Search Results

Search found 21089 results on 844 pages for 'virtual memory'.

Page 256/844 | < Previous Page | 252 253 254 255 256 257 258 259 260 261 262 263  | Next Page >

  • How do game trainers change a address in memory thats dynamic?

    - by GameTrainersWTF
    Lets assume i am a game and i have a global int* that contains my health. A game trainers job is to modify this value to whatever in order to achieve god mode. I've looked up tutorials on game trainers to understand how they work, and the general idea is to use a memory scanner to try and find the address of a certain value. Then modify this address by injecting a dll or whatever. But i made a simple program with a global int* and its address changes every time i run the app, so i don't get how game trainers can hard code these addresses? Or is my example wrong? What am i missing?

    Read the article

  • How do game trainers change an address in memory that's dynamic?

    - by GameTrainersWTF
    Lets assume I am a game and I have a global int* that contains my health. A game trainer's job is to modify this value to whatever in order to achieve god mode. I've looked up tutorials on game trainers to understand how they work, and the general idea is to use a memory scanner to try and find the address of a certain value. Then modify this address by injecting a dll or whatever. But I made a simple program with a global int* and its address changes every time I run the app, so I don't get how game trainers can hard code these addresses? Or is my example wrong? What am I missing?

    Read the article

  • Need data on disk drive management by OS: getting base I/O unit size, “sync” option, Direct Memory A

    - by Richard T
    Hello All, I want to ensure I have done all I can to configure a system's disks for serious database use. The three areas I know of (any others?) to be concerned about are: I/O size: the database engine and disk's native size should either match, or the database's native I/O size should be a multiple of the disk's native I/O size. Disks that are capable of Direct Memory Access (eg. IDE) should be configured for it. When a disk says it has written data persistently, it must be so! No keeping it in cache and lying about it. I have been looking for information on how to ensure these are so for CENTOS and Ubuntu, but can't seem to find anything at all! I want to be able to check these things and change them if needed. Any and all input appreciated.

    Read the article

  • Best memory settings for eclipse 4.2 (STS 3.1) on Windows 7 64 bit?

    - by jorrebor
    I apoligize in advance if this question is indeed too subjective as SO warns me. My workstation has 8 gb of ram and runs windows 7 64 bit. I use the Spring tool Suite (3.1) but as soon as i am starting to open and modify the spring config (.xml) files, STS becomes incredibly slow. I already tried switching off "build automatically" and to increase memory settings but no luck. How should i change my .ini ? this is what i have set now: -vm C:/Program Files/Java/jdk1.7.0_07/bin/javaw.exe -startup plugins/org.eclipse.equinox.launcher_1.3.0.v20120522-1813.jar --launcher.library plugins/org.eclipse.equinox.launcher.win32.win32.x86_64_1.1.200.v20120522-1813 -product org.springsource.sts.ide --launcher.defaultAction openFile --launcher.XXMaxPermSize 4096M -vmargs -Dosgi.requiredJavaVersion=1.5 -Xms512m -Xmx2048m -XX:MaxPermSize=512m My collageu running the same project in IntelliJ, has no problems. Thank you!

    Read the article

  • How to map a virtual directory to a website in VS?

    - by salvationishere
    I am developing a C# VS 2008 website, trying to add a Master file. I created a virtual directory in IIS housing the "Master" folder, containing the Master files. Now how do I reference these files from my website in VS? One problem is I do not know where I need to publish this Master folder to. Other problem is I do not know how to reference this Master file in my aspx Page directive. FYI, this master folder is physically located outside of c:\inetpub\ in a totally separate file location. Is this a problem?

    Read the article

  • How to get the entire code of a method in memory so I can calculate its hash at runtime?

    - by bejo
    Hello stackoverflow, How to get the entire code of a method in memory so I can calculate its hash at runtime? I need to make a function like this: type TProcedureOfObject = procedure of object; function TForm1.CalculateHashValue (AMethod: TProcedureOfObject): string; var MemStream: TMemoryStream; begin result:=''; MemStream:=TMemoryStream.Create; try //how to get the code of AMethod into TMemoryStream? result:=MD5(MemStream); //I already have the MD5 function finally MemStream.Free; end; end; I use Delphi 7. Thank you.

    Read the article

  • Shuffle array variables in a pre-specified order, without using extra memory of "size of input array"

    - by Eternal Learner
    Input : A[4] = {0,4,-1,1000} - Actual Array P[4] = {1,0,3,2} - Order to be reshuffled Output: A[4] = {4,0,1000,-1} Condition : Don't use an additional array as memory. Can use an extra variable or two. Problem : I have the below program in C++, but this fails for certain inputs of array P. #include<iostream> using namespace std; void swap(int *a_r,int *r) { int temp = *r; *r = *a_r; *a_r = temp; } int main() { int A[4] = {0,4,-1,1000}; int P[4] = {3,0,1,2}; int value = A[0] , dest = P[0]; for(int i=0; i<4;i++) { swap(&A[dest],&value); dest = P[dest]; } for(int i=0;i<4;i++) cout<<A[i]<<" "; }

    Read the article

  • Low-overhead way to access the memory space of a traced process?

    - by vovick
    Hello all. I'm looking for an efficient way to access(for both read and write operations) the memory space of my ptraced child process. The size of blocks being accessed may vary from several bytes up to several megabytes in size, so using the ptrace call with PTRACE_PEEKDATA and PTRACE_POKEDATA which read only one word at a time and switch context every time they're called seems like a pointless waste of resources. The only one alternative solution I could find, though, was the /proc/<pid>/mem file, but it has long since been made read only. Is there any other (relatively simple) way to do that job? The ideal solution would be to somehow share the address space of my child process with its parent and then use the simple memcpy call to copy data I need in both directions, but I have no clues how to do it and where to begin. Any ideas?

    Read the article

  • Force to call virtual base function instead of the overriden one.

    - by Roberto Sebestyen
    In the following example "Test that v1 function was called" fails. Is there a way to force call the base implementation of "RunFunction" through an instance of "class V2" ?? class V1 { public virtual string RunFunction() { return "V1"; } } class V2 : V1 { public override string RunFunction() { return "V2"; } } [Test] public void TestCall() { var v1 = (V1)new V2(); var v2 = new V2(); Assert.IsTrue(v1.RunFunction() == "V1", "Test that v1 function was called"); Assert.IsTrue(v2.RunFunction() == "V2", "Test that v2 function was called"); }

    Read the article

  • what happens with memory when I throw an exception?

    - by Vincenzo
    This is the code (just a simplification of a real problem): <?php echo memory_get_usage() . "\n"; function f() { throw new Exception(); } function foo() { try { f(); } catch (Exception $e) { } } foo(); echo memory_get_usage() . "\n"; This is the output (PHP 5.3): 630680 630848 What happened with memory (168 bytes lost)? The exception object is not destroyed? Please, help! Thanks

    Read the article

  • What's up with LDoms: Part 2 - Creating a first, simple guest

    - by Stefan Hinker
    Welcome back! In the first part, we discussed the basic concepts of LDoms and how to configure a simple control domain.  We saw how resources were put aside for guest systems and what infrastructure we need for them.  With that, we are now ready to create a first, very simple guest domain.  In this first example, we'll keep things very simple.  Later on, we'll have a detailed look at things like sizing, IO redundancy, other types of IO as well as security. For now,let's start with this very simple guest.  It'll have one core's worth of CPU, one crypto unit, 8GB of RAM, a single boot disk and one network port.  CPU and RAM are easy.  The network port we'll create by attaching a virtual network port to the vswitch we created in the primary domain.  This is very much like plugging a cable into a computer system on one end and a network switch on the other.  For the boot disk, we'll need two things: A physical piece of storage to hold the data - this is called the backend device in LDoms speak.  And then a mapping between that storage and the guest domain, giving it access to that virtual disk.  For this example, we'll use a ZFS volume for the backend.  We'll discuss what other options there are for this and how to chose the right one in a later article.  Here we go: root@sun # ldm create mars root@sun # ldm set-vcpu 8 mars root@sun # ldm set-mau 1 mars root@sun # ldm set-memory 8g mars root@sun # zfs create rpool/guests root@sun # zfs create -V 32g rpool/guests/mars.bootdisk root@sun # ldm add-vdsdev /dev/zvol/dsk/rpool/guests/mars.bootdisk \ mars.root@primary-vds root@sun # ldm add-vdisk root mars.root@primary-vds mars root@sun # ldm add-vnet net0 switch-primary mars That's all, mars is now ready to power on.  There are just three commands between us and the OK prompt of mars:  We have to "bind" the domain, start it and connect to its console.  Binding is the process where the hypervisor actually puts all the pieces that we've configured together.  If we made a mistake, binding is where we'll be told (starting in version 2.1, a lot of sanity checking has been put into the config commands themselves, but binding will catch everything else).  Once bound, we can start (and of course later stop) the domain, which will trigger the boot process of OBP.  By default, the domain will then try to boot right away.  If we don't want that, we can set "auto-boot?" to false.  Finally, we'll use telnet to connect to the console of our newly created guest.  The output of "ldm list" shows us what port has been assigned to mars.  By default, the console service only listens on the loopback interface, so using telnet is not a large security concern here. root@sun # ldm set-variable auto-boot\?=false mars root@sun # ldm bind mars root@sun # ldm start mars root@sun # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- UART 8 7680M 0.5% 1d 4h 30m mars active -t---- 5000 8 8G 12% 1s root@sun # telnet localhost 5000 Trying 127.0.0.1... Connected to localhost. Escape character is '^]'. ~Connecting to console "mars" in group "mars" .... Press ~? for control options .. {0} ok banner SPARC T3-4, No Keyboard Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved. OpenBoot 4.33.1, 8192 MB memory available, Serial # 87203131. Ethernet address 0:21:28:24:1b:50, Host ID: 85241b50. {0} ok We're done, mars is ready to install Solaris, preferably using AI, of course ;-)  But before we do that, let's have a little look at the OBP environment to see how our virtual devices show up here: {0} ok printenv auto-boot? auto-boot? = false {0} ok printenv boot-device boot-device = disk net {0} ok devalias root /virtual-devices@100/channel-devices@200/disk@0 net0 /virtual-devices@100/channel-devices@200/network@0 net /virtual-devices@100/channel-devices@200/network@0 disk /virtual-devices@100/channel-devices@200/disk@0 virtual-console /virtual-devices/console@1 name aliases We can see that setting the OBP variable "auto-boot?" to false with the ldm command worked.  Of course, we'd normally set this to "true" to allow Solaris to boot right away once the LDom guest is started.  The setting for "boot-device" is the default "disk net", which means OBP would try to boot off the devices pointed to by the aliases "disk" and "net" in that order, which usually means "disk" once Solaris is installed on the disk image.  The actual devices these aliases point to are shown with the command "devalias".  Here, we have one line for both "disk" and "net".  The device paths speak for themselves.  Note that each of these devices has a second alias: "net0" for the network device and "root" for the disk device.  These are the very same names we've given these devices in the control domain with the commands "ldm add-vnet" and "ldm add-vdisk".  Remember this, as it is very useful once you have several dozen disk devices... To wrap this up, in this part we've created a simple guest domain, complete with CPU, memory, boot disk and network connectivity.  This should be enough to get you going.  I will cover all the more advanced features and a little more theoretical background in several follow-on articles.  For some background reading, I'd recommend the following links: LDoms 2.2 Admin Guide: Setting up Guest Domains Virtual Console Server: vntsd manpage - This includes the control sequences and commands available to control the console session. OpenBoot 4.x command reference - All the things you can do at the ok prompt

