" href="People" /> <entry> <id>http://localhost:49786/PersonTestDataService.svc/People(1)</id> <title type="text"></title> <updated>2010-12-29T01:01:50Z</updated> <author> <name /> </author> <link rel="edit" title="Person" href="People(1)" /> <category term="DeadSimpleServer.Models.Person" scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" /> <content type="application/xml"> <m:properties> <d:ID m:type="Edm.Int32">1</d:ID> <d:Name>George Washington</d:Name> </m:properties> </content> </entry> <entry> ... </entry> </feed> Let's recap what we've done so far. But enough with services and XML - let's get this into our Windows Phone client application. Creating the DataServiceContext for the Client Use the latest DataSvcUtil.exe from http://odata.codeplex.com. As of today, that's in this download: http://odata.codeplex.com/releases/view/54698 You need to run it with a few options: /uri - This will point to the service URI. In this case, it's http://localhost:59342/PersonTestDataService.svc  Pick up the port number from your running server (e.g., the server formerly known as Cassini). /out - This is the DataServiceContext class that will be generated. You can name it whatever you'd like. /Version - should be set to 2.0 /DataServiceCollection - Include this flag to generate collections derived from the DataServiceCollection base, which brings in all the ObservableCollection goodness that handles your INotifyPropertyChanged events for you. Here's the console session from when we ran it: <ListBox x:Name="MainListBox" Margin="0,0,-12,0" ItemsSource="{Binding}" SelectionChanged="MainListBox_SelectionChanged"> Next, to keep things simple, change the Binding on the two TextBlocks within the DataTemplate to Name and ID, <ListBox x:Name="MainListBox" Margin="0,0,-12,0" ItemsSource="{Binding}" SelectionChanged="MainListBox_SelectionChanged"> <ListBox.ItemTemplate> <DataTemplate> <StackPanel Margin="0,0,0,17" Width="432"> <TextBlock Text="{Binding Name}" TextWrapping="Wrap" Style="{StaticResource PhoneTextExtraLargeStyle}" /> <TextBlock Text="{Binding ID}" TextWrapping="Wrap" Margin="12,-6,12,0" Style="{StaticResource PhoneTextSubtleStyle}" /> </StackPanel> </DataTemplate> </ListBox.ItemTemplate> </ListBox> Getting The Context In the code-behind you’ll first declare a member variable to hold the context from the Entity Framework. This is named using convention over configuration. The db type is Person and the context is of type PersonContext, You initialize it by providing the URI, in this case using the URL obtained from the Cassini web server, PersonContext context = new PersonContext( new Uri( "http://localhost:49786/PersonTestDataService.svc/" ) ); Create a second member variable of type DataServiceCollection<Person> but do not initialize it, DataServiceCollection<Person> people; In the constructor you’ll initialize the DataServiceCollection using the PersonContext, public MainPage() { InitializeComponent(); people = new DataServiceCollection<Person>( context ); Finally, you’ll load the people collection using the LoadAsync method, passing in the fully specified URI for the People collection in the web service, people.LoadAsync( new Uri( "http://localhost:49786/PersonTestDataService.svc/People" ) ); Note that this method runs asynchronously and when it is finished the people  collection is already populated. Thus, since we didn’t need or want to override any of the behavior we don’t implement the LoadCompleted. You can use the LoadCompleted event if you need to do any other UI updates, but you don't need to. The final code is as shown below: using System; using System.Data.Services.Client; using System.Windows; using System.Windows.Controls; using DeadSimpleServer.Models; using Microsoft.Phone.Controls; namespace WindowsPhoneODataTest { public partial class MainPage : PhoneApplicationPage { PersonContext context = new PersonContext( new Uri( "http://localhost:49786/PersonTestDataService.svc/" ) ); DataServiceCollection<Person> people; // Constructor public MainPage() { InitializeComponent(); // Set the data context of the listbox control to the sample data // DataContext = App.ViewModel; people = new DataServiceCollection<Person>( context ); people.LoadAsync( new Uri( "http://localhost:49786/PersonTestDataService.svc/People" ) ); DataContext = people; this.Loaded += new RoutedEventHandler( MainPage_Loaded ); } // Handle selection changed on ListBox private void MainListBox_SelectionChanged( object sender, SelectionChangedEventArgs e ) { // If selected index is -1 (no selection) do nothing if ( MainListBox.SelectedIndex == -1 ) return; // Navigate to the new page NavigationService.Navigate( new Uri( "/DetailsPage.xaml?selectedItem=" + MainListBox.SelectedIndex, UriKind.Relative ) ); // Reset selected index to -1 (no selection) MainListBox.SelectedIndex = -1; } // Load data for the ViewModel Items private void MainPage_Loaded( object sender, RoutedEventArgs e ) { if ( !App.ViewModel.IsDataLoaded ) { App.ViewModel.LoadData(); } } } } With people populated we can set it as the DataContext and run the application; you’ll find that the Name and ID are displayed in the list on the Mainpage. Here's how the pieces in the client fit together: Complete source code available here

