Search Results

Search found 59761 results on 2391 pages for 'data flow'.

Page 26/2391 | < Previous Page | 22 23 24 25 26 27 28 29 30 31 32 33  | Next Page >

  • Recovered folders from Camera show as JPEG files and can can't be viewed.

    - by user642111
    I have recovered a CCTV camera hard disk after a crash and have managed to get most of the data using EasyRecovery Pro. The problem is now that all the data that I have recovered appear like File09.JPG with and image icon in windows XP, but the files can't be viewed in any JPEG viewer software. I suspect that the .JPG files are indeed folders, but I can't force windows XP the change the file type. Very Odd. Any help is appreciated. Thanks, Hoo

    Read the article

  • Recover RAID 5 data after created new array instead of re-using

    - by Brigadieren
    Folks please help - I am a newb with a major headache at hand (perfect storm situation). I have a 3 1tb hdd on my ubuntu 11.04 configured as software raid 5. The data had been copied weekly onto another separate off the computer hard drive until that completely failed and was thrown away. A few days back we had a power outage and after rebooting my box wouldn't mount the raid. In my infinite wisdom I entered mdadm --create -f... command instead of mdadm --assemble and didn't notice the travesty that I had done until after. It started the array degraded and proceeded with building and syncing it which took ~10 hours. After I was back I saw that that the array is successfully up and running but the raid is not I mean the individual drives are partitioned (partition type f8 ) but the md0 device is not. Realizing in horror what I have done I am trying to find some solutions. I just pray that --create didn't overwrite entire content of the hard driver. Could someone PLEASE help me out with this - the data that's on the drive is very important and unique ~10 years of photos, docs, etc. Is it possible that by specifying the participating hard drives in wrong order can make mdadm overwrite them? when I do mdadm --examine --scan I get something like ARRAY /dev/md/0 metadata=1.2 UUID=f1b4084a:720b5712:6d03b9e9:43afe51b name=<hostname>:0 Interestingly enough name used to be 'raid' and not the host hame with :0 appended. Here is the 'sanitized' config entries: DEVICE /dev/sdf1 /dev/sde1 /dev/sdd1 CREATE owner=root group=disk mode=0660 auto=yes HOMEHOST <system> MAILADDR root ARRAY /dev/md0 metadata=1.2 name=tanserv:0 UUID=f1b4084a:720b5712:6d03b9e9:43afe51b Here is the output from mdstat cat /proc/mdstat Personalities : [linear] [multipath] [raid0] [raid1] [raid6] [raid5] [raid4] [raid10] md0 : active raid5 sdd1[0] sdf1[3] sde1[1] 1953517568 blocks super 1.2 level 5, 512k chunk, algorithm 2 [3/3] [UUU] unused devices: <none> fdisk shows the following: fdisk -l Disk /dev/sda: 80.0 GB, 80026361856 bytes 255 heads, 63 sectors/track, 9729 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x000bf62e Device Boot Start End Blocks Id System /dev/sda1 * 1 9443 75846656 83 Linux /dev/sda2 9443 9730 2301953 5 Extended /dev/sda5 9443 9730 2301952 82 Linux swap / Solaris Disk /dev/sdb: 750.2 GB, 750156374016 bytes 255 heads, 63 sectors/track, 91201 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x000de8dd Device Boot Start End Blocks Id System /dev/sdb1 1 91201 732572001 8e Linux LVM Disk /dev/sdc: 500.1 GB, 500107862016 bytes 255 heads, 63 sectors/track, 60801 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00056a17 Device Boot Start End Blocks Id System /dev/sdc1 1 60801 488384001 8e Linux LVM Disk /dev/sdd: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x000ca948 Device Boot Start End Blocks Id System /dev/sdd1 1 121601 976760001 fd Linux raid autodetect Disk /dev/dm-0: 1250.3 GB, 1250254913536 bytes 255 heads, 63 sectors/track, 152001 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00000000 Disk /dev/dm-0 doesn't contain a valid partition table Disk /dev/sde: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x93a66687 Device Boot Start End Blocks Id System /dev/sde1 1 121601 976760001 fd Linux raid autodetect Disk /dev/sdf: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0xe6edc059 Device Boot Start End Blocks Id System /dev/sdf1 1 121601 976760001 fd Linux raid autodetect Disk /dev/md0: 2000.4 GB, 2000401989632 bytes 2 heads, 4 sectors/track, 488379392 cylinders Units = cylinders of 8 * 512 = 4096 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 524288 bytes / 1048576 bytes Disk identifier: 0x00000000 Disk /dev/md0 doesn't contain a valid partition table Per suggestions I did clean up the superblocks and re-created the array with --assume-clean option but with no luck at all. Is there any tool that will help me to revive at least some of the data? Can someone tell me what and how the mdadm --create does when syncs to destroy the data so I can write a tool to un-do whatever was done? After the re-creating of the raid I run fsck.ext4 /dev/md0 and here is the output root@tanserv:/etc/mdadm# fsck.ext4 /dev/md0 e2fsck 1.41.14 (22-Dec-2010) fsck.ext4: Superblock invalid, trying backup blocks... fsck.ext4: Bad magic number in super-block while trying to open /dev/md0 The superblock could not be read or does not describe a correct ext2 filesystem. If the device is valid and it really contains an ext2 filesystem (and not swap or ufs or something else), then the superblock is corrupt, and you might try running e2fsck with an alternate superblock: e2fsck -b 8193 Per Shanes' suggestion I tried root@tanserv:/home/mushegh# mkfs.ext4 -n /dev/md0 mke2fs 1.41.14 (22-Dec-2010) Filesystem label= OS type: Linux Block size=4096 (log=2) Fragment size=4096 (log=2) Stride=128 blocks, Stripe width=256 blocks 122101760 inodes, 488379392 blocks 24418969 blocks (5.00%) reserved for the super user First data block=0 Maximum filesystem blocks=0 14905 block groups 32768 blocks per group, 32768 fragments per group 8192 inodes per group Superblock backups stored on blocks: 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208, 4096000, 7962624, 11239424, 20480000, 23887872, 71663616, 78675968, 102400000, 214990848 and run fsck.ext4 with every backup block but all returned the following: root@tanserv:/home/mushegh# fsck.ext4 -b 214990848 /dev/md0 e2fsck 1.41.14 (22-Dec-2010) fsck.ext4: Invalid argument while trying to open /dev/md0 The superblock could not be read or does not describe a correct ext2 filesystem. If the device is valid and it really contains an ext2 filesystem (and not swap or ufs or something else), then the superblock is corrupt, and you might try running e2fsck with an alternate superblock: e2fsck -b 8193 <device> Any suggestions? Regards!

