Search Results

Search found 10798 results on 432 pages for 'port scanning'.

Page 255/432 | < Previous Page | 251 252 253 254 255 256 257 258 259 260 261 262  | Next Page >

  • T4 Template error - Assembly Directive cannot locate referenced assembly in Visual Studio 2010 proje

    - by CodeSniper
    I ran into the following error recently in Visual Studio 2010 while trying to port Phil Haack’s excellent T4CSS template which was originally built for Visual Studio 2008.   The Problem Error Compiling transformation: Metadata file 'dotless.Core' could not be found In “T4 speak”, this simply means that you have an Assembly directive in your T4 template but the T4 engine was not able to locate or load the referenced assembly. In the case of the T4CSS Template, this was a showstopper for making it work in Visual Studio 2010. On a side note: The T4CSS template is a sweet little wrapper to allow you to use DotLessCss to generate static .css files from .less files rather than using their default HttpHandler or command-line tool.    If you haven't tried DotLessCSS yet, go check it out now!  In short, it is a tool that allows you to templatize and program your CSS files so that you can use variables, expressions, and mixins within your CSS which enables rapid changes and a lot of developer-flexibility as you evolve your CSS and UI. Back to our regularly scheduled program… Anyhow, this post isn't about DotLessCss, its about the T4 Templates and the errors I ran into when converting them from Visual Studio 2008 to Visual Studio 2010. In VS2010, there were quite a few changes to the T4 Template Engine; most were excellent changes, but this one bit me with T4CSS: “Project assemblies are no longer used to resolve template assembly directives.” In VS2008, if you wanted to reference a custom assembly in your T4 Template (.tt file) you would simply right click on your project, choose Add Reference and select that assembly.  Afterwards you were allowed to use the following syntax in your T4 template to tell it to look at the local references: <#@ assembly name="dotless.Core.dll" #> This told the engine to look in the “usual place” for the assembly, which is your project references. However, this is exactly what they changed in VS2010.  They now basically sandbox the T4 Engine to keep your T4 assemblies separate from your project assemblies.  This can come in handy if you want to support different versions of an assembly referenced both by your T4 templates and your project. Who broke the build?  Oh, Microsoft Did! In our case, this change causes a problem since the templates are no longer compatible when upgrading to VS 2010 – thus its a breaking change.  So, how do we make this work in VS 2010? Luckily, Microsoft now offers several options for referencing assemblies from T4 Templates: GAC your assemblies and use Namespace Reference or Fully Qualified Type Name Use a hard-coded Fully Qualified UNC path Copy assembly to Visual Studio "Public Assemblies Folder" and use Namespace Reference or Fully Qualified Type Name.  Use or Define a Windows Environment Variable to build a Fully Qualified UNC path. Use a Visual Studio Macro to build a Fully Qualified UNC path. Option #1 & 2 were already supported in Visual Studio 2008, so if you want to keep your templates compatible with both Visual Studio versions, then you would have to adopt one of these approaches. Yakkety Yak, use the GAC! Option #1 requires an additional pre-build step to GAC the referenced assembly, which could be a pain.  But, if you go that route, then after you GAC, all you need is a simple type name or namespace reference such as: <#@ assembly name="dotless.Core" #> Hard Coding aint that hard! The other option of using hard-coded paths in Option #2 is pretty impractical in most situations since each developer would have to use the same local project folder paths, or modify this setting each time for their local machines as well as for production deployment.  However, if you want to go that route, simply use the following assembly directive style: <#@ assembly name="C:\Code\Lib\dotless.Core.dll" #> Lets go Public! Option #3, the Visual Studio Public Assemblies Folder, is the recommended place to put commonly used tools and libraries that are only needed for Visual Studio.  Think of it like a VS-only GAC.  This is likely the best place for something like dotLessCSS and is my preferred solution.  However, you will need to either use an installer or a pre-build action to copy the assembly to the right folder location.   Normally this is located at:  C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\PublicAssemblies Once you have copied your assembly there, you use the type name or namespace syntax again: <#@ assembly name="dotless.Core" #> Save the Environment! Option #4, using a Windows Environment Variable, is interesting for enterprise use where you may have standard locations for files, but less useful for demo-code, frameworks, and products where you don't have control over the local system.  The syntax for including a environment variable in your assembly directive looks like the following, just as you would expect: <#@ assembly name="%mypath%\dotless.Core.dll" #> “mypath” is a Windows environment variable you setup that points to some fully qualified UNC path on your system.  In the right situation this can be a great solution such as one where you use a msi installer for deployment, or where you have a pre-existing environment variable you can re-use. OMG Macros! Finally, Option #5 is a very nice option if you want to keep your T4 template’s assembly reference local and relative to the project or solution without muddying-up your dev environment or GAC with extra deployments.  An example looks like this: <#@ assembly name="$(SolutionDir)lib\dotless.Core.dll" #> In this example, I’m using the “SolutionDir” VS macro so I can reference an assembly in a “/lib” folder at the root of the solution.   This is just one of the many macros you can use.  If you are familiar with creating Pre/Post-build Event scripts, you can use its dialog to look at all of the different VS macros available. This option gives the best solution for local assemblies without the hassle of extra installers or other setup before the build.   However, its still not compatible with Visual Studio 2008, so if you have a T4 Template you want to use with both, then you may have to create multiple .tt files, one for each IDE version, or require the developer to set a value in the .tt file manually.   I’m not sure if T4 Templates support any form of compiler switches like “#if (VS2010)”  statements, but it would definitely be nice in this case to switch between this option and one of the ones more compatible with VS 2008. Conclusion As you can see, we went from 3 options with Visual Studio 2008, to 5 options (plus one problem) with Visual Studio 2010.  As a whole, I think the changes are great, but the short-term growing pains during the migration may be annoying until we get used to our new found power. Hopefully this all made sense and was helpful to you.  If nothing else, I’ll just use it as a reference the next time I need to port a T4 template to Visual Studio 2010.  Happy T4 templating, and “May the fourth be with you!”

    Read the article

  • WebSocket and Java EE 7 - Getting Ready for JSR 356 (TOTD #181)

    - by arungupta
    WebSocket is developed as part of HTML 5 specification and provides a bi-directional, full-duplex communication channel over a single TCP socket. It provides dramatic improvement over the traditional approaches of Polling, Long-Polling, and Streaming for two-way communication. There is no latency from establishing new TCP connections for each HTTP message. There is a WebSocket API and the WebSocket Protocol. The Protocol defines "handshake" and "framing". The handshake defines how a normal HTTP connection can be upgraded to a WebSocket connection. The framing defines wire format of the message. The design philosophy is to keep the framing minimum to avoid the overhead. Both text and binary data can be sent using the API. WebSocket may look like a competing technology to Server-Sent Events (SSE), but they are not. Here are the key differences: WebSocket can send and receive data from a client. A typical example of WebSocket is a two-player game or a chat application. Server-Sent Events can only push data data to the client. A typical example of SSE is stock ticker or news feed. With SSE, XMLHttpRequest can be used to send data to the server. For server-only updates, WebSockets has an extra overhead and programming can be unecessarily complex. SSE provides a simple and easy-to-use model that is much better suited. SSEs are sent over traditional HTTP and so no modification is required on the server-side. WebSocket require servers that understand the protocol. SSE have several features that are missing from WebSocket such as automatic reconnection, event IDs, and the ability to send arbitrary events. The client automatically tries to reconnect if the connection is closed. The default wait before trying to reconnect is 3 seconds and can be configured by including "retry: XXXX\n" header where XXXX is the milliseconds to wait before trying to reconnect. Event stream can include a unique event identifier. This allows the server to determine which events need to be fired to each client in case the connection is dropped in between. The data can span multiple lines and can be of any text format as long as EventSource message handler can process it. WebSockets provide true real-time updates, SSE can be configured to provide close to real-time by setting appropriate timeouts. OK, so all excited about WebSocket ? Want to convert your POJOs into WebSockets endpoint ? websocket-sdk and GlassFish 4.0 is here to help! The complete source code shown in this project can be downloaded here. On the server-side, the WebSocket SDK converts a POJO into a WebSocket endpoint using simple annotations. Here is how a WebSocket endpoint will look like: @WebSocket(path="/echo")public class EchoBean { @WebSocketMessage public String echo(String message) { return message + " (from your server)"; }} In this code "@WebSocket" is a class-level annotation that declares a POJO to accept WebSocket messages. The path at which the messages are accepted is specified in this annotation. "@WebSocketMessage" indicates the Java method that is invoked when the endpoint receives a message. This method implementation echoes the received message concatenated with an additional string. The client-side HTML page looks like <div style="text-align: center;"> <form action=""> <input onclick="send_echo()" value="Press me" type="button"> <input id="textID" name="message" value="Hello WebSocket!" type="text"><br> </form></div><div id="output"></div> WebSocket allows a full-duplex communication. So the client, a browser in this case, can send a message to a server, a WebSocket endpoint in this case. And the server can send a message to the client at the same time. This is unlike HTTP which follows a "request" followed by a "response". In this code, the "send_echo" method in the JavaScript is invoked on the button click. There is also a <div> placeholder to display the response from the WebSocket endpoint. The JavaScript looks like: <script language="javascript" type="text/javascript"> var wsUri = "ws://localhost:8080/websockets/echo"; var websocket = new WebSocket(wsUri); websocket.onopen = function(evt) { onOpen(evt) }; websocket.onmessage = function(evt) { onMessage(evt) }; websocket.onerror = function(evt) { onError(evt) }; function init() { output = document.getElementById("output"); } function send_echo() { websocket.send(textID.value); writeToScreen("SENT: " + textID.value); } function onOpen(evt) { writeToScreen("CONNECTED"); } function onMessage(evt) { writeToScreen("RECEIVED: " + evt.data); } function onError(evt) { writeToScreen('<span style="color: red;">ERROR:</span> ' + evt.data); } function writeToScreen(message) { var pre = document.createElement("p"); pre.style.wordWrap = "break-word"; pre.innerHTML = message; output.appendChild(pre); } window.addEventListener("load", init, false);</script> In this code The URI to connect to on the server side is of the format ws://<HOST>:<PORT>/websockets/<PATH> "ws" is a new URI scheme introduced by the WebSocket protocol. <PATH> is the path on the endpoint where the WebSocket messages are accepted. In our case, it is ws://localhost:8080/websockets/echo WEBSOCKET_SDK-1 will ensure that context root is included in the URI as well. WebSocket is created as a global object so that the connection is created only once. This object establishes a connection with the given host, port and the path at which the endpoint is listening. The WebSocket API defines several callbacks that can be registered on specific events. The "onopen", "onmessage", and "onerror" callbacks are registered in this case. The callbacks print a message on the browser indicating which one is called and additionally also prints the data sent/received. On the button click, the WebSocket object is used to transmit text data to the endpoint. Binary data can be sent as one blob or using buffering. The HTTP request headers sent for the WebSocket call are: GET ws://localhost:8080/websockets/echo HTTP/1.1Origin: http://localhost:8080Connection: UpgradeSec-WebSocket-Extensions: x-webkit-deflate-frameHost: localhost:8080Sec-WebSocket-Key: mDbnYkAUi0b5Rnal9/cMvQ==Upgrade: websocketSec-WebSocket-Version: 13 And the response headers received are Connection:UpgradeSec-WebSocket-Accept:q4nmgFl/lEtU2ocyKZ64dtQvx10=Upgrade:websocket(Challenge Response):00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00 The headers are shown in Chrome as shown below: The complete source code shown in this project can be downloaded here. The builds from websocket-sdk are integrated in GlassFish 4.0 builds. Would you like to live on the bleeding edge ? Then follow the instructions below to check out the workspace and install the latest SDK: Check out the source code svn checkout https://svn.java.net/svn/websocket-sdk~source-code-repository Build and install the trunk in your local repository as: mvn install Copy "./bundles/websocket-osgi/target/websocket-osgi-0.3-SNAPSHOT.jar" to "glassfish3/glassfish/modules/websocket-osgi.jar" in your GlassFish 4 latest promoted build. Notice, you need to overwrite the JAR file. Anybody interested in building a cool application using WebSocket and get it running on GlassFish ? :-) This work will also feed into JSR 356 - Java API for WebSocket. On a lighter side, there seems to be less agreement on the name. Here are some of the options that are prevalent: WebSocket (W3C API, the URL is www.w3.org/TR/websockets though) Web Socket (HTML5 Demos - html5demos.com/web-socket) Websocket (Jenkins Plugin - wiki.jenkins-ci.org/display/JENKINS/Websocket%2BPlugin) WebSockets (Used by Mozilla - developer.mozilla.org/en/WebSockets, but use WebSocket as well) Web sockets (HTML5 Working Group - www.whatwg.org/specs/web-apps/current-work/multipage/network.html) Web Sockets (Chrome Blog - blog.chromium.org/2009/12/web-sockets-now-available-in-google.html) I prefer "WebSocket" as that seems to be most common usage and used by the W3C API as well. What do you use ?

    Read the article

  • C#: Optional Parameters - Pros and Pitfalls

    - by James Michael Hare
    When Microsoft rolled out Visual Studio 2010 with C# 4, I was very excited to learn how I could apply all the new features and enhancements to help make me and my team more productive developers. Default parameters have been around forever in C++, and were intentionally omitted in Java in favor of using overloading to satisfy that need as it was though that having too many default parameters could introduce code safety issues.  To some extent I can understand that move, as I’ve been bitten by default parameter pitfalls before, but at the same time I feel like Java threw out the baby with the bathwater in that move and I’m glad to see C# now has them. This post briefly discusses the pros and pitfalls of using default parameters.  I’m avoiding saying cons, because I really don’t believe using default parameters is a negative thing, I just think there are things you must watch for and guard against to avoid abuses that can cause code safety issues. Pro: Default Parameters Can Simplify Code Let’s start out with positives.  Consider how much cleaner it is to reduce all the overloads in methods or constructors that simply exist to give the semblance of optional parameters.  For example, we could have a Message class defined which allows for all possible initializations of a Message: 1: public class Message 2: { 3: // can either cascade these like this or duplicate the defaults (which can introduce risk) 4: public Message() 5: : this(string.Empty) 6: { 7: } 8:  9: public Message(string text) 10: : this(text, null) 11: { 12: } 13:  14: public Message(string text, IDictionary<string, string> properties) 15: : this(text, properties, -1) 16: { 17: } 18:  19: public Message(string text, IDictionary<string, string> properties, long timeToLive) 20: { 21: // ... 22: } 23: }   Now consider the same code with default parameters: 1: public class Message 2: { 3: // can either cascade these like this or duplicate the defaults (which can introduce risk) 4: public Message(string text = "", IDictionary<string, string> properties = null, long timeToLive = -1) 5: { 6: // ... 7: } 8: }   Much more clean and concise and no repetitive coding!  In addition, in the past if you wanted to be able to cleanly supply timeToLive and accept the default on text and properties above, you would need to either create another overload, or pass in the defaults explicitly.  With named parameters, though, we can do this easily: 1: var msg = new Message(timeToLive: 100);   Pro: Named Parameters can Improve Readability I must say one of my favorite things with the default parameters addition in C# is the named parameters.  It lets code be a lot easier to understand visually with no comments.  Think how many times you’ve run across a TimeSpan declaration with 4 arguments and wondered if they were passing in days/hours/minutes/seconds or hours/minutes/seconds/milliseconds.  A novice running through your code may wonder what it is.  Named arguments can help resolve the visual ambiguity: 1: // is this days/hours/minutes/seconds (no) or hours/minutes/seconds/milliseconds (yes) 2: var ts = new TimeSpan(1, 2, 3, 4); 3:  4: // this however is visually very explicit 5: var ts = new TimeSpan(days: 1, hours: 2, minutes: 3, seconds: 4);   Or think of the times you’ve run across something passing a Boolean literal and wondered what it was: 1: // what is false here? 2: var sub = CreateSubscriber(hostname, port, false); 3:  4: // aha! Much more visibly clear 5: var sub = CreateSubscriber(hostname, port, isBuffered: false);   Pitfall: Don't Insert new Default Parameters In Between Existing Defaults Now let’s consider a two potential pitfalls.  The first is really an abuse.  It’s not really a fault of the default parameters themselves, but a fault in the use of them.  Let’s consider that Message constructor again with defaults.  Let’s say you want to add a messagePriority to the message and you think this is more important than a timeToLive value, so you decide to put messagePriority before it in the default, this gives you: 1: public class Message 2: { 3: public Message(string text = "", IDictionary<string, string> properties = null, int priority = 5, long timeToLive = -1) 4: { 5: // ... 6: } 7: }   Oh boy have we set ourselves up for failure!  Why?  Think of all the code out there that could already be using the library that already specified the timeToLive, such as this possible call: 1: var msg = new Message(“An error occurred”, myProperties, 1000);   Before this specified a message with a TTL of 1000, now it specifies a message with a priority of 1000 and a time to live of -1 (infinite).  All of this with NO compiler errors or warnings. So the rule to take away is if you are adding new default parameters to a method that’s currently in use, make sure you add them to the end of the list or create a brand new method or overload. Pitfall: Beware of Default Parameters in Inheritance and Interface Implementation Now, the second potential pitfalls has to do with inheritance and interface implementation.  I’ll illustrate with a puzzle: 1: public interface ITag 2: { 3: void WriteTag(string tagName = "ITag"); 4: } 5:  6: public class BaseTag : ITag 7: { 8: public virtual void WriteTag(string tagName = "BaseTag") { Console.WriteLine(tagName); } 9: } 10:  11: public class SubTag : BaseTag 12: { 13: public override void WriteTag(string tagName = "SubTag") { Console.WriteLine(tagName); } 14: } 15:  16: public static class Program 17: { 18: public static void Main() 19: { 20: SubTag subTag = new SubTag(); 21: BaseTag subByBaseTag = subTag; 22: ITag subByInterfaceTag = subTag; 23:  24: // what happens here? 25: subTag.WriteTag(); 26: subByBaseTag.WriteTag(); 27: subByInterfaceTag.WriteTag(); 28: } 29: }   What happens?  Well, even though the object in each case is SubTag whose tag is “SubTag”, you will get: 1: SubTag 2: BaseTag 3: ITag   Why?  Because default parameter are resolved at compile time, not runtime!  This means that the default does not belong to the object being called, but by the reference type it’s being called through.  Since the SubTag instance is being called through an ITag reference, it will use the default specified in ITag. So the moral of the story here is to be very careful how you specify defaults in interfaces or inheritance hierarchies.  I would suggest avoiding repeating them, and instead concentrating on the layer of classes or interfaces you must likely expect your caller to be calling from. For example, if you have a messaging factory that returns an IMessage which can be either an MsmqMessage or JmsMessage, it only makes since to put the defaults at the IMessage level since chances are your user will be using the interface only. So let’s sum up.  In general, I really love default and named parameters in C# 4.0.  I think they’re a great tool to help make your code easier to read and maintain when used correctly. On the plus side, default parameters: Reduce redundant overloading for the sake of providing optional calling structures. Improve readability by being able to name an ambiguous argument. But remember to make sure you: Do not insert new default parameters in the middle of an existing set of default parameters, this may cause unpredictable behavior that may not necessarily throw a syntax error – add to end of list or create new method. Be extremely careful how you use default parameters in inheritance hierarchies and interfaces – choose the most appropriate level to add the defaults based on expected usage. Technorati Tags: C#,.NET,Software,Default Parameters

    Read the article

  • Why does Akonadi on KDE 4.6.0 refuse to start?