    Read the article

  • Building an Infrastructure Cloud with Oracle VM for x86 + Enterprise Manager 12c

    - by Richard Rotter
    Cloud Computing? Everyone is talking about Cloud these days. Everyone is explaining how the cloud will help you to bring your service up and running very fast, secure and with little effort. You can find these kinds of presentations at almost every event around the globe. But what is really behind all this stuff? Is it really so simple? And the answer is: Yes it is! With the Oracle SW Stack it is! In this post, I will try to bring this down to earth, demonstrating how easy it could be to build a cloud infrastructure with Oracle's solution for cloud computing.But let me cover some basics first: How fast can you build a cloud?How elastic is your cloud so you can provide new services on demand? How much effort does it take to monitor and operate your Cloud Infrastructure in order to meet your SLAs?How easy is it to chargeback for your services provided? These are the critical success factors of Cloud Computing. And Oracle has an answer to all those questions. By using Oracle VM for X86 in combination with Enterprise Manager 12c you can build and control your cloud environment very fast and easy. What are the fundamental building blocks for your cloud? Oracle Cloud Building Blocks #1 Hardware Surprise, surprise. Even the cloud needs to run somewhere, hence you will need hardware. This HW normally consists of servers, storage and networking. But Oracles goes beyond that. There are Optimized Solutions available for your cloud infrastructure. This is a cookbook to build your HW cloud platform. For example, building your cloud infrastructure with blades and our network infrastructure will reduce complexity in your datacenter (Blades with switch network modules, splitter cables to reduce the amount of cables, TOR (Top Of the Rack) switches which are building the interface to your infrastructure environment. Reducing complexity even in the cabling will help you to manage your environment more efficient and with less risk. Of course, our engineered systems fit into the cloud perfectly too. Although they are considered as a PaaS themselves, having the database SW (for Exadata) and the application development environment (for Exalogic) already deployed on them, in general they are ideal systems to enable you building your own cloud and PaaS infrastructure. #2 Virtualization The next missing link in the cloud setup is virtualization. For me personally, it's one of the most hidden "secret", that oracle can provide you with a complete virtualization stack in terms of a hypervisor on both architectures: X86 and Sparc CPUs. There is Oracle VM for X86 and Oracle VM for Sparc available at no additional  license costs if your are running this virtualization stack on top of Oracle HW (and with Oracle Premier Support for HW). This completes the virtualization portfolio together with Solaris Zones introduced already with Solaris 10 a few years ago. Let me explain how Oracle VM for X86 works: Oracle VM for x86 consists of two main parts: - The Oracle VM Server: Oracle VM Server is installed on bare metal and it is the hypervisor which is able to run virtual machines. It has a very small footprint. The ISO-Image of Oracle VM Server is only 200MB large. It is very small but efficient. You can install a OVM-Server in less than 5 mins by booting the Server with the ISO-Image assigned and providing the necessary configuration parameters (like installing an Linux distribution). After the installation, the OVM-Server is ready to use. That's all. - The Oracle VM-Manager: OVM-Manager is the central management tool where you can control your OVM-Servers. OVM-Manager provides the graphical user interface, which is an Application Development Framework (ADF) application, with a familiar web-browser based interface, to manage Oracle VM Servers, virtual machines, and resources. The Oracle VM Manager has the following capabilities: Create virtual machines Create server pools Power on and off virtual machines Manage networks and storage Import virtual machines, ISO files, and templates Manage high availability of Oracle VM Servers, server pools, and virtual machines Perform live migration of virtual machines I want to highlight one of the goodies which you can use if you are running Oracle VM for X86: Preconfigured, downloadable Virtual Machine Templates form edelivery With these templates, you can download completely preconfigured Virtual Machines in your environment, boot them up, configure them at first time boot and use it. There are templates for almost all Oracle SW and Applications (like Fusion Middleware, Database, Siebel, etc.) available. #3) Cloud Management The management of your cloud infrastructure is key. This is a day-to-day job. Acquiring HW, installing a virtualization layer on top of it is done just at the beginning and if you want to expand your infrastructure. But managing your cloud, keeping it up and running, deploying new services, changing your chargeback model, etc, these are the daily jobs. These jobs must be simple, secure and easy to manage. The Enterprise Manager 12c Cloud provides this functionality from one management cockpit. Enterprise Manager 12c uses Oracle VM Manager to control OVM Serverpools. Once you registered your OVM-Managers in Enterprise Manager, then you are able to setup your cloud infrastructure and manage everything from Enterprise Manager. What you need to do in EM12c is: ">Register your OVM Manager in Enterprise ManagerAfter Registering your OVM Manager, all the functionality of Oracle VM for X86 is also available in Enterprise Manager. Enterprise Manager works as a "Manger" of the Manager. You can register as many OVM-Managers you want and control your complete virtualization environment Create Roles and Users for your Self Service Portal in Enterprise ManagerWith this step you allow users to logon on the Enterprise Manager Self Service Portal. Users can request Virtual Machines in this portal. Setup the Cloud InfrastructureSetup the Quotas for your self service users. How many VMs can they request? How much of your resources ( cpu, memory, storage, network, etc. etc.)? Which SW components (templates, assemblys) can your self service users request? In this step, you basically set up the complete cloud infrastructure. Setup ChargebackOnce your cloud is set up, you need to configure your chargeback mechanism. The Enterprise Manager collects the resources metrics, which are used in a very deep level. Almost all collected Metrics could be used in the chargeback module. You can define chargeback plans based on configurations (charge for the amount of cpu, memory, storage is assigned to a machine, or for a specific OS which is installed) or chargeback on resource consumption (% of cpu used, storage used, etc). Or you can also define a combination of configuration and consumption chargeback plans. The chargeback module is very flexible. Here is a overview of the workflow how to handle infrastructure cloud in EM: Summary As you can see, setting up an Infrastructure Cloud Service with Oracle VM for X86 and Enterprise Manager 12c is really simple. I personally configured a complete cloud environment with three X86 servers and a small JBOD san box in less than 3 hours. There is no magic in it, it is all straightforward. Of course, you have to have some experience with Oracle VM and Enterprise Manager. Experience in setting up Linux environments helps as well. I plan to publish a technical cookbook in the next few weeks. I hope you found this post useful and will see you again here on our blog. Any hints, comments are welcome!

    Read the article

  • Best Practices - which domain types should be used to run applications

    - by jsavit
    This post is one of a series of "best practices" notes for Oracle VM Server for SPARC (formerly named Logical Domains) One question that frequently comes up is "which types of domain should I use to run applications?" There used to be a simple answer in most cases: "only run applications in guest domains", but enhancements to T-series servers, Oracle VM Server for SPARC and the advent of SPARC SuperCluster have made this question more interesting and worth qualifying differently. This article reviews the relevant concepts and provides suggestions on where to deploy applications in a logical domains environment. Review: division of labor and types of domain Oracle VM Server for SPARC offloads many functions from the hypervisor to domains (also called virtual machines). This is a modern alternative to using a "thick" hypervisor that provides all virtualization functions, as in traditional VM designs, This permits a simpler hypervisor design, which enhances reliability, and security. It also reduces single points of failure by assigning responsibilities to multiple system components, which further improves reliability and security. In this architecture, management and I/O functionality are provided within domains. Oracle VM Server for SPARC does this by defining the following types of domain, each with their own roles: Control domain - management control point for the server, used to configure domains and manage resources. It is the first domain to boot on a power-up, is an I/O domain, and is usually a service domain as well. I/O domain - has been assigned physical I/O devices: a PCIe root complex, a PCI device, or a SR-IOV (single-root I/O Virtualization) function. It has native performance and functionality for the devices it owns, unmediated by any virtualization layer. Service domain - provides virtual network and disk devices to guest domains. Guest domain - a domain whose devices are all virtual rather than physical: virtual network and disk devices provided by one or more service domains. In common practice, this is where applications are run. Typical deployment A service domain is generally also an I/O domain: otherwise it wouldn't have access to physical device "backends" to offer to its clients. Similarly, an I/O domain is also typically a service domain in order to leverage the available PCI busses. Control domains must be I/O domains, because they boot up first on the server and require physical I/O. It's typical for the control domain to also be a service domain too so it doesn't "waste" the I/O resources it uses. A simple configuration consists of a control domain, which is also the one I/O and service domain, and some number of guest domains using virtual I/O. In production, customers typically use multiple domains with I/O and service roles to eliminate single points of failure: guest domains have virtual disk and virtual devices provisioned from more than one service domain, so failure of a service domain or I/O path or device doesn't result in an application outage. This is also used for "rolling upgrades" in which service domains are upgraded one at a time while their guests continue to operate without disruption. (It should be noted that resiliency to I/O device failures can also be provided by the single control domain, using multi-path I/O) In this type of deployment, control, I/O, and service domains are used for virtualization infrastructure, while applications run in guest domains. Changing application deployment patterns The above model has been widely and successfully used, but more configuration options are available now. Servers got bigger than the original T2000 class machines with 2 I/O busses, so there is more I/O capacity that can be used for applications. Increased T-series server capacity made it attractive to run more vertical applications, such as databases, with higher resource requirements than the "light" applications originally seen. This made it attractive to run applications in I/O domains so they could get bare-metal native I/O performance. This is leveraged by the SPARC SuperCluster engineered system, announced a year ago at Oracle OpenWorld. In SPARC SuperCluster, I/O domains are used for high performance applications, with native I/O performance for disk and network and optimized access to the Infiniband fabric. Another technical enhancement is the introduction of Direct I/O (DIO) and Single Root I/O Virtualization (SR-IOV), which make it possible to give domains direct connections and native I/O performance for selected I/O devices. A domain with either a DIO or SR-IOV device is an I/O domain. In summary: not all I/O domains own PCI complexes, and there are increasingly more I/O domains that are not service domains. They use their I/O connectivity for performance for their own applications. However, there are some limitations and considerations: at this time, a domain using physical I/O cannot be live-migrated to another server. There is also a need to plan for security and introducing unneeded dependencies: if an I/O domain is also a service domain providing virtual I/O go guests, it has the ability to affect the correct operation of its client guest domains. This is even more relevant for the control domain. where the ldm has to be protected from unauthorized (or even mistaken) use that would affect other domains. As a general rule, running applications in the service domain or the control domain should be avoided. To recap: Guest domains with virtual I/O still provide the greatest operational flexibility, including features like live migration. I/O domains can be used for applications with high performance requirements. This is used to great effect in SPARC SuperCluster and in general T4 deployments. Direct I/O (DIO) and Single Root I/O Virtualization (SR-IOV) make this more attractive by giving direct I/O access to more domains. Service domains should in general not be used for applications, because compromised security in the domain, or an outage, can affect other domains that depend on it. This concern can be mitigated by providing guests' their virtual I/O from more than one service domain, so an interruption of service in the service domain does not cause an application outage. The control domain should in general not be used to run applications, for the same reason. SPARC SuperCluster use the control domain for applications, but it is an exception: it's not a general purpose environment; it's an engineered system with specifically configured applications and optimization for optimal performance. These are recommended "best practices" based on conversations with a number of Oracle architects. Keep in mind that "one size does not fit all", so you should evaluate these practices in the context of your own requirements. Summary Higher capacity T-series servers have made it more attractive to use them for applications with high resource requirements. New deployment models permit native I/O performance for demanding applications by running them in I/O domains with direct access to their devices. This is leveraged in SPARC SuperCluster, and can be leveraged in T-series servers to provision high-performance applications running in domains. Carefully planned, this can be used to provide higher performance for critical applications.