    Read the article

  • Replacing jQuery.live() with jQuery.on()

    - by Rick Strahl
    jQuery 1.9 and 1.10 have introduced a host of changes, but for the most part these changes are mostly transparent to existing application usage of jQuery. After spending some time last week with a few of my projects and going through them with a specific eye for jQuery failures I found that for the most part there wasn't a big issue. The vast majority of code continues to run just fine with either 1.9 or 1.10 (which are supposed to be in sync but with 1.10 removing support for legacy Internet Explorer pre-9.0 versions). However, one particular change in the new versions has caused me quite a bit of update trouble, is the removal of the jQuery.live() function. This is my own fault I suppose - .live() has been deprecated for a while, but with 1.9 and later it was finally removed altogether from jQuery. In the past I had quite a bit of jQuery code that used .live() and it's one of the things that's holding back my upgrade process, although I'm slowly cleaning up my code and switching to the .on() function as the replacement. jQuery.live() jQuery.live() was introduced a long time ago to simplify handling events on matched elements that exist currently on the document and those that are are added in the future and also match the selector. jQuery uses event bubbling, special event binding, plus some magic using meta data attached to a parent level element to check and see if the original target event element matches the selected selected elements (for more info see Elijah Manor's comment below). An Example Assume a list of items like the following in HTML for example and further assume that the items in this list can be appended to at a later point. In this app there's a smallish initial list that loads to start, and as the user scrolls towards the end of the initial small list more items are loaded dynamically and added to the list.<div id="PostItemContainer" class="scrollbox"> <div class="postitem" data-id="4z6qhomm"> <div class="post-icon"></div> <div class="postitemheader"><a href="show/4z6qhomm" target="Content">1999 Buick Century For Sale!</a></div> <div class="postitemprice rightalign">$ 3,500 O.B.O.</div> <div class="smalltext leftalign">Jun. 07 @ 1:06am</div> <div class="post-byline">- Vehicles - Automobiles</div> </div> <div class="postitem" data-id="2jtvuu17"> <div class="postitemheader"><a href="show/2jtvuu17" target="Content">Toyota VAN 1987</a></div> <div class="postitemprice rightalign">$950</div> <div class="smalltext leftalign">Jun. 07 @ 12:29am</div> <div class="post-byline">- Vehicles - Automobiles</div> </div> … </div> With the jQuery.live() function you could easily select elements and hook up a click handler like this:$(".postitem").live("click", function() {...}); Simple and perfectly readable. The behavior of the .live handler generally was the same as the corresponding simple event handlers like .click(), except that you have to explicitly name the event instead of using one of the methods. Re-writing with jQuery.on() With .live() removed in 1.9 and later we have to re-write .live() code above with an alternative. The jQuery documentation points you at the .on() or .delegate() functions to update your code. jQuery.on() is a more generic event handler function, and it's what jQuery uses internally to map the high level event functions like .click(),.change() etc. that jQuery exposes. Using jQuery.on() however is not a one to one replacement of the .live() function. While .on() can handle events directly and use the same syntax as .live() did, you'll find if you simply switch out .live() with .on() that events on not-yet existing elements will not fire. IOW, the key feature of .live() is not working. You can use .on() to get the desired effect however, but you have to change the syntax to explicitly handle the event you're interested in on the container and then provide a filter selector to specify which elements you are actually interested in for handling the event for. Sounds more complicated than it is and it's easier to see with an example. For the list above hooking .postitem clicks, using jQuery.on() looks like this:$("#PostItemContainer").on("click", ".postitem", function() {...}); You specify a container that can handle the .click event and then provide a filter selector to find the child elements that trigger the  the actual event. So here #PostItemContainer contains many .postitems, whose click events I want to handle. Any container will do including document, but I tend to use the container closest to the elements I actually want to handle the events on to minimize the event bubbling that occurs to capture the event. With this code I get the same behavior as with .live() and now as new .postitem elements are added the click events are always available. Sweet. Here's the full event signature for the .on() function: .on( events [, selector ] [, data ], handler(eventObject) ) Note that the selector is optional - if you omit it you essentially create a simple event handler that handles the event directly on the selected object. The filter/child selector required if you want life-like - uh, .live() like behavior to happen. While it's a bit more verbose than what .live() did, .on() provides the same functionality by being more explicit on what your parent container for trapping events is. .on() is good Practice even for ordinary static Element Lists As a side note, it's a good practice to use jQuery.on() or jQuery.delegate() for events in most cases anyway, using this 'container event trapping' syntax. That's because rather than requiring lots of event handlers on each of the child elements (.postitem in the sample above), there's just one event handler on the container, and only when clicked does jQuery drill down to find the matching filter element and tries to match it to the originating element. In the early days of jQuery I used manually build handlers that did this and manually drilled from the event object into the originalTarget to determine if it's a matching element. With later versions of jQuery the various event functions in jQuery essentially provide this functionality out of the box with functions like .on() and .delegate(). All of this is nothing new, but I thought I'd write this up because I have on a few occasions forgotten what exactly was needed to replace the many .live() function calls that litter my code - especially older code. This will be a nice reminder next time I have a memory blank on this topic. And maybe along the way I've helped one or two of you as well to clean up your .live() code…© Rick Strahl, West Wind Technologies, 2005-2013Posted in jQuery   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Do unit tests sometimes break encapsulation?

