Search Results

Search found 13308 results on 533 pages for 'dynamic loading'.

Page 26/533 | < Previous Page | 22 23 24 25 26 27 28 29 30 31 32 33  | Next Page >

  • Rails - Dynamic name routes namespace

    - by Kuro
    Hi, Using Rails 2.3, I'm trying to configure my routes but I uncounter some difficulties. I would like to have something like : http:// mydomain.com/mycontroller/myaction/myid That should respond with controllers in :front namespace http:// mydomain.com/aname/mycontroller/myaction/mydi That should respond with controllers in :custom namespace I try something like this, but I'm totaly wrong : map.namespace :front, :path_prefix => "" do |f| f.root :controller => :home, :action => :index f.resources :home ... end map.namespace :custom, :path_prefix => "" do |m| m.root :controller => :home, :action => :index m.resources :home ... m.match ':sub_url/site/:controller/:action/:id' m.match ':sub_url/site/:controller/:action/:id' m.match ':sub_url/site/:controller/:action/:id.:format' m.match ':sub_url/site/:controller/:action.:format' end I put matching instruction in custom namespace but I'm not sure it's the right place for it. I think I really don't get the way to customize fields in url matching and I don't know how to find documentation about Rails 2.3, most of my research drove me to Rails 3 doc about the topic... Somebody to help me ?

    Read the article

  • Dynamic columns in C# rdlc report

    - by Mugume David
    Suppose I have a report that lists employees (as rows) with their respective taxes charged (in columns). It is possible for a new tax to come up. Since my rdlc report file is currently designed (from XML of-course) to statically generate the coulumns. A future shift in events will need me to alter the rdlc file and add in a new column. how can i do this dynamically. I intend to avoid opening the rdlc file and adding XML code.

    Read the article

  • how to create a dynamic class at runtime in Java

    - by Mrityunjay
    hi, is it possible to create a new java file from existing java file after changing some of its attributes at runtime?? Suppose i have a java file pubic class Student{ private int rollNo; private String name; // getters and setters // constructor } is it possible to create something like this, provided that rollNo is key element for the table.. public class Student { private StudentKey key; private String name; //getters and setters //constructor } public class StudentKey { private int rollNo; // getters and setters // construcotors } please help..

    Read the article

  • C++ dynamic array sizing problem

    - by Peter
    The basic pseudo code looks like this: void myFunction() { int size = 10; int * MyArray; MyArray = new int[size]; cout << size << endl; cout << sizeof(MyArray) << endl; } The first cout returns 10, as expected, while the second cout returns 4. Anyone have an explanation?

    Read the article

  • Dynamic SQL and Funtions

    - by Unlimited071
    Hi all, is there any way of accomplishing something like the following: CREATE FUNCTION GetQtyFromID ( @oricod varchar(15), @ccocod varchar(15), @ocmnum int, @oinnum int, @acmnum int, @acttip char(2), @unisim varchar(15) ) AS BEGIN DECLARE @Result decimal(18,8) DECLARE @SQLString nvarchar(max); DECLARE @ParmDefinition nvarchar(max); --I need to execute a query stored in a cell which returns the calculated qty. --i.e of AcuQry: select @cant = sum(smt) from table where oricod = @oricod and ... SELECT @SQLString = AcuQry FROM OinActUni WHERE (OriCod = @oricod) AND (ActTipCod = @acttip) AND (UniSim = @unisim) AND (AcuEst > 0) SET @ParmDefinition = N' @oricod varchar(15), @ccocod varchar(15), @ocmnum int, @oinnum int, @acmnum int, @cant decimal(18,8) output'; EXECUTE sp_executesql @SQLString, @ParmDefinition, @oricod = @oricod, @ccocod = @ccocod, @ocmnum = @ocmnum, @oinnum = @oinnum, @acmnum = @acmnum, @cant = @result OUTPUT; RETURN @Result END The problem with this approach is that it is prohibited to execute sp_excutesql in a function... What I need is to do something like: select id, getQtyFromID(id) as qty from table The main idea is to execute a query stored in a table cell, this is because the qty of something depends on it's unit. the unit can be days or it can be metric tons, so there is no relation between the units, therefore the need of a specific query for each unit.