    Read the article

  • SQL Developer Data Modeler v3.3 Early Adopter: Collaborative Design via Excel?

    - by thatjeffsmith
    As you may have heard last week, we have a new version of Oracle SQL Developer Data Modeler now available as an Early Adopter release. Version 3.3 has quite a few new features and I’ll be previewing them here. Today’s topic is our new Excel integration. It builds off of last week’s lesson: Search, so you may want to go read that first. They say it takes a village to raise a child. I say it takes a team to build a data model. You have your techie folks, your business folks, your in-betweeners, and your database geeks. Who gets to define how customers are represented and stored in your database? That data lives forever, so you better get it right from the beginning, or you’ll be living in a hacker’s paradise for years to come. Lots of good rantings, ravings, and advice on this topic in general on Karen Lopez’s (@datachick) blog. But let’s say you are the primary modeler on a project. You dutifully interview the business folks for their requirements. You sit down and start to model and think you’re pretty close. Now you need someone to confirm your assumptions and provide some feedback. Do you send your model over? Take a screenshot and blow it up on a whiteboard? Export to HTML and let them take a magic marker to their monitors? Or maybe you bite the bullet and install your modeling software on their desktops and take the hours or days required to train them up on how to use the the tool. Wouldn’t it be nice if they could just mark up their corrections in Excel and let you suck the updates back in? This is what we have started to build in Oracle SQL Developer Data Modeler. Let’s say you have a new table called ‘UT_STARTUPS.’ It looks a little something like this: A table in Oracle SQL Developer Data Modeler What I would like to do is have my team or co-worker review how I have defined those columns. Perhaps TIMESTAMP is overkill or maybe the column names themselves aren’t up to snuff. What I am going to do is now search for all the columns in my table, then export that to Excel. So do a search for UT_STARTUPS. Search, filter, then Report With the filter set to ‘Columns,’ if I do a report I’ll be only getting the columns that are resolving to my search term. So as long as my table name is unique in the model, I should get what I’m looking for. Here’s what I see when I click on the Report button: XLS or XLSX, either format is just fine I want to decide how the Column data is exported to Excel though, so I’m going to create a report template that I can use going forward. So click the ‘Manage’ button and setup a new template. I’m going to call mine ‘CollaborativeDevelopment.’ The templates allow me to define what properties are included in the reports. Once this is set, I’ll have the XLS file generated, and get to work Now let the Excel junkies do their stuff Note that not ALL of the report properties are update-able (yes, I made up a new word there) via Excel. We’ll have the full list of properties documented going forward, but in my Excel sheet, note that I can’t change the table name or the data types for the columns. I’m going to update some column names and supply ‘nice’ comments so the database users know what’s what. Here’s my input for the designer/architect/database dude: Be kind, please rew…use comments. Save the file, email it back to your modeler. Update the model from Excel That’s right, it’s a right mouse click from your model in the tree If everything goes right, you’ll see a nice confirmation message: It’s alive! Another to-do item on tap – making this dialog more informative. We’ll be showing exactly what in your model was updated from Excel. Let’s take another look at the model now Voila! Why are we doing this again? The goal is to reduce the number of round-trips from the modeler and the business process owner. One is used to working with Excel – why not allow them to mark up their changes in the tool they already know? This is an early adopter release and I anticipate this feature getting a good bit of tuning up before we release. Why don’t you download 3.3, give it a whirl, and let us know what you think?