    Read the article

  • My linux server takes more than an hour to boot. Suggestions?

    - by jamieb
    I am building a CentOS 5.4 system that boots off a compact flash card using a card reader that emulates an IDE drive. It literally takes about an hour to boot. The ultra-slow part occurs when Grub is loading the kernel. Once that's done, the rest of the boot process only takes about a minute to get to a login prompt. Does anyone have any suggestions? I suspect that it may have to do with UDMA. Everything IDE-related in my BIOS seems to checkout. The read performance hdparm is telling me 1.77 MB/s. Ouch! (But even at that rate, it still shouldn't take an hour to decompress and load the kernel) [root@server ~]# hdparm -tT /dev/hdc /dev/hdc: Timing cached reads: 2444 MB in 2.00 seconds = 1222.04 MB/sec Timing buffered disk reads: 6 MB in 3.39 seconds = 1.77 MB/sec Trying to enable DMA is a no-go though: [root@server ~]# hdparm -d1 /dev/hdc /dev/hdc: setting using_dma to 1 (on) HDIO_SET_DMA failed: Operation not permitted using_dma = 0 (off) Here's some command outputs that might help: System [root@server ~]# uname -a Linux server.localdomain 2.6.18-164.el5xen #1 SMP Thu Sep 3 04:47:32 EDT 2009 i686 i686 i386 GNU/Linux PCI info: [root@server ~]# lspci -v 00:00.0 Host bridge: Intel Corporation 82945G/GZ/P/PL Memory Controller Hub (rev 02) Subsystem: Intel Corporation 82945G/GZ/P/PL Memory Controller Hub Flags: bus master, fast devsel, latency 0 Capabilities: [e0] Vendor Specific Information 00:02.0 VGA compatible controller: Intel Corporation 82945G/GZ Integrated Graphics Controller (rev 02) (prog-if 00 [VGA controller]) Subsystem: Intel Corporation 82945G/GZ Integrated Graphics Controller Flags: bus master, fast devsel, latency 0, IRQ 10 Memory at fdf00000 (32-bit, non-prefetchable) [size=512K] I/O ports at ff00 [size=8] Memory at d0000000 (32-bit, prefetchable) [size=256M] Memory at fdf80000 (32-bit, non-prefetchable) [size=256K] Capabilities: [90] Message Signalled Interrupts: 64bit- Queue=0/0 Enable- Capabilities: [d0] Power Management version 2 00:1d.0 USB Controller: Intel Corporation 82801G (ICH7 Family) USB UHCI Controller #1 (rev 01) (prog-if 00 [UHCI]) Subsystem: Intel Corporation 82801G (ICH7 Family) USB UHCI Controller #1 Flags: bus master, medium devsel, latency 0, IRQ 16 I/O ports at fe00 [size=32] 00:1d.1 USB Controller: Intel Corporation 82801G (ICH7 Family) USB UHCI Controller #2 (rev 01) (prog-if 00 [UHCI]) Subsystem: Intel Corporation 82801G (ICH7 Family) USB UHCI Controller #2 Flags: bus master, medium devsel, latency 0, IRQ 17 I/O ports at fd00 [size=32] 00:1d.2 USB Controller: Intel Corporation 82801G (ICH7 Family) USB UHCI Controller #3 (rev 01) (prog-if 00 [UHCI]) Subsystem: Intel Corporation 82801G (ICH7 Family) USB UHCI Controller #3 Flags: bus master, medium devsel, latency 0, IRQ 18 I/O ports at fc00 [size=32] 00:1d.3 USB Controller: Intel Corporation 82801G (ICH7 Family) USB UHCI Controller #4 (rev 01) (prog-if 00 [UHCI]) Subsystem: Intel Corporation 82801G (ICH7 Family) USB UHCI Controller #4 Flags: bus master, medium devsel, latency 0, IRQ 19 I/O ports at fb00 [size=32] 00:1d.7 USB Controller: Intel Corporation 82801G (ICH7 Family) USB2 EHCI Controller (rev 01) (prog-if 20 [EHCI]) Subsystem: Intel Corporation 82801G (ICH7 Family) USB2 EHCI Controller Flags: bus master, medium devsel, latency 0, IRQ 16 Memory at fdfff000 (32-bit, non-prefetchable) [size=1K] Capabilities: [50] Power Management version 2 Capabilities: [58] Debug port 00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev e1) (prog-if 01 [Subtractive decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=01, subordinate=01, sec-latency=32 I/O behind bridge: 0000d000-0000dfff Memory behind bridge: fde00000-fdefffff Prefetchable memory behind bridge: 00000000fdd00000-00000000fdd00000 Capabilities: [50] #0d [0000] 00:1f.0 ISA bridge: Intel Corporation 82801GB/GR (ICH7 Family) LPC Interface Bridge (rev 01) Subsystem: Intel Corporation 82801GB/GR (ICH7 Family) LPC Interface Bridge Flags: bus master, medium devsel, latency 0 Capabilities: [e0] Vendor Specific Information 00:1f.2 IDE interface: Intel Corporation 82801GB/GR/GH (ICH7 Family) SATA IDE Controller (rev 01) (prog-if 80 [Master]) Subsystem: Intel Corporation 82801GB/GR/GH (ICH7 Family) SATA IDE Controller Flags: bus master, 66MHz, medium devsel, latency 0, IRQ 17 I/O ports at <unassigned> I/O ports at <unassigned> I/O ports at <unassigned> I/O ports at <unassigned> I/O ports at f800 [size=16] Capabilities: [70] Power Management version 2 00:1f.3 SMBus: Intel Corporation 82801G (ICH7 Family) SMBus Controller (rev 01) Subsystem: Intel Corporation 82801G (ICH7 Family) SMBus Controller Flags: medium devsel, IRQ 17 I/O ports at 0500 [size=32] 01:04.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL-8139/8139C/8139C+ (rev 10) Subsystem: Realtek Semiconductor Co., Ltd. RTL-8139/8139C/8139C+ Flags: bus master, medium devsel, latency 32, IRQ 18 I/O ports at de00 [size=256] Memory at fdeff000 (32-bit, non-prefetchable) [size=256] Capabilities: [50] Power Management version 2 01:06.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL-8139/8139C/8139C+ (rev 10) Subsystem: Realtek Semiconductor Co., Ltd. RTL-8139/8139C/8139C+ Flags: bus master, medium devsel, latency 32, IRQ 17 I/O ports at dc00 [size=256] Memory at fdefe000 (32-bit, non-prefetchable) [size=256] Capabilities: [50] Power Management version 2 01:07.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL-8139/8139C/8139C+ (rev 10) Subsystem: Realtek Semiconductor Co., Ltd. RTL-8139/8139C/8139C+ Flags: bus master, medium devsel, latency 32, IRQ 19 I/O ports at da00 [size=256] Memory at fdefd000 (32-bit, non-prefetchable) [size=256] Capabilities: [50] Power Management version 2 hdparm ouput: [root@server ~]# hdparm /dev/hdc /dev/hdc: multcount = 0 (off) IO_support = 0 (default 16-bit) unmaskirq = 0 (off) using_dma = 0 (off) keepsettings = 0 (off) readonly = 0 (off) readahead = 256 (on) geometry = 8146/16/63, sectors = 8211168, start = 0 [root@server ~]# hdparm -I /dev/hdc /dev/hdc: ATA device, with non-removable media Model Number: InnoDisk Corp. - iCF4000 4GB Serial Number: 20091023AACA70000753 Firmware Revision: 081107 Standards: Supported: 5 Likely used: 6 Configuration: Logical max current cylinders 8146 8146 heads 16 16 sectors/track 63 63 -- CHS current addressable sectors: 8211168 LBA user addressable sectors: 8211168 device size with M = 1024*1024: 4009 MBytes device size with M = 1000*1000: 4204 MBytes (4 GB) Capabilities: LBA, IORDY(can be disabled) Standby timer values: spec'd by Vendor R/W multiple sector transfer: Max = 2 Current = 2 DMA: mdma0 mdma1 mdma2 udma0 udma1 *udma2 udma3 udma4 Cycle time: min=120ns recommended=120ns PIO: pio0 pio1 pio2 pio3 pio4 Cycle time: no flow control=120ns IORDY flow control=120ns Commands/features: Enabled Supported: * Power Management feature set * WRITE_BUFFER command * READ_BUFFER command * NOP cmd * CFA feature set * Mandatory FLUSH_CACHE HW reset results: CBLID- above Vih Device num = 0 CFA power mode 1: enabled and required by some commands Maximum current = 100ma Checksum: correct

    Read the article

  • Looking for Kiosk-style / camera store easy photo memory card to CD/DVD burning program for Windows-7 Notebook? For non techie user.

    - by Rob
    I'm looking for a Kiosk-style / camera shop easy photo memory card to CD/DVD burning program? For non technie user. The kind of system you see in a camera shop / store, e.g. in the UK, Jessops and Boots stores. This is for my Dad who is adept at general PC usage as a notebook owner, but would prefer something fairly simple. The task of burning photos to CD/DVD, in their original photo file .jpg form, i.e. NOT as CD or DVD video or slideshow, is what I'm looking for. I'm guessing this might be possible in Picasa, but all the options available might be superfluous and confusing. He could probably learn to use that but thought I would try simpler options first. Looking for something that guides the user through the steps/stages of the process, 'Wizard' style. Any suggestions? Platform: HP Windows 7 Home notebook with CD/DVD burner and SD memory card slot.

    Read the article

  • Begin the Clone Wars Have!