    - by user1288851
    I very often hear the following: "If you want to test private methods, you'd better put that in another class and expose it." While sometimes that's the case and we have a hiding concept inside our class, other times you end up with classes that have the same attributes (or, worst, every attribute of one class become a argument on a method in the other class) and exposes functionality that is, in fact, implementation detail. Specially on TDD, when you refactor a class with public methods out of a previous tested class, that class is now part of your interface, but has no tests to it (since you refactored it, and is a implementation detail). Now, I may be not finding an obvious better answer, but if my answer is the "correct", that means that sometimes writting unit tests can break encapsulation, and divide the same responsibility into different classes. A simple example would be testing a setter method when a getter is not actually needed for anything in the real code. Please when aswering don't provide simple answers to specific cases I may have written. Rather, try to explain more of the generic case and theoretical approach. And this is neither language specific. Thanks in advance. EDIT: The answer given by Matthew Flynn was really insightful, but didn't quite answer the question. Altough he made the fair point that you either don't test private methods or extract them because they really are other concern and responsibility (or at least that was what I could understand from his answer), I think there are situations where unit testing private methods is useful. My primary example is when you have a class that has one responsibility but the output (or input) that it gives (takes) is just to complex. For example, a hashing function. There's no good way to break a hashing function apart and mantain cohesion and encapsulation. However, testing a hashing function can be really tough, since you would need to calculate by hand (you can't use code calculation to test code calculation!) the hashing, and test multiple cases where the hash changes. In that way (and this may be a question worth of its own topic) I think private method testing is the best way to handle it. Now, I'm not sure if I should ask another question, or ask it here, but are there any better way to test such complex output (input)? OBS: Please, if you think I should ask another question on that topic, leave a comment. :)

    Read the article

  • Generate Strongly Typed Observable Events for the Reactive Extensions for .NET (Rx)