    Read the article

  • Dynamic programming Approach- Knapsack Puzzle

    - by idalsin
    I'm trying to solve the Knapsack problem with the dynamical programming(DP) approach, with Python 3.x. My TA pointed us towards this code for a head start. I've tried to implement it, as below: def take_input(infile): f_open = open(infile, 'r') lines = [] for line in f_open: lines.append(line.strip()) f_open.close() return lines def create_list(jewel_lines): #turns the jewels into a list of lists jewels_list = [] for x in jewel_lines: weight = x.split()[0] value = x.split()[1] jewels_list.append((int(value), int(weight))) jewels_list = sorted(jewels_list, key = lambda x : (-x[0], x[1])) return jewels_list def dynamic_grab(items, max_weight): table = [[0 for weight in range(max_weight+1)] for j in range(len(items)+1)] for j in range(1,len(items)+1): val= items[j-1][0] wt= items[j-1][1] for weight in range(1, max_weight+1): if wt > weight: table[j][weight] = table[j-1][weight] else: table[j][weight] = max(table[j-1][weight],table[j-1][weight-wt] + val) result = [] weight = max_weight for j in range(len(items),0,-1): was_added = table[j][weight] != table[j-1][weight] if was_added: val = items[j-1][0] wt = items[j-1][1] result.append(items[j-1]) weight -= wt return result def totalvalue(comb): #total of a combo of items totwt = totval = 0 for val, wt in comb: totwt += wt totval += val return (totval, -totwt) if totwt <= max_weight else (0,0) #required setup of variables infile = "JT_test1.txt" given_input = take_input(infile) max_weight = int(given_input[0]) given_input.pop(0) jewels_list = create_list(given_input) #test lines print(jewels_list) print(greedy_grab(jewels_list, max_weight)) bagged = dynamic_grab(jewels_list, max_weight) print(totalvalue(bagged)) The sample case is below. It is in the format line[0] = bag_max, line[1:] is in form(weight, value): 575 125 3000 50 100 500 6000 25 30 I'm confused as to the logic of this code in that it returns me a tuple and I'm not sure what the output tuple represents. I've been looking at this for a while and just don't understand what the code is pointing me at. Any help would be appreciated.

    Read the article

  • Managing many draw calls for dynamic objects

    - by codetiger
    We are developing a game (cross-platform) using Irrlicht. The game has many (around 200 - 500) dynamic objects flying around during the game. Most of these objects are static mesh and build from 20 - 50 unique Meshes. We created seperate scenenodes for each object and referring its mesh instance. But the output was very much unexpected. Menu screen: (150 tris - Just to show you the full speed rendering performance of 2 test computers) a) NVidia Quadro FX 3800 with 1GB: 1600 FPS DirectX and 2600 FPS on OpenGL b) Mac Mini with Geforce 9400M 256mb: 260 FPS in OpenGL Now inside the game in a test level: (160 dynamic objects counting around 10K tris): a) NVidia Quadro FX 3800 with 1GB: 45 FPS DirectX and 50 FPS on OpenGL b) Mac Mini with Geforce 9400M 256mb: 45 FPS in OpenGL Obviously we don't have the option of mesh batch rendering as most of the objects are dynamic. And the one big static terrain is already in single mesh buffer. To add more information, we use one 2048 png for texture for most of the dynamic objects. And our collision detection hardly and other calculations hardly make any impact on FPS. So we understood its the draw calls we make that eats up all FPS. Is there a way we can optimize the rendering, or are we missing something?

    Read the article

  • E_FAIL: An undetermined error occurred (-2147467259) when loading a cube texture

    - by Boreal
    I'm trying to implement a skybox into my engine, and I'm having some trouble loading the image as a cube map. Everything works (but it doesn't look right) if I don't load using an ImageLoadInformation struct in the ShaderResourceView.FromFile() method, but it breaks if I do. I need to, of course, because I need to tell SlimDX to load it as a cubemap. How can I fix this? Here is my new loading code after the "fix": public static void LoadCubeTexture(string filename) { ImageLoadInformation loadInfo = new ImageLoadInformation() { BindFlags = BindFlags.ShaderResource, CpuAccessFlags = CpuAccessFlags.None, Depth = 32, FilterFlags = FilterFlags.None, FirstMipLevel = 0, Format = SlimDX.DXGI.Format.B8G8R8A8_UNorm, Height = 512, MipFilterFlags = FilterFlags.Linear, MipLevels = 1, OptionFlags = ResourceOptionFlags.TextureCube, Usage = ResourceUsage.Default, Width = 512 }; textures.Add(filename, ShaderResourceView.FromFile(Graphics.device, "Resources/" + filename, loadInfo)); } Each of the faces of my cube texture are 512x512.