    - by Antony Reynolds
    Creating a New Virtual Machine from an Existing Virtual Disk In previous posts I described how I set up an OEL6 machine under VirtualBox that can run an 11gR2 database and FMW 11.1.1.5.  That is great if you want the DB and FMW running in the same virtual image and it has served me well for some proof of concepts and also for some testing of different JVMs.  However I also wanted to run some testing of FMW with the database running on a separate physical machine.  So in this post I will show how to take a VirtualBox image and create a new image based on the disks from that original image. What are my Options? There is more than one way to skin a cat, or in this case to create two separate VMs that can run on different hardware.  Some of the options include: Create new virtual disk images for each new VM. Clone the existing disk images and point the new VM at the cloned images. Point the new VM at the existing snapshots. #1 is too much like hard work, install OEL twice, install a database again, install FMW again, run RCU again!  Life is too short! #2 is probably the safest way of doing things.  VirtualBox allows you to clone a disk image for use in a separate machine.  However this of course duplicates the disk and means that it is now occupying 3 times the space, once for the original disk and twice more for the two clones I would need. #3 is the most space efficient way of doing things.  It does mean however that I can only run the new “cloned” images if I have access to the original image because that is where the base snapshots reside.  However this is not a problem for me as long as I remember to keep all threee images together.  So this is the approach we will follow. Snapshot, What Snapshot? As we are going to create new virtual machines based on existing snapshots we need to figure out which snapshot to use.  We do this by opening the “Media Manager” from within VirtualBox and moving the mouse over the snapshot images until we find the snapshots we want – the snapshot name is identified in the “Attached to:” comment.  In my case I wanted the FMW installed snapshot because that had a database configured for FMW alongside the FMW software.  I made a note of the filename of that snapshot (actually I just noted the first 5 characters as that was all that was needed to uniquely identify the snapshot file). When we create the new machines we will point them at the snapshot filename we have just checked. Network or NotWork? Because we want the two new machines to communicate with each other when hosted in different physical machines we can’t use the default NAT networking mode without a lot of hassle.  But at the same time we need them to have fixed IP addresses relative to each other so that they can see each other whilst also being able to see the outside world. To achieve all these requirements I created two network adapters for each machine.  Adapter 1 was a standard NAT mapping.  This will allow each machine to get a dynamic IP address (10.0.2.15 by default) that can be used to access the external world through the VBox provided NAT gateway.  This is the same as the existing configuration. The second adapter I created as a bridged adapter.  This gives the virtual machine direct access to the host network card and by using fixed IP addresses each machine can see the other.  It is important to choose fixed IP addresses that are not routable across your internal network so you don’t get any clashes with other machines on your network.  Of course you could always get proper fixed IP addresses from your network people, but I have serveral people using my images and as long as I don’t have two instances of the same VM on the same network segment this is easier and avoids reconfiguring the network every time someone wants a copy of my VM.  If it is available I would suggest using the 10.0.3.* network as 10.0.2.* is the default NAT network.  You can check availability by pinging 10.0.3.1 and 10.0.3.2 from your host machine.  If it times out then you are probably safe to use that. Creating the New VMs Now that I had collected the data that I needed I went ahead and created the new VMs. When asked for a “Boot Hard Disk” I used the “Choose a virtual hard disk file…” link to find the snapshot I had previously selected and set that to be the existing hard disk.  I chose the previously existing SOA 11.1.1.5 install for both the new DB and FMW machines because that snapshot had the database with the RCU completed that I wanted for my DB machine and it had the SOA software installed which I wanted for my FMW machine. After the initial creation of the virtual machine go into the network setting section and enable a second adapter which will be bridged.  Make a note of the MAC addresses (the last four digits should be sufficient) of the two adapters so that you can later set the bridged adapter to use fixed IP and the NAT adapter to use DHCP. We are now ready to start the VMs and reconfigure Linux. Reconfiguring Linux Because I now have two new machines I need to change their network configuration.  In particular I need to change the hostname, update the hosts file and change the network settings. Changing the Hostname I renamed both hosts by running the hostname command as root: hostname vboxfmw.oracle.com I also edited the /etc/sysconfig file and set the correct hostname in there. HOSTNAME=vboxfmw.oracle.com Changing the Network Settings I needed to change the network configuration to give the bridged network a fixed IP address.  I first explicitly set the MAC addresses of the two adapters, because the order of the virtual adapters in the VirtualBox Manager is not necessarily the same as the order of the adapters in the guest OS.  So I went in to the System->Preferences->Network Connections screen and explicitly set the “Device MAC address” for the two adapters. Having correctly mapped the Linux adapters to the VirtualBox adapters I then set the Bridged adapter to use fixed IP addressing rather than DHCP.  There is no need for additional routing or default gateways because we expect the two machine to be on the same LAN segment. Updating the Hosts File Having renamed the machines and reconfigured the network I then updated the /etc/hosts file to refer to the new machine name add a new line to the hosts file to provide an additional IP address for my server (the new fixed IP address) add a new line for the fixed IP address of the other virtual machine 10.0.3.101      vboxdb.oracle.com       vboxdb  # Added by NetworkManager 10.0.2.15       vboxdb.oracle.com       vboxdb  # Added by NetworkManager 10.0.3.102      vboxfmw.oracle.com      vboxfmw # Added by NetworkManager 127.0.0.1       localhost.localdomain   localhost ::1     vboxdb.oracle.com       vboxdb  localhost6.localdomain6 localhost6 To make sure everything takes effect I restarted the server. Reconfiguring the Database on the DB Machine Because we changed the hostname the listener and the EM console no longer start so I need to modify the listener.ora to use the new hostname and I also need to rebuild the EM configuration because it also relies on the hostname. I edited the $ORACLE_HOME/network/admin/listener.ora and changed the listening address to the new hostname:       (ADDRESS = (PROTOCOL = TCP)(HOST = vboxdb.oracle.com)(PORT = 1521)) After changing the listener.ora I was able to start the listener using: lsnrctl start I also had to reconfigure the EM database control.  I first deconfigured it using the command: emca -deconfig dbcontrol db -repos drop This drops the repository and removes any existing registered dbcontrols. I then re-configured it using the following command: emca -config dbcontrol db -repos create This creates the EM repository and then configures and starts dbcontrol. Now my database machine is ready so I can close it down and take a snapshot. Disabling the Database on the FMW Machine I set up the database to start automatically by creating a service called “dbora”.  On the FMW machine I do not need the database running so I can prevent it auto-starting by running the following command: chkconfig –del dbora Note that because I am using a snapshot it is not a waste of disk space to have the DB installed but not used.  As long as I don’t run it, it won’t cost me anything. I can now close the FMW machine down and take a snapshot. Creating a New Domain The FMW machine is now ready to create a new domain.  When creating the domain I can point it at the second machine which is running the database.  I can potentially run these machines on two separate physical machines as long as I have the original virtual machine available to both of the physical machines. Gotchas in Snapshotting VirtualBox does not support the concept of linked machines in a network like some virtualization technologies so when creating a snapshot it is a good idea to shut both VMs down and then take a snapshot on both of them.  This is because we want to keep the database in sync with the middleware.  One way to make sure that this happens would be to place all the domain configuration files on the database server via an NFS share, this would mean that all we would need to snapshot would be the database machine because that would hold all the state and configuration. The Sky’s the Limit We have covered a simple case of having just two machines.  I have a more complicated configuration in which two machine run a RAC database off the same base OS image, and two more machines run a SOA cluster based on the same OS image.  Just remember what machine holds state and what are the consequences of taking a snapshot.

    Read the article

  • Windows Azure Evolution - Web Sites (aka Antares) Part 1

    - by Shaun
    This is the 3rd post of my Windows Azure Evolution series, focus on the new features and enhancement which was alone with the Windows Azure Platform Upgrade June 2012, announced at the MEET Windows Azure event on 7th June. In the first post I introduced the new preview developer portal and how to works for the existing features such as cloud services, storages and SQL databases. In the second one I talked about the Windows Azure .NET SDK 1.7 on the latest Visual Studio 2012 RC on Windows 8. From this one I will begin to introduce some new features. Now let’s have a look on the first one of them, Windows Azure Web Sites.   Overview Windows Azure Web Sites (WAWS), as known as Antares, was a new feature still in preview stage in this upgrade. It allows people to quickly and easily deploy websites to a highly scalable cloud environment, uses the languages and open source apps of the choice then deploy such as FTP, Git and TFS. It also can be integrated with Windows Azure services like SQL Database, Caching, CDN and Storage easily. After read its introduction we may have a question: since we can deploy a website from both cloud service web role and web site, what’s the different between them? So, let’s have a quick compare.   CLOUD SERVICE WEB SITE OS Windows Server Windows Server Virtualization Windows Azure Virtual Machine Windows Azure Virtual Machine Host IIS IIS Platform ASP.NET WebForm, ASP.NET MVC, WCF ASP.NET WebForm, ASP.NET MVC, PHP Language C#, VB.NET C#, VB.NET, PHP Database SQL Database SQL Database, MySQL Architecture Multi layered, background worker, message queuing, etc.. Simple website with backend database. VS Project Windows Azure Cloud Service ASP.NET Web Form, ASP.NET MVC, etc.. Out-of-box Gallery (none) Drupal, DotNetNuke, WordPress, etc.. Deployment Package upload, Visual Studio publish FTP, Git, TFS, WebMatrix Compute Mode Dedicate VM Shared Across VMs, Dedicate VM Scale Scale up, scale out Scale up, scale out As you can see, there are many difference between the cloud service and web site, but the main point is that, the cloud service focus on those complex architecture web application. For example, if you want to build a website with frontend layer, middle business layer and data access layer, with some background worker process connected through the message queue, then you should better use cloud service, since it provides full control of your code and application. But if you just want to build a personal blog or a  business portal, then you can use the web site. Since the web site have many galleries, you can create them even without any coding and configuration. David Pallmann have an awesome figure explains the benefits between the could service, web site and virtual machine.   Create a Personal Blog in Web Site from Gallery As I mentioned above, one of the big feature in WAWS is to build a website from an existing gallery, which means we don’t need to coding and configure. What we need to do is open the windows azure developer portal and click the NEW button, select WEB SITE and FROM GALLERY. In the popping up windows there are many websites we can choose to use. For example, for personal blog there are Orchard CMS, WordPress; for CMS there are DotNetNuke, Drupal 7, mojoPortal. Let’s select WordPress and click the next button. The next step is to configure the web site. We will need to specify the DNS name and select the subscription and region. Since the WordPress uses MySQL as its backend database, we also need to create a MySQL database as well. Windows Azure Web Sites utilize ClearDB to host the MySQL databases. You cannot create a MySQL database directly from SQL Databases section. Finally, since we selected to create a new MySQL database we need to specify the database name and region in the last step. Also we need to accept the ClearDB’s terms as well. Then windows azure platform will download the WordPress codes and deploy the MySQL database and website. Then it will be ready to use. Select the website and click the BROWSE button, the WordPress administration page will be shown. After configured the WordPress here is my personal web blog on the cloud. It took me no more than 10 minutes to establish without any coding.   Monitor, Configure, Scale and Linked Resources Let’s click into the website I had just created in the portal and have a look on what we can do. In the website details page where are five sections. - Dashboard The overall information about this website, such as the basic usage status, public URL, compute mode, FTP address, subscription and links that we can specify the deployment credentials, TFS and Git publish setting, etc.. - Monitor Some status information such as the CPU usage, memory usage etc., errors, etc.. We can add more metrics by clicking the ADD METRICS button and the bottom as well. - Configure Here we can set the configurations of our website such as the .NET and PHP runtime version, diagnostics settings, application settings and the IIS default documents. - Scale This is something interesting. In WAWS there are two compute mode or called web site mode. One is “shared”, which means our website will be shared with other web sites in a group of windows azure virtual machines. Each web site have its own process (w3wp.exe) with some sandbox technology to isolate from others. When we need to scaling-out our web site in shared mode, we actually increased the working process count. Hence in shared mode we cannot specify the virtual machine size since they are shared across all web sites. This is a little bit different than the scaling mode of the cloud service (hosted service web role and worker role). The other mode called “dedicate”, which means our web site will use the whole windows azure virtual machine. This is the same hosting behavior as cloud service web role. In web role it will be deployed on the virtual machines we specified and all of them are only used by us. In web sites dedicate mode, it’s the same. In this mode when we scaling-out our web site we will use more virtual machines, and each of them will only host our own website. And we can specify the virtual machine size in this mode. In the developer portal we can select which mode we are using from the scale section. In shared mode we can only specify the instance count, but in dedicate mode we can specify the instance size as well as the instance count. - Linked Resource The MySQL database created alone with the creation of our WordPress web site is a linked resource. We can add more linked resources in this section.   Pricing For the web site itself, since this feature is in preview period if you are using shared mode, then you will get free up to 10 web sites. But if you are using dedicate mode, the price would be the virtual machines you are using. For example, if you are using dedicate and configured two middle size virtual machines then you will pay $230.40 per month. If there is SQL Database linked to your web site then they will be charged separately based on the Pay-As-You-Go price. For example a 1GB web edition database costs $9.99 per month. And the bandwidth will be charged as well. For example 10GB outbound data transfer costs $1.20 per month. For more information about the pricing please have a look at the windows azure pricing page.   Summary Windows Azure Web Sites gives us easier and quicker way to create, develop and deploy website to window azure platform. Comparing with the cloud service web role, the WAWS have many out-of-box gallery we can use directly. So if you just want to build a blog, CMS or business portal you don’t need to learn ASP.NET, you don’t need to learn how to configure DotNetNuke, you don’t need to learn how to prepare PHP and MySQL. By using WAWS gallery you can establish a website within 10 minutes without any lines of code. But in some cases we do need to code by ourselves. We may need to tweak the layout of our pages, or we may have a traditional ASP.NET or PHP web application which needed to migrated to the cloud. Besides the gallery WAWS also provides many features to download, upload code. It also provides the feature to integrate with some version control services such as TFS and Git. And it also provides the deploy approaches through FTP and Web Deploy. In the next post I will demonstrate how to use WebMatrix to download and modify the website, and how to use TFS and Git to deploy automatically one our code changes committed.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Fluent NHibernate Many to one mapping