    - by Bobby Diaz
    I must have tried reading through the various explanations and introductions to the new Reactive Extensions for .NET before the concepts finally started sinking in.  The article that gave me the ah-ha moment was over on SilverlightShow.net and titled Using Reactive Extensions in Silverlight.  The author did a good job comparing the "normal" way of handling events vs. the new "reactive" methods. Admittedly, I still have more to learn about the Rx Framework, but I wanted to put together a sample project so I could start playing with the new Observable and IObservable<T> constructs.  I decided to throw together a whiteboard application in Silverlight based on the Drawing with Rx example on the aforementioned article.  At the very least, I figured I would learn a thing or two about a new technology, but my real goal is to create a fun application that I can share with the kids since they love drawing and coloring so much! Here is the code sample that I borrowed from the article: var mouseMoveEvent = Observable.FromEvent<MouseEventArgs>(this, "MouseMove"); var mouseLeftButtonDown = Observable.FromEvent<MouseButtonEventArgs>(this, "MouseLeftButtonDown"); var mouseLeftButtonUp = Observable.FromEvent<MouseButtonEventArgs>(this, "MouseLeftButtonUp");       var draggingEvents = from pos in mouseMoveEvent                              .SkipUntil(mouseLeftButtonDown)                              .TakeUntil(mouseLeftButtonUp)                              .Let(mm => mm.Zip(mm.Skip(1), (prev, cur) =>                                  new                                  {                                      X2 = cur.EventArgs.GetPosition(this).X,                                      X1 = prev.EventArgs.GetPosition(this).X,                                      Y2 = cur.EventArgs.GetPosition(this).Y,                                      Y1 = prev.EventArgs.GetPosition(this).Y                                  })).Repeat()                          select pos;       draggingEvents.Subscribe(p =>     {         Line line = new Line();         line.Stroke = new SolidColorBrush(Colors.Black);         line.StrokeEndLineCap = PenLineCap.Round;         line.StrokeLineJoin = PenLineJoin.Round;         line.StrokeThickness = 5;         line.X1 = p.X1;         line.Y1 = p.Y1;         line.X2 = p.X2;         line.Y2 = p.Y2;         this.LayoutRoot.Children.Add(line);     }); One thing that was nagging at the back of my mind was having to deal with the event names as strings, as well as the verbose syntax for the Observable.FromEvent<TEventArgs>() method.  I came up with a couple of static/helper classes to resolve both issues and also created a T4 template to auto-generate these helpers for any .NET type.  Take the following code from the above example: var mouseMoveEvent = Observable.FromEvent<MouseEventArgs>(this, "MouseMove"); var mouseLeftButtonDown = Observable.FromEvent<MouseButtonEventArgs>(this, "MouseLeftButtonDown"); var mouseLeftButtonUp = Observable.FromEvent<MouseButtonEventArgs>(this, "MouseLeftButtonUp"); Turns into this with the new static Events class: var mouseMoveEvent = Events.Mouse.Move.On(this); var mouseLeftButtonDown = Events.Mouse.LeftButtonDown.On(this); var mouseLeftButtonUp = Events.Mouse.LeftButtonUp.On(this); Or better yet, just remove the variable declarations altogether:     var draggingEvents = from pos in Events.Mouse.Move.On(this)                              .SkipUntil(Events.Mouse.LeftButtonDown.On(this))                              .TakeUntil(Events.Mouse.LeftButtonUp.On(this))                              .Let(mm => mm.Zip(mm.Skip(1), (prev, cur) =>                                  new                                  {                                      X2 = cur.EventArgs.GetPosition(this).X,                                      X1 = prev.EventArgs.GetPosition(this).X,                                      Y2 = cur.EventArgs.GetPosition(this).Y,                                      Y1 = prev.EventArgs.GetPosition(this).Y                                  })).Repeat()                          select pos; The Move, LeftButtonDown and LeftButtonUp members of the Events.Mouse class are readonly instances of the ObservableEvent<TTarget, TEventArgs> class that provide type-safe access to the events via the On() method.  Here is the code for the class: using System; using System.Collections.Generic; using System.Linq;   namespace System.Linq {     /// <summary>     /// Represents an event that can be managed via the <see cref="Observable"/> API.     /// </summary>     /// <typeparam name="TTarget">The type of the target.</typeparam>     /// <typeparam name="TEventArgs">The type of the event args.</typeparam>     public class ObservableEvent<TTarget, TEventArgs> where TEventArgs : EventArgs     {         /// <summary>         /// Initializes a new instance of the <see cref="ObservableEvent"/> class.         /// </summary>         /// <param name="eventName">Name of the event.</param>         protected ObservableEvent(String eventName)         {             EventName = eventName;         }           /// <summary>         /// Registers the specified event name.         /// </summary>         /// <param name="eventName">Name of the event.</param>         /// <returns></returns>         public static ObservableEvent<TTarget, TEventArgs> Register(String eventName)         {             return new ObservableEvent<TTarget, TEventArgs>(eventName);         }           /// <summary>         /// Creates an enumerable sequence of event values for the specified target.         /// </summary>         /// <param name="target">The target.</param>         /// <returns></returns>         public IObservable<IEvent<TEventArgs>> On(TTarget target)         {             return Observable.FromEvent<TEventArgs>(target, EventName);         }           /// <summary>         /// Gets or sets the name of the event.         /// </summary>         /// <value>The name of the event.</value>         public string EventName { get; private set; }     } } And this is how it's used:     /// <summary>     /// Categorizes <see cref="ObservableEvents"/> by class and/or functionality.     /// </summary>     public static partial class Events     {         /// <summary>         /// Implements a set of predefined <see cref="ObservableEvent"/>s         /// for the <see cref="System.Windows.System.Windows.UIElement"/> class         /// that represent mouse related events.         /// </summary>         public static partial class Mouse         {             /// <summary>Represents the MouseMove event.</summary>             public static readonly ObservableEvent<UIElement, MouseEventArgs> Move =                 ObservableEvent<UIElement, MouseEventArgs>.Register("MouseMove");               // additional members omitted...         }     } The source code contains a static Events class with prefedined members for various categories (Key, Mouse, etc.).  There is also an Events.tt template that you can customize to generate additional event categories for any .NET type.  All you should have to do is add the name of your class to the types collection near the top of the template:     types = new Dictionary<String, Type>()     {         //{ "Microsoft.Maps.MapControl.Map, Microsoft.Maps.MapControl", null }         { "System.Windows.FrameworkElement, System.Windows", null },         { "Whiteboard.MainPage, Whiteboard", null }     }; The template is also a bit rough at this point, but at least it generates code that *should* compile.  Please let me know if you run into any issues with it.  Some people have reported errors when trying to use T4 templates within a Silverlight project, but I was able to get it to work with a little black magic...  You can download the source code for this project or play around with the live demo.  Just be warned that it is at a very early stage so don't expect to find much today.  I plan on adding alot more options like pen colors and sizes, saving, printing, etc. as time permits.  HINT: hold down the ESC key to erase! Enjoy! Additional Resources Using Reactive Extensions in Silverlight DevLabs: Reactive Extensions for .NET (Rx) Rx Framework Part III - LINQ to Events - Generating GetEventName() Wrapper Methods using T4