    Read the article

  • E_INVALIDARG: An invalid parameter was passed to the returning function (-2147024809) when loading a cube texture

    - by Boreal
    I'm trying to implement a skybox into my engine, and I'm having some trouble loading the image as a cube map. Everything works (but it doesn't look right) if I don't load using an ImageLoadInformation struct in the ShaderResourceView.FromFile() method, but it breaks if I do. I need to, of course, because I need to tell SlimDX to load it as a cubemap. How can I fix this? Here is my new loading code after the "fix": public static void LoadCubeTexture(string filename) { ImageLoadInformation loadInfo = ImageLoadInformation.FromDefaults(); loadInfo.OptionFlags = ResourceOptionFlags.TextureCube; textures.Add(filename, ShaderResourceView.FromFile(Graphics.device, "Resources/" + filename, loadInfo)); }

    Read the article

  • Parallel Classloading Revisited: Fully Concurrent Loading

    - by davidholmes
    Java 7 introduced support for parallel classloading. A description of that project and its goals can be found here: http://openjdk.java.net/groups/core-libs/ClassLoaderProposal.html The solution for parallel classloading was to add to each class loader a ConcurrentHashMap, referenced through a new field, parallelLockMap. This contains a mapping from class names to Objects to use as a classloading lock for that class name. This was then used in the following way: protected Class loadClass(String name, boolean resolve) throws ClassNotFoundException { synchronized (getClassLoadingLock(name)) { // First, check if the class has already been loaded Class c = findLoadedClass(name); if (c == null) { long t0 = System.nanoTime(); try { if (parent != null) { c = parent.loadClass(name, false); } else { c = findBootstrapClassOrNull(name); } } catch (ClassNotFoundException e) { // ClassNotFoundException thrown if class not found // from the non-null parent class loader } if (c == null) { // If still not found, then invoke findClass in order // to find the class. long t1 = System.nanoTime(); c = findClass(name); // this is the defining class loader; record the stats sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0); sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1); sun.misc.PerfCounter.getFindClasses().increment(); } } if (resolve) { resolveClass(c); } return c; } } Where getClassLoadingLock simply does: protected Object getClassLoadingLock(String className) { Object lock = this; if (parallelLockMap != null) { Object newLock = new Object(); lock = parallelLockMap.putIfAbsent(className, newLock); if (lock == null) { lock = newLock; } } return lock; } This approach is very inefficient in terms of the space used per map and the number of maps. First, there is a map per-classloader. As per the code above under normal delegation the current classloader creates and acquires a lock for the given class, checks if it is already loaded, then asks its parent to load it; the parent in turn creates another lock in its own map, checks if the class is already loaded and then delegates to its parent and so on till the boot loader is invoked for which there is no map and no lock. So even in the simplest of applications, you will have two maps (in the system and extensions loaders) for every class that has to be loaded transitively from the application's main class. If you knew before hand which loader would actually load the class the locking would only need to be performed in that loader. As it stands the locking is completely unnecessary for all classes loaded by the boot loader. Secondly, once loading has completed and findClass will return the class, the lock and the map entry is completely unnecessary. But as it stands, the lock objects and their associated entries are never removed from the map. It is worth understanding exactly what the locking is intended to achieve, as this will help us understand potential remedies to the above inefficiencies. Given this is the support for parallel classloading, the class loader itself is unlikely to need to guard against concurrent load attempts - and if that were not the case it is likely that the classloader would need a different means to protect itself rather than a lock per class. Ultimately when a class file is located and the class has to be loaded, defineClass is called which calls into the VM - the VM does not require any locking at the Java level and uses its own mutexes for guarding its internal data structures (such as the system dictionary). The classloader locking is primarily needed to address the following situation: if two threads attempt to load the same class, one will initiate the request through the appropriate loader and eventually cause defineClass to be invoked. Meanwhile the second attempt will block trying to acquire the lock. Once the class is loaded the first thread will release the lock, allowing the second to acquire it. The second thread then sees that the class has now been loaded and will return that class. Neither thread can tell which did the loading and they both continue successfully. Consider if no lock was acquired in the classloader. Both threads will eventually locate the