    - by Patches
    Akonadi refuses to start on my fresh installation of KDE 4.6.0 from the kubuntu-backports PPA on Ubuntu 10.10 Maverick Meerkat, preventing me from usking KMail. Here is the full error output: patches@pleistocene:~/.local/share$ akonadictl start Starting Akonadi Server... done. patches@pleistocene:~/.local/share$ Connecting to deprecated signal QDBusConnectionInterface::serviceOwnerChanged(QString,QString,QString) search paths: ("/home/patches/bin", "/usr/local/sbin", "/usr/local/bin", "/usr/sbin", "/usr/bin", "/sbin", "/bin", "/usr/games", "/usr/sbin", "/usr/local/sbin", "/usr/local/libexec", "/usr/libexec", "/opt/mysql/libexec", "/opt/local/lib/mysql5/bin", "/opt/mysql/sbin") Found mysql_install_db: "/usr/bin/mysql_install_db" Found mysqlcheck: "/usr/bin/mysqlcheck" Database process exited unexpectedly during initial connection! executable: "/usr/sbin/mysqld-akonadi" arguments: ("--defaults-file=/home/patches/.local/share/akonadi//mysql.conf", "--datadir=/home/patches/.local/share/akonadi/db_data/", "--socket=/home/patches/.local/share/akonadi/socket-pleistocene/mysql.socket") stdout: "" stderr: "Could not open required defaults file: /home/patches/.local/share/akonadi//mysql.conf Fatal error in defaults handling. Program aborted 110209 16:41:12 [Warning] Can't create test file /home/patches/.local/share/akonadi/db_data/pleistocene.lower-test 110209 16:41:12 [Warning] Can't create test file /home/patches/.local/share/akonadi/db_data/pleistocene.lower-test 110209 16:41:12 [Note] Plugin 'FEDERATED' is disabled. /usr/sbin/mysqld-akonadi: Can't find file: './mysql/plugin.frm' (errno: 13) 110209 16:41:12 [ERROR] Can't open the mysql.plugin table. Please run mysql_upgrade to create it. 110209 16:41:12 InnoDB: Operating system error number 13 in a file operation. InnoDB: The error means mysqld does not have the access rights to InnoDB: the directory. InnoDB: File name ./ibdata1 InnoDB: File operation call: 'create'. InnoDB: Cannot continue operation. " exit code: 1 process error: "Unknown error" "[ 0: akonadiserver(_Z11akBacktracev+0x35) [0x8086055] 1: akonadiserver() [0x8086516] 2: [0xb772e400] 3: [0xb772e416] 4: /lib/libc.so.6(gsignal+0x51) [0xb6e9f941] 5: /lib/libc.so.6(abort+0x182) [0xb6ea2e42] 6: /usr/lib/libQtCore.so.4(_Z17qt_message_output9QtMsgTypePKc+0x8c) [0xb74d62dc] 7: akonadiserver(_ZN15FileDebugStream9writeDataEPKcx+0xc4) [0x8087574] 8: /usr/lib/libQtCore.so.4(_ZN9QIODevice5writeEPKcx+0x8e) [0xb757168e] 9: /usr/lib/libQtCore.so.4(+0x103425) [0xb7581425] 10: /usr/lib/libQtCore.so.4(_ZN11QTextStreamD1Ev+0x3d) [0xb758295d] 11: akonadiserver(_ZN6QDebugD1Ev+0x43) [0x8081b73] 12: akonadiserver(_ZN13DbConfigMysql19startInternalServerEv+0x1c27) [0x810c177] 13: akonadiserver(_ZN7Akonadi13AkonadiServer20startDatabaseProcessEv+0xe3) [0x8087a23] 14: akonadiserver(_ZN7Akonadi13AkonadiServerC1EP7QObject+0xca) [0x8088b6a] 15: akonadiserver(_ZN7Akonadi13AkonadiServer8instanceEv+0x48) [0x808a1d8] 16: akonadiserver(main+0x364) [0x8080fb4] 17: /lib/libc.so.6(__libc_start_main+0xe7) [0xb6e8bce7] 18: akonadiserver() [0x8080b81] ] " ProcessControl: Application 'akonadiserver' returned with exit code 255 (Unknown error) search paths: ("/home/patches/bin", "/usr/local/sbin", "/usr/local/bin", "/usr/sbin", "/usr/bin", "/sbin", "/bin", "/usr/games", "/usr/sbin", "/usr/local/sbin", "/usr/local/libexec", "/usr/libexec", "/opt/mysql/libexec", "/opt/local/lib/mysql5/bin", "/opt/mysql/sbin") Found mysql_install_db: "/usr/bin/mysql_install_db" Found mysqlcheck: "/usr/bin/mysqlcheck" Database process exited unexpectedly during initial connection! executable: "/usr/sbin/mysqld-akonadi" arguments: ("--defaults-file=/home/patches/.local/share/akonadi//mysql.conf", "--datadir=/home/patches/.local/share/akonadi/db_data/", "--socket=/home/patches/.local/share/akonadi/socket-pleistocene/mysql.socket") stdout: "" stderr: "Could not open required defaults file: /home/patches/.local/share/akonadi//mysql.conf Fatal error in defaults handling. Program aborted 110209 16:41:12 [Warning] Can't create test file /home/patches/.local/share/akonadi/db_data/pleistocene.lower-test 110209 16:41:12 [Warning] Can't create test file /home/patches/.local/share/akonadi/db_data/pleistocene.lower-test 110209 16:41:12 [Note] Plugin 'FEDERATED' is disabled. /usr/sbin/mysqld-akonadi: Can't find file: './mysql/plugin.frm' (errno: 13) 110209 16:41:12 [ERROR] Can't open the mysql.plugin table. Please run mysql_upgrade to create it. 110209 16:41:12 InnoDB: Operating system error number 13 in a file operation. InnoDB: The error means mysqld does not have the access rights to InnoDB: the directory. InnoDB: File name ./ibdata1 InnoDB: File operation call: 'create'. InnoDB: Cannot continue operation. " exit code: 1 process error: "Unknown error" "[ 0: akonadiserver(_Z11akBacktracev+0x35) [0x8086055] 1: akonadiserver() [0x8086516] 2: [0xb77ae400] 3: [0xb77ae416] 4: /lib/libc.so.6(gsignal+0x51) [0xb6f1f941] 5: /lib/libc.so.6(abort+0x182) [0xb6f22e42] 6: /usr/lib/libQtCore.so.4(_Z17qt_message_output9QtMsgTypePKc+0x8c) [0xb75562dc] 7: akonadiserver(_ZN15FileDebugStream9writeDataEPKcx+0xc4) [0x8087574] 8: /usr/lib/libQtCore.so.4(_ZN9QIODevice5writeEPKcx+0x8e) [0xb75f168e] 9: /usr/lib/libQtCore.so.4(+0x103425) [0xb7601425] 10: /usr/lib/libQtCore.so.4(_ZN11QTextStreamD1Ev+0x3d) [0xb760295d] 11: akonadiserver(_ZN6QDebugD1Ev+0x43) [0x8081b73] 12: akonadiserver(_ZN13DbConfigMysql19startInternalServerEv+0x1c27) [0x810c177] 13: akonadiserver(_ZN7Akonadi13AkonadiServer20startDatabaseProcessEv+0xe3) [0x8087a23] 14: akonadiserver(_ZN7Akonadi13AkonadiServerC1EP7QObject+0xca) [0x8088b6a] 15: akonadiserver(_ZN7Akonadi13AkonadiServer8instanceEv+0x48) [0x808a1d8] 16: akonadiserver(main+0x364) [0x8080fb4] 17: /lib/libc.so.6(__libc_start_main+0xe7) [0xb6f0bce7] 18: akonadiserver() [0x8080b81] ] " ProcessControl: Application 'akonadiserver' returned with exit code 255 (Unknown error) search paths: ("/home/patches/bin", "/usr/local/sbin", "/usr/local/bin", "/usr/sbin", "/usr/bin", "/sbin", "/bin", "/usr/games", "/usr/sbin", "/usr/local/sbin", "/usr/local/libexec", "/usr/libexec", "/opt/mysql/libexec", "/opt/local/lib/mysql5/bin", "/opt/mysql/sbin") Found mysql_install_db: "/usr/bin/mysql_install_db" Found mysqlcheck: "/usr/bin/mysqlcheck" Database process exited unexpectedly during initial connection! executable: "/usr/sbin/mysqld-akonadi" arguments: ("--defaults-file=/home/patches/.local/share/akonadi//mysql.conf", "--datadir=/home/patches/.local/share/akonadi/db_data/", "--socket=/home/patches/.local/share/akonadi/socket-pleistocene/mysql.socket") stdout: "" stderr: "Could not open required defaults file: /home/patches/.local/share/akonadi//mysql.conf Fatal error in defaults handling. Program aborted 110209 16:41:12 [Warning] Can't create test file /home/patches/.local/share/akonadi/db_data/pleistocene.lower-test 110209 16:41:12 [Warning] Can't create test file /home/patches/.local/share/akonadi/db_data/pleistocene.lower-test 110209 16:41:12 [Note] Plugin 'FEDERATED' is disabled. /usr/sbin/mysqld-akonadi: Can't find file: './mysql/plugin.frm' (errno: 13) 110209 16:41:12 [ERROR] Can't open the mysql.plugin table. Please run mysql_upgrade to create it. 110209 16:41:12 InnoDB: Operating system error number 13 in a file operation. InnoDB: The error means mysqld does not have the access rights to InnoDB: the directory. InnoDB: File name ./ibdata1 InnoDB: File operation call: 'create'. InnoDB: Cannot continue operation. " exit code: 1 process error: "Unknown error" "[ 0: akonadiserver(_Z11akBacktracev+0x35) [0x8086055] 1: akonadiserver() [0x8086516] 2: [0xb778b400] 3: [0xb778b416] 4: /lib/libc.so.6(gsignal+0x51) [0xb6efc941] 5: /lib/libc.so.6(abort+0x182) [0xb6effe42] 6: /usr/lib/libQtCore.so.4(_Z17qt_message_output9QtMsgTypePKc+0x8c) [0xb75332dc] 7: akonadiserver(_ZN15FileDebugStream9writeDataEPKcx+0xc4) [0x8087574] 8: /usr/lib/libQtCore.so.4(_ZN9QIODevice5writeEPKcx+0x8e) [0xb75ce68e] 9: /usr/lib/libQtCore.so.4(+0x103425) [0xb75de425] 10: /usr/lib/libQtCore.so.4(_ZN11QTextStreamD1Ev+0x3d) [0xb75df95d] 11: akonadiserver(_ZN6QDebugD1Ev+0x43) [0x8081b73] 12: akonadiserver(_ZN13DbConfigMysql19startInternalServerEv+0x1c27) [0x810c177] 13: akonadiserver(_ZN7Akonadi13AkonadiServer20startDatabaseProcessEv+0xe3) [0x8087a23] 14: akonadiserver(_ZN7Akonadi13AkonadiServerC1EP7QObject+0xca) [0x8088b6a] 15: akonadiserver(_ZN7Akonadi13AkonadiServer8instanceEv+0x48) [0x808a1d8] 16: akonadiserver(main+0x364) [0x8080fb4] 17: /lib/libc.so.6(__libc_start_main+0xe7) [0xb6ee8ce7] 18: akonadiserver() [0x8080b81] ] " ProcessControl: Application 'akonadiserver' returned with exit code 255 (Unknown error) search paths: ("/home/patches/bin", "/usr/local/sbin", "/usr/local/bin", "/usr/sbin", "/usr/bin", "/sbin", "/bin", "/usr/games", "/usr/sbin", "/usr/local/sbin", "/usr/local/libexec", "/usr/libexec", "/opt/mysql/libexec", "/opt/local/lib/mysql5/bin", "/opt/mysql/sbin") Found mysql_install_db: "/usr/bin/mysql_install_db" Found mysqlcheck: "/usr/bin/mysqlcheck" Database process exited unexpectedly during initial connection! executable: "/usr/sbin/mysqld-akonadi" arguments: ("--defaults-file=/home/patches/.local/share/akonadi//mysql.conf", "--datadir=/home/patches/.local/share/akonadi/db_data/", "--socket=/home/patches/.local/share/akonadi/socket-pleistocene/mysql.socket") stdout: "" stderr: "Could not open required defaults file: /home/patches/.local/share/akonadi//mysql.conf Fatal error in defaults handling. Program aborted 110209 16:41:12 [Warning] Can't create test file /home/patches/.local/share/akonadi/db_data/pleistocene.lower-test 110209 16:41:12 [Warning] Can't create test file /home/patches/.local/share/akonadi/db_data/pleistocene.lower-test 110209 16:41:12 [Note] Plugin 'FEDERATED' is disabled. /usr/sbin/mysqld-akonadi: Can't find file: './mysql/plugin.frm' (errno: 13) 110209 16:41:12 [ERROR] Can't open the mysql.plugin table. Please run mysql_upgrade to create it. 110209 16:41:12 InnoDB: Operating system error number 13 in a file operation. InnoDB: The error means mysqld does not have the access rights to InnoDB: the directory. InnoDB: File name ./ibdata1 InnoDB: File operation call: 'create'. InnoDB: Cannot continue operation. " exit code: 1 process error: "Unknown error" "[ 0: akonadiserver(_Z11akBacktracev+0x35) [0x8086055] 1: akonadiserver() [0x8086516] 2: [0xb784e400] 3: [0xb784e416] 4: /lib/libc.so.6(gsignal+0x51) [0xb6fbf941] 5: /lib/libc.so.6(abort+0x182) [0xb6fc2e42] 6: /usr/lib/libQtCore.so.4(_Z17qt_message_output9QtMsgTypePKc+0x8c) [0xb75f62dc] 7: akonadiserver(_ZN15FileDebugStream9writeDataEPKcx+0xc4) [0x8087574] 8: /usr/lib/libQtCore.so.4(_ZN9QIODevice5writeEPKcx+0x8e) [0xb769168e] 9: /usr/lib/libQtCore.so.4(+0x103425) [0xb76a1425] 10: /usr/lib/libQtCore.so.4(_ZN11QTextStreamD1Ev+0x3d) [0xb76a295d] 11: akonadiserver(_ZN6QDebugD1Ev+0x43) [0x8081b73] 12: akonadiserver(_ZN13DbConfigMysql19startInternalServerEv+0x1c27) [0x810c177] 13: akonadiserver(_ZN7Akonadi13AkonadiServer20startDatabaseProcessEv+0xe3) [0x8087a23] 14: akonadiserver(_ZN7Akonadi13AkonadiServerC1EP7QObject+0xca) [0x8088b6a] 15: akonadiserver(_ZN7Akonadi13AkonadiServer8instanceEv+0x48) [0x808a1d8] 16: akonadiserver(main+0x364) [0x8080fb4] 17: /lib/libc.so.6(__libc_start_main+0xe7) [0xb6fabce7] 18: akonadiserver() [0x8080b81] ] " ProcessControl: Application 'akonadiserver' returned with exit code 255 (Unknown error) "akonadiserver" crashed too often and will not be restarted! I tried moving the ~/.local/share/akonadi folder and running it fresh, and I also tried starting Akonadi from a brand new user, all to no avail. Requested by @djeikyb: patches@pleistocene:~$ ls -ld ~/.local drwxrwx--- 3 patches patches 4096 2011-02-07 03:15 /home/patches/.local patches@pleistocene:~$ mysql_upgrade Looking for 'mysql' as: mysql Looking for 'mysqlcheck' as: mysqlcheck Running 'mysqlcheck' with connection arguments: '--port=3306' '--socket=/var/run/mysqld/mysqld.sock' mysqlcheck: Got error: 2002: Can't connect to local MySQL server through socket '/var/run/mysqld/mysqld.sock' (2) when trying to connect FATAL ERROR: Upgrade failed patches@pleistocene:~$ mysql_upgrade -S ~/.local/share/akonadi/socket-pleistocene/ Looking for 'mysql' as: mysql Looking for 'mysqlcheck' as: mysqlcheck Running 'mysqlcheck' with connection arguments: '--port=3306' '--socket=/var/run/mysqld/mysqld.sock' '--socket=/home/patches/.local/share/akonadi/socket-pleistocene/' mysqlcheck: Got error: 2002: Can't connect to local MySQL server through socket '/home/patches/.local/share/akonadi/socket-pleistocene/' (111) when trying to connect FATAL ERROR: Upgrade failed