    Read the article

  • Using Lightbox with _Screen

    Although, I have to admit that I discovered Bernard Bout's ideas and concepts about implementing a lightbox in Visual FoxPro quite a while ago, there was no "spare" time in active projects that allowed me to have a closer look into his solution(s). Luckily, these days I received a demand to focus a little bit more on this. This article describes the steps about how to integrate and make use of Bernard's lightbox class in combination with _Screen in Visual FoxPro. The requirement in this project was to be able to visually lock the whole application (_Screen area) and guide the user to an information that should not be ignored easily. Depending on the importance any current user activity should be interrupted and focus put onto the notification. Getting the "meat", eh, source code Please check out Bernard's blog on Foxite directly in order to get the latest and greatest version. As time of writing this article I use version 6.0 as described in this blog entry: The Fastest Lightbox Ever The Lightbox class is sub-classed from the imgCanvas class from the GdiPlusX project on VFPx and therefore you need to have the source code of GdiPlusX as well, and integrate it into your development environment. The version I use is available here: Release GDIPlusX 1.20 As soon as you open the bbGdiLightbox class the first it, VFP might ask you to update the reference to the gdiplusx.vcx. As we have the sources, no problem and you have access to Bernard's code. The class itself is pretty easy to understand, some properties that you do not need to change and three methods: Setup(), ShowLightbox() and BeforeDraw() The challenge - _Screen or not? Reading Bernard's article about the fastest lightbox ever, he states the following: "The class will only work on a form. It will not support any other containers" Really? And what about _Screen? Isn't that a form class, too? Yes, of course it is but nonetheless trying to use _Screen directly will fail. Well, let's have look at the code to see why: WITH This .Left = 0 .Top = 0 .Height = ThisForm.Height .Width = ThisForm.Width .ZOrder(0) .Visible = .F.ENDWITH During the setup of the lightbox as well as while capturing the image as replacement for your forms and controls, the object reference Thisform is used. Which is a little bit restrictive to my opinion but let's continue. The second issue lies in the method ShowLightbox() and introduced by the call of .Bitmap.FromScreen(): Lparameters tlVisiblilty* tlVisiblilty - show or hide (T/F)* grab a screen dump with controlsIF tlVisiblilty Local loCaptureBmp As xfcBitmap Local lnTitleHeight, lnLeftBorder, lnTopBorder, lcImage, loImage lnTitleHeight = IIF(ThisForm.TitleBar = 1,Sysmetric(9),0) lnLeftBorder = IIF(ThisForm.BorderStyle < 2,0,Sysmetric(3)) lnTopBorder = IIF(ThisForm.BorderStyle < 2,0,Sysmetric(4)) With _Screen.System.Drawing loCaptureBmp = .Bitmap.FromScreen(ThisForm.HWnd,; lnLeftBorder,; lnTopBorder+lnTitleHeight,; ThisForm.Width ,; ThisForm.Height) ENDWITH * save it to a property This.capturebmp = loCaptureBmp ThisForm.SetAll("Visible",.F.) This.DraW() This.Visible = .T.ELSE ThisForm.SetAll("Visible",.T.) This.Visible = .F.ENDIF My first trials in using the class ended in an exception - GdiPlusError:OutOfMemory - thrown by the Bitmap object. Frankly speaking, this happened mainly because of my lack of knowledge about GdiPlusX. After reading some documentation, especially about the FromScreen() method I experimented a little bit. Capturing the visible area of _Screen actually was not the real problem but the dimensions I specified for the bitmap. The modifications - step by step First of all, it is to get rid of restrictive object references on Thisform and to change them into either This.Parent or more generic into This.oForm (even better: This.oControl). The Lightbox.Setup() method now sets the necessary object reference like so: *====================================================================* Initial setup* Default value: This.oControl = "This.Parent"* Alternative: This.oControl = "_Screen"*====================================================================With This .oControl = Evaluate(.oControl) If Vartype(.oControl) == T_OBJECT .Anchor = 0 .Left = 0 .Top = 0 .Width = .oControl.Width .Height = .oControl.Height .Anchor = 15 .ZOrder(0) .Visible = .F. EndIfEndwith Also, based on other developers' comments in Bernard articles on his lightbox concept and evolution I found the source code to handle the differences between a form and _Screen and goes into Lightbox.ShowLightbox() like