    Read the article

  • Webmin / Virtualmin running php as www-data, is locked out of viewing .htaccess and writing

    - by Kirill
    I've asked this on the virtualmin forums, but haven't had any help from there. Recently, "something" happened and it seems that the apache service has gone a bit weird. What it does: it runs all apache traffic as www-data and sometimes spawns the php5-cgi process as www-data, this is a problem because all the domain users own their directories and default permissions don't let www-data write to these folders (file uploads are dead) or read .htaccess (permalinks are broken in wordpress). I've googled this for about a week straight now, tried pretty much everything I could find and achieved nothing. The only thing that I think might actually be the cause of all this is this page: http:// - i.imgur.com/NYW3x.png (got shut down by the spam filter) So I figured if I set it to "default", this might magically start working again, but all it does is "crash" apache (all websites timeout). I figure it's something to do with the "mpm" module or something, but I can't find anything relevant in the settings to modify for it to work. Can someone please point me in the right direction? System info: Webmin version 1.580 Kernel and CPU Linux 2.6.35.4-rscloud on x86_64 Virtualmin version 3.90.gpl GPL Ubuntu 10.04 LTS (Lucid) A couple screenshots of top http://i.imgur.com/U2DTK.png http://i.imgur.com/sNPKs.png

    Read the article

  • Hard drive failed, suspected filesystem corruption, still cannot salvage any data from harddrive

    - by Hippy-Head
    Firstly, I am terribly sorry if this is a duplicate, but I couldn't find a similar issue to mine, so here goes. I have a 1TB hdd bought around 8 months ago used as backup hard drive. I have not used the drive for a period of time whatsoever, and when I was trying to get back to some files on it, it was completely wiped just like that. At first it would not boot I tried everything from command line chkdsk and filesystem recovery software to rebuilt it. After a few attempts I managed to initialize it, at that time it was an achievement. The problems started when I tried to recover the data inside, I have used A LOT of software free and commercial software on both Mac and Windows, with the help of cmd or Terminal commands, however no data of any kind was recovered, even after leaving it thoroughly scan for around 9-10 hours all night sometimes longer, with no results at all. I am somewhat desperate, I am usually good at retrieving data from corrupt hard drives, but this is not the case. Call me paranoid, but I do not want to give it to someone to fix it for me, as I have a lot of photos and personal stuff that I do not want anyone to see.

    Read the article

  • Cross OS data recover question, USB drive involved.

    - by Moshe
    Here's the story: A MacBook had OS X 10.4 and Windows XP dual booting using rEFIt. Then the Windows partition gets corrupted and it won't boot. Presumably a virus. There were sensitive files there and those were successfully copied to a USB drive and then 10.5 was installed on the hard drive, formatting the drive in the process. The USB drive's contacts cracked and he data is lost from there, unless it can be resoldered. The issues is that there is too much solder there already. So, how can the data in question be recovered? The files were Microsoft Money (not the latest version) files for the Windows version of the program. Right now, only OS X is installed on the MacBook. Is there Mac based program that can recover the Windows data or am I better off trying to resolder the drive? Does anyone know how to best resolder a USB drive more than once, where the first solder is ther, but detached from the silicon? Also, what format (extension) are Microsoft Money files? In need of help!