    Read the article

  • ASP.NET MVC JavaScript Routing

    - by zowens
    Have you ever done this sort of thing in your ASP.NET MVC view? The weird thing about this isn’t the alert function, it’s the code block containing the Url formation using the ASP.NET MVC UrlHelper. The terrible thing about this experience is the obvious lack of IntelliSense and this ugly inline JavaScript code. Inline JavaScript isn’t portable to other pages beyond the current page of execution. It is generally considered bad practice to use inline JavaScript in your public-facing pages. How ludicrous would it be to copy and paste the entire jQuery code base into your pages…? Not something you’d ever consider doing. The problem is that your URLs have to be generated by ASP.NET at runtime and really can’t be copied to your JavaScript code without some trickery. How about this? Does the hard-coded URL bother you? It really bothers me. The typical solution to this whole routing in JavaScript issue is to just hard-code your URLs into your JavaScript files and call it done. But what if your URLs change? You have to now go an track down the places in JavaScript and manually replace them. What if you get the pattern wrong? Do you have tests around it? This isn’t something you should have to worry about.   The Solution To Our Problems The solution is to port routing over to JavaScript. Does that sound daunting to you? It’s actually not very hard, but I decided to create my own generator that will do all the work for you. What I have created is a very basic port of the route formation feature of ASP.NET routing. It will generate the formatted URLs based on your routing patterns. Here’s how you’d do this: Does that feel familiar? It looks a lot like something you’d do inside of your ASP.NET MVC views… but this is inside of a JavaScript file… just a plain ol’ .js file.  Your first question might be why do you have to have that “.toUrl()” thing. The reason is that I wanted to make POST and GET requests dead simple. Here’s how you’d do a POST request (and the same would work with a GET request):   The first parameter is extra data passed to the post request and the second parameter is a function that handles the success of the POST request. If you’re familiar with jQuery’s Ajax goodness, you’ll know how to use it. (if not, check out http://api.jquery.com/jQuery.Post/ and the parameters are essentially the same). But we still haven’t gotten rid of the magic strings. We still have controller names and action names represented as strings. This is going to blow your mind… If you’ve seen T4MVC, this will look familiar. We’re essentially doing the same sort of thing with my JavaScript router, but we’re porting the concept to JavaScript. The good news is that parameters to the controllers are directly reflected in the action function, just like T4MVC. And the even better news… IntlliSense is easily transferred to the JavaScript version if you’re using Visual Studio as your JavaScript editor. The additional data parameter gives you the ability to pass extra routing data to the URL formatter.   About the Magic You may be wondering how this all work. It’s actually quite simple. I’ve built a simple jQuery pluggin (called routeManager) that hangs off the main jQuery namespace and routes all the URLs. Every time your solution builds, a routing file will be generated with this pluggin, all your route and controller definitions along with your documentation. Then by the power of Visual Studio, you get some really slick IntelliSense that is hard to live without. But there are a few steps you have to take before this whole thing is going to work. First and foremost, you need a reference to the JsRouting.Core.dll to your projects containing controllers or routes. Second, you have to specify your routes in a bit of a non-standard way. See, we can’t just pull routes out of your App_Start in your Global.asax. We force you to build a route source like this: The way we determine the routes is by pulling in all RouteSources and generating routes based upon the mapped routes. There are various reasons why we can’t use RouteCollection (different post for another day)… but in this case, you get the same route mapping experience. Converting the RouteSource to a RouteCollection is trivial (there’s an extension method for that). Next thing you have to do is generate a documentation XML file. This is done by going to the project settings, going to the build tab and clicking the checkbox. (this isn’t required, but nice to have). The final thing you need to do is hook up the generation mechanism. Pop open your project file and look for the AfterBuild step. Now change the build step task to look like this: The “PathToOutputExe” is the path to the JsRouting.Output.exe file. This will change based on where you put the EXE. The “PathToOutputJs” is a path to the output JavaScript file. The “DicrectoryOfAssemblies” is a path to the directory containing controller and routing DLLs. The JsRouting.Output.exe executable pulls in all these assemblies and scans them for controllers and route sources.   Now that wasn’t too bad, was it :)   The State of the Project This is definitely not complete… I have a lot of plans for this little project of mine. For starters, I need to look at the generation mechanism. Either I will be creating a utility that will do the project file manipulation or I will go a different direction. I’d like some feedback on this if you feel partial either way. Another thing I don’t support currently is areas. While this wouldn’t be too hard to support, I just don’t use areas and I wanted something up quickly (this is, after all, for a current project of mine). I’ll be adding support shortly. There are a few things that I haven’t covered in this post that I will most certainly be covering in another post, such as routing constraints and how these will be translated to JavaScript. I decided to open source this whole thing, since it’s a nice little utility I think others should really be using. Currently we’re using ASP.NET MVC 2, but it should work with MVC 3 as well. I’ll upgrade it as soon as MVC 3 is released. Along those same lines, I’m investigating how this could be put on the NuGet feed. Show me the Bits! OK, OK! The code is posted on my GitHub account. Go nuts. Tell me what you think. Tell me what you want. Tell me that you hate it. All feedback is welcome! https://github.com/zowens/ASP.NET-MVC-JavaScript-Routing

    Read the article

  • Integrating Coherence & Java EE 6 Applications using ActiveCache

    - by Ricardo Ferreira
    OK, so you are a developer and are starting a new Java EE 6 application using the most wonderful features of the Java EE platform like Enterprise JavaBeans, JavaServer Faces, CDI, JPA e another cool stuff technologies. And your architecture need to hold piece of data into distributed caches to improve application's performance, scalability and reliability? If this is your current facing scenario, maybe you should look closely in the solutions provided by Oracle WebLogic Server. Oracle had integrated WebLogic Server and its champion data caching technology called Oracle Coherence. This seamless integration between this two products provides a comprehensive environment to develop applications without the complexity of extra Java code to manage cache as a dependency, since Oracle provides an DI ("Dependency Injection") mechanism for Coherence, the same DI mechanism available in standard Java EE applications. This feature is called ActiveCache. In this article, I will show you how to configure ActiveCache in WebLogic and at your Java EE application. Configuring WebLogic to manage Coherence Before you start changing your application to use Coherence, you need to configure your Coherence distributed cache. The good news is, you can manage all this stuff without writing a single line of code of XML or even Java. This configuration can be done entirely in the WebLogic administration console. The first thing to do is the setup of a Coherence cluster. A Coherence cluster is a set of Coherence JVMs configured to form one single view of the cache. This means that you can insert or remove members of the cluster without the client application (the application that generates or consume data from the cache) knows about the changes. This concept allows your solution to scale-out without changing the application server JVMs. You can growth your application only in the data grid layer. To start the configuration, you need to configure an machine that points to the server in which you want to execute the Coherence JVMs. WebLogic Server allows you to do this very easily using the Administration Console. In this example, I will call the machine as "coherence-server". Remember that in order to the machine concept works, you need to ensure that the NodeManager are being executed in the target server that the machine points to. The NodeManager executable can be found in <WLS_HOME>/server/bin/startNodeManager.sh. The next thing to do is to configure a Coherence cluster. In the WebLogic administration console, go to Environment > Coherence Clusters and click in "New". Call this Coherence cluster of "my-coherence-cluster". Click in next. Specify a valid cluster address and port. The Coherence members will communicate with each other through this address and port. Our Coherence cluster are now configured. Now it is time to configure the Coherence members and add them to this cluster. In the WebLogic administration console, go to Environment > Coherence Servers and click in "New". In the field "Name" set to "coh-server-1". In the field "Machine", associate this Coherence server to the machine "coherence-server". In the field "Cluster", associate this Coherence server to the cluster named "my-coherence-cluster". Click in "Finish". Start the Coherence server using the "Control" tab of WebLogic administration console. This will instruct WebLogic to start a new JVM of Coherence in the target machine that should join the pre-defined Coherence cluster. Configuring your Java EE Application to Access Coherence Now lets pass to the funny part of the configuration. The first thing to do is to inform your Java EE application which Coherence cluster to join. Oracle had updated WebLogic server deployment descriptors so you will not have to change your code or the containers deployment descriptors like application.xml, ejb-jar.xml or web.xml. In this example, I will show you how to enable DI ("Dependency Injection") to a Coherence cache from a Servlet 3.0 component. In the WEB-INF/weblogic.xml deployment descriptor, put the following metadata information: <?xml version="1.0" encoding="UTF-8"?> <wls:weblogic-web-app xmlns:wls="http://xmlns.oracle.com/weblogic/weblogic-web-app" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd http://xmlns.oracle.com/weblogic/weblogic-web-app http://xmlns.oracle.com/weblogic/weblogic-web-app/1.4/weblogic-web-app.xsd"> <wls:context-root>myWebApp</wls:context-root> <wls:coherence-cluster-ref> <wls:coherence-cluster-name>my-coherence-cluster</wls:coherence-cluster-name> </wls:coherence-cluster-ref> </wls:weblogic-web-app> As you can see, using the "coherence-cluster-name" tag, we are informing our Java EE application that it should join the "my-coherence-cluster" when it loads in the web container. Without this information, the application will not be able to access the predefined Coherence cluster. It will form its own Coherence cluster without any members. So never forget to put this information. Now put the coherence.jar and active-cache-1.0.jar dependencies at your WEB-INF/lib application classpath. You need to deploy this dependencies so ActiveCache can automatically take care of the Coherence cluster join phase. This dependencies can be found in the following locations: - <WLS_HOME>/common/deployable-libraries/active-cache-1.0.jar - <COHERENCE_HOME>/lib/coherence.jar Finally, you need to write down the access code to the Coherence cache at your Servlet. In the following example, we have a Servlet 3.0 component that access a Coherence cache named "transactions" and prints into the browser output the content (the ammount property) of one specific transaction. package com.oracle.coherence.demo.activecache; import java.io.IOException; import javax.annotation.Resource; import javax.servlet.ServletException; import javax.servlet.annotation.WebServlet; import javax.servlet.http.HttpServlet; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; import com.tangosol.net.NamedCache; @WebServlet("/demo/specificTransaction") public class TransactionServletExample extends HttpServlet { @Resource(mappedName = "transactions") NamedCache transactions; protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { int transId = Integer.parseInt(request.getParameter("transId")); Transaction transaction = (Transaction) transactions.get(transId); response.getWriter().println("<center>" + transaction.getAmmount() + "</center>"); } } Thats it! No more configuration is necessary and you have all set to start producing and getting data to/from Coherence. As you can see in the example code, the Coherence cache are treated as a normal dependency in the Java EE container. The magic happens behind the scenes when the ActiveCache allows your application to join the defined Coherence cluster. The most interesting thing about this approach is, no matter which type of Coherence cache your are using (Distributed, Partitioned, Replicated, WAN-Remote) for the client application, it is just a simple attribute member of com.tangosol.net.NamedCache type. And its all managed by the Java EE container as an dependency. This means that if you inject the same dependency (the Coherence cache named "transactions") in another Java EE component (JSF managed-bean, Stateless EJB) the cache will be the same. Cool isn't it? Thanks to the CDI technology, we can extend the same support for non-Java EE standards components like simple POJOs. This means that you are not forced to only use Servlets, EJBs or JSF in order to inject Coherence caches. You can do the same approach for regular POJOs created for you and managed by lightweight containers like Spring or Seam.

    Read the article

  • wireless LAN soft blocked on Ubuntu 13.10

    - by iacopo
    I've troubles with bluetooth and with lan. When I digit: rfkill list all 0: hci0: Bluetooth Soft blocked: no Hard blocked: no 1: phy0: Wireless LAN Soft blocked: yes Hard blocked: no When I digit: lspci -v 00:00.0 Host bridge: Advanced Micro Devices, Inc. [AMD] Family 15h (Models 10h-1fh) Processor Root Complex Subsystem: Advanced Micro Devices, Inc. [AMD] Family 15h (Models 10h-1fh) Processor Root Complex Flags: bus master, 66MHz, medium devsel, latency 0 00:01.0 VGA compatible controller: Advanced Micro Devices, Inc. [AMD/ATI] Trinity [Radeon HD 7600G] (prog-if 00 [VGA controller]) Subsystem: Advanced Micro Devices, Inc. [AMD/ATI] Trinity [Radeon HD 7600G] Flags: bus master, fast devsel, latency 0, IRQ 48 Memory at c0000000 (32-bit, prefetchable) [size=256M] I/O ports at f000 [size=256] Memory at feb00000 (32-bit, non-prefetchable) [size=256K] Expansion ROM at [disabled] Capabilities: Kernel driver in use: radeon 00:01.1 Audio device: Advanced Micro Devices, Inc. [AMD/ATI] Trinity HDMI Audio Controller Subsystem: Advanced Micro Devices, Inc. [AMD/ATI] Trinity HDMI Audio Controller Flags: bus master, fast devsel, latency 0, IRQ 49 Memory at feb44000 (32-bit, non-prefetchable) [size=16K] Capabilities: Kernel driver in use: snd_hda_intel 00:10.0 USB controller: Advanced Micro Devices, Inc. [AMD] FCH USB XHCI Controller (rev 03) (prog-if 30 [XHCI]) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH USB XHCI Controller Flags: bus master, fast devsel, latency 0, IRQ 18 Memory at feb48000 (64-bit, non-prefetchable) [size=8K] Capabilities: Kernel driver in use: xhci_hcd 00:11.0 SATA controller: Advanced Micro Devices, Inc. [AMD] FCH SATA Controller [AHCI mode] (rev 40) (prog-if 01 [AHCI 1.0]) Subsystem: Advanced Micro Devices, Inc. [AMD] Device 7800 Flags: bus master, 66MHz, medium devsel, latency 32, IRQ 45 I/O ports at f190 [size=8] I/O ports at f180 [size=4] I/O ports at f170 [size=8] I/O ports at f160 [size=4] I/O ports at f150 [size=16] Memory at feb50000 (32-bit, non-prefetchable) [size=2K] Capabilities: Kernel driver in use: ahci 00:12.0 USB controller: Advanced Micro Devices, Inc. [AMD] FCH USB OHCI Controller (rev 11) (prog-if 10 [OHCI]) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH USB OHCI Controller Flags: bus master, 66MHz, medium devsel, latency 32, IRQ 18 Memory at feb4f000 (32-bit, non-prefetchable) [size=4K] Kernel driver in use: ohci-pci 00:12.2 USB controller: Advanced Micro Devices, Inc. [AMD] FCH USB EHCI Controller (rev 11) (prog-if 20 [EHCI]) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH USB EHCI Controller Flags: bus master, 66MHz, medium devsel, latency 32, IRQ 17 Memory at feb4e000 (32-bit, non-prefetchable) [size=256] Capabilities: Kernel driver in use: ehci-pci 00:13.0 USB controller: Advanced Micro Devices, Inc. [AMD] FCH USB OHCI Controller (rev 11) (prog-if 10 [OHCI]) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH USB OHCI Controller Flags: bus master, 66MHz, medium devsel, latency 32, IRQ 18 Memory at feb4d000 (32-bit, non-prefetchable) [size=4K] Kernel driver in use: ohci-pci 00:13.2 USB controller: Advanced Micro Devices, Inc. [AMD] FCH USB EHCI Controller (rev 11) (prog-if 20 [EHCI]) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH USB EHCI Controller Flags: bus master, 66MHz, medium devsel, latency 32, IRQ 17 Memory at feb4c000 (32-bit, non-prefetchable) [size=256] Capabilities: Kernel driver in use: ehci-pci 00:14.0 SMBus: Advanced Micro Devices, Inc. [AMD] FCH SMBus Controller (rev 14) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH SMBus Controller Flags: 66MHz, medium devsel Kernel driver in use: piix4_smbus 00:14.1 IDE interface: Advanced Micro Devices, Inc. [AMD] FCH IDE Controller (prog-if 8a [Master SecP PriP]) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH IDE Controller Flags: bus master, 66MHz, medium devsel, latency 32, IRQ 17 I/O ports at 01f0 [size=8] I/O ports at 03f4 [size=1] I/O ports at 0170 [size=8] I/O ports at 0374 [size=1] I/O ports at f100 [size=16] Kernel driver in use: pata_atiixp 00:14.2 Audio device: Advanced Micro Devices, Inc. [AMD] FCH Azalia Controller (rev 01) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH Azalia Controller Flags: bus master, slow devsel, latency 32, IRQ 16 Memory at feb40000 (64-bit, non-prefetchable) [size=16K] Capabilities: Kernel driver in use: snd_hda_intel 00:14.3 ISA bridge: Advanced Micro Devices, Inc. [AMD] FCH LPC Bridge (rev 11) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH LPC Bridge Flags: bus master, 66MHz, medium devsel, latency 0 00:14.4 PCI bridge: Advanced Micro Devices, Inc. [AMD] FCH PCI Bridge (rev 40) (prog-if 01 [Subtractive decode]) Flags: bus master, 66MHz, medium devsel, latency 64 Bus: primary=00, secondary=01, subordinate=01, sec-latency=64 00:14.5 USB controller: Advanced Micro Devices, Inc. [AMD] FCH USB OHCI Controller (rev 11) (prog-if 10 [OHCI]) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH USB OHCI Controller Flags: bus master, 66MHz, medium devsel, latency 32, IRQ 18 Memory at feb4b000 (32-bit, non-prefetchable) [size=4K] Kernel driver in use: ohci-pci 00:14.7 SD Host controller: Advanced Micro Devices, Inc. [AMD] FCH SD Flash Controller (prog-if 01) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH SD Flash Controller Flags: bus master, 66MHz, medium devsel, latency 39, IRQ 16 Memory at feb4a000 (64-bit, non-prefetchable) [size=256] Kernel driver in use: sdhci-pci 00:15.0 PCI bridge: Advanced Micro Devices, Inc. [AMD] Hudson PCI to PCI bridge (PCIE port 0) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=02, subordinate=02, sec-latency=0 I/O behind bridge: 0000e000-0000efff Prefetchable memory behind bridge: 00000000d0000000-00000000d00fffff Capabilities: Kernel driver in use: pcieport 00:15.1 PCI bridge: Advanced Micro Devices, Inc. [AMD] Hudson PCI to PCI bridge (PCIE port 1) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=03, subordinate=03, sec-latency=0 Memory behind bridge: fe900000-feafffff Capabilities: Kernel driver in use: pcieport 00:18.0 Host bridge: Advanced Micro Devices, Inc. [AMD] Family 15h (Models 10h-1fh) Processor Function 0 Flags: fast devsel 00:18.1 Host bridge: Advanced Micro Devices, Inc. [AMD] Family 15h (Models 10h-1fh) Processor Function 1 Flags: fast devsel 00:18.2 Host bridge: Advanced Micro Devices, Inc. [AMD] Family 15h (Models 10h-1fh) Processor Function 2 Flags: fast devsel 00:18.3 Host bridge: Advanced Micro Devices, Inc. [AMD] Family 15h (Models 10h-1fh) Processor Function 3 Flags: fast devsel Capabilities: Kernel driver in use: k10temp 00:18.4 Host bridge: Advanced Micro Devices, Inc. [AMD] Family 15h (Models 10h-1fh) Processor Function 4 Flags: fast devsel 00:18.5 Host bridge: Advanced Micro Devices, Inc. [AMD] Family 15h (Models 10h-1fh) Processor Function 5 Flags: fast devsel 02:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168/8411 PCI Express Gigabit Ethernet Controller (rev 07) Subsystem: PC Partner Limited / Sapphire Technology Device 0123 Flags: bus master, fast devsel, latency 0, IRQ 46 I/O ports at e000 [size=256] Memory at d0004000 (64-bit, prefetchable) [size=4K] Memory at d0000000 (64-bit, prefetchable) [size=16K] Capabilities: Kernel driver in use: r8169 03:00.0 Network controller: Ralink corp. RT3290 Wireless 802.11n 1T/1R PCIe Subsystem: AzureWave Device 2b87 Flags: bus master, fast devsel, latency 0, IRQ 47 Memory at fea40000 (32-bit, non-prefetchable) [size=64K] Memory at fea30000 (32-bit, non-prefetchable) [size=64K] Capabilities: Kernel driver in use: rt2800pci 03:00.1 Bluetooth: Ralink corp. RT3290 Bluetooth Subsystem: AzureWave Device 2787 Flags: bus master, fast devsel, latency 0, IRQ 11 Memory at fea20000 (32-bit, non-prefetchable) [size=64K] Memory at fea10000 (32-bit, non-prefetchable) [size=64K] Memory at fe900000 (32-bit, non-prefetchable) [size=1M] Expansion ROM at fea00000 [disabled] [size=64K] Capabilities: Thank you for all the help

    Read the article

  • Network Access: I can't access 192.168.1.101 from 192.168.1.102.