    - by Jit
    I am creating a NHibenate application with one to many relationship. Like City and State data. City table CREATE TABLE [dbo].[State]( [StateId] [varchar](2) NOT NULL primary key, [StateName] [varchar](20) NULL) CREATE TABLE [dbo].[City]( [Id] [int] primary key IDENTITY(1,1) NOT NULL , [State_id] [varchar](2) NULL refrences State(StateId), [CityName] [varchar](50) NULL) My mapping is follows public CityMapping() { Id(x = x.Id); Map(x = x.State_id); Map(x = x.CityName); HasMany(x = x.EmployeePreferedLocations) .Inverse() .Cascade.SaveUpdate() ; References(x = x.State) //.Cascade.All(); //.Class(typeof(State)) //.Not.Nullable() .Cascade.None() .Column("State_id") ; } public StateMapping() { Id(x => x.StateId) .GeneratedBy.Assigned(); Map(x => x.StateName); HasMany(x => x.Jobs) .Inverse(); //.Cascade.SaveUpdate(); HasMany(x => x.EmployeePreferedLocations) .Inverse(); HasMany(x => x.Cities) // .Inverse() .Cascade.SaveUpdate() //.Not.LazyLoad() ; } Models are as follows: [Serializable] public partial class City { public virtual System.String CityName { get; set; } public virtual System.Int32 Id { get; set; } public virtual System.String State_id { get; set; } public virtual IList<EmployeePreferedLocation> EmployeePreferedLocations { get; set; } public virtual JobPortal.Data.Domain.Model.State State { get; set; } public City(){} } public partial class State { public virtual System.String StateId { get; set; } public virtual System.String StateName { get; set; } public virtual IList<City> Cities { get; set; } public virtual IList<EmployeePreferedLocation> EmployeePreferedLocations { get; set; } public virtual IList<Job> Jobs { get; set; } public State() { Cities = new List<City>(); EmployeePreferedLocations = new List<EmployeePreferedLocation>(); Jobs = new List<Job>(); } //public virtual void AddCity(City city) //{ // city.State = this; // Cities.Add(city); //} } My Unit Testing code is below. City city = new City(); IRepository<State> rState = new Repository<State>(); Dictionary<string, string> critetia = new Dictionary<string, string>(); critetia.Add("StateId", "TX"); State frState = rState.GetByCriteria(critetia); city.CityName = "Waco"; city.State = frState; IRepository<City> rCity = new Repository<City>(); rCity.SaveOrUpdate(city); City frCity = rCity.GetById(city.Id); The problem is , I am not able to insert record. The error is below. "Invalid index 2 for this SqlParameterCollection with Count=2." But the error will not come if I comment State_id mapping field in the CityMapping file. I donot know what mistake is I did. If do not give the mapping Map(x = x.State_id); the value of this field is null, which is desired. Please help me how to solve this issue.

    Read the article

  • GDI+ crashes when loading PNG from IStream

    - by konforce
    I wrote something to load PNG files from a custom C++ IStream via GDI+. It worked great until I ran it on Vista machines. Crashes every time. When compiled on VS 2008, I found that inserting code into the IStream::AddRef method, such as a cout, made the problem go away. When compiling with VS 2010, it still crashes regardless of that. I stripped the program down to its basics. I copied a FileStream straight from Microsoft's documentation. It can load PNGs when using Bitmap::FromFile. It can load JPEGs, GIFs, and BMPs via FromFile or FromStream. So in short: on Vista, PNG files loaded via Bitmap::FromStream crash. #pragma comment(lib, "gdiplus.lib") #include <iostream> #include <objidl.h> #include <gdiplus.h> class FileStream : public IStream { public: FileStream(HANDLE hFile) { _refcount = 1; _hFile = hFile; } ~FileStream() { if (_hFile != INVALID_HANDLE_VALUE) { ::CloseHandle(_hFile); } } public: HRESULT static OpenFile(LPCWSTR pName, IStream ** ppStream, bool fWrite) { HANDLE hFile = ::CreateFileW(pName, fWrite ? GENERIC_WRITE : GENERIC_READ, FILE_SHARE_READ, NULL, fWrite ? CREATE_ALWAYS : OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (hFile == INVALID_HANDLE_VALUE) return HRESULT_FROM_WIN32(GetLastError()); *ppStream = new FileStream(hFile); if(*ppStream == NULL) CloseHandle(hFile); return S_OK; } virtual HRESULT STDMETHODCALLTYPE QueryInterface(REFIID iid, void ** ppvObject) { if (iid == __uuidof(IUnknown) || iid == __uuidof(IStream) || iid == __uuidof(ISequentialStream)) { *ppvObject = static_cast<IStream*>(this); AddRef(); return S_OK; } else return E_NOINTERFACE; } virtual ULONG STDMETHODCALLTYPE AddRef(void) { return (ULONG)InterlockedIncrement(&_refcount); } virtual ULONG STDMETHODCALLTYPE Release(void) { ULONG res = (ULONG) InterlockedDecrement(&_refcount); if (res == 0) delete this; return res; } // ISequentialStream Interface public: virtual HRESULT STDMETHODCALLTYPE Read(void* pv, ULONG cb, ULONG* pcbRead) { ULONG local_pcbRead; BOOL rc = ReadFile(_hFile, pv, cb, &local_pcbRead, NULL); if (pcbRead) *pcbRead = local_pcbRead; return (rc) ? S_OK : HRESULT_FROM_WIN32(GetLastError()); } virtual HRESULT STDMETHODCALLTYPE Write(void const* pv, ULONG cb, ULONG* pcbWritten) { BOOL rc = WriteFile(_hFile, pv, cb, pcbWritten, NULL); return rc ? S_OK : HRESULT_FROM_WIN32(GetLastError()); } // IStream Interface public: virtual HRESULT STDMETHODCALLTYPE SetSize(ULARGE_INTEGER) { return E_NOTIMPL; } virtual HRESULT STDMETHODCALLTYPE CopyTo(IStream*, ULARGE_INTEGER, ULARGE_INTEGER*, ULARGE_INTEGER*) { return E_NOTIMPL; } virtual HRESULT STDMETHODCALLTYPE Commit(DWORD) { return E_NOTIMPL; } virtual HRESULT STDMETHODCALLTYPE Revert(void) { return E_NOTIMPL; } virtual HRESULT STDMETHODCALLTYPE LockRegion(ULARGE_INTEGER, ULARGE_INTEGER, DWORD) { return E_NOTIMPL; } virtual HRESULT STDMETHODCALLTYPE UnlockRegion(ULARGE_INTEGER, ULARGE_INTEGER, DWORD) { return E_NOTIMPL; } virtual HRESULT STDMETHODCALLTYPE Clone(IStream **) { return E_NOTIMPL; } virtual HRESULT STDMETHODCALLTYPE Seek(LARGE_INTEGER liDistanceToMove, DWORD dwOrigin, ULARGE_INTEGER* lpNewFilePointer) { DWORD dwMoveMethod; switch(dwOrigin) { case STREAM_SEEK_SET: dwMoveMethod = FILE_BEGIN; break; case STREAM_SEEK_CUR: dwMoveMethod = FILE_CURRENT; break; case STREAM_SEEK_END: dwMoveMethod = FILE_END; break; default: return STG_E_INVALIDFUNCTION; break; } if (SetFilePointerEx(_hFile, liDistanceToMove, (PLARGE_INTEGER) lpNewFilePointer, dwMoveMethod) == 0) return HRESULT_FROM_WIN32(GetLastError()); return S_OK; } virtual HRESULT STDMETHODCALLTYPE Stat(STATSTG* pStatstg, DWORD grfStatFlag) { if (GetFileSizeEx(_hFile, (PLARGE_INTEGER) &pStatstg->cbSize) == 0) return HRESULT_FROM_WIN32(GetLastError()); return S_OK; } private: volatile HANDLE _hFile; volatile LONG _refcount; }; #define USE_STREAM int main() { Gdiplus::GdiplusStartupInput gdiplusStartupInput; ULONG_PTR gdiplusToken; Gdiplus::GdiplusStartup(&gdiplusToken, &gdiplusStartupInput, NULL); Gdiplus::Bitmap *bmp; #ifndef USE_STREAM bmp = Gdiplus::Bitmap::FromFile(L"test.png", false); if (!bmp) { std::cerr << " Unable to open image file." << std::endl; return 1; } #else IStream *s; if (FileStream::OpenFile(L"test.png", &s, false) != S_OK) { std::cerr << "Unable to open image file." << std::endl; return 1; } bmp = Gdiplus::Bitmap::FromStream(s, false); #endif std::cout << "Image is " << bmp->GetWidth() << " by " << bmp->GetHeight() << std::endl; Gdiplus::GdiplusShutdown(gdiplusToken); #ifdef USE_STREAM s->Release(); #endif return 0; } Tracing and debugging, shows that it does make some calls to the IStream class. It crashes inside of lastResult = DllExports::GdipCreateBitmapFromStream(stream, &bitmap); from GdiPlusBitmap.h, which is a static inline wrapper over the flat API. Other than the reference counting, the only IStream methods it calls is stat (for file size), read, and seek. Call stack looks like: ntdll.dll!_DbgBreakPoint@0() + 0x1 bytes ntdll.dll!_RtlpBreakPointHeap@4() + 0x28 bytes ntdll.dll!_RtlpValidateHeapEntry@12() + 0x70a3c bytes ntdll.dll!_RtlDebugFreeHeap@12() + 0x9a bytes ntdll.dll!@RtlpFreeHeap@16() + 0x13cdd bytes ntdll.dll!_RtlFreeHeap@12() + 0x2e49 bytes kernel32.dll!_HeapFree@12() + 0x14 bytes ole32.dll!CRetailMalloc_Free() + 0x1c bytes ole32.dll!_CoTaskMemFree@4() + 0x13 bytes GdiPlus.dll!GpPngDecoder::GetImageInfo() + 0x68 bytes GdiPlus.dll!GpDecodedImage::InternalGetImageInfo() + 0x3c bytes GdiPlus.dll!GpDecodedImage::GetImageInfo() + 0x18 bytes GdiPlus.dll!CopyOnWriteBitmap::CopyOnWriteBitmap() + 0x49 bytes GdiPlus.dll!CopyOnWriteBitmap::Create() + 0x1d bytes GdiPlus.dll!GpBitmap::GpBitmap() + 0x2c bytes I was unable to find anybody else with the same problem, so I assume there's something wrong with my implementation...