    Read the article

  • Recover NTFS data from a ZFS pool that was exposed as an iSCSI target

    - by David
    This was me being stupid and the data is by no means critical and is now a learning experience first, time saver second. I set up a 100GB iSCSI target via the bare bone instructions in napp-it. It's a volume LU. I then had my Windows 7 machine connect to the iSCSI target, formatted it to NTFS, and tested the performance of it with some large iso file transfers. I then unmapped the drive, reconnected to the target, and was forced to format to NTFS again. It was then I realized the files I had transferred only existed on the iSCSI target. I threw a little fit and then went about my business. When I was cleaning up my experiment I noticed in this screen: http://imgur.com/1xlcu.jpg That is my experimental target tank/iSCSI and it still has a lot of data in it. Assuming my isos are still in this pool how would I go about recovering them? While writing this I used GetDataBackup for NTFS from www.runtime.org. And while it found two previous NTFS partitions there was no data.

    Read the article

  • Share Firefox/Thnderbird data between W7 and Linux Mint 12 in dual boot computer

    - by Albert
    I've just set up my laptop (where I had running only W7) with a dual boot to run Linux Mint 12 as well. I have a "Data" partition (apart from the required partitions for W7 and Linux) where I store pretty much everything that isn't software installations (music, videos, project files, etc). I seem to be able to access that NTFS partition totally fine from Mint (like I've always done with W7), which is cool because I can access all that stuff regardless of which OS I'm using. I would like to know if it's possible (and how) to go one step further and share programs data between the two OS. One example would be my Firefox and Thunderbird data. For example, in Firefox share my bookmarks (and if I could share history, autocomplete and all that stuff, that would be awesome). In thunderbird, be able to share my mail and configuration, seeing the same inbox, folders, message rules, etc... So if I receive/send an email from W7 and later switch to Mint, I can see that email as it had been received/sent from Mint, and vice versa. Is this even possible? Or am I asking for too much convenience? If it's possible, any clues on how to set it all up?

    Read the article

  • Recover data from Dynamic Disk (MBR) bigger than 2TB

    - by Helder
    Here is the situation: Promise Array FastTrak TX4310 with 3 disks (750 GB each) in RAID5. This comes to around 1500 GB of data. Last week I had the idea of expanding the RAID with an additional 750 GB disk. This would bring the volume to around 2250 GB. I plugged the disk and used the Webpam software to do the RAID expansion. However, I didn't count with the MBR 2TB limit, as I didn't remembered that the disk was using MBR instead of GPT and I didn't check it prior to the expansion. After a couple of days of expansion, today when I got home, the disk in Windows disk manager showed the message "Invalid disk" and when I try to activate it, it says "The operation is not allowed on the Invalid pack". From what I figured, the logical volume on the RAID expanded, and passed that info to the Windows layer and I ended up with an "larger than 2TB" MBR disk. I'm hopping that somehow I can still recover some data from this, and I was wondering if I can "rewrite" the MBR structure back to the 1500 GB partition size, so I can access the partition in Windows. Right now I'm doing an "Analyse" with TestDisk, as I hope the program will pickup the old 1500 structure and allow me to somehow revert back to it. I think that even though the Logical Drive in the RAID is bigger than the 2TB, I can somehow correct the MBR to show the 1500 GB partition again. I had a similar problem once, and I was able to recover the data using a similar method. What do you guys think? Is it a dead end? Am I totally screwed because there is the extra RAID layer that I'm not counting? Or is there other way to move with this? Thanks all!