    - by takpar
    Hi, I'm running Ubuntu 10.04 on my PC with IP 192.168.1.101. every thing work fine, e.g. my web server is running and I can see http://localhost/ or http://192.168.1.101 properly. But the problem is that I cannot see my PC from my laptop at 192.168.1.102 e.g. at my laptop http://192.168.1.101 gives Connection timed out in browser. or trying to telnet on any port leads to: telnet: Unable to connect to remote host: Connection timed out laptop is running a fresh install of Ubuntu as well and there is no setup for firewall stuff in both computers. PS: Both computers can ping each other well. The router is a cicso linksys wireless ADSL modem. Currently, I can connect to FTP server on the Windows running on 192.168.1.102 from 192.168.1.101 without problem. Theses are commands ran on my PC, 192.168.1.101: ifconfig: adp@adp-desktop:~$ ifconfig eth0 Link encap:Ethernet HWaddr 00:26:18:e1:8e:cf inet addr:192.168.1.101 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe70::226:18ff:fee1:8ecf/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:1831935 errors:0 dropped:0 overruns:0 frame:0 TX packets:1493786 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:1996855925 (1.9 GB) TX bytes:215288238 (215.2 MB) Interrupt:27 Base address:0xa000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:951742 errors:0 dropped:0 overruns:0 frame:0 TX packets:951742 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:494351095 (494.3 MB) TX bytes:494351095 (494.3 MB) vmnet1 Link encap:Ethernet HWaddr 00:50:46:c0:00:01 inet addr:192.168.91.1 Bcast:192.168.91.255 Mask:255.255.255.0 inet6 addr: fe70::250:56ff:fec0:1/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:50 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) vmnet8 Link encap:Ethernet HWaddr 00:50:46:c0:00:08 inet addr:192.168.156.1 Bcast:192.168.156.255 Mask:255.255.255.0 inet6 addr: fe70::250:56ff:fec0:8/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:51 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) port 80 is set to 0.0.0.0 well: adp@adp-desktop:~$ netstat -ln | grep 'LISTEN ' tcp 0 0 127.0.0.1:52815 0.0.0.0:* LISTEN tcp 0 0 0.0.0.0:4559 0.0.0.0:* LISTEN tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN tcp 0 0 0.0.0.0:4369 0.0.0.0:* LISTEN tcp 0 0 127.0.0.1:7634 0.0.0.0:* LISTEN tcp 0 0 0.0.0.0:21 0.0.0.0:* LISTEN tcp 0 0 0.0.0.0:5269 0.0.0.0:* LISTEN tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN tcp 0 0 0.0.0.0:5280 0.0.0.0:* LISTEN tcp 0 0 127.0.1.1:7777 0.0.0.0:* LISTEN tcp 0 0 0.0.0.0:33601 0.0.0.0:* LISTEN tcp 0 0 0.0.0.0:5222 0.0.0.0:* LISTEN tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN tcp6 0 0 :::139 :::* LISTEN tcp6 0 0 ::1:631 :::* LISTEN tcp6 0 0 :::445 :::* LISTEN /etc/hosts.deny is empty: adp@adp-desktop:~$ cat /etc/hosts.deny # /etc/hosts.deny: list of hosts that are _not_ allowed to access the system. # See the manual pages hosts_access(5) and hosts_options(5). # # Example: ALL: some.host.name, .some.domain # ALL EXCEPT in.fingerd: other.host.name, .other.domain # # If you're going to protect the portmapper use the name "portmap" for the # daemon name. Remember that you can only use the keyword "ALL" and IP # addresses (NOT host or domain names) for the portmapper, as well as for # rpc.mountd (the NFS mount daemon). See portmap(8) and rpc.mountd(8) # for further information. # # The PARANOID wildcard matches any host whose name does not match its # address. # # You may wish to enable this to ensure any programs that don't # validate looked up hostnames still leave understandable logs. In past # versions of Debian this has been the default. # ALL: PARANOID netstat -l: adp@adp-desktop:~$ netstat -l Active Internet connections (only servers) Proto Recv-Q Send-Q Local Address Foreign Address State tcp 0 0 localhost:52815 *:* LISTEN tcp 0 0 *:hylafax *:* LISTEN tcp 0 0 *:www *:* LISTEN tcp 0 0 *:4369 *:* LISTEN tcp 0 0 localhost:7634 *:* LISTEN tcp 0 0 *:ftp *:* LISTEN tcp 0 0 *:xmpp-server *:* LISTEN tcp 0 0 localhost:ipp *:* LISTEN tcp 0 0 *:smtp *:* LISTEN tcp 0 0 *:5280 *:* LISTEN tcp 0 0 adp-desktop:7777 *:* LISTEN tcp 0 0 *:33601 *:* LISTEN tcp 0 0 *:xmpp-client *:* LISTEN tcp 0 0 localhost:mysql *:* LISTEN tcp6 0 0 [::]:netbios-ssn [::]:* LISTEN tcp6 0 0 localhost:ipp [::]:* LISTEN tcp6 0 0 [::]:microsoft-ds [::]:* LISTEN udp 0 0 *:bootpc *:* udp 0 0 *:mdns *:* udp 0 0 *:47467 *:* udp 0 0 192.168.1.10:netbios-ns *:* udp 0 0 192.168.91.1:netbios-ns *:* udp 0 0 192.168.156.:netbios-ns *:* udp 0 0 *:netbios-ns *:* udp 0 0 192.168.1.1:netbios-dgm *:* udp 0 0 192.168.91.:netbios-dgm *:* udp 0 0 192.168.156:netbios-dgm *:* udp 0 0 *:netbios-dgm *:* raw 0 0 *:icmp *:* 7 netstat -rn: adp@adp-desktop:~$ netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0 192.168.91.0 0.0.0.0 255.255.255.0 U 0 0 0 vmnet1 192.168.156.0 0.0.0.0 255.255.255.0 U 0 0 0 vmnet8 169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0 0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0 commands on the laptop, 192.168.1.102: ifconfig: root@fakeuser-laptop:~# ifconfig eth0 Link encap:Ethernet HWaddr 00:1c:33:a2:31:15 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:21 eth1 Link encap:Ethernet HWaddr 00:2d:d9:3e:1f:6c inet addr:192.168.1.102 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe70::21d:d9ff:fe3e:1f6c/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:5681 errors:0 dropped:0 overruns:0 frame:10313 TX packets:6717 errors:6 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:4055251 (4.0 MB) TX bytes:779308 (779.3 KB) Interrupt:18 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:206 errors:0 dropped:0 overruns:0 frame:0 TX packets:206 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:15172 (15.1 KB) TX bytes:15172 (15.1 KB) netstat -rn: root@fakeuser-laptop:~# netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1 169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth1 0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth1

    Read the article

  • J2EE Applications, SPARC T4, Solaris Containers, and Resource Pools

    - by user12620111
    I've obtained a substantial performance improvement on a SPARC T4-2 Server running a J2EE Application Server Cluster by deploying the cluster members into Oracle Solaris Containers and binding those containers to cores of the SPARC T4 Processor. This is not a surprising result, in fact, it is consistent with other results that are available on the Internet. See the "references", below, for some examples. Nonetheless, here is a summary of my configuration and results. (1.0) Before deploying a J2EE Application Server Cluster into a virtualized environment, many decisions need to be made. I'm not claiming that all of the decisions that I have a made will work well for every environment. In fact, I'm not even claiming that all of the decisions are the best possible for my environment. I'm only claiming that of the small sample of configurations that I've tested, this is the one that is working best for me. Here are some of the decisions that needed to be made: (1.1) Which virtualization option? There are several virtualization options and isolation levels that are available. Options include: Hard partitions:  Dynamic Domains on Sun SPARC Enterprise M-Series Servers Hypervisor based virtualization such as Oracle VM Server for SPARC (LDOMs) on SPARC T-Series Servers OS Virtualization using Oracle Solaris Containers Resource management tools in the Oracle Solaris OS to control the amount of resources an application receives, such as CPU cycles, physical memory, and network bandwidth. Oracle Solaris Containers provide the right level of isolation and flexibility for my environment. To borrow some words from my friends in marketing, "The SPARC T4 processor leverages the unique, no-cost virtualization capabilities of Oracle Solaris Zones"  (1.2) How to associate Oracle Solaris Containers with resources? There are several options available to associate containers with resources, including (a) resource pool association (b) dedicated-cpu resources and (c) capped-cpu resources. I chose to create resource pools and associate them with the containers because I wanted explicit control over the cores and virtual processors.  (1.3) Cluster Topology? Is it best to deploy (a) multiple application servers on one node, (b) one application server on multiple nodes, or (c) multiple application servers on multiple nodes? After a few quick tests, it appears that one application server per Oracle Solaris Container is a good solution. (1.4) Number of cluster members to deploy? I chose to deploy four big 64-bit application servers. I would like go back a test many 32-bit application servers, but that is left for another day. (2.0) Configuration tested. (2.1) I was using a SPARC T4-2 Server which has 2 CPU and 128 virtual processors. To understand the physical layout of the hardware on Solaris 10, I used the OpenSolaris psrinfo perl script available at http://hub.opensolaris.org/bin/download/Community+Group+performance/files/psrinfo.pl: test# ./psrinfo.pl -pv The physical processor has 8 cores and 64 virtual processors (0-63) The core has 8 virtual processors (0-7)   The core has 8 virtual processors (8-15)   The core has 8 virtual processors (16-23)   The core has 8 virtual processors (24-31)   The core has 8 virtual processors (32-39)   The core has 8 virtual processors (40-47)   The core has 8 virtual processors (48-55)   The core has 8 virtual processors (56-63)     SPARC-T4 (chipid 0, clock 2848 MHz) The physical processor has 8 cores and 64 virtual processors (64-127)   The core has 8 virtual processors (64-71)   The core has 8 virtual processors (72-79)   The core has 8 virtual processors (80-87)   The core has 8 virtual processors (88-95)   The core has 8 virtual processors (96-103)   The core has 8 virtual processors (104-111)   The core has 8 virtual processors (112-119)   The core has 8 virtual processors (120-127)     SPARC-T4 (chipid 1, clock 2848 MHz) (2.2) The "before" test: without processor binding. I started with a 4-member cluster deployed into 4 Oracle Solaris Containers. Each container used a unique gigabit Ethernet port for HTTP traffic. The containers shared a 10 gigabit Ethernet port for JDBC traffic. (2.3) The "after" test: with processor binding. I ran one application server in the Global Zone and another application server in each of the three non-global zones (NGZ):  (3.0) Configuration steps. The following steps need to be repeated for all three Oracle Solaris Containers. (3.1) Stop AppServers from the BUI. (3.2) Stop the NGZ. test# ssh test-z2 init 5 (3.3) Enable resource pools: test# svcadm enable pools (3.4) Create the resource pool: test# poolcfg -dc 'create pool pool-test-z2' (3.5) Create the processor set: test# poolcfg -dc 'create pset pset-test-z2' (3.6) Specify the maximum number of CPU's that may be addd to the processor set: test# poolcfg -dc 'modify pset pset-test-z2 (uint pset.max=32)' (3.7) bash syntax to add Virtual CPUs to the processor set: test# (( i = 64 )); while (( i < 96 )); do poolcfg -dc "transfer to pset pset-test-z2 (cpu $i)"; (( i = i + 1 )) ; done (3.8) Associate the resource pool with the processor set: test# poolcfg -dc 'associate pool pool-test-z2 (pset pset-test-z2)' (3.9) Tell the zone to use the resource pool that has been created: test# zonecfg -z test-z1 set pool=pool-test-z2 (3.10) Boot the Oracle Solaris Container test# zoneadm -z test-z2 boot (3.11) Save the configuration to /etc/pooladm.conf test# pooladm -s (4.0) Results. Using the resource pools improves both throughput and response time: (5.0) References: System Administration Guide: Oracle Solaris Containers-Resource Management and Oracle Solaris Zones Capitalizing on large numbers of processors with WebSphere Portal on Solaris WebSphere Application Server and T5440 (Dileep Kumar's Weblog)  http://www.brendangregg.com/zones.html Reuters Market Data System, RMDS 6 Multiple Instances (Consolidated), Performance Test Results in Solaris, Containers/Zones Environment on Sun Blade X6270 by Amjad Khan, 2009.

    Read the article

  • New Features and Changes in OIM11gR2

    - by Abhishek Tripathi
    WEB CONSOLEs in OIM 11gR2 ** In 11gR1 there were 3 Admin Web Consoles : ·         Self Service Console ·         Administration Console and ·         Advanced Administration Console accessible Whereas in OIM 11gR2 , Self Service and Administration Console have are now combined and now called as Identity Self Service Console http://host:port/identity  This console has 3 features in it for managing self profile (My Profile), Managing Requests like requesting for App Instances and Approving requests (Requests) and General Administration tasks of creating/managing users, roles, organization, attestation etc (Administration) ** In OIM 11gR2 – new console sysadmin has been added Administrators which includes some of the design console functions apart from general administrations features. http://host:port/sysadmin   Application Instances Application instance is the object that is to be provisioned to a user. Application Instances are checked out in the catalog and user can request for application instances via catalog. ·         In OIM 11gR2 resources and entitlements are bundled in Application Instance which user can select and request from catalog.  ·         Application instance is a combination of IT Resource and RO. So, you cannot create another App Instance with the same RO & IT Resource if it already exists for some other App Instance. One of these ( RO or IT Resource) must have a different name. ·         If you want that users of a particular Organization should be able to request for an Application instances through catalog then App Instances must be attached to that particular Organization. ·         Application instance can be associated with multiple organizations. ·         An application instance can also have entitlements associated with it. Entitlement can include Roles/Groups or Responsibility. ·         Application Instance are published to the catalog by a scheduled task “Catalog Synchronization Job” ·         Application Instance can have child/ parent application instance where child application instance inherits all attributes of parent application instance. Important point to remember with Application Instance If you delete the application Instance in OIM 11gR2 and create a new one with the same name, OIM will not allow doing so. It throws error saying Application Instance already exists with same Resource Object and IT resource. This is because there is still some reference that is not removed in OIM for deleted application Instance.  So to completely delete your application Instance from OIM, you must: 1. Delete the app Instance from sysadmin console. 2. Run the App Instance Post Delete Processing Job in Revoke/Delete mode. 3. Run the Catalog Synchronization job. Once done, you should be able to create a new App instance with the previous RO & IT Resouce name.   Catalog  Catalog allows users to request Roles, Application Instance, and Entitlements in an Application. Catalog Items – Roles, Application Instance and Entitlements that can be requested via catalog are called as catalog items. Detailed Information ( attributes of Catalog item)  Category – Each catalog item is associated with one and only one category. Catalog Administrators can provide a value for catalog item. ·         Tags – are search keywords helpful in searching Catalog. When users search the Catalog, the search is performed against the tags. To define a tag, go to Catalog->Search the resource-> select the resource-> update the tag field with custom search keyword. Tags are of three types: a) Auto-generated Tags: The Catalog synchronization process auto-tags the Catalog Item using the Item Type, Item Name and Item Display Name b) User-defined Tags: User-defined Tags are additional keywords entered by the Catalog Administrator. c) Arbitrary Tags: While defining a metadata if user has marked that metadata as searchable, then that will also be part of tags.   Sandbox  Sanbox is a new feature introduced in OIM11gR2. This serves as a temporary development environment for UI customizations so that they don’t affect other users before they are published and linked to existing OIM UI. All UI customizations should be done inside a sandbox, this ensures that your changes/modifications don’t affect other users until you have finalized the changes and customization is complete. Once UI customization is completed, the Sandbox must be published for the customizations to be merged into existing UI and available to other users. Creating and activating a sandbox is mandatory for customizing the UI by .Without an active sandbox, OIM does not allow to customize any page. a)      Before you perform any activity in OIM (like Create/Modify Forms, Custom Attribute, creating application instances, adding roles/attributes to catalog) you must create a Sand Box and activate it. b)      One can create multiple sandboxes in OIM but only one sandbox can be active at any given time. c)      You can export/import the sandbox to move the changes from one environment to the other. Creating Sandbox To create sandbox, login to identity manager self service (/identity) or System Administration (/sysadmin) and click on top right of link “Sandboxes” and then click on Create SandBox. Publishing Sandbox Before you publish a sandbox, it is recommended to backup MDS. Use /EM to backup MDS by following the steps below : Creating MDS Backup 1.      Login to Oracle Enterprise Manager as the administrator. 2.      On the landing page, click oracle.iam.console.identity.self-service.ear(V2.0). 3.      From the Application Deployment menu at the top, select MDS configuration. 4.      Under Export, select the Export metadata documents to an archive on the machine where this web browser is running option, and then click Export. All the metadata is exported in a ZIP file.   Creating Password Policy through Admin Console : In 11gR1 and previous versions password policies could be created & applied via OIM Design Console only. From OIM11gR2 onwards, Password Policies can be created and assigned using Admin Console as well.  

    Read the article

  • Using Apache FOP from .NET level

    - by Lukasz Kurylo
    In one of my previous posts I was talking about FO.NET which I was using to generate a pdf documents from XSL-FO. FO.NET is one of the .NET ports of Apache FOP. Unfortunatelly it is no longer maintained. I known it when I decidec to use it, because there is a lack of available (free) choices for .NET to render a pdf form XSL-FO. I hoped in this implementation I will find all I need to create a pdf file with my really simple requirements. FO.NET is a port from some old version of Apache FOP and I found really quickly that there is a lack of some features that I needed, like dotted borders, double borders or support for margins. So I started to looking for some alternatives. I didn’t try the NFOP, another port of Apache FOP, because I found something I think much more better, the IKVM.NET project.   IKVM.NET it is not a pdf renderer. So what it is? From the project site:   IKVM.NET is an implementation of Java for Mono and the Microsoft .NET Framework. It includes the following components: a Java Virtual Machine implemented in .NET a .NET implementation of the Java class libraries tools that enable Java and .NET interoperability   In the simplest form IKVM.NET allows to use a Java code library in the C# code and vice versa.   I tried to use an Apache FOP, the best I think open source pdf –> XSL-FO renderer written in Java from my project written in C# using an IKVM.NET and it work like a charm. In the rest of the post I want to show, how to prepare a .NET *.dll class library from Apache FOP *.jar’s with IKVM.NET and generate a simple Hello world pdf document.   To start playing with IKVM.NET and Apache FOP we need to download their packages: IKVM.NET Apache FOP and then unpack them.   From the FOP directory copy all the *.jar’s files from lib and build catalogs to some location, e.g. d:\fop. Second step is to build the *.dll library from these files. On the console execute the following comand:   ikvmc –target:library –out:d:\fop\fop.dll –recurse:d:\fop   The ikvmc is located in the bin subdirectory where you unpacked the IKVM.NET. You must execute this command from this catalog, add this path to the global variable PATH or specify the full path to the bin subdirectory.   In no error occurred during this process, the fop.dll library should be created. Right now we can create a simple project to test if we can create a pdf file.   So let’s create a simple console project application and add reference to the fop.dll and the IKVM dll’s: IKVM.OpenJDK.Core and IKVM.OpenJDK.XML.API.   Full code to generate a pdf file from XSL-FO template:   static void Main(string[] args)         {             //initialize the Apache FOP             FopFactory fopFactory = FopFactory.newInstance();               //in this stream we will get the generated pdf file             OutputStream o = new DotNetOutputMemoryStream();             try             {                 Fop fop = fopFactory.newFop("application/pdf", o);                 TransformerFactory factory = TransformerFactory.newInstance();                 Transformer transformer = factory.newTransformer();                   //read the template from disc                 Source src = new StreamSource(new File("HelloWorld.fo"));                 Result res = new SAXResult(fop.getDefaultHandler());                 transformer.transform(src, res);             }             finally             {                 o.close();             }             using (System.IO.FileStream fs = System.IO.File.Create("HelloWorld.pdf"))             {                 //write from the .NET MemoryStream stream to disc the generated pdf file                 var data = ((DotNetOutputMemoryStream)o).Stream.GetBuffer();                 fs.Write(data, 0, data.Length);             }             Process.Start("HelloWorld.pdf");             System.Console.ReadLine();         }   Apache FOP be default using a Java’s Xalan to work with XML files. I didn’t find a way to replace this piece of code with equivalent from .NET standard library. If any error or warning will occure during generating the pdf file, on the console will ge shown, that’s why I inserted the last line in the sample above. The DotNetOutputMemoryStream this is my wrapper for the Java OutputStream. I have created it to have the possibility to exchange data between the .NET <-> Java objects. It’s implementation:   class DotNetOutputMemoryStream : OutputStream     {         private System.IO.MemoryStream ms = new System.IO.MemoryStream();         public System.IO.MemoryStream Stream         {             get             {                 return ms;             }         }         public override void write(int i)         {             ms.WriteByte((byte)i);         }         public override void write(byte[] b, int off, int len)         {             ms.Write(b, off, len);         }         public override void write(byte[] b)         {             ms.Write(b, 0, b.Length);         }         public override void close()         {             ms.Close();         }         public override void flush()         {             ms.Flush();         }     } The last thing we need, this is the HelloWorld.fo template.   <?xml version="1.0" encoding="utf-8"?> <fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format"          xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">   <fo:layout-master-set>     <fo:simple-page-master master-name="simple"                   page-height="29.7cm"                   page-width="21cm"                   margin-top="1.8cm"                   margin-bottom="0.8cm"                   margin-left="1.6cm"                   margin-right="1.2cm">       <fo:region-body margin-top="3cm"/>       <fo:region-before extent="3cm"/>       <fo:region-after extent="1.5cm"/>     </fo:simple-page-master>   </fo:layout-master-set>   <fo:page-sequence master-reference="simple">     <fo:flow flow-name="xsl-region-body">       <fo:block font-size="18pt" color="black" text-align="center">         Hello, World!       </fo:block>     </fo:flow>   </fo:page-sequence> </fo:root>   I’m not going to explain how how this template is created, because this will be covered in the near future posts.   Generated pdf file should look that:

    Read the article

  • Setting useLegacyV2RuntimeActivationPolicy At Runtime

    - by Reed
    Version 4.0 of the .NET Framework included a new CLR which is almost entirely backwards compatible with the 2.0 version of the CLR.  However, by default, mixed-mode assemblies targeting .NET 3.5sp1 and earlier will fail to load in a .NET 4 application.  Fixing this requires setting useLegacyV2RuntimeActivationPolicy in your app.Config for the application.  While there are many good reasons for this decision, there are times when this is extremely frustrating, especially when writing a library.  As such, there are (rare) times when it would be beneficial to set this in code, at runtime, as well as verify that it’s running correctly prior to receiving a FileLoadException. Typically, loading a pre-.NET 4 mixed mode assembly is handled simply by changing your app.Config file, and including the relevant attribute in the startup element: <?xml version="1.0" encoding="utf-8" ?> <configuration> <startup useLegacyV2RuntimeActivationPolicy="true"> <supportedRuntime version="v4.0"/> </startup> </configuration> .csharpcode { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { margin: 0em } .csharpcode .rem { color: #008000 } .csharpcode .kwrd { color: #0000ff } .csharpcode .str { color: #006080 } .csharpcode .op { color: #0000c0 } .csharpcode .preproc { color: #cc6633 } .csharpcode .asp { background-color: #ffff00 } .csharpcode .html { color: #800000 } .csharpcode .attr { color: #ff0000 } .csharpcode .alt { background-color: #f4f4f4; margin: 0em; width: 100% } .csharpcode .lnum { color: #606060 } This causes your application to run correctly, and load the older, mixed-mode assembly without issues. For full details on what’s happening here and why, I recommend reading Mark Miller’s detailed explanation of this attribute and the reasoning behind it. Before I show any code, let me say: I strongly recommend using the official approach of using app.config to set this policy. That being said, there are (rare) times when, for one reason or another, changing the application configuration file is less than ideal. While this is the supported approach to handling this issue, the CLR Hosting API includes a means of setting this programmatically via the ICLRRuntimeInfo interface.  Normally, this is used if you’re hosting the CLR in a native application in order to set this, at runtime, prior to loading the assemblies.  However, the F# Samples include a nice trick showing how to load this API and bind this policy, at runtime.  This was required in order to host the Managed DirectX API, which is built against an older version of the CLR. This is fairly easy to port to C#.  Instead of a direct port, I also added a little addition – by trapping the COM exception received if unable to bind (which will occur if the 2.0 CLR is already bound), I also allow a runtime check of whether this property was setup properly: public static class RuntimePolicyHelper { public static bool LegacyV2RuntimeEnabledSuccessfully { get; private set; } static RuntimePolicyHelper() { ICLRRuntimeInfo clrRuntimeInfo = (ICLRRuntimeInfo)RuntimeEnvironment.GetRuntimeInterfaceAsObject( Guid.Empty, typeof(ICLRRuntimeInfo).GUID); try { clrRuntimeInfo.BindAsLegacyV2Runtime(); LegacyV2RuntimeEnabledSuccessfully = true; } catch (COMException) { // This occurs with an HRESULT meaning // "A different runtime was already bound to the legacy CLR version 2 activation policy." LegacyV2RuntimeEnabledSuccessfully = false; } } [ComImport] [InterfaceType(ComInterfaceType.InterfaceIsIUnknown)] [Guid("BD39D1D2-BA2F-486A-89B0-B4B0CB466891")] private interface ICLRRuntimeInfo { void xGetVersionString(); void xGetRuntimeDirectory(); void xIsLoaded(); void xIsLoadable(); void xLoadErrorString(); void xLoadLibrary(); void xGetProcAddress(); void xGetInterface(); void xSetDefaultStartupFlags(); void xGetDefaultStartupFlags(); [MethodImpl(MethodImplOptions.InternalCall, MethodCodeType = MethodCodeType.Runtime)] void BindAsLegacyV2Runtime(); } } Using this, it’s possible to not only set this at runtime, but also verify, prior to loading your mixed mode assembly, whether this will succeed. In my case, this was quite useful – I am working on a library purely for internal use which uses a numerical package that is supplied with both a completely managed as well as a native solver.  The native solver uses a CLR 2 mixed-mode assembly, but is dramatically faster than the pure managed approach.  By checking RuntimePolicyHelper.LegacyV2RuntimeEnabledSuccessfully at runtime, I can decide whether to enable the native solver, and only do so if I successfully bound this policy. There are some tricks required here – To enable this sort of fallback behavior, you must make these checks in a type that doesn’t cause the mixed mode assembly to be loaded.  In my case, this forced me to encapsulate the library I was using entirely in a separate class, perform the check, then pass through the required calls to that class.  Otherwise, the library will load before the hosting process gets enabled, which in turn will fail. This code will also, of course, try to enable the runtime policy before the first time you use this class – which typically means just before the first time you check the boolean value.  As a result, checking this early on in the application is more likely to allow it to work. Finally, if you’re using a library, this has to be called prior to the 2.0 CLR loading.  This will cause it to fail if you try to use it to enable this policy in a plugin for most third party applications that don’t have their app.config setup properly, as they will likely have already loaded the 2.0 runtime. As an example, take a simple audio player.  The code below shows how this can be used to properly, at runtime, only use the “native” API if this will succeed, and fallback (or raise a nicer exception) if this will fail: public class AudioPlayer { private IAudioEngine audioEngine; public AudioPlayer() { if (RuntimePolicyHelper.LegacyV2RuntimeEnabledSuccessfully) { // This will load a CLR 2 mixed mode assembly this.audioEngine = new AudioEngineNative(); } else { this.audioEngine = new AudioEngineManaged(); } } public void Play(string filename) { this.audioEngine.Play(filename); } } Now – the warning: This approach works, but I would be very hesitant to use it in public facing production code, especially for anything other than initializing your own application.  While this should work in a library, using it has a very nasty side effect: you change the runtime policy of the executing application in a way that is very hidden and non-obvious.

    Read the article

  • Developing Schema Compare for Oracle (Part 1)

    - by Simon Cooper
    SQL Compare is one of Red Gate's most successful SQL Server tools; it allows developers and DBAs to compare and synchronize the contents of their databases. Although similar tools exist for Oracle, they are quite noticeably lacking in the usability and stability that SQL Compare is known for in the SQL Server world. We could see a real need for a usable schema comparison tools for Oracle, and so the Schema Compare for Oracle project was born. Over the next few weeks, as we come up to release of v1, I'll be doing a series of posts on the development of Schema Compare for Oracle. For the first post, I thought I would start with the main pitfalls that we stumbled across when developing the product, especially from a SQL Server background. 1. Schemas and Databases The most obvious difference is that the concept of a 'database' is quite different between Oracle and SQL Server. On SQL Server, one server instance has multiple databases, each with separate schemas. There is typically little communication between separate databases, and most databases are no more than about 1000-2000 objects. This means SQL Compare can register an entire database in a reasonable amount of time, and cross-database dependencies probably won't be an issue. It is a quite different scene under Oracle, however. The terms 'database' and 'instance' are used interchangeably, (although technically 'database' refers to the datafiles on disk, and 'instance' the running Oracle process that reads & writes to the database), and a database is a single conceptual entity. This immediately presents problems, as it is infeasible to register an entire database as we do in SQL Compare; in my Oracle install, using the standard recommended options, there are 63975 system objects. If we tried to register all those, not only would it take hours, but the client would probably run out of memory before we finished. As a result, we had to allow people to specify what schemas they wanted to register. This decision had quite a few knock-on effects for the design, which I will cover in a future post. 2. Connecting to Oracle The next obvious difference is in actually connecting to Oracle – in SQL Server, you can specify a server and database, and off you go. On Oracle things are slightly more complicated. SIDs, Service Names, and TNS A database (the files on disk) must have a unique identifier for the databases on the system, called the SID. It also has a global database name, which consists of a name (which doesn't have to match the SID) and a domain. Alternatively, you can identify a database using a service name, which normally has a 1-to-1 relationship with instances, but may not if, for example, using RAC (Real Application Clusters) for redundancy and failover. You specify the computer and instance you want to connect to using TNS (Transparent Network Substrate). The user-visible parts are a config file (tnsnames.ora) on the client machine that specifies how to connect to an instance. For example, the entry for one of my test instances is: SC_11GDB1 = (DESCRIPTION = (ADDRESS_LIST = (ADDRESS = (PROTOCOL = TCP)(HOST = simonctest)(PORT = 1521)) ) (CONNECT_DATA = (SID = 11gR1db1) ) ) This gives the hostname, port, and SID of the instance I want to connect to, and associates it with a name (SC_11GDB1). The tnsnames syntax also allows you to specify failover, multiple descriptions and address lists, and client load balancing. You can then specify this TNS identifier as the data source in a connection string. Although using ODP.NET (the .NET dlls provided by Oracle) was fine for internal prototype builds, once we released the EAP we discovered that this simply wasn't an acceptable solution for installs on other people's machines. Due to .NET assembly strong naming, users had to have installed on their machines the exact same version of the ODP.NET dlls as we had on our build server. We couldn't ship the ODP.NET dlls with our installer as the Oracle license agreement prohibited this, and we didn't want to force users to install another Oracle client just so they can run our program. To be able to list the TNS entries in the connection dialog, we also had to locate and parse the tnsnames.ora file, which was complicated by users with several Oracle client installs and intricate TNS entries. After much swearing at our computers, we eventually decided to use a third party Oracle connection library from Devart that we could ship with our program; this could use whatever client version was installed, parse the TNS entries for us, and also had the nice feature of being able to connect to an Oracle server without having any client installed at all. Unfortunately, their current license agreement prevents us from shipping an Oracle SDK, but that's a bridge we'll cross when we get to it. 3. Running synchronization scripts The most important difference is that in Oracle, DDL is non-transactional; you cannot rollback DDL statements like you can on SQL Server. Although we considered various solutions to this, including using the flashback archive or recycle bin, or generating an undo script, no reliable method of completely undoing a half-executed sync script has yet been found; so in this case we simply have to trust that the DBA or developer will check and verify the script before running it. However, before we got to that stage, we had to get the scripts to run in the first place... To run a synchronization script from SQL Compare we essentially pass the script over to the SqlCommand.ExecuteNonQuery method. However, when we tried to do the same for an OracleConnection we got a very strange error – 'ORA-00911: invalid character', even when running the most basic CREATE TABLE command. After much hair-pulling and Googling, we discovered that Oracle has got some very strange behaviour with semicolons at the end of statements. To understand what's going on, we need to take a quick foray into SQL and PL/SQL. PL/SQL is not T-SQL In SQL Server, T-SQL is the language used to interface with the database. It has DDL, DML, control flow, and many other nice features (like Turing-completeness) that you can mix and match in the same script. In Oracle, DDL SQL and PL/SQL are two completely separate languages, with different syntax, different datatypes and different execution engines within the instance. Oracle SQL is much more like 'pure' ANSI SQL, with no state, no control flow, and only the basic DML commands. PL/SQL is the Turing-complete language, but can only do DML and DCL (i.e. BEGIN TRANSATION commands). Any DDL or SQL commands that aren't recognised by the PL/SQL engine have to be passed back to the SQL engine via an EXECUTE IMMEDIATE command. In PL/SQL, a semicolons is a valid token used to delimit the end of a statement. In SQL, a semicolon is not a valid token (even though the Oracle documentation gives them at the end of the syntax diagrams) . When you execute the command CREATE TABLE table1 (COL1 NUMBER); in SQL*Plus the semicolon on the end is a command to SQL*Plus to execute the preceding statement on the server; it strips off the semicolon before passing it on. SQL Developer does a similar thing. When executing a PL/SQL block, however, the syntax is like so: BEGIN INSERT INTO table1 VALUES (1); INSERT INTO table1 VALUES (2); END; / In this case, the semicolon is accepted by the PL/SQL engine as a statement delimiter, and instead the / is the command to SQL*Plus to execute the current block. This explains the ORA-00911 error we got when trying to run the CREATE TABLE command – the server is complaining about the semicolon on the end. This also means that there is no SQL syntax to execute more than one DDL command in the same OracleCommand. Therefore, we would have to do a round-trip to the server for every command we want to execute. Obviously, this would cause lots of network traffic and be very slow on slow or congested networks. Our first attempt at a solution was to wrap every SQL statement (without semicolon) inside an EXECUTE IMMEDIATE command in a PL/SQL block and pass that to the server to execute. One downside of this solution is that we get no feedback as to how the script execution is going; we're currently evaluating better solutions to this thorny issue. Next up: Dependencies; how we solved the problem of being unable to register the entire database, and the knock-on effects to the whole product.

    Read the article

  • Enable wireless on Dell Inspiron 1300

    - by Simon
    As per subject, I've looked at various resources and attempted ndiswrapper solutions, found a one-click solution that lead to a 404 and this but none works. I've run all updates. Once I managed to lose my wired connection as well and had to reinstall. This is my first hour with Linux. iwconfig gives this before I do anything: lo no wireless extensions. wlan0 IEEE 802.11bg ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=0 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:on eth0 no wireless extens Thanks for responding lspci returns 00:00.0 Host bridge: Intel Corporation Mobile 915GM/PM/GMS/910GML Express Processor to DRAM Controller (rev 03) Subsystem: Dell Device 01c9 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort+ >SERR- <PERR- INTx- Latency: 0 Capabilities: <access denied> Kernel driver in use: agpgart-intel 00:02.0 VGA compatible controller: Intel Corporation Mobile 915GM/GMS/910GML Express Graphics Controller (rev 03) (prog-if 00 [VGA controller]) Subsystem: Dell Device 01c9 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 16 Region 0: Memory at dff00000 (32-bit, non-prefetchable) [size=512K] Region 1: I/O ports at eff8 [size=8] Region 2: Memory at c0000000 (32-bit, prefetchable) [size=256M] Region 3: Memory at dfec0000 (32-bit, non-prefetchable) [size=256K] Expansion ROM at <unassigned> [disabled] Capabilities: <access denied> Kernel driver in use: i915 Kernel modules: intelfb, i915 00:02.1 Display controller: Intel Corporation Mobile 915GM/GMS/910GML Express Graphics Controller (rev 03) Subsystem: Dell Device 01c9 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Region 0: Memory at dff80000 (32-bit, non-prefetchable) [size=512K] Capabilities: <access denied> 00:1b.0 Audio device: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) High Definition Audio Controller (rev 03) Subsystem: Dell Device 01c9 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Interrupt: pin A routed to IRQ 42 Region 0: Memory at dfebc000 (64-bit, non-prefetchable) [size=16K] Capabilities: <access denied> Kernel driver in use: snd_hda_intel Kernel modules: snd-hda-intel 00:1c.0 PCI bridge: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) PCI Express Port 1 (rev 03) (prog-if 00 [Normal decode]) Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Bus: primary=00, secondary=0b, subordinate=0b, sec-latency=0 I/O behind bridge: 00002000-00002fff Memory behind bridge: 30000000-301fffff Prefetchable memory behind bridge: 0000000030200000-00000000303fffff Secondary status: 66MHz- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- <SERR- <PERR- BridgeCtl: Parity- SERR+ NoISA- VGA- MAbort- >Reset- FastB2B- PriDiscTmr- SecDiscTmr- DiscTmrStat- DiscTmrSERREn- Capabilities: <access denied> Kernel driver in use: pcieport Kernel modules: shpchp 00:1c.3 PCI bridge: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) PCI Express Port 4 (rev 03) (prog-if 00 [Normal decode]) Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Bus: primary=00, secondary=0c, subordinate=0d, sec-latency=0 I/O behind bridge: 0000d000-0000dfff Memory behind bridge: dfc00000-dfdfffff Prefetchable memory behind bridge: 00000000d0000000-00000000d01fffff Secondary status: 66MHz- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- <SERR- <PERR- BridgeCtl: Parity- SERR+ NoISA- VGA- MAbort- >Reset- FastB2B- PriDiscTmr- SecDiscTmr- DiscTmrStat- DiscTmrSERREn- Capabilities: <access denied> Kernel driver in use: pcieport Kernel modules: shpchp 00:1d.0 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB UHCI #1 (rev 03) (prog-if 00 [UHCI]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 16 Region 4: I/O ports at bf80 [size=32] Kernel driver in use: uhci_hcd 00:1d.1 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB UHCI #2 (rev 03) (prog-if 00 [UHCI]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin B routed to IRQ 17 Region 4: I/O ports at bf60 [size=32] Kernel driver in use: uhci_hcd 00:1d.2 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB UHCI #3 (rev 03) (prog-if 00 [UHCI]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin C routed to IRQ 18 Region 4: I/O ports at bf40 [size=32] Kernel driver in use: uhci_hcd 00:1d.3 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB UHCI #4 (rev 03) (prog-if 00 [UHCI]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin D routed to IRQ 19 Region 4: I/O ports at bf20 [size=32] Kernel driver in use: uhci_hcd 00:1d.7 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB2 EHCI Controller (rev 03) (prog-if 20 [EHCI]) Subsystem: Dell Device 01c9 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 16 Region 0: Memory at b0000000 (32-bit, non-prefetchable) [size=1K] Capabilities: <access denied> Kernel driver in use: ehci_hcd 00:1e.0 PCI bridge: Intel Corporation 82801 Mobile PCI Bridge (rev d3) (prog-if 01 [Subtractive decode]) Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Bus: primary=00, secondary=02, subordinate=02, sec-latency=32 I/O behind bridge: 0000f000-00000fff Memory behind bridge: dfb00000-dfbfffff Prefetchable memory behind bridge: 00000000fff00000-00000000000fffff Secondary status: 66MHz- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort+ <SERR- <PERR- BridgeCtl: Parity- SERR+ NoISA- VGA- MAbort- >Reset- FastB2B- PriDiscTmr- SecDiscTmr- DiscTmrStat- DiscTmrSERREn- Capabilities: <access denied> 00:1f.0 ISA bridge: Intel Corporation 82801FBM (ICH6M) LPC Interface Bridge (rev 03) Subsystem: Dell Device 01c9 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B- ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Kernel modules: iTCO_wdt, intel-rng 00:1f.1 IDE interface: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) IDE Controller (rev 03) (prog-if 8a [Master SecP PriP]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 16 Region 0: I/O ports at 01f0 [size=8] Region 1: I/O ports at 03f4 [size=1] Region 2: I/O ports at 0170 [size=8] Region 3: I/O ports at 0374 [size=1] Region 4: I/O ports at bfa0 [size=16] Kernel driver in use: ata_piix 02:00.0 Ethernet controller: Broadcom Corporation BCM4401-B0 100Base-TX (rev 02) Subsystem: Dell Device 01c9 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 64 Interrupt: pin A routed to IRQ 18 Region 0: Memory at dfbfc000 (32-bit, non-prefetchable) [size=8K] Capabilities: <access denied> Kernel driver in use: b44 Kernel modules: b44 02:03.0 Network controller: Broadcom Corporation BCM4318 [AirForce One 54g] 802.11g Wireless LAN Controller (rev 02) Subsystem: Dell Wireless 1370 WLAN Mini-PCI Card Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 64 Interrupt: pin A routed to IRQ 17 Region 0: Memory at dfbfe000 (32-bit, non-prefetchable) [size=8K] Kernel driver in use: b43-pci-bridge Kernel modules: ssb and the rfkill shows 0: phy0: Wireless LAN Soft blocked: no Hard blocked: no Just checking addtional drivers. Says no additional driver installed in this system