file for the class, read in the bytecodes and call defineClass to actually load the class. In this case the first to call defineClass will succeed, while the second will encounter an exception due to an attempted redefinition of an existing class. It is solely for this error condition that the lock has to be used. (Note that parallel capable classloaders should not need to be doing old deadlock-avoidance tricks like doing a wait() on the lock object\!). There are a number of obvious things we can try to solve this problem and they basically take three forms: Remove the need for locking. This might be achieved by having a new version of defineClass which acts like defineClassIfNotPresent - simply returning an existing Class rather than triggering an exception. Increase the coarseness of locking to reduce the number of lock objects and/or maps. For example, using a single shared lockMap instead of a per-loader lockMap. Reduce the lifetime of lock objects so that entries are removed from the map when no longer needed (eg remove after loading, use weak references to the lock objects and cleanup the map periodically). There are pros and cons to each of these approaches. Unfortunately a significant "con" is that the API introduced in Java 7 to support parallel classloading has essentially mandated that these locks do in fact exist, and they are accessible to the application code (indirectly through the classloader if it exposes them - which a custom loader might do - and regardless they are accessible to custom classloaders). So while we can reason that we could do parallel classloading with no locking, we can not implement this without breaking the specification for parallel classloading that was put in place for Java 7. Similarly we might reason that we can remove a mapping (and the lock object) because the class is already loaded, but this would again violate the specification because it can be reasoned that the following assertion should hold true: Object lock1 = loader.getClassLoadingLock(name); loader.loadClass(name); Object lock2 = loader.getClassLoadingLock(name); assert lock1 == lock2; Without modifying the specification, or at least doing some creative wordsmithing on it, options 1 and 3 are precluded. Even then there are caveats, for example if findLoadedClass is not atomic with respect to defineClass, then you can have concurrent calls to findLoadedClass from different threads and that could be expensive (this is also an argument against moving findLoadedClass outside the locked region - it may speed up the common case where the class is already loaded, but the cost of re-executing after acquiring the lock could be prohibitive. Even option 2 might need some wordsmithing on the specification because the specification for getClassLoadingLock states "returns a dedicated object associated with the specified class name". The question is, what does "dedicated" mean here? Does it mean unique in the sense that the returned object is only associated with the given class in the current loader? Or can the object actually guard loading of multiple classes, possibly across different class loaders? So it seems that changing the specification will be inevitable if we wish to do something here. In which case lets go for something that more cleanly defines what we want to be doing: fully concurrent class-loading. Note: defineClassIfNotPresent is already implemented in the VM as find_or_define_class. It is only used if the AllowParallelDefineClass flag is set. This gives us an easy hook into existing VM mechanics. Proposal: Fully Concurrent ClassLoaders The proposal is that we expand on the notion of a parallel capable class loader and define a "fully concurrent parallel capable class loader" or fully concurrent loader, for short. A fully concurrent loader uses no synchronization in loadClass and the VM uses the "parallel define class" mechanism. For a fully concurrent loader getClassLoadingLock() can return null (or perhaps not - it doesn't matter as we won't use the result anyway). At present we have not made any changes to this method. All the parallel capable JDK classloaders become fully concurrent loaders. This doesn't require any code re-design as none of the mechanisms implemented rely on the per-name locking provided by the parallelLockMap. This seems to give us a path to remove all locking at the Java level during classloading, while retaining full compatibility with Java 7 parallel capable loaders. Fully concurrent loaders will still encounter the performance penalty associated with concurrent attempts to find and prepare a class's bytecode for definition by the VM. What this penalty is depends on the number of concurrent load attempts possible (a function of the number of threads and the application logic, and dependent on the number of processors), and the costs associated with finding and preparing the bytecodes. This obviously has to be measured across a range of applications. Preliminary webrevs: http://cr.openjdk.java.net/~dholmes/concurrent-loaders/webrev.hotspot/ http://cr.openjdk.java.net/~dholmes/concurrent-loaders/webrev.jdk/ Please direct all comments to the mailing list [email protected].