this: *====================================================================* tlVisibility - show or hide (T/F)* grab a screen dump with controls*====================================================================Lparameters tlVisibility Local loControl m.loControl = This.oControl If m.tlVisibility Local loCaptureBmp As xfcBitmap Local lnTitleHeight, lnLeftBorder, lnTopBorder, lcImage, loImage lnTitleHeight = Iif(m.loControl.TitleBar = 1,Sysmetric(9),0) lnLeftBorder = Iif(m.loControl.BorderStyle < 2,0,Sysmetric(3)) lnTopBorder = Iif(m.loControl.BorderStyle < 2,0,Sysmetric(4)) With _Screen.System.Drawing If Upper(m.loControl.Name) == Upper("Screen") loCaptureBmp = .Bitmap.FromScreen(m.loControl.HWnd) Else loCaptureBmp = .Bitmap.FromScreen(m.loControl.HWnd,; lnLeftBorder,; lnTopBorder+lnTitleHeight,; m.loControl.Width ,; m.loControl.Height) EndIf Endwith * save it to a property This.CaptureBmp = loCaptureBmp m.loControl.SetAll("Visible",.F.) This.Draw() This.Visible = .T. Else This.CaptureBmp = .Null. m.loControl.SetAll("Visible",.T.) This.Visible = .F. Endif {loadposition content_adsense} Are we done? Almost... Although, Bernard says it clearly in his article: "Just drop the class on a form and call it as shown." It did not come clear to my mind in the first place with _Screen, but, yeah, he is right. Dropping the class on a form provides a permanent link between those two classes, it creates a valid This.Parent object reference. Bearing in mind that the lightbox class can not be "dropped" on the _Screen, we have to create the same type of binding during runtime execution like so: *====================================================================* Create global lightbox component*==================================================================== Local llOk, loException As Exception m.llOk = .F. m.loException = .Null. If Not Vartype(_Screen.Lightbox) == "O" Try _Screen.AddObject("Lightbox", "bbGdiLightbox") Catch To m.loException Assert .F. Message m.loException.Message EndTry EndIf m.llOk = (Vartype(_Screen.Lightbox) == "O")Return m.llOk Through runtime instantiation we create a valid binding to This.Parent in the lightbox object and the code works as expected with _Screen. Ease your life: Use properties instead of constants Having a closer look at the BeforeDraw() method might wet your appetite to simplify the code a little bit. Looking at the sample screenshots in Bernard's article you see several forms in different colors. This got me to modify the code like so: *====================================================================* Apply the actual lightbox effect on the captured bitmap.*====================================================================If Vartype(This.CaptureBmp) == T_OBJECT Local loGfx As xfcGraphics loGfx = This.oGfx With _Screen.System.Drawing loGfx.DrawImage(This.CaptureBmp,This.Rectangle,This.Rectangle,.GraphicsUnit.Pixel) * change the colours as needed here * possible colours are (220,128,0,0),(220,0,0,128) etc. loBrush = .SolidBrush.New(.Color.FromArgb( ; This.Opacity, .Color.FromRGB(This.BorderColor))) loGfx.FillRectangle(loBrush,This.Rectangle) EndwithEndif Create an additional property Opacity to specify the grade of translucency you would like to have without the need to change the code in each instance of the class. This way you only need to change the values of Opacity and BorderColor to tweak the appearance of your lightbox. This could be quite helpful to signalize different levels of importance (ie. green, yellow, orange, red, etc...) of notifications to the users of the application. Final thoughts Using the lightbox concept in combination with _Screen instead of forms is possible. Already Jim Wiggins comments in Bernard's article to loop through the _Screen.Forms collection in order to cascade the lightbox visibility to all active forms. Good idea. But honestly, I believe that instead of looping all forms one could use _Screen.SetAll("ShowLightbox", .T./.F., "Form") with Form.ShowLightbox_Access method to gain more speed. The modifications described above might provide even more features to your applications while consuming less resources and performance. Additionally, the restrictions to capture only forms does not exist anymore. Using _Screen you are able to capture and cover anything. The captured area of _Screen does not include any toolbars, docked windows, or menus. Therefore, it is advised to take this concept on a higher level and to combine it with additional classes that handle the state of toolbars, docked windows and menus. Which I did for the customer's project.