    Read the article

  • Computer Networks UNISA - Chap 10 &ndash; In Depth TCP/IP Networking

    - by MarkPearl
    After reading this section you should be able to Understand methods of network design unique to TCP/IP networks, including subnetting, CIDR, and address translation Explain the differences between public and private TCP/IP networks Describe protocols used between mail clients and mail servers, including SMTP, POP3, and IMAP4 Employ multiple TCP/IP utilities for network discovery and troubleshooting Designing TCP/IP-Based Networks The following sections explain how network and host information in an IPv4 address can be manipulated to subdivide networks into smaller segments. Subnetting Subnetting separates a network into multiple logically defined segments, or subnets. Networks are commonly subnetted according to geographic locations, departmental boundaries, or technology types. A network administrator might separate traffic to accomplish the following… Enhance security Improve performance Simplify troubleshooting The challenges of Classful Addressing in IPv4 (No subnetting) The simplest type of IPv4 is known as classful addressing (which was the Class A, Class B & Class C network addresses). Classful addressing has the following limitations. Restriction in the number of usable IPv4 addresses (class C would be limited to 254 addresses) Difficult to separate traffic from various parts of a network Because of the above reasons, subnetting was introduced. IPv4 Subnet Masks Subnetting depends on the use of subnet masks to identify how a network is subdivided. A subnet mask indicates where network information is located in an IPv4 address. The 1 in a subnet mask indicates that corresponding bits in the IPv4 address contain network information (likewise 0 indicates the opposite) Each network class is associated with a default subnet mask… Class A = 255.0.0.0 Class B = 255.255.0.0 Class C = 255.255.255.0 An example of calculating  the network ID for a particular device with a subnet mask is shown below.. IP Address = 199.34.89.127 Subnet Mask = 255.255.255.0 Resultant Network ID = 199.34.89.0 IPv4 Subnetting Techniques Subnetting breaks the rules of classful IPv4 addressing. Read page 490 for a detailed explanation Calculating IPv4 Subnets Read page 491 – 494 for an explanation Important… Subnetting only applies to the devices internal to your network. Everything external looks at the class of the IP address instead of the subnet network ID. This way, traffic directed to your network externally still knows where to go, and once it has entered your internal network it can then be prioritized and segmented. CIDR (classless Interdomain Routing) CIDR is also known as classless routing or supernetting. In CIDR conventional network class distinctions do not exist, a subnet boundary can move to the left, therefore generating more usable IP addresses on your network. A subnet created by moving the subnet boundary to the left is known as a supernet. With CIDR also came new shorthand for denoting the position of subnet boundaries known as CIDR notation or slash notation. CIDR notation takes the form of the network ID followed by a forward slash (/) followed by the number of bits that are used for the extended network prefix. To take advantage of classless routing, your networks routers must be able to interpret IP addresses that don;t adhere to conventional network class parameters. Routers that rely on older routing protocols (i.e. RIP) are not capable of interpreting classless IP addresses. Internet Gateways Gateways are a combination of software and hardware that enable two different network segments to exchange data. A gateway facilitates communication between different networks or subnets. Because on device cannot send data directly to a device on another subnet, a gateway must intercede and hand off the information. Every device on a TCP/IP based network has a default gateway (a gateway that first interprets its outbound requests to other subnets, and then interprets its inbound requests from other subnets). The internet contains a vast number of routers and gateways. If each gateway had to track addressing information for every other gateway on the Internet, it would be overtaxed. Instead, each handles only a relatively small amount of addressing information, which it uses to forward data to another gateway that knows more about the data’s destination. The gateways that make up the internet backbone are called core gateways. Address Translation An organizations default gateway can also be used to “hide” the organizations internal IP addresses and keep them from being recognized on a public network. A public network is one that any user may access with little or no restrictions. On private networks, hiding IP addresses allows network managers more flexibility in assigning addresses. Clients behind a gateway may use any IP addressing scheme, regardless of whether it is recognized as legitimate by the Internet authorities but as soon as those devices need to go on the internet, they must have legitimate IP addresses to exchange data. When a clients transmission reaches the default gateway, the gateway opens the IP datagram and replaces the client’s private IP address with an Internet recognized IP address. This process is known as NAT (Network Address Translation). TCP/IP Mail Services All Internet mail services rely on the same principles of mail delivery, storage, and pickup, though they may use different types of software to accomplish these functions. Email servers and clients communicate through special TCP/IP application layer protocols. These protocols, all of which operate on a variety of operating systems are discussed below… SMTP (Simple Mail transfer Protocol) The protocol responsible for moving messages from one mail server to another over TCP/IP based networks. SMTP belongs to the application layer of the ODI model and relies on TCP as its transport protocol. Operates from port 25 on the SMTP server Simple sub-protocol, incapable of doing anything more than transporting mail or holding it in a queue MIME (Multipurpose Internet Mail Extensions) The standard message format specified by SMTP allows for lines that contain no more than 1000 ascii characters meaning if you relied solely on SMTP you would have very short messages and nothing like pictures included in an email. MIME us a standard for encoding and interpreting binary files, images, video, and non-ascii character sets within an email message. MIME identifies each element of a mail message according to content type. MIME does not replace SMTP but works in conjunction with it. Most modern email clients and servers support MIME POP (Post Office Protocol) POP is an application layer protocol used to retrieve messages from a mail server POP3 relies on TCP and operates over port 110 With POP3 mail is delivered and stored on a mail server until it is downloaded by a user Disadvantage of POP3 is that it typically does not allow users to save their messages on the server because of this IMAP is sometimes used IMAP (Internet Message Access Protocol) IMAP is a retrieval protocol that was developed as a more sophisticated alternative to POP3 The single biggest advantage IMAP4 has over POP3 is that users can store messages on the mail server, rather than having to continually download them Users can retrieve all or only a portion of any mail message Users can review their messages and delete them while the messages remain on the server Users can create sophisticated methods of organizing messages on the server Users can share a mailbox in a central location Disadvantages of IMAP are typically related to the fact that it requires more storage space on the server. Additional TCP/IP Utilities Nearly all TCP/IP utilities can be accessed from the command prompt on any type of server or client running TCP/IP. The syntaxt may differ depending on the OS of the client. Below is a list of additional TCP/IP utilities – research their use on your own! Ipconfig (Windows) & Ifconfig (Linux) Netstat Nbtstat Hostname, Host & Nslookup Dig (Linux) Whois (Linux) Traceroute (Tracert) Mtr (my traceroute) Route

    Read the article

  • JavaOne Session Report: “50 Tips in 50 Minutes for GlassFish Fans”

    - by Janice J. Heiss
    At JavaOne 2012 on Monday, Oracle’s Engineer Chris Kasso, and Technology Evangelist Arun Gupta, presented a head-spinning session (CON4701) in which they offered 50 tips for GlassFish fans. Kasso and Gupta alternated back and forth with each presenting 10 tips at a time. An audience of about (appropriately) 50 attentive and appreciative developers was on hand in what has to be one of the most information-packed sessions ever at JavaOne!Aside: I experienced one of the quiet joys of JavaOne when, just before the session began, I spotted Java Champion and JavaOne Rock Star Adam Bien sitting nearby – Adam is someone I have been fortunate to know for many years.GlassFish is a freely available, commercially supported Java EE reference implementation. The session prioritized quantity of tips over depth of information and offered tips that are intended for both seasoned and new users, that are meant to increase the range of functional options available to GlassFish users. The focus was on lesser-known dimensions of GlassFish. Attendees were encouraged to pursue tips that contained new information for them. All 50 tips can be accessed here.Below are several examples of more elaborate tips and a final practical tip on how to get in touch with these folks. Tip #1: Using the login Command * To execute a remote command with asadmin you must provide the admin's user name and password.* The login command allows you to store the login credentials to be reused in subsequent commands.* Can be logged into multiple servers (distinguish by host and port). Example:     % asadmin --host ouch login     Enter admin user name [default: admin]>     Enter admin password>     Login information relevant to admin user name [admin]     for host [ouch] and admin port [4848] stored at     [/Users/ckasso/.asadminpass] successfully.     Make sure that this file remains protected.     Information stored in this file will be used by     asadmin commands to manage the associated domain.     Command login executed successfully.     % asadmin --host ouch list-clusters     c1 not running     Command list-clusters executed successfully.Tip #4: Using the AS_DEBUG Env Variable* Environment variable to control client side debug output* Exposes: command processing info URL used to access the command:                           http://localhost:4848/__asadmin/uptime Raw response from the server Example:   % export AS_DEBUG=true  % asadmin uptime  CLASSPATH= ./../glassfish/modules/admin-cli.jar  Commands: [uptime]  asadmin extension directory: /work/gf-3.1.2/glassfish3/glassfish/lib/asadm      ------- RAW RESPONSE  ---------   Signature-Version: 1.0   message: Up 7 mins 10 secs   milliseconds_value: 430194   keys: milliseconds   milliseconds_name: milliseconds   use-main-children-attribute: false   exit-code: SUCCESS  ------- RAW RESPONSE  ---------Tip #11: Using Password Aliases * Some resources require a password to access (e.g. DB, JMS, etc.).* The resource connector is defined in the domain.xml.Example:Suppose the DB resource you wish to access requires an entry like this in the domain.xml:     <property name="password" value="secretp@ssword"/>But company policies do not allow you to store the password in the clear.* Use password aliases to avoid storing the password in the domain.xml* Create a password alias:     % asadmin create-password-alias DB_pw_alias     Enter the alias password>     Enter the alias password again>     Command create-password-alias executed successfully.* The password is stored in domain's encrypted keystore.* Now update the password value in the domain.xml:     <property name="password" value="${ALIAS=DB_pw_alias}"/>Tip #21: How to Start GlassFish as a Service * Configuring a server to automatically start at boot can be tedious.* Each platform does it differently.* The create-service command makes this easy.   Windows: creates a Windows service Linux: /etc/init.d script Solaris: Service Management Facility (SMF) service * Must execute create-service with admin privileges.* Can be used for the DAS or instances* Try it first with the --dry-run option.* There is a (unsupported) _delete-serverExample:     # asadmin create-service domain1     The Service was created successfully. Here are the details:     Name of the service:application/GlassFish/domain1     Type of the service:Domain     Configuration location of the service:/work/gf-3.1.2.2/glassfish3/glassfish/domains     Manifest file location on the system:/var/svc/manifest/application/GlassFish/domain1_work_gf-3.1.2.2_glassfish3_glassfish_domains/Domain-service-smf.xml.     You have created the service but you need to start it yourself. Here are the most typical Solaris commands of interest:     * /usr/bin/svcs  -a | grep domain1  // status     * /usr/sbin/svcadm enable domain1 // start     * /usr/sbin/svcadm disable domain1 // stop     * /usr/sbin/svccfg delete domain1 // uninstallTip #34: Posting a Command via REST* Use wget/curl to execute commands on the DAS.Example:  Deploying an application   % curl -s -S \       -H 'Accept: application/json' -X POST \       -H 'X-Requested-By: anyvalue' \       -F id=@/path/to/application.war \       -F force=true http://localhost:4848/management/domain/applications/application* Use @ before a file name to tell curl to send the file's contents.* The force option tells GlassFish to force the deployment in case the application is already deployed.* Use wget/curl to execute commands on the DAS.Example:  Deploying an application   % curl -s -S \       -H 'Accept: application/json' -X POST \       -H 'X-Requested-By: anyvalue' \       -F id=@/path/to/application.war \       -F force=true http://localhost:4848/management/domain/applications/application* Use @ before a file name to tell curl to send the file's contents.* The force option tells GlassFish to force the deployment in case the application is already deployed.Tip #46: Upgrading to a Newer Version * Upgrade applications and configuration from an earlier version* Upgrade Tool: Side-by-side upgrade– GUI: asupgrade– CLI: asupgrade --c– What happens ?* Copies older source domain -> target domain directory* asadmin start-domain --upgrade* Update Tool and pkg: In-place upgrade– GUI: updatetool, install all Available Updates– CLI: pkg image-update– Upgrade the domain* asadmin start-domain --upgradeTip #50: How to reach us?* GlassFish Forum: http://www.java.net/forums/glassfish/glassfish* [email protected]* @glassfish* facebook.com/glassfish* youtube.com/GlassFishVideos* blogs.oracle.com/theaquariumArun Gupta acknowledged that their method of presentation was experimental and actively solicited feedback about the session. The best way to reach them is on the GlassFish user forum.In addition, check out Gupta’s new book Java EE 6 Pocket Guide.

    Read the article

  • MySQL Utility Users' Console Oerview

    - by rudrap
    MySQL Utility Users' Console (mysqluc): The MySQL Utilities Users' Console is designed to make using the utilities easier via a dedicated console. It helps us to use the utilities without worrying about the python and utility paths. Why do we need a special console? - It does provide a unique shell environment with command completion, help for each utility, user defined variables, and type completion for options. - You no longer have to type out the entire name of the utility. - You don't need to remember the name of a database utility you want to use. - You can define variables and reuse them in your utility commands. - It is possible to run utility command along with mysqluc and come out of the mysqluc console. Console commands: mysqluc> help Command Description ----------------------           --------------------------------------------------- help utilities                     Display list of all utilities supported. help <utility>                  Display help for a specific utility. help or help commands   Show this list. exit or quit                       Exit the console. set <variable>=<value>  Store a variable for recall in commands. show options                   Display list of options specified by the user on launch. show variables                 Display list of variables. <ENTER>                       Press ENTER to execute command. <ESCAPE>                     Press ESCAPE to clear the command entry. <DOWN>                       Press DOWN to retrieve the previous command. <UP>                               Press UP to retrieve the next command in history. <TAB>                            Press TAB for type completion of utility, option,or variable names. <TAB><TAB>                Press TAB twice for list of matching type completion (context sensitive). How do I use it? Pre-requisites: - Download the latest version of MySQL Workbench. - Mysql Servers are running. - Your Pythonpath is set. (e.g. Export PYTHONPATH=/...../mysql-utilities/) Check the Version of mysqluc Utility: /usr/bin/python mysqluc.py –version It should display something like this MySQL Utilities mysqluc.py version 1.1.0 - MySQL Workbench Distribution 5.2.44 Copyright (c) 2010, 2012 Oracle and/or its affiliates. All rights reserved. This program is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, to the extent permitted by law. Use of TAB to get the current utilities: mysqluc> mysqldb<TAB><TAB> Utility Description -------------        ------------------------------------------------------------ mysqldbcopy      copy databases from one server to another mysqldbexport    export metadata and data from databases mysqldbimport    import metadata and data from files mysqluc> mysqldbcopy –source=$se<TAB> Variable Value -------- ---------------------------------------------------------------------- server1 root@localhost:3306 server2 root@localhost:3307 you can see the variables starting with se and then decide which to use Run a utility via the console: /usr/bin/python mysqluc.py -e "mysqldbcopy --source=root@localhost:3306 --destination=root@localhost:3307 dbname" Get help for utilities in the console: mysqluc> help utilities Display help for a utility mysqluc> help mysqldbcopy Details about mysqldbcopy and its options set variables and use them in commands: mysqluc> set server1 = root@localhost:3306 mysqluc>show variables Variable Value -------- ---------------------------------------------------------------------- server1    root@localhost:3306 server2    root@localhost:3307 mysqluc> mysqldbcopy –source=$server1 –destination=$server2 dbname <Enter> Mysqldbcopy utility output will display. mysqluc>show options Display list of options specified by the user mysqluc SERVER=root@host123 VAR_A=57 -e "show variables" Variable Value -------- ----------------------------------------------------------------- SERVER root@host123 VAR_A 57 Finding option names for an Utility: mysqluc> mysqlserverclone --n Option Description ------------------- --------------------------------------------------------- --new-data=NEW_DATA the full path to the location of the data directory for the new instance --new-port=NEW_PORT the new port for the new instance - default=3307 --new-id=NEW_ID the server_id for the new instance - default=2 Limitations: User defined variables have a lifetime of the console run time.

    Read the article

  • Why is Excel 2010/2013 taking 10 seconds open any file?

    - by jbkly
    I have a fast Windows 7 PC with two SSDs and 16GB of RAM, so I'm used to programs loading very fast. But recently, for no reason I can figure out, Excel has started taking way too long to open Excel files (of any size--even blank files). This is occurring with Excel 2010 and with Excel 2013 after I upgraded, hoping to solve the problem. Here a couple scenarios: If I start Excel directly, it opens almost instantly. No problem there. If I start Excel directly, and then open any Excel file (.xls or .xlsx), it loads almost instantly. Still no problem BUT if I attempt to open any Excel file directly, with Excel not running, it consistently takes 10-11 seconds for Excel to start. I get no error messages, just a spinning cursor for 10-11 seconds, and then the file opens. During the delay while Excel is trying to start, I'm not really seeing any discernible spike in CPU or memory usage, other than explorer.exe. This problem is only occurring with Excel, not Word or any other program I'm aware of. I've searched around quite a bit on this question and found various others who have experienced it, but the solutions that worked for them are not working for me. For a few people it was a problem with scanning network drives, but my problem is purely with local files; I have no network drives, and the problem persists even with all network connections disabled. Some people suggested worksheets with corrupted formulas or links, but I'm experiencing this with ANY Excel file: even blank worksheets. Others thought it was a problem with add-ins, but I have all Excel add-ins disabled (as far as I can tell). One person solved it by disabling a "clipboard manager" process that was running in the background, but I don't have that. I've disabled as many startup and background processes as I can, but the problem persists. I've run malware scans, disk cleanup, CCleaner, and installed Excel 2013. I've deleted temporary files, enabled SuperFetch, and edited registry keys. Still can't get rid of the problem. Any ideas? My system details: Windows 7 Professional SP1 64-bit, Excel 2013 32-bit, 16GB RAM, all programs installed on SSD.