    Read the article

  • Windows Azure: Backup Services Release, Hyper-V Recovery Manager, VM Enhancements, Enhanced Enterprise Management Support

    - by ScottGu
    This morning we released a huge set of updates to Windows Azure.  These new capabilities include: Backup Services: General Availability of Windows Azure Backup Services Hyper-V Recovery Manager: Public preview of Windows Azure Hyper-V Recovery Manager Virtual Machines: Delete Attached Disks, Availability Set Warnings, SQL AlwaysOn Configuration Active Directory: Securely manage hundreds of SaaS applications Enterprise Management: Use Active Directory to Better Manage Windows Azure Windows Azure SDK 2.2: A massive update of our SDK + Visual Studio tooling support All of these improvements are now available to use immediately.  Below are more details about them. Backup Service: General Availability Release of Windows Azure Backup Today we are releasing Windows Azure Backup Service as a general availability service.  This release is now live in production, backed by an enterprise SLA, supported by Microsoft Support, and is ready to use for production scenarios. Windows Azure Backup is a cloud based backup solution for Windows Server which allows files and folders to be backed up and recovered from the cloud, and provides off-site protection against data loss. The service provides IT administrators and developers with the option to back up and protect critical data in an easily recoverable way from any location with no upfront hardware cost. Windows Azure Backup is built on the Windows Azure platform and uses Windows Azure blob storage for storing customer data. Windows Server uses the downloadable Windows Azure Backup Agent to transfer file and folder data securely and efficiently to the Windows Azure Backup Service. Along with providing cloud backup for Windows Server, Windows Azure Backup Service also provides capability to backup data from System Center Data Protection Manager and Windows Server Essentials, to the cloud. All data is encrypted onsite before it is sent to the cloud, and customers retain and manage the encryption key (meaning the data is stored entirely secured and can’t be decrypted by anyone but yourself). Getting Started To get started with the Windows Azure Backup Service, create a new Backup Vault within the Windows Azure Management Portal.  Click New->Data Services->Recovery Services->Backup Vault to do this: Once the backup vault is created you’ll be presented with a simple tutorial that will help guide you on how to register your Windows Servers with it: Once the servers you want to backup are registered, you can use the appropriate local management interface (such as the Microsoft Management Console snap-in, System Center Data Protection Manager Console, or Windows Server Essentials Dashboard) to configure the scheduled backups and to optionally initiate recoveries. You can follow these tutorials to learn more about how to do this: Tutorial: Schedule Backups Using the Windows Azure Backup Agent This tutorial helps you with setting up a backup schedule for your registered Windows Servers. Additionally, it also explains how to use Windows PowerShell cmdlets to set up a custom backup schedule. Tutorial: Recover Files and Folders Using the Windows Azure Backup Agent This tutorial helps you with recovering data from a backup. Additionally, it also explains how to use Windows PowerShell cmdlets to do the same tasks. Below are some of the key benefits the Windows Azure Backup Service provides: Simple configuration and management. Windows Azure Backup Service integrates with the familiar Windows Server Backup utility in Windows Server, the Data Protection Manager component in System Center and Windows Server Essentials, in order to provide a seamless backup and recovery experience to a local disk, or to the cloud. Block level incremental backups. The Windows Azure Backup Agent performs incremental backups by tracking file and block level changes and only transferring the changed blocks, hence reducing the storage and bandwidth utilization. Different point-in-time versions of the backups use storage efficiently by only storing the changes blocks between these versions. Data compression, encryption and throttling. The Windows Azure Backup Agent ensures that data is compressed and encrypted on the server before being sent to the Windows Azure Backup Service over the network. As a result, the Windows Azure Backup Service only stores encrypted data in the cloud storage. The encryption key is not available to the Windows Azure Backup Service, and as a result the data is never decrypted in the service. Also, users can setup throttling and configure how the Windows Azure Backup service utilizes the network bandwidth when backing up or restoring information. Data integrity is verified in the cloud. In addition to the secure backups, the backed up data is also automatically checked for integrity once the backup is done. As a result, any corruptions which may arise due to data transfer can be easily identified and are fixed automatically. Configurable retention policies for storing data in the cloud. The Windows Azure Backup Service accepts and implements retention policies to recycle backups that exceed the desired retention range, thereby meeting business policies and managing backup costs. Hyper-V Recovery Manager: Now Available in Public Preview I’m excited to also announce the public preview of a new Windows Azure Service – the Windows Azure Hyper-V Recovery Manager (HRM). Windows Azure Hyper-V Recovery Manager helps protect your business critical services by coordinating the replication and recovery of System Center Virtual Machine Manager 2012 SP1 and System Center Virtual Machine Manager 2012 R2 private clouds at a secondary location. With automated protection, asynchronous ongoing replication, and orderly recovery, the Hyper-V Recovery Manager service can help you implement Disaster Recovery and restore important services accurately, consistently, and with minimal downtime. Application data in an Hyper-V Recovery Manager scenarios always travels on your on-premise replication channel. Only metadata (such as names of logical clouds, virtual machines, networks etc.) that is needed for orchestration is sent to Azure. All traffic sent to/from Azure is encrypted. You can begin using Windows Azure Hyper-V Recovery today by clicking New->Data Services->Recovery Services->Hyper-V Recovery Manager within the Windows Azure Management Portal.  You can read more about Windows Azure Hyper-V Recovery Manager in Brad Anderson’s 9-part series, Transform the datacenter. To learn more about setting up Hyper-V Recovery Manager follow our detailed step-by-step guide. Virtual Machines: Delete Attached Disks, Availability Set Warnings, SQL AlwaysOn Today’s Windows Azure release includes a number of nice updates to Windows Azure Virtual Machines.  These improvements include: Ability to Delete both VM Instances + Attached Disks in One Operation Prior to today’s release, when you deleted VMs within Windows Azure we would delete the VM instance – but not delete the drives attached to the VM.  You had to manually delete these yourself from the storage account.  With today’s update we’ve added a convenience option that now allows you to either retain or delete the attached disks when you delete the VM:   We’ve also added the ability to delete a cloud service, its deployments, and its role instances with a single action. This can either be a cloud service that has production and staging deployments with web and worker roles, or a cloud service that contains virtual machines.  To do this, simply select the Cloud Service within the Windows Azure Management Portal and click the “Delete” button: Warnings on Availability Sets with Only One Virtual Machine In Them One of the nice features that Windows Azure Virtual Machines supports is the concept of “Availability Sets”.  An “availability set” allows you to define a tier/role (e.g. webfrontends, databaseservers, etc) that you can map Virtual Machines into – and when you do this Windows Azure separates them across fault domains and ensures that at least one of them is always available during servicing operations.  This enables you to deploy applications in a high availability way. One issue we’ve seen some customers run into is where they define an availability set, but then forget to map more than one VM into it (which defeats the purpose of having an availability set).  With today’s release we now display a warning in the Windows Azure Management Portal if you have only one virtual machine deployed in an availability set to help highlight this: You can learn more about configuring the availability of your virtual machines here. Configuring SQL Server Always On SQL Server Always On is a great feature that you can use with Windows Azure to enable high availability and DR scenarios with SQL Server. Today’s Windows Azure release makes it even easier to configure SQL Server Always On by enabling “Direct Server Return” endpoints to be configured and managed within the Windows Azure Management Portal.  Previously, setting this up required using PowerShell to complete the endpoint configuration.  Starting today you can enable this simply by checking the “Direct Server Return” checkbox: You can learn more about how to use direct server return for SQL Server AlwaysOn availability groups here. Active Directory: Application Access Enhancements This summer we released our initial preview of our Application Access Enhancements for Windows Azure Active Directory.  This service enables you to securely implement single-sign-on (SSO) support against SaaS applications (including Office 365, SalesForce, Workday, Box, Google Apps, GitHub, etc) as well as LOB based applications (including ones built with the new Windows Azure AD support we shipped last week with ASP.NET and VS 2013). Since the initial preview we’ve enhanced our SAML federation capabilities, integrated our new password vaulting system, and shipped multi-factor authentication support. We've also turned on our outbound identity provisioning system and have it working with hundreds of additional SaaS Applications: Earlier this month we published an update on dates and pricing for when the service will be released in general availability form.  In this blog post we announced our intention to release the service in general availability form by the end of the year.  We also announced that the below features would be available in a free tier with it: SSO to every SaaS app we integrate with – Users can Single Sign On to any app we are integrated with at no charge. This includes all the top SAAS Apps and every app in our application gallery whether they use federation or password vaulting. Application access assignment and removal – IT Admins can assign access privileges to web applications to the users in their active directory assuring that every employee has access to the SAAS Apps they need. And when a user leaves the company or changes jobs, the admin can just as easily remove their access privileges assuring data security and minimizing IP loss User provisioning (and de-provisioning) – IT admins will be able to automatically provision users in 3rd party SaaS applications like Box, Salesforce.com, GoToMeeting, DropBox and others. We are working with key partners in the ecosystem to establish these connections, meaning you no longer have to continually update user records in multiple systems. Security and auditing reports – Security is a key priority for us. With the free version of these enhancements you'll get access to our standard set of access reports giving you visibility into which users are using which applications, when they were using them and where they are using them from. In addition, we'll alert you to un-usual usage patterns for instance when a user logs in from multiple locations at the same time. Our Application Access Panel – Users are logging in from every type of devices including Windows, iOS, & Android. Not all of these devices handle authentication in the same manner but the user doesn't care. They need to access their apps from the devices they love. Our Application Access Panel will support the ability for users to access access and launch their apps from any device and anywhere. You can learn more about our plans for application management with Windows Azure Active Directory here.  Try out the preview and start using it today. Enterprise Management: Use Active Directory to Better Manage Windows Azure Windows Azure Active Directory provides the ability to manage your organization in a directory which is hosted entirely in the cloud, or alternatively kept in sync with an on-premises Windows Server Active Directory solution (allowing you to seamlessly integrate with the directory you already have).  With today’s Windows Azure release we are integrating Windows Azure Active Directory even more within the core Windows Azure management experience, and enabling an even richer enterprise security offering.  Specifically: 1) All Windows Azure accounts now have a default Windows Azure Active Directory created for them.  You can create and map any users you want into this directory, and grant administrative rights to manage resources in Windows Azure to these users. 2) You can keep this directory entirely hosted in the cloud – or optionally sync it with your on-premises Windows Server Active Directory.  Both options are free.  The later approach is ideal for companies that wish to use their corporate user identities to sign-in and manage Windows Azure resources.  It also ensures that if an employee leaves an organization, his or her access control rights to the company’s Windows Azure resources are immediately revoked. 3) The Windows Azure Service Management APIs have been updated to support using Windows Azure Active Directory credentials to sign-in and perform management operations.  Prior to today’s release customers had to download and use management certificates (which were not scoped to individual users) to perform management operations.  We still support this management certificate approach (don’t worry – nothing will stop working).  But we think the new Windows Azure Active Directory authentication support enables an even easier and more secure way for customers to manage resources going forward.  4) The Windows Azure SDK 2.2 release (which is also shipping today) includes built-in support for the new Service Management APIs that authenticate with Windows Azure Active Directory, and now allow you to create and manage Windows Azure applications and resources directly within Visual Studio using your Active Directory credentials.  This, combined with updated PowerShell scripts that also support Active Directory, enables an end-to-end enterprise authentication story with Windows Azure. Below are some details on how all of this works: Subscriptions within a Directory As part of today’s update, we have associated all existing Window Azure accounts with a Windows Azure Active Directory (and created one for you if you don’t already have one). When you login to the Windows Azure Management Portal you’ll now see the directory name in the URI of the browser.  For example, in the screen-shot below you can see that I have a “scottgu” directory that my subscriptions are hosted within: Note that you can continue to use Microsoft Accounts (formerly known as Microsoft Live IDs) to sign-into Windows Azure.  These map just fine to a Windows Azure Active Directory – so there is no need to create new usernames that are specific to a directory if you don’t want to.  In the scenario above I’m actually logged in using my @hotmail.com based Microsoft ID which is now mapped to a “scottgu” active directory that was created for me.  By default everything will continue to work just like you used to before. Manage your Directory You can manage an Active Directory (including the one we now create for you by default) by clicking the “Active Directory” tab in the left-hand side of the portal.  This will list all of the directories in your account.  Clicking one the first time will display a getting started page that provides documentation and links to perform common tasks with it: You can use the built-in directory management support within the Windows Azure Management Portal to add/remove/manage users within the directory, enable multi-factor authentication, associate a custom domain (e.g. mycompanyname.com) with the directory, and/or rename the directory to whatever friendly name you want (just click the configure tab to do this).  You can also setup the directory to automatically sync with an on-premises Active Directory using the “Directory Integration” tab. Note that users within a directory by default do not have admin rights to login or manage Windows Azure based resources.  You still need to explicitly grant them co-admin permissions on a subscription for them to login or manage resources in Windows Azure.  You can do this by clicking the Settings tab on the left-hand side of the portal and then by clicking the administrators tab within it. Sign-In Integration within Visual Studio If you install the new Windows Azure SDK 2.2 release, you can now connect to Windows Azure from directly inside Visual Studio without having to download any management certificates.  You can now just right-click on the “Windows Azure” icon within the Server Explorer and choose the “Connect to Windows Azure” context menu option to do so: Doing this will prompt you to enter the email address of the username you wish to sign-in with (make sure this account is a user in your directory with co-admin rights on a subscription): You can use either a Microsoft Account (e.g. Windows Live ID) or an Active Directory based Organizational account as the email.  The dialog will update with an appropriate login prompt depending on which type of email address you enter: Once you sign-in you’ll see the Windows Azure resources that you have permissions to manage show up automatically within the Visual Studio server explorer and be available to start using: No downloading of management certificates required.  All of the authentication was handled using your Windows Azure Active Directory! Manage Subscriptions across Multiple Directories If you have already have multiple directories and multiple subscriptions within your Windows Azure account, we have done our best to create a good default mapping of your subscriptions->directories as part of today’s update.  If you don’t like the default subscription-to-directory mapping we have done you can click the Settings tab in the left-hand navigation of the Windows Azure Management Portal and browse to the Subscriptions tab within it: If you want to map a subscription under a different directory in your account, simply select the subscription from the list, and then click the “Edit Directory” button to choose which directory to map it to.  Mapping a subscription to a different directory takes only seconds and will not cause any of the resources within the subscription to recycle or stop working.  We’ve made the directory->subscription mapping process self-service so that you always have complete control and can map things however you want. Filtering By Directory and Subscription Within the Windows Azure Management Portal you can filter resources in the portal by subscription (allowing you to show/hide different subscriptions).  If you have subscriptions mapped to multiple directory tenants, we also now have a filter drop-down that allows you to filter the subscription list by directory tenant.  This filter is only available if you have multiple subscriptions mapped to multiple directories within your Windows Azure Account:   Windows Azure SDK 2.2 Today we are also releasing a major update of our Windows Azure SDK.  The Windows Azure SDK 2.2 release adds some great new features including: Visual Studio 2013 Support Integrated Windows Azure Sign-In support within Visual Studio Remote Debugging Cloud Services with Visual Studio Firewall Management support within Visual Studio for SQL Databases Visual Studio 2013 RTM VM Images for MSDN Subscribers Windows Azure Management Libraries for .NET Updated Windows Azure PowerShell Cmdlets and ScriptCenter I’ll post a follow-up blog shortly with more details about all of the above. Additional Updates In addition to the above enhancements, today’s release also includes a number of additional improvements: AutoScale: Richer time and date based scheduling support (set different rules on different dates) AutoScale: Ability to Scale to Zero Virtual Machines (very useful for Dev/Test scenarios) AutoScale: Support for time-based scheduling of Mobile Service AutoScale rules Operation Logs: Auditing support for Service Bus management operations Today we also shipped a major update to the Windows Azure SDK – Windows Azure SDK 2.2.  It has so much goodness in it that I have a whole second blog post coming shortly on it! :-) Summary Today’s Windows Azure release enables a bunch of great new scenarios, and enables a much richer enterprise authentication offering. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Windows Azure Evolution &ndash; Caching (Preview)