    Read the article

  • What is vt.handoff=7 parameter in grub.cfg

    - by sirkubax
    I wonder what vt.handoff=7 parameter does. I can not find any good man for that... BTW, if you have a nice descriptoon about : search --no-floppy --fs-uuid --set=root I would be happy :) grub.cfg example: menuentry 'FAILSAFE' --class ubuntu --class gnu-linux --class gnu --class os { recordfail set gfxpayload=$linux_gfx_mode insmod part_msdos insmod ext2 set root='(hd0,msdos8)' search --no-floppy --fs-uuid --set=root 36286167-4eba-4a1e-a202-155c6baafa01 linux /boot/vmlinuz-2.6.37-12-generic root=UUID=36286167-4eba-4a1e-a202-155c6baafa01 ro vt.handoff=7 quiet splash initrd /boot/initrd.img-2.6.37-12-generic } BTW2 - i can not create tag vt.handoff ;(

    Read the article

  • Elegance, thy Name is jQuery

    - by SGWellens
    So, I'm browsing though some questions over on the Stack Overflow website and I found a good jQuery question just a few minutes old. Here is a link to it. It was a tough question; I knew that by answering it, I could learn new stuff and reinforce what I already knew: Reading is good, doing is better. Maybe I could help someone in the process too. I cut and pasted the HTML from the question into my Visual Studio IDE and went back to Stack Overflow to reread the question. Dang, someone had already answered it! And it was a great answer. I never even had a chance to start analyzing the issue. Now I know what a one-legged man feels like in an ass-kicking contest. Nevertheless, since the question and answer were so interesting, I decided to dissect them and learn as much as possible. The HTML consisted of some divs separated by h3 headings.  Note the elements are laid out sequentially with no programmatic grouping: <h3 class="heading">Heading 1</h3> <div>Content</div> <div>More content</div> <div>Even more content</div><h3 class="heading">Heading 2</h3> <div>some content</div> <div>some more content</div><h3 class="heading">Heading 3</h3> <div>other content</div></form></body>  The requirement was to wrap a div around each h3 heading and the subsequent divs grouping them into sections. Why? I don't know, I suppose if you screen-scrapped some HTML from another site, you might want to reformat it before displaying it on your own. Anyways… Here is the marvelously, succinct posted answer: $('.heading').each(function(){ $(this).nextUntil('.heading').andSelf().wrapAll('<div class="section">');}); I was familiar with all the parts except for nextUntil and andSelf. But, I'll analyze the whole answer for completeness. I'll do this by rewriting the posted answer in a different style and adding a boat-load of comments: function Test(){ // $Sections is a jQuery object and it will contain three elements var $Sections = $('.heading'); // use each to iterate over each of the three elements $Sections.each(function () { // $this is a jquery object containing the current element // being iterated var $this = $(this); // nextUntil gets the following sibling elements until it reaches // an element with the CSS class 'heading' // andSelf adds in the source element (this) to the collection $this = $this.nextUntil('.heading').andSelf(); // wrap the elements with a div $this.wrapAll('<div class="section" >'); });}  The code here doesn't look nearly as concise and elegant as the original answer. However, unless you and your staff are jQuery masters, during development it really helps to work through algorithms step by step. You can step through this code in the debugger and examine the jQuery objects to make sure one step is working before proceeding on to the next. It's much easier to debug and troubleshoot when each logical coding step is a separate line of code. Note: You may think the original code runs much faster than this version. However, the time difference is trivial: Not enough to worry about: Less than 1 millisecond (tested in IE and FF). Note: You may want to jam everything into one line because it results in less traffic being sent to the client. That is true. However, most Internet servers now compress HTML and JavaScript by stripping out comments and white space (go to Bing or Google and view the source). This feature should be enabled on your server: Let the server compress your code, you don't need to do it. Free Career Advice: Creating maintainable code is Job One—Maximum Priority—The Prime Directive. If you find yourself suddenly transferred to customer support, it may be that the code you are writing is not as readable as it could be and not as readable as it should be. Moving on… I created a CSS class to enhance the results: .section{ background-color: yellow; border: 2px solid black; margin: 5px;} Here is the rendered output before:   …and after the jQuery code runs.   Pretty Cool! But, while playing with this code, the logic of nextUntil began to bother me: What happens in the last section? What stops elements from being collected since there are no more elements with the .heading class? The answer is nothing.  In this case it stopped collecting elements because it was at the end of the page.  But what if there were additional HTML elements? I added an anchor tag and another div to the HTML: <h3 class="heading">Heading 1</h3> <div>Content</div> <div>More content</div> <div>Even more content</div><h3 class="heading">Heading 2</h3> <div>some content</div> <div>some more content</div><h3 class="heading">Heading 3</h3> <div>other content</div><a>this is a link</a><div>unrelated div</div> </form></body> The code as-is will include both the anchor and the unrelated div. This isn't what we want.   My first attempt to correct this used the filter parameter of the nextUntil function: nextUntil('.heading', 'div')  This will only collect div elements. But it merely skipped the anchor tag and it still collected the unrelated div:   The problem is we need a way to tell the nextUntil function when to stop. CSS selectors to the rescue! nextUntil('.heading, a')  This tells nextUntil to stop collecting elements when it gets to an element with a .heading class OR when it gets to an anchor tag. In this case it solved the problem. FYI: The comma operator in a CSS selector allows multiple criteria.   Bingo! One final note, we could have broken the code down even more: We could have replaced the andSelf function here: $this = $this.nextUntil('.heading, a').andSelf(); With this: // get all the following siblings and then add the current item$this = $this.nextUntil('.heading, a');$this.add(this);  But in this case, the andSelf function reads real nice. In my opinion. Here's a link to a jsFiddle if you want to play with it. I hope someone finds this useful Steve Wellens CodeProject