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • Subset a data.frame by list and apply function on each part, by rows

    - by aL3xa
    This may seem as a typical plyr problem, but I have something different in mind. Here's the function that I want to optimize (skip the for loop). # dummy data set.seed(1985) lst <- list(a=1:10, b=11:15, c=16:20) m <- matrix(round(runif(200, 1, 7)), 10) m <- as.data.frame(m) dfsub <- function(dt, lst, fun) { # check whether dt is `data.frame` stopifnot (is.data.frame(dt)) # check if vectors in lst are "whole" / integer # vector elements should be column indexes is.wholenumber <- function(x, tol = .Machine$double.eps^0.5) abs(x - round(x)) < tol # fall if any non-integers in list idx <- rapply(lst, is.wholenumber) stopifnot(idx) # check for list length stopifnot(ncol(dt) == length(idx)) # subset the data subs <- list() for (i in 1:length(lst)) { # apply function on each part, by row subs[[i]] <- apply(dt[ , lst[[i]]], 1, fun) } # preserve names names(subs) <- names(lst) # convert to data.frame subs <- as.data.frame(subs) # guess what =) return(subs) } And now a short demonstration... actually, I'm about to explain what I primarily intended to do. I wanted to subset a data.frame by vectors gathered in list object. Since this is a part of code from a function that accompanies data manipulation in psychological research, you can consider m as a results from personality questionnaire (10 subjects, 20 vars). Vectors in list hold column indexes that define questionnaire subscales (e.g. personality traits). Each subscale is defined by several items (columns in data.frame). If we presuppose that the score on each subscale is nothing more than sum (or some other function) of row values (results on that part of questionnaire for each subject), you could run: > dfsub(m, lst, sum) a b c 1 46 20 24 2 41 24 21 3 41 13 12 4 37 14 18 5 57 18 25 6 27 18 18 7 28 17 20 8 31 18 23 9 38 14 15 10 41 14 22 I took a glance at this function and I must admit that this little loop isn't spoiling the code at all... BUT, if there's an easier/efficient way of doing this, please, let me know!

    Read the article

  • Core Data migration of to-one relationship to to-many relationship

    - by westsider
    I have a deployed app that samples measurements from sensors (e.g., Temp °C, Pressure kPa). The user can create Experiments and collect samples. Each sample is stored as a Run, such that there is a one-to-many relationship from Experiment to Run. In the interest of performance, Run has a to-one relationship with Data entity (which is where the actual raw data is stored); this allows some Run attributes to be loaded without necessarily loading lots of data. Most of our sensors have multiple measurements, so it would be nice to store all the data that is actually being sampled. But this means that the Run <--- Data relationship needs to become Run <-- Data (to use Xcode's convention). I am faced with trying to migrate data from old Run to-one Data model to new Run to-many Data model. Can this be done using Mapping Models? If so, does anyone have any pointers to examples? If not, does anyone have any pointers to examples of how to do that? Thanks for any pointers or advice.

    Read the article

  • Reduce ERP Consolidation Risks with Oracle Master Data Management

    - by Dain C. Hansen
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Reducing the Risk of ERP Consolidation starts first and foremost with your Data.This is nothing new; companies with multiple misaligned ERP systems are often putting inordinate risk on their business. It can translate to too much inventory, long lead times, and shipping issues from poorly organized and specified goods. And don’t forget the finance side! When goods are shipped and promises are kept/not kept there’s the issue of accounts. No single chart of counts translates to no accountability. So – I’ve decided. I need to consolidate! Well, you can’t consolidate ERP applications [for that matter any of your applications] without first considering your data. This means looking at how your data is being integrated by these ERP systems, how it is being synchronized, what information is being shared, or not being shared. Most importantly, making sure that the data is mastered. What is the best way to do this? In the recent webcast: Reduce ERP consolidation Risks with Oracle Master Data Management we outlined 3 key guidelines: #1: Consolidate your Product Data#2: Consolidate your Customer, Supplier (Party Data) #3: Consolidate your Financial Data Together these help customers achieve reduced risk, better customer intimacy, reducing inventory levels, elimination of product variations, and finally a single master chart of accounts. In the case of Oracle's customer Zebra Technologies, they were able to consolidate over 140 applications by mastering their data. Ultimately this gave them 60% cost savings for the year on IT spend. Oracle’s Solution for ERP Consolidation: Master Data Management Oracle's enterprise master data management (MDM) can play a big role in ERP consolidation. It includes a set of products that consolidates and maintains complete, accurate, and authoritative master data across the enterprise and distributes this master information to all operational and analytical applications as a shared service. It’s optimized to work with any application source (not just Oracle’s) and can integrate using technology from Oracle Fusion Middleware (i.e. GoldenGate for data synchronization and real-time replication or ODI with its E-LT optimized bulk data and transformation capability). In addition especially for ERP consolidation use cases it’s important to leverage the AIA and SOA capabilities as part of Fusion Middleware to connect these multiple applications together and relay the data into the correct hub. Oracle’s MDM strategy is a unique offering in the industry, one that has common elements across the top and bottom in Middleware, BI/DW, Engineered systems combined with Enterprise Data Quality to enable comprehensive Data Governance at all levels. In addition, Oracle MDM provides the best-in-class capabilities to master all variations of data, including customer, supplier, product, financial data. But ultimately at the center of Oracle MDM is your data, making it more trusted, making it secure and accessible as part of a role-based approach, and getting it to make sense to you in any situation, whether it’s a specific ERP process like we talked about or something that is custom to your organization. To learn more about these techniques in ERP consolidation watch our webcast or goto our Oracle MDM website at www.oracle.com/goto/mdm