    Read the article

  • Problem in Loading certain Websites in Ubuntu 11.10

    - by Cody
    I have a DSL connection in Ubuntu 11.04 and am having problems loading content from certain websites mostly providing CDN services. I have tried every suggestion asked at problem loading internet pages as I have the same problem. Also tried to remove the DNS Cache and Browser Cache. I have tried using Google DNS Server: 8.8.8.8 and 8.8.4.4, but nothing seems to work. Though when I browse the websites in Windows XP then it does not pose any problem. This problem has come up only few days ago and has affected every browser(Chrome, Firefox and Opera) in Ubuntu 11.04. Thanks in advance.

    Read the article

  • Explicit resource loading in Ogre (Mogre)

    - by sebf
    I am just starting to learn Mogre and what I would like to do is to be able to load resources 'explicitly' (i.e. I just provide an absolute path instead of using a resource group tied to a directory). This is very different to manually loading resources, which I believe in Ogre has a very specific meaning, to build up the object using Ogres methods. I want to use Ogres resource management system/resource loading code, but to have finer control over which files are loaded and in what groups they are. I remember reading how to do this but cannot find the page again; I think its possible to do something like: Declare a resource group Declare the resource(s) (this is when the actual resource file name is provided) Initialise the resource group to actually load the resource(s) Is this the correct procedure? If so, is there any example code showing how to do this?

    Read the article

  • My ubuntu with unity not loading after last reboot

    - by Abonec
    I have asus u36sd and after last reboot I can't start up my ubuntu 11.10. Usually I suspend my notebook by closing cover but today I reboot it and it not starting up. Booting flowing by normal till to login screen but if I move mouse cursor after that image immediately switch to console (without any error; only normal loading startup processes) and back to login screen. I can type my password and boot continuing loading but after few moment it again switch back to dark console and switch again to login screen. I can load recovery mode but if I try touch my cursor (by mouse or internal notebook touchpad) it again switch back to console and to login screen. But if I use only keyboard it work fine. Where I can see detailed log information about my problem?

    Read the article

  • Xubuntu keeps loading on install with usb stick

    - by mattyh88
    I'm trying to install Xubuntu on my computer. I've followed a guide to create a USB bootable drive. I've inserted the USB stick and started the computer. I can see Xubuntu loading and after a minute or 2 it shows me a screen asking me if I'd like to use the live version or if I'd like to install. I choose install. Then on the next screen I select English as language. When I click continue, Xubuntu just keeps loading. It doesn't really freeze as I can still quit and move the cursor. When I clicked quit, I see the live version and all is working just fine. I can browse the internet, etc. What could be wrong?

    Read the article

  • Loading Texture2D is extremly slow on XBOX360

    - by AvrDragon
    I have ~100 sprites for each level im my XNA game. On windows it takes ~2 seconds to load them all. Unfortunately on XBOX360 it takes ~30-60 seconds. Am i doing something wrong? Essentially the loading code ist just like this: Texture2D sprite1 = levelContent.Load<Texture2D>("images/level_1/my_sprite_1"); ... Texture2D sprite100 = levelContent.Load<Texture2D>("images/level_1/my_sprite_100"); (i use an own content manager for each level to release all level-specific textures at once) Of course i can reduse the ammount of sprites using a spritesheet, but it's extremly painfull for me now. Do i have a better option? And just curious - why is there such huge difference in image loading time?

    Read the article

  • Speed up content loading

    - by user1806687
    I am using WinForms Sample downloaded from microsoft website. The problem is, that the model loading time is quite long, using: contentBuilder.Add(ModelPath, ModelName, null, "ModelProcessor"); contentManager.Load<Model>(ModelName); even a simple model, such as a cube with no textures, takes 4+ seconds to load. Now, I am no expert on this, but is there anyway to decrease loading time? EDIT: I've gone thru the code and found out that calling contentBuilder.Build(); ,which comes right after contentBuilder.Add() method takes up most of the time.