    - by Shaun
    Caching is a popular topic when we are building a high performance and high scalable system not only on top of the cloud platform but the on-premise environment as well. On March 2011 the Windows Azure AppFabric Caching had been production launched. It provides an in-memory, distributed caching service over the cloud. And now, in this June 2012 update, the cache team announce a grand new caching solution on Windows Azure, which is called Windows Azure Caching (Preview). And the original Windows Azure AppFabric Caching was renamed to Windows Azure Shared Caching.   What’s Caching (Preview) If you had been using the Shared Caching you should know that it is constructed by a bunch of cache servers. And when you want to use you should firstly create a cache account from the developer portal and specify the size you want to use, which means how much memory you can use to store your data that wanted to be cached. Then you can add, get and remove them through your code through the cache URL. The Shared Caching is a multi-tenancy system which host all cached items across all users. So you don’t know which server your data was located. This caching mode works well and can take most of the cases. But it has some problems. The first one is the performance. Since the Shared Caching is a multi-tenancy system, which means all cache operations should go through the Shared Caching gateway and then routed to the server which have the data your are looking for. Even though there are some caches in the Shared Caching system it also takes time from your cloud services to the cache service. Secondary, the Shared Caching service works as a block box to the developer. The only thing we know is my cache endpoint, and that’s all. Someone may satisfied since they don’t want to care about anything underlying. But if you need to know more and want more control that’s impossible in the Shared Caching. The last problem would be the price and cost-efficiency. You pay the bill based on how much cache you requested per month. But when we host a web role or worker role, it seldom consumes all of the memory and CPU in the virtual machine (service instance). If using Shared Caching we have to pay for the cache service while waste of some of our memory and CPU locally. Since the issues above Microsoft offered a new caching mode over to us, which is the Caching (Preview). Instead of having a separated cache service, the Caching (Preview) leverage the memory and CPU in our cloud services (web role and worker role) as the cache clusters. Hence the Caching (Preview) runs on the virtual machines which hosted or near our cloud applications. Without any gateway and routing, since it located in the same data center and same racks, it provides really high performance than the Shared Caching. The Caching (Preview) works side-by-side to our application, initialized and worked as a Windows Service running in the virtual machines invoked by the startup tasks from our roles, we could get more information and control to them. And since the Caching (Preview) utilizes the memory and CPU from our existing cloud services, so it’s free. What we need to pay is the original computing price. And the resource on each machines could be used more efficiently.   Enable Caching (Preview) It’s very simple to enable the Caching (Preview) in a cloud service. Let’s create a new windows azure cloud project from Visual Studio and added an ASP.NET Web Role. Then open the role setting and select the Caching page. This is where we enable and configure the Caching (Preview) on a role. To enable the Caching (Preview) just open the “Enable Caching (Preview Release)” check box. And then we need to specify which mode of the caching clusters we want to use. There are two kinds of caching mode, co-located and dedicate. The co-located mode means we use the memory in the instances we run our cloud services (web role or worker role). By using this mode we must specify how many percentage of the memory will be used as the cache. The default value is 30%. So make sure it will not affect the role business execution. The dedicate mode will use all memory in the virtual machine as the cache. In fact it will reserve some for operation system, azure hosting etc.. But it will try to use as much as the available memory to be the cache. As you can see, the Caching (Preview) was defined based on roles, which means all instances of this role will apply the same setting and play as a whole cache pool, and you can consume it by specifying the name of the role, which I will demonstrate later. And in a windows azure project we can have more than one role have the Caching (Preview) enabled. Then we will have more caches. For example, let’s say I have a web role and worker role. The web role I specified 30% co-located caching and the worker role I specified dedicated caching. If I have 3 instances of my web role and 2 instances of my worker role, then I will have two caches. As the figure above, cache 1 was contributed by three web role instances while cache 2 was contributed by 2 worker role instances. Then we can add items into cache 1 and retrieve it from web role code and worker role code. But the items stored in cache 1 cannot be retrieved from cache 2 since they are isolated. Back to our Visual Studio we specify 30% of co-located cache and use the local storage emulator to store the cache cluster runtime status. Then at the bottom we can specify the named caches. Now we just use the default one. Now we had enabled the Caching (Preview) in our web role settings. Next, let’s have a look on how to consume our cache.   Consume Caching (Preview) The Caching (Preview) can only be consumed by the roles in the same cloud services. As I mentioned earlier, a cache contributed by web role can be connected from a worker role if they are in the same cloud service. But you cannot consume a Caching (Preview) from other cloud services. This is different from the Shared Caching. The Shared Caching is opened to all services if it has the connection URL and authentication token. To consume the Caching (Preview) we need to add some references into our project as well as some configuration in the Web.config. NuGet makes our life easy. Right click on our web role project and select “Manage NuGet packages”, and then search the package named “WindowsAzure.Caching”. In the package list install the “Windows Azure Caching Preview”. It will download all necessary references from the NuGet repository and update our Web.config as well. Open the Web.config of our web role and find the “dataCacheClients” node. Under this node we can specify the cache clients we are going to use. For each cache client it will use the role name to identity and find the cache. Since we only have this web role with the Caching (Preview) enabled so I pasted the current role name in the configuration. Then, in the default page I will add some code to show how to use the cache. I will have a textbox on the page where user can input his or her name, then press a button to generate the email address for him/her. And in backend code I will check if this name had been added in cache. If yes I will return the email back immediately. Otherwise, I will sleep the tread for 2 seconds to simulate the latency, then add it into cache and return back to the page. 1: protected void btnGenerate_Click(object sender, EventArgs e) 2: { 3: // check if name is specified 4: var name = txtName.Text; 5: if (string.IsNullOrWhiteSpace(name)) 6: { 7: lblResult.Text = "Error. Please specify name."; 8: return; 9: } 10:  11: bool cached; 12: var sw = new Stopwatch(); 13: sw.Start(); 14:  15: // create the cache factory and cache 16: var factory = new DataCacheFactory(); 17: var cache = factory.GetDefaultCache(); 18:  19: // check if the name specified is in cache 20: var email = cache.Get(name) as string; 21: if (email != null) 22: { 23: cached = true; 24: sw.Stop(); 25: } 26: else 27: { 28: cached = false; 29: // simulate the letancy 30: Thread.Sleep(2000); 31: email = string.Format("{0}@igt.com", name); 32: // add to cache 33: cache.Add(name, email); 34: } 35:  36: sw.Stop(); 37: lblResult.Text = string.Format( 38: "Cached = {0}. Duration: {1}s. {2} => {3}", 39: cached, sw.Elapsed.TotalSeconds.ToString("0.00"), name, email); 40: } The Caching (Preview) can be used on the local emulator so we just F5. The first time I entered my name it will take about 2 seconds to get the email back to me since it was not in the cache. But if we re-enter my name it will be back at once from the cache. Since the Caching (Preview) is distributed across all instances of the role, so we can scaling-out it by scaling-out our web role. Just use 2 instances and tweak some code to show the current instance ID in the page, and have another try. Then we can see the cache can be retrieved even though it was added by another instance.   Consume Caching (Preview) Across Roles As I mentioned, the Caching (Preview) can be consumed by all other roles within the same cloud service. For example, let’s add another web role in our cloud solution and add the same code in its default page. In the Web.config we add the cache client to one enabled in the last role, by specifying its role name here. Then we start the solution locally and go to web role 1, specify the name and let it generate the email to us. Since there’s no cache for this name so it will take about 2 seconds but will save the email into cache. And then we go to web role 2 and specify the same name. Then you can see it retrieve the email saved by the web role 1 and returned back very quickly. Finally then we can upload our application to Windows Azure and test again. Make sure you had changed the cache cluster status storage account to the real azure account.   More Awesome Features As a in-memory distributed caching solution, the Caching (Preview) has some fancy features I would like to highlight here. The first one is the high availability support. This is the first time I have heard that a distributed cache support high availability. In the distributed cache world if a cache cluster was failed, the data it stored will be lost. This behavior was introduced by Memcached and is followed by almost all distributed cache productions. But Caching (Preview) provides high availability, which means you can specify if the named cache will be backup automatically. If yes then the data belongs to this named cache will be replicated on another role instance of this role. Then if one of the instance was failed the data can be retrieved from its backup instance. To enable the backup just open the Caching page in Visual Studio. In the named cache you want to enable backup, change the Backup Copies value from 0 to 1. The value of Backup Copies only for 0 and 1. “0” means no backup and no high availability while “1” means enabled high availability with backup the data into another instance. But by using the high availability feature there are something we need to make sure. Firstly the high availability does NOT means the data in cache will never be lost for any kind of failure. For example, if we have a role with cache enabled that has 10 instances, and 9 of them was failed, then most of the cached data will be lost since the primary and backup instance may failed together. But normally is will not be happened since MS guarantees that it will use the instance in the different fault domain for backup cache. Another one is that, enabling the backup means you store two copies of your data. For example if you think 100MB memory is OK for cache, but you need at least 200MB if you enabled backup. Besides the high availability, the Caching (Preview) support more features introduced in Windows Server AppFabric Caching than the Windows Azure Shared Caching. It supports local cache with notification. It also support absolute and slide window expiration types as well. And the Caching (Preview) also support the Memcached protocol as well. This means if you have an application based on Memcached, you can use Caching (Preview) without any code changes. What you need to do is to change the configuration of how you connect to the cache. Similar as the Windows Azure Shared Caching, MS also offers the out-of-box ASP.NET session provider and output cache provide on top of the Caching (Preview).   Summary Caching is very important component when we building a cloud-based application. In the June 2012 update MS provides a new cache solution named Caching (Preview). Different from the existing Windows Azure Shared Caching, Caching (Preview) runs the cache cluster within the role instances we have deployed to the cloud. It gives more control, more performance and more cost-effect. So now we have two caching solutions in Windows Azure, the Shared Caching and Caching (Preview). If you need a central cache service which can be used by many cloud services and web sites, then you have to use the Shared Caching. But if you only need a fast, near distributed cache, then you’d better use Caching (Preview).   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Which should I use for mouse over tooltip for image (alt, longdesc, title)