    Read the article

  • external hard drive is no longer recognized, gives buffer I/O errors

    - by BioGeek
    Hi all, The external hard drive which contains all my photos and where I backed-up all my important documents is no longer recognized. It is a three month old 500GB Iomage Prestige Desktop Hard Drive. When I plug it in, it is recognised as a USB device, because it shows up when I type lsusb, but dmesg gives this error message. [19712.013250] usb 2-2: new high speed USB device using ehci_hcd and address 21 [19712.145347] usb 2-2: configuration #1 chosen from 1 choice [19712.147214] scsi25 : SCSI emulation for USB Mass Storage devices [19712.147514] usb-storage: device found at 21 [19712.147519] usb-storage: waiting for device to settle before scanning [19717.148978] usb-storage: device scan complete [19717.149527] scsi 25:0:0:0: Direct-Access ST350082 0AS PQ: 0 ANSI: 2 CCS [19717.151020] sd 25:0:0:0: Attached scsi generic sg2 type 0 [19717.151685] sd 25:0:0:0: [sdb] 976773168 512-byte logical blocks: (500 GB/465 GiB) [19717.160402] sd 25:0:0:0: [sdb] Write Protect is off [19717.160412] sd 25:0:0:0: [sdb] Mode Sense: 34 00 00 00 [19717.160418] sd 25:0:0:0: [sdb] Assuming drive cache: write through [19717.165685] sd 25:0:0:0: [sdb] Assuming drive cache: write through [19717.165691] sdb: sdb1 [19719.171808] sd 25:0:0:0: [sdb] Assuming drive cache: write through [19719.171818] sd 25:0:0:0: [sdb] Attached SCSI disk [19737.430998] sd 25:0:0:0: [sdb] Unhandled sense code [19737.431007] sd 25:0:0:0: [sdb] Result: hostbyte=DID_OK driverbyte=DRIVER_SENSE [19737.431016] sd 25:0:0:0: [sdb] Sense Key : Medium Error [current] [19737.431027] sd 25:0:0:0: [sdb] Add. Sense: Unrecovered read error [19737.431038] end_request: I/O error, dev sdb, sector 6160463 [19737.431050] Buffer I/O error on device sdb1, logical block 6160400 [19737.431060] Buffer I/O error on device sdb1, logical block 6160401 [19737.431067] Buffer I/O error on device sdb1, logical block 6160402 [19737.431075] Buffer I/O error on device sdb1, logical block 6160403 [19737.431082] Buffer I/O error on device sdb1, logical block 6160404 [19737.431088] Buffer I/O error on device sdb1, logical block 6160405 [19737.431096] Buffer I/O error on device sdb1, logical block 6160406 [19737.431102] Buffer I/O error on device sdb1, logical block 6160407 [19737.431114] Buffer I/O error on device sdb1, logical block 6160408 [19737.431121] Buffer I/O error on device sdb1, logical block 6160409 [19737.712183] sd 6:0:0:0: [sdb] Unhandled sense code [19737.712191] sd 6:0:0:0: [sdb] Result: hostbyte=DID_ERROR driverbyte=DRIVER_SENSE [19737.712200] sd 6:0:0:0: [sdb] Sense Key : Hardware Error [current] [19737.712210] sd 6:0:0:0: [sdb] Add. Sense: No additional sense information [19737.712222] end_request: I/O error, dev sdb, sector 0 [19737.712232] Buffer I/O error on device sdb, logical block 0 Neither does the external drive show when I use fdisk: jeroen@phalacrocorax:~$ sudo fdisk -l [sudo] password for jeroen: Disk /dev/sda: 160.0 GB, 160041885696 bytes 255 heads, 63 sectors/track, 19457 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Disk identifier: 0x000341ad Device Boot Start End Blocks Id System /dev/sda1 * 1 18714 150320173+ 83 Linux /dev/sda2 18715 19457 5968147+ 5 Extended /dev/sda5 18715 19457 5968116 82 Linux swap / Solaris` I popped the disk out of the casing put it on a SATA connect internally and then tried the file recovery programs testdisk/photorec and SpinRite, but both failed because they couldn't recognize the external harddisk. Do I have any other options?

    Read the article

  • How to remove iso 9660 from USB?

    - by a_m0d
    I have somehow managed to write an iso 9660 image onto my USB drive, which makes all my computer think that the device is actually a CD. I have tried various methods of removing this partition, but nothing seems to work. I have tried fdisk, which says $ fdisk -l /dev/sdb Cannot open /dev/sdb parted crashes when I try to use it on this device. I have even tried $ dd if=/dev/zero of=/dev/sdb but it just hangs with no output (either on screen or on disk). However, when I plug the USB in, it does mount, and I can view (but not edit) the files on it. edit: now the result is $ dd if=/dev/zero of=/dev/sdb dd: opening `/dev/sdb': Read-only file system I have also tried re-formatting it on Windows, but it gets to the end of the format process and then says "Couldn't format the drive". How can I remove this partition and get my whole USB drive back to normal again? EDIT 1: Trying a simple mkfs doesn't work: $ sudo mkfs -t vfat /dev/sdb mkfs.vfat 3.0.0 (28 Sep 2008) mkfs.vfat: Will not try to make filesystem on full-disk device '/dev/sdb' (use -I if wanted) I can't do mkfs on /dev/sdb1 because there is no such partition, as shown:$ ls /dev | grep sdb sdb EDIT 2: This is the information posted by dmesg when I plug the device in:$ dmesg . . (snip) . usb 2-1: New USB device found, idVendor=058f, idProduct=6387 usb 2-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3 usb 2-1: Product: Mass Storage usb 2-1: Manufacturer: Generic usb 2-1: SerialNumber: G0905000000000010885 usb-storage: device found at 4 usb-storage: waiting for device to settle before scanning usb-storage: device scan complete scsi 6:0:0:0: Direct-Access FLASH Drive AU_USB20 8.07 PQ: 0 ANSI: 2 sd 6:0:0:0: [sdb] 4069376 512-byte hardware sectors (2084 MB) sd 6:0:0:0: [sdb] Write Protect is off sd 6:0:0:0: [sdb] Mode Sense: 03 00 00 00 sd 6:0:0:0: [sdb] Assuming drive cache: write through sd 6:0:0:0: [sdb] 4069376 512-byte hardware sectors (2084 MB) sd 6:0:0:0: [sdb] Write Protect is off sd 6:0:0:0: [sdb] Mode Sense: 03 00 00 00 sd 6:0:0:0: [sdb] Assuming drive cache: write through sdb: unknown partition table sd 6:0:0:0: [sdb] Attached SCSI removable disk sd 6:0:0:0: Attached scsi generic sg2 type 0 ISO 9660 Extensions: Microsoft Joliet Level 3 ISO 9660 Extensions: RRIP_1991A SELinux: initialized (dev sdb, type iso9660), uses genfs_contexts CE: hpet increasing min_delta_ns to 15000 nsec This shows that the device is formatted as ISO 9660 and that it is /dev/sdb. EDIT 3: This is the message that I find at the bottom of dmesg after running cfdisk and writing a new partition table to the disk:SELinux: initialized (dev sdb, type iso9660), uses genfs_contexts sd 17:0:0:0: [sdb] Device not ready: Sense Key : Not Ready [current] sd 17:0:0:0: [sdb] Device not ready: < ASC=0xff ASCQ=0xffASC=0xff < ASCQ=0xff end_request: I/O error, dev sdb, sector 0 Buffer I/O error on device sdb, logical block 0 lost page write due to I/O error on sdb

    Read the article

  • HP F2180 driver installation fails on 64-bit Windows 7

    - by Noam Gal
    Hello; I am trying to install the HP Deskjet AIO (non-network) driver on my machine, which is running the 64-bit version of Windows 7. Before installing it, Windows detected my printer just fine... But I wanted to use the HP scanning application, because tt allows me to scan several photos at once. I ran the DJ_AIO_NonNetwork_ENU_NB file I got from their site, and the installation went almost without a problem... However, at the part where it should have detected the printer, it didn't, so I skipped it - telling the installer I'll connect the printer later. After it was finished I was able to use it regularly, and also scan using the wanted HP application. However, the installer kept popping at random intervals, and giving me an error message. Yesterday I tried removing all the installed HP Applications, and installing from scratch. Running the same installer setup, it now insists that it does not support my operating system, and that 64-bit Vista is the highest it can go... I just don't understand why this is occuring all of the sudden. Has anybody here successfully installed the AIO driver on the 64-bit version of Windows 7? UPDATE: Been chatting with HP chat support over the weekend. Managed to really mess up my windows. At first, they told me to uninstall using an "unintall_l3" batch file inside their installer package, and then reinstall. Didn't work. Also the "l4" batch didn't make any difference. Afterwards I was told to install "Windows install clean up" and remove many hp entries (most of which were not listed on my computer), and I also removed many other hp entries I bumped upon. Then my office 2k7 started failing. I searched around the web, and ran Security Restore, so now my office works, but my windows explorer is all buggy - can't seem to open windows explorer - it hangs while trying to load my hard drives, or completely ignores them and just shows my libraries. Anyone here has any idea how I can restore my win7 to normal, with or without the annoying scanner? UPDATE 2: Ok - explorer back to normal. I guess I just had to wait until it finishes searching while opening the windows explorer for the first time after the Security Restore. Scanner still not working though.

    Read the article

  • Add Mirror for volumes other than the last one in Windows 7 (disk "not up-to-date")

    - by rakslice
    I'm using Windows 7 x64 Ultimate. I have an existing 4TB disk with 3 NTFS volumes, a new 3TB blank disk, and I'm trying to mirror the volumes onto the new disk. My Windows install is on an SSD which is Disk 0. The 4TB disk with volumes is Disk 1, and the new blank disk is Disk 2. I can add a mirror successfully for the last volume, but when I try to add a mirror for the first volume I immediately get errors (see below). Is there something I special I need to do to add a mirror for a volume other than the last one? More info: I opened Disk Management, right-clicked on the first volume on the existing disk, went to Add Mirror, and selected the new disk. The first time I did this I was prompted to convert the new disk to a Dynamic Disk, which I approved. Subsequently I got a message: The operation failed to complete because the Disk Management console view is not up-to-date. Refresh the view by using the refresh task. If the problem persists close the Disk Management console, then restart Disk Management or restart the computer. I've refreshed disk management, restarted the computer, and converted the new disk to basic and back to dynamic, but I still get that error message. Looking around for suggestions of a workaround, I saw a suggestion to use the diskpart command line tool. Running diskpart from the Start Menu as Administrator, I did select volume 2 (the first volume I want to mirror) and then add disk 2 (the new disk), and received a somewhat similar error: Virtual Disk Service error: The disk's extent information is corrupted. DiskPart has referenced an object which is not up-to-date. Refresh the object by using the RESCAN command. If the problem persists exit DiskPart, then restart DiskPart or restart the computer. A rescan appears to be successful: DISKPART> select disk 2 Disk 2 is now the selected disk. DISKPART> rescan Please wait while DiskPart scans your configuration... DiskPart has finished scanning your configuration. but attempting to add the mirror again resulted in the same error. The only similar report I found online was this: http://www.sevenforums.com/hardware-devices/335780-unable-mirror-all-but-last-partition-drive.html Based on that I attempted to mirror the last volume on the disk to the new disk using diskpart, and that started successfully -- it is currently resynchronizing. More Background: In the course of dealing with a failing 3TB hard drive, I bought a replacement 4TB drive and installed it, then copied the partitions from the failing drive to it using Minitool Partition Wizard Home, and then removed the failing drive and was up and running again normally. Now I've received a warranty replacement for the failing drive, and installed it, and now I'm attempting to mirror my partitions to it.