    Read the article

  • Elegance, thy Name is jQuery

    - by SGWellens
    So, I'm browsing though some questions over on the Stack Overflow website and I found a good jQuery question just a few minutes old. Here is a link to it. It was a tough question; I knew that by answering it, I could learn new stuff and reinforce what I already knew: Reading is good, doing is better. Maybe I could help someone in the process too. I cut and pasted the HTML from the question into my Visual Studio IDE and went back to Stack Overflow to reread the question. Dang, someone had already answered it! And it was a great answer. I never even had a chance to start analyzing the issue. Now I know what a one-legged man feels like in an ass-kicking contest. Nevertheless, since the question and answer were so interesting, I decided to dissect them and learn as much as possible. The HTML consisted of some divs separated by h3 headings.  Note the elements are laid out sequentially with no programmatic grouping: <h3 class="heading">Heading 1</h3> <div>Content</div> <div>More content</div> <div>Even more content</div><h3 class="heading">Heading 2</h3> <div>some content</div> <div>some more content</div><h3 class="heading">Heading 3</h3> <div>other content</div></form></body>  The requirement was to wrap a div around each h3 heading and the subsequent divs grouping them into sections. Why? I don't know, I suppose if you screen-scrapped some HTML from another site, you might want to reformat it before displaying it on your own. Anyways… Here is the marvelously, succinct posted answer: $('.heading').each(function(){ $(this).nextUntil('.heading').andSelf().wrapAll('<div class="section">');}); I was familiar with all the parts except for nextUntil and andSelf. But, I'll analyze the whole answer for completeness. I'll do this by rewriting the posted answer in a different style and adding a boat-load of comments: function Test(){ // $Sections is a jQuery object and it will contain three elements var $Sections = $('.heading'); // use each to iterate over each of the three elements $Sections.each(function () { // $this is a jquery object containing the current element // being iterated var $this = $(this); // nextUntil gets the following sibling elements until it reaches // an element with the CSS class 'heading' // andSelf adds in the source element (this) to the collection $this = $this.nextUntil('.heading').andSelf(); // wrap the elements with a div $this.wrapAll('<div class="section" >'); });}  The code here doesn't look nearly as concise and elegant as the original answer. However, unless you and your staff are jQuery masters, during development it really helps to work through algorithms step by step. You can step through this code in the debugger and examine the jQuery objects to make sure one step is working before proceeding on to the next. It's much easier to debug and troubleshoot when each logical coding step is a separate line. Note: You may think the original code runs much faster than this version. However, the time difference is trivial: Not enough to worry about: Less than 1 millisecond (tested in IE and FF). Note: You may want to jam everything into one line because it results in less traffic being sent to the client. That is true. However, most Internet servers now compress HTML and JavaScript by stripping out comments and white space (go to Bing or Google and view the source). This feature should be enabled on your server: Let the server compress your code, you don't need to do it. Free Career Advice: Creating maintainable code is Job One—Maximum Priority—The Prime Directive. If you find yourself suddenly transferred to customer support, it may be that the code you are writing is not as readable as it could be and not as readable as it should be. Moving on… I created a CSS class to see the results: .section{ background-color: yellow; border: 2px solid black; margin: 5px;} Here is the rendered output before:   …and after the jQuery code runs.   Pretty Cool! But, while playing with this code, the logic of nextUntil began to bother me: What happens in the last section? What stops elements from being collected since there are no more elements with the .heading class? The answer is nothing.  In this case it stopped because it was at the end of the page.  But what if there were additional HTML elements? I added an anchor tag and another div to the HTML: <h3 class="heading">Heading 1</h3> <div>Content</div> <div>More content</div> <div>Even more content</div><h3 class="heading">Heading 2</h3> <div>some content</div> <div>some more content</div><h3 class="heading">Heading 3</h3> <div>other content</div><a>this is a link</a><div>unrelated div</div> </form></body> The code as-is will include both the anchor and the unrelated div. This isn't what we want.   My first attempt to correct this used the filter parameter of the nextUntil function: nextUntil('.heading', 'div')  This will only collect div elements. But it merely skipped the anchor tag and it still collected the unrelated div:   The problem is we need a way to tell the nextUntil function when to stop. CSS selectors to the rescue: nextUntil('.heading, a')  This tells nextUntil to stop collecting sibling elements when it gets to an element with a .heading class OR when it gets to an anchor tag. In this case it solved the problem. FYI: The comma operator in a CSS selector allows multiple criteria.   Bingo! One final note, we could have broken the code down even more: We could have replaced the andSelf function here: $this = $this.nextUntil('.heading, a').andSelf(); With this: // get all the following siblings and then add the current item$this = $this.nextUntil('.heading, a');$this.add(this);  But in this case, the andSelf function reads real nice. In my opinion. Here's a link to a jsFiddle if you want to play with it. I hope someone finds this useful Steve Wellens CodeProject

    Read the article

  • Should main method be only consists of object creations and method calls?

    - by crucified soul
    A friend of mine told me that, the best practice is class containing main method should be named Main and only contains main method. Also main method should only parse inputs, create other objects and call other methods. The Main class and main method shouldn't do anything else. Basically what he is saying that class containing main method should be like: public class Main { public static void main(String[] args) { //parse inputs //create other objects //call methods } } Is it the best practice?

    Read the article

< Previous Page | 250 251 252 253 254 255 256 257 258 259 260 261  | Next Page >