    - by Virtual Jasper
    Currently, my webpage images use the alt attribute only. Users complain that their IE8 cannot show the "tooltip" bubble when they mouse over the image. On Microsoft's What's New in Internet Explorer 8 page, it says The alt attribute is no longer displayed as the image tooltip when the browser is running in IE8 Standards mode. Instead, the target of the longDesc attribute is used as the tooltip if present; otherwise, the title is displayed. The alt attribute is still used as the Microsoft Active Accessibility name, and the title attribute is used as the fallback name only if alt is not present. I also found that many say title should be used. Which should I use to meet the industrial standard: alt, longdesc or title?

    Read the article

  • Why is my Android app camera preview running out of memory on my AVD?

    - by Bryan
    I have yet to try this on an actual device, but expect similar results. Anyway, long story short, whenever I run my app on the emulator, it crashes due to an out of memory exception. My code really is essentially the same as the camera preview API demo from google, which runs perfectly fine. The only file in the app (that I created/use) is as below- package berbst.musicReader; import java.io.IOException; import android.app.Activity; import android.content.Context; import android.hardware.Camera; import android.os.Bundle; import android.view.SurfaceHolder; import android.view.SurfaceView; /********************************* * Music Reader v.0001 * Still VERY under construction. * @author Bryan * *********************************/ public class MusicReader extends Activity { private MainScreen main; @Override //Begin activity public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); main = new MainScreen(this); setContentView(main); } class MainScreen extends SurfaceView implements SurfaceHolder.Callback { SurfaceHolder sHolder; Camera cam; MainScreen(Context context) { super(context); //Set up SurfaceHolder sHolder = getHolder(); sHolder.addCallback(this); sHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS); } public void surfaceCreated(SurfaceHolder holder) { // Open the camera and start viewing cam = Camera.open(); try { cam.setPreviewDisplay(holder); } catch (IOException exception) { cam.release(); cam = null; } } public void surfaceDestroyed(SurfaceHolder holder) { // Kill all our crap with the surface cam.stopPreview(); cam.release(); cam = null; } public void surfaceChanged(SurfaceHolder holder, int format, int w, int h) { // Modify parameters to match size. Camera.Parameters params = cam.getParameters(); params.setPreviewSize(w, h); cam.setParameters(params); cam.startPreview(); } } }

    Read the article

  • C: Proper syntax for allocating memory using pointers to pointers.

    - by ~kero-05h
    This is my first time posting here, hopefully I will not make a fool of myself. I am trying to use a function to allocate memory to a pointer, copy text to the buffer, and then change a character. I keep getting a segfault and have tried looking up the answer, my syntax is probably wrong, I could use some enlightenment. /* My objective is to pass a buffer to my Copy function, allocate room, and copy text to it. Then I want to modify the text and print it.*/ #include <stdio.h> #include <stdlib.h> #include <string.h> int Copy(char **Buffer, char *Text); int main() { char *Text = malloc(sizeof(char) * 100); char *Buffer; strncpy(Text, "1234567890\n", 100); Copy(&Buffer, Text); } int Copy(char **Buffer, char *Text) { int count; count = strlen(Text)+1; *Buffer = malloc(sizeof(char) * count); strncpy(*Buffer, Text, 5); *Buffer[2] = 'A'; /* This results in a segfault. "*Buffer[1] = 'A';" results in no differece in the output. */ printf("%s\n", *Buffer); }

    Read the article

  • Write to memory buffer instead of file with libjpeg?

    - by Richard Knop
    I have found this function which uses libjpeg to write to a file: int write_jpeg_file( char *filename ) { struct jpeg_compress_struct cinfo; struct jpeg_error_mgr jerr; /* this is a pointer to one row of image data */ JSAMPROW row_pointer[1]; FILE *outfile = fopen( filename, "wb" ); if ( !outfile ) { printf("Error opening output jpeg file %s\n!", filename ); return -1; } cinfo.err = jpeg_std_error( &jerr ); jpeg_create_compress(&cinfo); jpeg_stdio_dest(&cinfo, outfile); /* Setting the parameters of the output file here */ cinfo.image_width = width; cinfo.image_height = height; cinfo.input_components = bytes_per_pixel; cinfo.in_color_space = color_space; /* default compression parameters, we shouldn't be worried about these */ jpeg_set_defaults( &cinfo ); /* Now do the compression .. */ jpeg_start_compress( &cinfo, TRUE ); /* like reading a file, this time write one row at a time */ while( cinfo.next_scanline < cinfo.image_height ) { row_pointer[0] = &raw_image[ cinfo.next_scanline * cinfo.image_width * cinfo.input_components]; jpeg_write_scanlines( &cinfo, row_pointer, 1 ); } /* similar to read file, clean up after we're done compressing */ jpeg_finish_compress( &cinfo ); jpeg_destroy_compress( &cinfo ); fclose( outfile ); /* success code is 1! */ return 1; } I would actually need to write the jpeg compressed image just to memory buffer, without saving it to a file, to save time. Could somebody give me an example how to do it? I have been searching the web for a while but the documentation is very rare if any and examples are also difficult to come by.

    Read the article

< Previous Page | 252 253 254 255 256 257 258 259 260 261 262 263  | Next Page >