    Read the article

  • How to reduce the time it takes to load my web game? [closed]

    - by Danial
    I created a puzzle game with Unity and uploaded it to one server. This works fine, but I bought a new server and uploaded my game to it as well. There, the loading time is much longer. These are the servers: http://pinheadsinteractive.com/Mozzie/ (fast) http://operation-mozzie-free.com/ (slow) The Unity files are exactly the same from one server to the next. My client is dissatisfied with the new, slow loading time. So, how can I reduce the time my Unity game takes to load? Even in some cases they faced the problem that they could not load the game at all. For the the moment, I'm using an iframe on the new sever as a workaround, but the issue still remains unsolved.

    Read the article

  • why is this rails association loading individually after an eager load?

    - by codeman73
    I'm trying to avoid the N+1 queries problem with eager loading, but it's not working. The associated models are still being loaded individually. Here are the relevant ActiveRecords and their relationships: class Player < ActiveRecord::Base has_one :tableau end Class Tableau < ActiveRecord::Base belongs_to :player has_many :tableau_cards has_many :deck_cards, :through => :tableau_cards end Class TableauCard < ActiveRecord::Base belongs_to :tableau belongs_to :deck_card, :include => :card end class DeckCard < ActiveRecord::Base belongs_to :card has_many :tableaus, :through => :tableau_cards end class Card < ActiveRecord::Base has_many :deck_cards end and the query I'm using is inside this method of Player: def tableau_contains(card_id) self.tableau.tableau_cards = TableauCard.find :all, :include => [ {:deck_card => (:card)}], :conditions => ['tableau_cards.tableau_id = ?', self.tableau.id] contains = false for tableau_card in self.tableau.tableau_cards # my logic here, looking at attributes of the Card model, with # tableau_card.deck_card.card; # individual loads of related Card models related to tableau_card are done here end return contains end Does it have to do with scope? This tableau_contains method is down a few method calls in a larger loop, where I originally tried doing the eager loading because there are several places where these same objects are looped through and examined. Then I eventually tried the code as it is above, with the load just before the loop, and I'm still seeing the individual SELECT queries for Card inside the tableau_cards loop in the log. I can see the eager-loading query with the IN clause just before the tableau_cards loop as well. EDIT: additional info below with the larger, outer loop Here's the larger loop. It is inside an observer on after_save def after_save(pa) @game = Game.find(turn.game_id, :include => :goals) @game.players = Player.find :all, :include => [ {:tableau => (:tableau_cards)}, :player_goals ], :conditions => ['players.game_id =?', @game.id] for player in @game.players player.tableau.tableau_cards = TableauCard.find :all, :include => [ {:deck_card => (:card)}], :conditions => ['tableau_cards.tableau_id = ?', player.tableau.id] if(player.tableau_contains(card)) ... end end end