    Read the article

  • documentFragment.cloneNode(true) doesn't clone jQuery data

    - by taber
    I have a documentFragment with several child nodes containing some .data() added like so: myDocumentFragment = document.createDocumentFragment(); for(...) { myDocumentFragment.appendChild( $('').addClass('button') .attr('href', 'javascript:void(0)') .html('click me') .data('rowData', { 'id': 103, 'test': 'testy' }) .get(0) ); } When I try to append the documentFragment to a div on the page: $('#div').append( myDocumentFragment ); I can access the data just fine: alert( $('#div a:first').data('rowData').id ); // alerts '103' But if I clone the node with cloneNode(true), I can't access the node's data. :( $('#div').append( myDocumentFragment.cloneNode(true) ); ... alert( $('#div a:first').data('rowData').id ); // alerts undefined Has anyone else done this or know of a workaround? I guess I could store the row's data in jQuery.data('#some_random_parent_div', 'rows', [array of ids]), but that kinda defeats the purpose of making the data immediately/easily available to each row. I've also read that jQuery uses documentFragments, but I'm not sure exactly how, or in what methods. Does anyone have any more details there? Thanks!

    Read the article

  • Using the Script Component as a Conditional Split

    This is a quick walk through on how you can use the Script Component to perform Conditional Split like behaviour, splitting your data across multiple outputs. We will use C# code to decide what does flows to which output, rather than the expression syntax of the Conditional Split transformation. Start by setting up the source. For my example the source is a list of SQL objects from sys.objects, just a quick way to get some data: SELECT type, name FROM sys.objects type name S syssoftobjrefs F FK_Message_Page U Conference IT queue_messages_23007163 Shown above is a small sample of the data you could expect to see. Once you have setup your source, add the Script Component, selecting Transformation when prompted for the type, and connect it up to the source. Now open the component, but don’t dive into the script just yet. First we need to select some columns. Select the Input Columns page and then select the columns we want to uses as part of our filter logic. You don’t need to choose columns that you may want later, this is just the columns used in the script itself. Next we need to add our outputs. Select the Inputs and Outputs page.You get one by default, but we need to add some more, it wouldn’t be much of a split otherwise. For this example we’ll add just one more. Click the Add Output button, and you’ll see a new output is added. Now we need to set some properties, so make sure our new Output 1 is selected. In the properties grid change the SynchronousInputID property to be our input Input 0, and  change the ExclusionGroup property to 1. Now select Ouput 0 and change the ExclusionGroup property to 2. This value itself isn’t important, provided each output has a different value other than zero. By setting this property on both outputs it allows us to split the data down one or the other, making each exclusive. If we left it to 0, that output would get all the rows. It can be a useful feature allowing you to copy selected rows to one output whilst retraining the full set of data in the other. Now we can go back to the Script page and start writing some code. For the example we will do a very simple test, if the value of the type column is U, for user table, then it goes down the first output, otherwise it ends up in the other. This mimics the exclusive behaviour of the conditional split transformation. public override void Input0_ProcessInputRow(Input0Buffer Row) { // Filter all user tables to the first output, // the remaining objects down the other if (Row.type.Trim() == "U") { Row.DirectRowToOutput0(); } else { Row.DirectRowToOutput1(); } } The code itself is very simple, a basic if clause that determines which of the DirectRowToOutput methods we call, there is one for each output. Of course you could write a lot more code to implement some very complex logic, but the final direction is still just a method call. If we now close the script component, we can hook up the outputs and test the package. Your numbers will vary depending on the sample database but as you can see we have clearly split out input data into two outputs. As a final tip, when adding the outputs I would normally rename them, changing the Name in the Properties grid. This means the generated methods follow the pattern as do the path label shown on the design surface, making everything that much easier to recognise.