    Read the article

  • socket operation on nonsocket or bad file descriptor

    - by Magn3s1um
    I'm writing a pthread server which takes requests from clients and sends them back a bunch of .ppm files. Everything seems to go well, but sometimes when I have just 1 client connected, when trying to read from the file descriptor (for the file), it says Bad file Descriptor. This doesn't make sense, since my int fd isn't -1, and the file most certainly exists. Other times, I get this "Socket operation on nonsocket" error. This is weird because other times, it doesn't give me this error and everything works fine. When trying to connect multiple clients, for some reason, it will only send correctly to one, and then the other client gets the bad file descriptor or "nonsocket" error, even though both threads are processing the same messages and do the same routines. Anyone have an idea why? Here's the code that is giving me that error: while(mqueue.head != mqueue.tail && count < dis_m){ printf("Sending to client %s: %s\n", pointer->id, pointer->message); int fd; fd = open(pointer->message, O_RDONLY); char buf[58368]; int bytesRead; printf("This is fd %d\n", fd); bytesRead=read(fd,buf,58368); send(pointer->socket,buf,bytesRead,0); perror("Error:\n"); fflush(stdout); close(fd); mqueue.mcount--; mqueue.head = mqueue.head->next; free(pointer->message); free(pointer); pointer = mqueue.head; count++; } printf("Sending %s\n", pointer->message); int fd; fd = open(pointer->message, O_RDONLY); printf("This is fd %d\n", fd); printf("I am hhere2\n"); char buf[58368]; int bytesRead; bytesRead=read(fd,buf,58368); send(pointer->socket,buf,bytesRead,0); perror("Error:\n"); close(fd); mqueue.mcount--; if(mqueue.head != mqueue.tail){ mqueue.head = mqueue.head->next; } else{ mqueue.head->next = malloc(sizeof(struct message)); mqueue.head = mqueue.head->next; mqueue.head->next = malloc(sizeof(struct message)); mqueue.tail = mqueue.head->next; mqueue.head->message = NULL; } free(pointer->message); free(pointer); pthread_mutex_unlock(&numm); pthread_mutex_unlock(&circ); pthread_mutex_unlock(&slots); The messages for both threads are the same, being of the form ./path/imageXX.ppm where XX is the number that should go to the client. The file size of each image is 58368 bytes. Sometimes, this code hangs on the read, and stops execution. I don't know this would be either, because the file descriptor comes back as valid. Thanks in advanced. Edit: Here's some sample output: Sending to client a: ./support/images/sw90.ppm This is fd 4 Error: : Socket operation on non-socket Sending to client a: ./support/images/sw91.ppm This is fd 4 Error: : Socket operation on non-socket Sending ./support/images/sw92.ppm This is fd 4 I am hhere2 Error: : Socket operation on non-socket My dispatcher has defeated evil Sample with 2 clients (client b was serviced first) Sending to client b: ./support/images/sw87.ppm This is fd 6 Error: : Success Sending to client b: ./support/images/sw88.ppm This is fd 6 Error: : Success Sending to client b: ./support/images/sw89.ppm This is fd 6 Error: : Success This is fd 6 Error: : Bad file descriptor Sending to client a: ./support/images/sw85.ppm This is fd 6 Error: As you can see, who ever is serviced first in this instance can open the files, but not the 2nd person. Edit2: Full code. Sorry, its pretty long and terribly formatted. #include <netinet/in.h> #include <netinet/in.h> #include <netdb.h> #include <arpa/inet.h> #include <sys/types.h> #include <sys/socket.h> #include <errno.h> #include <stdio.h> #include <unistd.h> #include <pthread.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include "ring.h" /* Version 1 Here is what is implemented so far: The threads are created from the arguments specified (number of threads that is) The server will lock and update variables based on how many clients are in the system and such. The socket that is opened when a new client connects, must be passed to the threads. To do this, we need some sort of global array. I did this by specifying an int client and main_pool_busy, and two pointers poolsockets and nonpoolsockets. My thinking on this was that when a new client enters the system, the server thread increments the variable client. When a thread is finished with this client (after it sends it the data), the thread will decrement client and close the socket. HTTP servers act this way sometimes (they terminate the socket as soon as one transmission is sent). *Note down at bottom After the server portion increments the client counter, we must open up a new socket (denoted by new_sd) and get this value to the appropriate thread. To do this, I created global array poolsockets, which will hold all the socket descriptors for our pooled threads. The server portion gets the new socket descriptor, and places the value in the first spot of the array that has a 0. We only place a value in this array IF: 1. The variable main_pool_busy < worknum (If we have more clients in the system than in our pool, it doesn't mean we should always create a new thread. At the end of this, the server signals on the condition variable clientin that a new client has arrived. In our pooled thread, we then must walk this array and check the array until we hit our first non-zero value. This is the socket we will give to that thread. The thread then changes the array to have a zero here. What if our all threads in our pool our busy? If this is the case, then we will know it because our threads in this pool will increment main_pool_busy by one when they are working on a request and decrement it when they are done. If main_pool_busy >= worknum, then we must dynamically create a new thread. Then, we must realloc the size of our nonpoolsockets array by 1 int. We then add the new socket descriptor to our pool. Here's what we need to figure out: NOTE* Each worker should generate 100 messages which specify the worker thread ID, client socket descriptor and a copy of the client message. Additionally, each message should include a message number, starting from 0 and incrementing for each subsequent message sent to the same client. I don't know how to keep track of how many messages were to the same client. Maybe we shouldn't close the socket descriptor, but rather keep an array of structs for each socket that includes how many messages they have been sent. Then, the server adds the struct, the threads remove it, then the threads add it back once they've serviced one request (unless the count is 100). ------------------------------------------------------------- CHANGES Version 1 ---------- NONE: this is the first version. */ #define MAXSLOTS 30 #define dis_m 15 //problems with dis_m ==1 //Function prototypes void inc_clients(); void init_mutex_stuff(pthread_t*, pthread_t*); void *threadpool(void *); void server(int); void add_to_socket_pool(int); void inc_busy(); void dec_busy(); void *dispatcher(); void create_message(long, int, int, char *, char *); void init_ring(); void add_to_ring(char *, char *, int, int, int); int socket_from_string(char *); void add_to_head(char *); void add_to_tail(char *); struct message * reorder(struct message *, struct message *, int); int get_threadid(char *); void delete_socket_messages(int); struct message * merge(struct message *, struct message *, int); int get_request(char *, char *, char*); ///////////////////// //Global mutexes and condition variables pthread_mutex_t startservice; pthread_mutex_t numclients; pthread_mutex_t pool_sockets; pthread_mutex_t nonpool_sockets; pthread_mutex_t m_pool_busy; pthread_mutex_t slots; pthread_mutex_t numm; pthread_mutex_t circ; pthread_cond_t clientin; pthread_cond_t m; /////////////////////////////////////// //Global variables int clients; int main_pool_busy; int * poolsockets, nonpoolsockets; int worknum; struct ring mqueue; /////////////////////////////////////// int main(int argc, char ** argv){ //error handling if not enough arguments to program if(argc != 3){ printf("Not enough arguments to server: ./server portnum NumThreadsinPool\n"); _exit(-1); } //Convert arguments from strings to integer values int port = atoi(argv[1]); worknum = atoi(argv[2]); //Start server portion server(port); } /////////////////////////////////////////////////////////////////////////////////////////////// //The listen server thread///////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////// void server(int port){ int sd, new_sd; struct sockaddr_in name, cli_name; int sock_opt_val = 1; int cli_len; pthread_t threads[worknum]; //create our pthread id array pthread_t dis[1]; //create our dispatcher array (necessary to create thread) init_mutex_stuff(threads, dis); //initialize mutexes and stuff //Server setup /////////////////////////////////////////////////////// if ((sd = socket (AF_INET, SOCK_STREAM, 0)) < 0) { perror("(servConn): socket() error"); _exit (-1); } if (setsockopt (sd, SOL_SOCKET, SO_REUSEADDR, (char *) &sock_opt_val, sizeof(sock_opt_val)) < 0) { perror ("(servConn): Failed to set SO_REUSEADDR on INET socket"); _exit (-1); } name.sin_family = AF_INET; name.sin_port = htons (port); name.sin_addr.s_addr = htonl(INADDR_ANY); if (bind (sd, (struct sockaddr *)&name, sizeof(name)) < 0) { perror ("(servConn): bind() error"); _exit (-1); } listen (sd, 5); //End of server Setup ////////////////////////////////////////////////// for (;;) { cli_len = sizeof (cli_name); new_sd = accept (sd, (struct sockaddr *) &cli_name, &cli_len); printf ("Assigning new socket descriptor: %d\n", new_sd); inc_clients(); //New client has come in, increment clients add_to_socket_pool(new_sd); //Add client to the pool of sockets if (new_sd < 0) { perror ("(servConn): accept() error"); _exit (-1); } } pthread_exit(NULL); //Quit } //Adds the new socket to the array designated for pthreads in the pool void add_to_socket_pool(int socket){ pthread_mutex_lock(&m_pool_busy); //Lock so that we can check main_pool_busy int i; //If not all our main pool is busy, then allocate to one of them if(main_pool_busy < worknum){ pthread_mutex_unlock(&m_pool_busy); //unlock busy, we no longer need to hold it pthread_mutex_lock(&pool_sockets); //Lock the socket pool array so that we can edit it without worry for(i = 0; i < worknum; i++){ //Find a poolsocket that is -1; then we should put the real socket there. This value will be changed back to -1 when the thread grabs the sockfd if(poolsockets[i] == -1){ poolsockets[i] = socket; pthread_mutex_unlock(&pool_sockets); //unlock our pool array, we don't need it anymore inc_busy(); //Incrememnt busy (locks the mutex itself) pthread_cond_signal(&clientin); //Signal first thread waiting on a client that a client needs to be serviced break; } } } else{ //Dynamic thread creation goes here pthread_mutex_unlock(&m_pool_busy); } } //Increments the client number. If client number goes over worknum, we must dynamically create new pthreads void inc_clients(){ pthread_mutex_lock(&numclients); clients++; pthread_mutex_unlock(&numclients); } //Increments busy void inc_busy(){ pthread_mutex_lock(&m_pool_busy); main_pool_busy++; pthread_mutex_unlock(&m_pool_busy); } //Initialize all of our mutexes at the beginning and create our pthreads void init_mutex_stuff(pthread_t * threads, pthread_t * dis){ pthread_mutex_init(&startservice, NULL); pthread_mutex_init(&numclients, NULL); pthread_mutex_init(&pool_sockets, NULL); pthread_mutex_init(&nonpool_sockets, NULL); pthread_mutex_init(&m_pool_busy, NULL); pthread_mutex_init(&circ, NULL); pthread_cond_init (&clientin, NULL); main_pool_busy = 0; poolsockets = malloc(sizeof(int)*worknum); int threadreturn; //error checking variables long i = 0; //Loop and create pthreads for(i; i < worknum; i++){ threadreturn = pthread_create(&threads[i], NULL, threadpool, (void *) i); poolsockets[i] = -1; if(threadreturn){ perror("Thread pool created unsuccessfully"); _exit(-1); } } pthread_create(&dis[0], NULL, dispatcher, NULL); } ////////////////////////////////////////////////////////////////////////////////////////// /////////Main pool routines ///////////////////////////////////////////////////////////////////////////////////////// void dec_busy(){ pthread_mutex_lock(&m_pool_busy); main_pool_busy--; pthread_mutex_unlock(&m_pool_busy); } void dec_clients(){ pthread_mutex_lock(&numclients); clients--; pthread_mutex_unlock(&numclients); } //This is what our threadpool pthreads will be running. void *threadpool(void * threadid){ long id = (long) threadid; //Id of this thread int i; int socket; int counter = 0; //Try and gain access to the next client that comes in and wait until server signals that a client as arrived while(1){ pthread_mutex_lock(&startservice); //lock start service (required for cond wait) pthread_cond_wait(&clientin, &startservice); //wait for signal from server that client exists pthread_mutex_unlock(&startservice); //unlock mutex. pthread_mutex_lock(&pool_sockets); //Lock the pool socket so we can get the socket fd unhindered/interrupted for(i = 0; i < worknum; i++){ if(poolsockets[i] != -1){ socket = poolsockets[i]; poolsockets[i] = -1; pthread_mutex_unlock(&pool_sockets); } } printf("Thread #%d is past getting the socket\n", id); int incoming = 1; while(counter < 100 && incoming != 0){ char buffer[512]; bzero(buffer,512); int startcounter = 0; incoming = read(socket, buffer, 512); if(buffer[0] != 0){ //client ID:priority:request:arguments char id[100]; long prior; char request[100]; char arg1[100]; char message[100]; char arg2[100]; char * point; point = strtok(buffer, ":"); strcpy(id, point); point = strtok(NULL, ":"); prior = atoi(point); point = strtok(NULL, ":"); strcpy(request, point); point = strtok(NULL, ":"); strcpy(arg1, point); point = strtok(NULL, ":"); if(point != NULL){ strcpy(arg2, point); } int fd; if(strcmp(request, "start_movie") == 0){ int count = 1; while(count <= 100){ char temp[10]; snprintf(temp, 50, "%d\0", count); strcpy(message, "./support/images/"); strcat(message, arg1); strcat(message, temp); strcat(message, ".ppm"); printf("This is message %s to %s\n", message, id); count++; add_to_ring(message, id, prior, counter, socket); //Adds our created message to the ring counter++; } printf("I'm out of the loop\n"); } else if(strcmp(request, "seek_movie") == 0){ int count = atoi(arg2); while(count <= 100){ char temp[10]; snprintf(temp, 10, "%d\0", count); strcpy(message, "./support/images/"); strcat(message, arg1); strcat(message, temp); strcat(message, ".ppm"); printf("This is message %s\n", message); count++; } } //create_message(id, socket, counter, buffer, message); //Creates our message from the input from the client. Stores it in buffer } else{ delete_socket_messages(socket); break; } } counter = 0; close(socket);//Zero out counter again } dec_clients(); //client serviced, decrement clients dec_busy(); //thread finished, decrement busy } //Creates a message void create_message(long threadid, int socket, int counter, char * buffer, char * message){ snprintf(message, strlen(buffer)+15, "%d:%d:%d:%s", threadid, socket, counter, buffer); } //Gets the socket from the message string (maybe I should just pass in the socket to another method) int socket_from_string(char * message){ char * substr1 = strstr(message, ":"); char * substr2 = substr1; substr2++; int occurance = strcspn(substr2, ":"); char sock[10]; strncpy(sock, substr2, occurance); return atoi(sock); } //Adds message to our ring buffer's head void add_to_head(char * message){ printf("Adding to head of ring\n"); mqueue.head->message = malloc(strlen(message)+1); //Allocate space for message strcpy(mqueue.head->message, message); //copy bytes into allocated space } //Adds our message to our ring buffer's tail void add_to_tail(char * message){ printf("Adding to tail of ring\n"); mqueue.tail->message = malloc(strlen(message)+1); //allocate space for message strcpy(mqueue.tail->message, message); //copy bytes into allocated space mqueue.tail->next = malloc(sizeof(struct message)); //allocate space for the next message struct } //Adds a message to our ring void add_to_ring(char * message, char * id, int prior, int mnum, int socket){ //printf("This is message %s:" , message); pthread_mutex_lock(&circ); //Lock the ring buffer pthread_mutex_lock(&numm); //Lock the message count (will need this to make sure we can't fill the buffer over the max slots) if(mqueue.head->message == NULL){ add_to_head(message); //Adds it to head mqueue.head->socket = socket; //Set message socket mqueue.head->priority = prior; //Set its priority (thread id) mqueue.head->mnum = mnum; //Set its message number (used for sorting) mqueue.head->id = malloc(sizeof(id)); strcpy(mqueue.head->id, id); } else if(mqueue.tail->message == NULL){ //This is the problem for dis_m 1 I'm pretty sure add_to_tail(message); mqueue.tail->socket = socket; mqueue.tail->priority = prior; mqueue.tail->mnum = mnum; mqueue.tail->id = malloc(sizeof(id)); strcpy(mqueue.tail->id, id); } else{ mqueue.tail->next = malloc(sizeof(struct message)); mqueue.tail = mqueue.tail->next; add_to_tail(message); mqueue.tail->socket = socket; mqueue.tail->priority = prior; mqueue.tail->mnum = mnum; mqueue.tail->id = malloc(sizeof(id)); strcpy(mqueue.tail->id, id); } mqueue.mcount++; pthread_mutex_unlock(&circ); if(mqueue.mcount >= dis_m){ pthread_mutex_unlock(&numm); pthread_cond_signal(&m); } else{ pthread_mutex_unlock(&numm); } printf("out of add to ring\n"); fflush(stdout); } ////////////////////////////////// //Dispatcher routines ///////////////////////////////// void *dispatcher(){ init_ring(); while(1){ pthread_mutex_lock(&slots); pthread_cond_wait(&m, &slots); pthread_mutex_lock(&numm); pthread_mutex_lock(&circ); printf("Dispatcher to the rescue!\n"); mqueue.head = reorder(mqueue.head, mqueue.tail, mqueue.mcount); //printf("This is the head %s\n", mqueue.head->message); //printf("This is the tail %s\n", mqueue.head->message); fflush(stdout); struct message * pointer = mqueue.head; int count = 0; while(mqueue.head != mqueue.tail && count < dis_m){ printf("Sending to client %s: %s\n", pointer->id, pointer->message); int fd; fd = open(pointer->message, O_RDONLY); char buf[58368]; int bytesRead; printf("This is fd %d\n", fd); bytesRead=read(fd,buf,58368); send(pointer->socket,buf,bytesRead,0); perror("Error:\n"); fflush(stdout); close(fd); mqueue.mcount--; mqueue.head = mqueue.head->next; free(pointer->message); free(pointer); pointer = mqueue.head; count++; } printf("Sending %s\n", pointer->message); int fd; fd = open(pointer->message, O_RDONLY); printf("This is fd %d\n", fd); printf("I am hhere2\n"); char buf[58368]; int bytesRead; bytesRead=read(fd,buf,58368); send(pointer->socket,buf,bytesRead,0); perror("Error:\n"); close(fd); mqueue.mcount--; if(mqueue.head != mqueue.tail){ mqueue.head = mqueue.head->next; } else{ mqueue.head->next = malloc(sizeof(struct message)); mqueue.head = mqueue.head->next; mqueue.head->next = malloc(sizeof(struct message)); mqueue.tail = mqueue.head->next; mqueue.head->message = NULL; } free(pointer->message); free(pointer); pthread_mutex_unlock(&numm); pthread_mutex_unlock(&circ); pthread_mutex_unlock(&slots); printf("My dispatcher has defeated evil\n"); } } void init_ring(){ mqueue.head = malloc(sizeof(struct message)); mqueue.head->next = malloc(sizeof(struct message)); mqueue.tail = mqueue.head->next; mqueue.mcount = 0; } struct message * reorder(struct message * begin, struct message * end, int num){ //printf("I am reordering for size %d\n", num); fflush(stdout); int i; if(num == 1){ //printf("Begin: %s\n", begin->message); begin->next = NULL; return begin; } else{ struct message * left = begin; struct message * right; int middle = num/2; for(i = 1; i < middle; i++){ left = left->next; } right = left -> next; left -> next = NULL; //printf("Begin: %s\nLeft: %s\nright: %s\nend:%s\n", begin->message, left->message, right->message, end->message); left = reorder(begin, left, middle); if(num%2 != 0){ right = reorder(right, end, middle+1); } else{ right = reorder(right, end, middle); } return merge(left, right, num); } } struct message * merge(struct message * left, struct message * right, int num){ //printf("I am merginging! left: %s %d, right: %s %dnum: %d\n", left->message,left->priority, right->message, right->priority, num); struct message * start, * point; int lenL= 0; int lenR = 0; int flagL = 0; int flagR = 0; int count = 0; int middle1 = num/2; int middle2; if(num%2 != 0){ middle2 = middle1+1; } else{ middle2 = middle1; } while(lenL < middle1 && lenR < middle2){ count++; //printf("In here for count %d\n", count); if(lenL == 0 && lenR == 0){ if(left->priority < right->priority){ start = left; //Set the start point point = left; //set our enum; left = left->next; //move the left pointer point->next = NULL; //Set the next node to NULL lenL++; } else if(left->priority > right->priority){ start = right; point = right; right = right->next; point->next = NULL; lenR++; } else{ if(left->mnum < right->mnum){ ////printf("This is where we are\n"); start = left; //Set the start point point = left; //set our enum; left = left->next; //move the left pointer point->next = NULL; //Set the next node to NULL lenL++; } else{ start = right; point = right; right = right->next; point->next = NULL; lenR++; } } } else{ if(left->priority < right->priority){ point->next = left; left = left->next; //move the left pointer point = point->next; point->next = NULL; //Set the next node to NULL lenL++; } else if(left->priority > right->priority){ point->next = right; right = right->next; point = point->next; point->next = NULL; lenR++; } else{ if(left->mnum < right->mnum){ point->next = left; //set our enum; left = left->next; point = point->next;//move the left pointer point->next = NULL; //Set the next node to NULL lenL++; } else{ point->next = right; right = right->next; point = point->next; point->next = NULL; lenR++; } } } if(lenL == middle1){ flagL = 1; break; } if(lenR == middle2){ flagR = 1; break; } } if(flagL == 1){ point->next = right; point = point->next; for(lenR; lenR< middle2-1; lenR++){ point = point->next; } point->next = NULL; mqueue.tail = point; } else{ point->next = left; point = point->next; for(lenL; lenL< middle1-1; lenL++){ point = point->next; } point->next = NULL; mqueue.tail = point; } //printf("This is the start %s\n", start->message); //printf("This is mqueue.tail %s\n", mqueue.tail->message); return start; } void delete_socket_messages(int a){ }

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • Convert Video and Remove Commercials in Windows 7 Media Center with MCEBuddy 1.1

    - by DigitalGeekery
    Today look at MCEBuddy for Windows 7 Media Center. This handy app automatically takes your recorded TV files and converts them to MP4, AVI, WMV, or MPEG format. It even has the option to cut out those annoying commercials during the conversion process. Installation and Configuration Download and extract MCE Buddy. (Download link below) Run the setup.exe file and take all the default settings.   Open MCEBuddy Configuration by going to Start > All Programs > MCEBuddy > MCEBuddy Configuration.   Video Paths The MCEBuddy application is comprised of a single window. The first step you’ll want to take is to define your Source and Destination paths. The “Source” will most likely be your Recorded TV directory. The Destination should NOT be the same as the Source folder. Note: The Recorded TV directory in Windows 7 Media Center will only display and play WTV & DVR-MS files. To watch the converted MP4, AVI, WMV, or MPEG files in Windows Media Center you’ll need to add them to your Video Library or Movie Library. Video Conversion Next, choose your preferred format for conversion from the “Convert to” drop down list. The default is MP4 with the H.264 codec. You’ll find a wide variety of formats. The first set of conversion options in the drop down list will resize the video to 720 pixels wide. The next two sections maintain the original size, and the final section is for a variety of portable devices.   Next, you’ll see a group of check boxes below the “Convert to” drop down list. The Commercial Skipping option will cut the commercials while converting the file. Sort By Series will create a sub-folder in your Destination folder for each TV show. Delete Original will delete the WTV file after conversion is complete. (This option is not recommended unless you are sure your files are converting properly and you no longer need the WTV file.) Start Minimized is ideal if you want to run MCEBuddy on Windows startup. Note: MCEBuddy installs and uses Comskip for commercial cutting by default. However, if you have ShowAnalyzer installed, it will use that application instead. Advanced Options To choose a specific time of day to perform the conversions, click the checkbox under the “Advanced Options,” and select the starting and ending times for conversion. For example, convert between 2 hours and 5 hours would be between 2 am and 5am. If you want MCEBuddy to constantly look for and immediately convert new recordings, leave the box unchecked.   The “Video age” option lets you choose a specific number of days to wait before performing the conversion. This can be useful if you want to watch the recordings first and delete those you don’t wish to convert. You can also choose the “Sub Directories” if you’d like MCEBuddy to convert files that are in a sub-folder in your “Source” directory. Second Conversion As you might expect, this option allows MCEBuddy to perform a second conversion of your file. This can be useful if you want to use your first conversion to create a higher quality MP4 or AVI file for playback on a larger screen, and a second one for a portable device such as Zune or iPhone. The same options from the first conversion are also available for the second. You’ll want to choose a separate Destination folder for the second conversion.   Start and Monitor Progress To start converting your video files, simply press the “Start” button at the bottom. You’ll be able to follow the progress in the “Current Activity” section. When all the video files have finished converting, or there are no current files to convert, MCEBuddy will display a “Started – Idle” status. Click “Stop” if you don’t want MCEBuddy to continue scanning for new files.   Conclusion MCEBuddy 1.1 will convert all WTV files in it’s source folder. If you want to pick and choose which recordings to convert, you may want to define a source folder different than the Recorded TV folder and then just copy or move the files you wish to convert into the new source folder. The conversion process does take a good bit of time. If you choose the commercial skipping and second conversion options it can take several hours to fully convert one TV recording. Overall, MCEBuddy makes a nice Media Center addition for those that want to save some space with smaller size files, convert Recorded TV files for their portable device, or automatically remove commercials. If you’re looking for a different method to skip commercials check out our post on how to skip commercials in Windows 7 Media Center. Download MCEBuddy 1.1 Similar Articles Productive Geek Tips Using Netflix Watchnow in Windows Vista Media Center (Gmedia)How To Skip Commercials in Windows 7 Media CenterHow To Convert Video Files to MP3 with VLCStartup Customizations for Media Center in Windows 7Add Folders to the Movie Library in Windows 7 Media Center TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional The Ultimate Excel Cheatsheet Convert the Quick Launch Bar into a Super Application Launcher Automate Tasks in Linux with Crontab Discover New Bundled Feeds in Google Reader Play Music in Chrome by Simply Dragging a File 15 Great Illustrations by Chow Hon Lam

    Read the article

< Previous Page | 251 252 253 254 255 256 257 258 259 260 261 262  | Next Page >