    Read the article

  • "Pattern matching" of algebraic type data constructors

    - by jetxee
    Let's consider a data type with many constructors: data T = Alpha Int | Beta Int | Gamma Int Int | Delta Int I want to write a function to check if two values are produced with the same constructor: sameK (Alpha _) (Alpha _) = True sameK (Beta _) (Beta _) = True sameK (Gamma _ _) (Gamma _ _) = True sameK _ _ = False Maintaining sameK is not much fun, it is potentially buggy. For example, when new constructors are added to T, it's easy to forget to update sameK. I omitted one line to give an example: -- it’s easy to forget: -- sameK (Delta _) (Delta _) = True The question is how to avoid boilerplate in sameK? Or how to make sure it checks for all T constructors? The workaround I found is to use separate data types for each of the constructors, deriving Data.Typeable, and declaring a common type class, but I don't like this solution, because it is much less readable and otherwise just a simple algebraic type works for me: {-# LANGUAGE DeriveDataTypeable #-} import Data.Typeable class Tlike t where value :: t -> t value = id data Alpha = Alpha Int deriving Typeable data Beta = Beta Int deriving Typeable data Gamma = Gamma Int Int deriving Typeable data Delta = Delta Int deriving Typeable instance Tlike Alpha instance Tlike Beta instance Tlike Gamma instance Tlike Delta sameK :: (Tlike t, Typeable t, Tlike t', Typeable t') => t -> t' -> Bool sameK a b = typeOf a == typeOf b

    Read the article

  • Passing data between ViewControllers versus doing local Fetch in each VC

    - by Tofrizer
    Hi All, I'm developing an iPhone app using Core Data and I'm looking for some general advice and recommendations on whether its acceptable to pass data between ViewControllers versus doing a local fetch in each ViewController as you navigate to it. Ordinarily I would say it all depends on various factors (e.g. performance etc) but the passing data approach is so prevalent in my app and I'm spooked by all the stories about Apple rejecting apps because of not conforming to their standard guidelines. So let me put another way -- is it non-standard to pass data between VC's? The reason I pass data so much is because each ViewController is just another view on to data present in my object model / graph. Once I have a handle on my first object in the first view controller (which I of course do have to fetch), I can use the existing object composition / relationships to drill down into the next level of detail into data and so I just pass these objects to the next VC. Separately, one possible downside with this passing-data-to-each-VC approach is I don't benefit from (what I perceive to be) the optimisation/benefits that NSFetchedResultsController provides in terms of efficient memory usage and section handling. My app is read-only but I do have one table with 5000 rows and I'm curious if I am missing out on NSFetchedResultsController benefits. Any thoughts on this as well? Can I somehow still benefit from NSFetchedResultsController goodness without having to do a full fetch (as I would have already passed in the data from my previous VC)? Thanks a lot.

    Read the article

  • How would you mask data returned in a Dynamic Data for Entities website?

    - by David Stratton
    I'm doing this in Visual Studio 2008, not 2010, in case there is a relevant difference between the two versions of the Dynamic Data websites. How would I mask data in the automatically generated tables in a Dynamic Data for Entities website? The scenario is we have one table where we want to allow users to ENTER sensitive data, but not VIEW sensitive data, so... (In the list below, I'm using "template" to mean "The web page generated automatically based on the schema and action. I'm sure that's the wrong terminology, but the meaning should be clear.) The "Insert" template should have the field's textbox available for the user to type a value in. The "Edit" template should have the field's textbox blanked out (empty string) regardless of what was in the field in the database in the first place, but the user should be able to type in new data and have it save The "View" template should either have the data for this field masked, or non-visible. The auto-generated table showing the list of records should also have this field masked or non-visible. I can do this easily with standard Web Forms, but I'm having a hard time figuring this out in the Dynamic Data site I'm working on. Masking data is such a common task, I have to believe Microsoft thought of this and provided a way to do it...

    Read the article

  • Faster Trip to Innovation with Simplified Data Integration: Sabre Holdings Case Study

    - by Tanu Sood
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Author: Irem Radzik, Director of Product Marketing, Data Integration, Oracle In today’s fast-paced, competitive environment, IT teams are under pressure to deliver technology solutions for many critical business initiatives as fast as possible. When the focus is on speed, it can be easy to continue to use old style, point-to-point custom scripts that grow organically to the point where they are unmanageable and too costly to maintain. As data volumes, data sources, and end users grow, uncoordinated data integration efforts create significant inefficiencies for both IT and business users. In addition to losing IT productivity due to maintaining spaghetti architecture, data integrity becomes a concern as well. Errors caused by inconsistent, data and manual data entry can prove very costly for companies and disrupt business activities. Many industry leaders recognize now that data should be moved in an automated and reliable manner across all platforms to have one version of the truth. By simplifying their data integration architecture and standardizing on a centralized approach, IT teams now accelerate time to market. Especially, using a centralized, shared-service approach brings agility, increases IT productivity, and frees up resources for innovation. One such industry leader that simplified its data integration architecture is Sabre Holdings. Sabre Holdings provides distribution and technology solutions for the travel industry, and is a winner of Oracle Excellence Awards for Fusion Middleware in 2011 in the data integration category. I had the pleasure to host Sabre Holdings on a public webcast and discuss their data integration best practices for data warehousing. In this webcast Sabre’s Amjad Saeed, presented how the company reduced complexity by consolidating systems and standardizing development on Oracle Data Integrator and Oracle GoldenGate for its global data warehouse development team. With Oracle’s complete real-time data integration solution, Sabre also streamlined support and maintenance operations, achieved real-time view in the execution of the integration processes, and can manage the data warehouse and business intelligence solution performance on demand. By reducing complexity and leveraging timely market insights, the company was able to decrease time to market by 40%. You can now listen to the webcast on demand: Sabre Holdings Case Study: Accelerating Innovation using Oracle Data Integration I invite you to hear directly from Sabre how to use advanced data integration capabilities to enable accelerated innovation. To learn more about Oracle’s data integration offering you can download our free resources.

    Read the article

  • java: libraries for immutable functional-style data structures

    - by Jason S
    This is very similar to another question (Functional Data Structures in Java) but the answers there are not particularly useful. I need to use immutable versions of the standard Java collections (e.g. HashMap / TreeMap / ArrayList / LinkedList / HashSet / TreeSet). By "immutable" I mean immutable in the functional sense (e.g. purely functional data structures), where updating operations on the data structure do not change the original data, but instead return a new instance of the same kind of data structure. Also typically new and old instances of the data structure will share immutable data to be efficient in time and space. From what I can tell my options include: Functional Java Scala Clojure but I'm not sure whether any of these are particularly appealing to me. I have a few requirements/desirements: the collections in question should be usable directly in Java (with the appropriate libraries in the classpath). FJ would work for me; I'm not sure if I can use Scala's or Clojure's data structures in Java w/o having to use the compilers/interpreters from those languages and w/o having to write Scala or Clojure code. Core operations on lists/maps/sets should be possible w/o having to create function objects with confusing syntaxes (FJ looks slightly iffy) They should be efficient in time and space. I'm looking for a library which ideally has done some performance testing. FJ's TreeMap is based on a red-black tree, not sure how that rates. Documentation / tutorials should be good enough so someone can get started quickly using the data structures. FJ fails on that front. Any suggestions?

    Read the article

  • Cover flow model screen adjust in iphone

    - by abdulsamad
    Hi All, Below is the link for making the cover flow model in iphone. This is a sample tutorial. http://www.chaosinmotion.com/flowcover.m Can any one tell me how can i make the cover flow model to adjust some where up on the screen. Currently it is in the centre of the screen i want if about 70 to 80pixels to move up in the screen. Your help will be highly appreciated.

    Read the article

  • Cover flow model in iphone

    - by abdulsamad
    I am making the cover flow model on the iPhone using the tutorial found here: http://www.chaosinmotion.com/flowcover.m I want to move the cover flow animation up in the screen at height of about 150, but when I change the starting y point of the rectangle, then my image is cut off from the top. How can I prevent this?

    Read the article

  • Flow charts and algorithms

    - by Dave
    Hello there, I am from a networking background and completely new to algorithm and flow charts, so could you please assist me with the following? Draw flow charts for the following algorithmss: State whether a number entered at the keyboard is even or odd. Calculate the mean of a five numbers entered by the user from the keyboard Count the number of characters and the number of words that are in a text file Many thanks in advance!

    Read the article

< Previous Page | 22 23 24 25 26 27 28 29 30 31 32 33  | Next Page >