    Read the article

  • A ToDynamic() Extension Method For Fluent Reflection

    - by Dixin
    Recently I needed to demonstrate some code with reflection, but I felt it inconvenient and tedious. To simplify the reflection coding, I created a ToDynamic() extension method. The source code can be downloaded from here. Problem One example for complex reflection is in LINQ to SQL. The DataContext class has a property Privider, and this Provider has an Execute() method, which executes the query expression and returns the result. Assume this Execute() needs to be invoked to query SQL Server database, then the following code will be expected: using (NorthwindDataContext database = new NorthwindDataContext()) { // Constructs the query. IQueryable<Product> query = database.Products.Where(product => product.ProductID > 0) .OrderBy(product => product.ProductName) .Take(2); // Executes the query. Here reflection is required, // because Provider, Execute(), and ReturnValue are not public members. IEnumerable<Product> results = database.Provider.Execute(query.Expression).ReturnValue; // Processes the results. foreach (Product product in results) { Console.WriteLine("{0}, {1}", product.ProductID, product.ProductName); } } Of course, this code cannot compile. And, no one wants to write code like this. Again, this is just an example of complex reflection. using (NorthwindDataContext database = new NorthwindDataContext()) { // Constructs the query. IQueryable<Product> query = database.Products.Where(product => product.ProductID > 0) .OrderBy(product => product.ProductName) .Take(2); // database.Provider PropertyInfo providerProperty = database.GetType().GetProperty( "Provider", BindingFlags.NonPublic | BindingFlags.GetProperty | BindingFlags.Instance); object provider = providerProperty.GetValue(database, null); // database.Provider.Execute(query.Expression) // Here GetMethod() cannot be directly used, // because Execute() is a explicitly implemented interface method. Assembly assembly = Assembly.Load("System.Data.Linq"); Type providerType = assembly.GetTypes().SingleOrDefault( type => type.FullName == "System.Data.Linq.Provider.IProvider"); InterfaceMapping mapping = provider.GetType().GetInterfaceMap(providerType); MethodInfo executeMethod = mapping.InterfaceMethods.Single(method => method.Name == "Execute"); IExecuteResult executeResult = executeMethod.Invoke(provider, new object[] { query.Expression }) as IExecuteResult; // database.Provider.Execute(query.Expression).ReturnValue IEnumerable<Product> results = executeResult.ReturnValue as IEnumerable<Product>; // Processes the results. foreach (Product product in results) { Console.WriteLine("{0}, {1}", product.ProductID, product.ProductName); } } This may be not straight forward enough. So here a solution will implement fluent reflection with a ToDynamic() extension method: IEnumerable<Product> results = database.ToDynamic() // Starts fluent reflection. .Provider.Execute(query.Expression).ReturnValue; C# 4.0 dynamic In this kind of scenarios, it is easy to have dynamic in mind, which enables developer to write whatever code after a dot: using (NorthwindDataContext database = new NorthwindDataContext()) { // Constructs the query. IQueryable<Product> query = database.Products.Where(product => product.ProductID > 0) .OrderBy(product => product.ProductName) .Take(2); // database.Provider dynamic dynamicDatabase = database; dynamic results = dynamicDatabase.Provider.Execute(query).ReturnValue; } This throws a RuntimeBinderException at runtime: 'System.Data.Linq.DataContext.Provider' is inaccessible due to its protection level. Here dynamic is able find the specified member. So the next thing is just writing some custom code to access the found member. .NET 4.0 DynamicObject, and DynamicWrapper<T> Where to put the custom code for dynamic? The answer is DynamicObject’s derived class. I first heard of DynamicObject from Anders Hejlsberg's video in PDC2008. It is very powerful, providing useful virtual methods to be overridden, like: TryGetMember() TrySetMember() TryInvokeMember() etc.  (In 2008 they are called GetMember, SetMember, etc., with different signature.) For example, if dynamicDatabase is a DynamicObject, then the following code: dynamicDatabase.Provider will invoke dynamicDatabase.TryGetMember() to do the actual work, where custom code can be put into. Now create a type to inherit DynamicObject: public class DynamicWrapper<T> : DynamicObject { private readonly bool _isValueType; private readonly Type _type; private T _value; // Not readonly, for value type scenarios. public DynamicWrapper(ref T value) // Uses ref in case of value type. { if (value == null) { throw new ArgumentNullException("value"); } this._value = value; this._type = value.GetType(); this._isValueType = this._type.IsValueType; } public override bool TryGetMember(GetMemberBinder binder, out object result) { // Searches in current type's public and non-public properties. PropertyInfo property = this._type.GetTypeProperty(binder.Name); if (property != null) { result = property.GetValue(this._value, null).ToDynamic(); return true; } // Searches in explicitly implemented properties for interface. MethodInfo method = this._type.GetInterfaceMethod(string.Concat("get_", binder.Name), null); if (method != null) { result = method.Invoke(this._value, null).ToDynamic(); return true; } // Searches in current type's public and non-public fields. FieldInfo field = this._type.GetTypeField(binder.Name); if (field != null) { result = field.GetValue(this._value).ToDynamic(); return true; } // Searches in base type's public and non-public properties. property = this._type.GetBaseProperty(binder.Name); if (property != null) { result = property.GetValue(this._value, null).ToDynamic(); return true; } // Searches in base type's public and non-public fields. field = this._type.GetBaseField(binder.Name); if (field != null) { result = field.GetValue(this._value).ToDynamic(); return true; } // The specified member is not found. result = null; return false; } // Other overridden methods are not listed. } In the above code, GetTypeProperty(), GetInterfaceMethod(), GetTypeField(), GetBaseProperty(), and GetBaseField() are extension methods for Type class. For example: internal static class TypeExtensions { internal static FieldInfo GetBaseField(this Type type, string name) { Type @base = type.BaseType; if (@base == null) { return null; } return @base.GetTypeField(name) ?? @base.GetBaseField(name); } internal static PropertyInfo GetBaseProperty(this Type type, string name) { Type @base = type.BaseType; if (@base == null) { return null; } return @base.GetTypeProperty(name) ?? @base.GetBaseProperty(name); } internal static MethodInfo GetInterfaceMethod(this Type type, string name, params object[] args) { return type.GetInterfaces().Select(type.GetInterfaceMap).SelectMany(mapping => mapping.TargetMethods) .FirstOrDefault( method => method.Name.Split('.').Last().Equals(name, StringComparison.Ordinal) && method.GetParameters().Count() == args.Length && method.GetParameters().Select( (parameter, index) => parameter.ParameterType.IsAssignableFrom(args[index].GetType())).Aggregate( true, (a, b) => a && b)); } internal static FieldInfo GetTypeField(this Type type, string name) { return type.GetFields( BindingFlags.GetField | BindingFlags.Instance | BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic).FirstOrDefault( field => field.Name.Equals(name, StringComparison.Ordinal)); } internal static PropertyInfo GetTypeProperty(this Type type, string name) { return type.GetProperties( BindingFlags.GetProperty | BindingFlags.Instance | BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic).FirstOrDefault( property => property.Name.Equals(name, StringComparison.Ordinal)); } // Other extension methods are not listed. } So now, when invoked, TryGetMember() searches the specified member and invoke it. The code can be written like this: dynamic dynamicDatabase = new DynamicWrapper<NorthwindDataContext>(ref database); dynamic dynamicReturnValue = dynamicDatabase.Provider.Execute(query.Expression).ReturnValue; This greatly simplified reflection. ToDynamic() and fluent reflection To make it even more straight forward, A ToDynamic() method is provided: public static class DynamicWrapperExtensions { public static dynamic ToDynamic<T>(this T value) { return new DynamicWrapper<T>(ref value); } } and a ToStatic() method is provided to unwrap the value: public class DynamicWrapper<T> : DynamicObject { public T ToStatic() { return this._value; } } In the above TryGetMember() method, please notice it does not output the member’s value, but output a wrapped member value (that is, memberValue.ToDynamic()). This is very important to make the reflection fluent. Now the code becomes: IEnumerable<Product> results = database.ToDynamic() // Here starts fluent reflection. .Provider.Execute(query.Expression).ReturnValue .ToStatic(); // Unwraps to get the static value. With the help of TryConvert(): public class DynamicWrapper<T> : DynamicObject { public override bool TryConvert(ConvertBinder binder, out object result) { result = this._value; return true; } } ToStatic() can be omitted: IEnumerable<Product> results = database.ToDynamic() .Provider.Execute(query.Expression).ReturnValue; // Automatically converts to expected static value. Take a look at the reflection code at the beginning of this post again. Now it is much much simplified! Special scenarios In 90% of the scenarios ToDynamic() is enough. But there are some special scenarios. Access static members Using extension method ToDynamic() for accessing static members does not make sense. Instead, DynamicWrapper<T> has a parameterless constructor to handle these scenarios: public class DynamicWrapper<T> : DynamicObject { public DynamicWrapper() // For static. { this._type = typeof(T); this._isValueType = this._type.IsValueType; } } The reflection code should be like this: dynamic wrapper = new DynamicWrapper<StaticClass>(); int value = wrapper._value; int result = wrapper.PrivateMethod(); So accessing static member is also simple, and fluent of course. Change instances of value types Value type is much more complex. The main problem is, value type is copied when passing to a method as a parameter. This is why ref keyword is used for the constructor. That is, if a value type instance is passed to DynamicWrapper<T>, the instance itself will be stored in this._value of DynamicWrapper<T>. Without the ref keyword, when this._value is changed, the value type instance itself does not change. Consider FieldInfo.SetValue(). In the value type scenarios, invoking FieldInfo.SetValue(this._value, value) does not change this._value, because it changes the copy of this._value. I searched the Web and found a solution for setting the value of field: internal static class FieldInfoExtensions { internal static void SetValue<T>(this FieldInfo field, ref T obj, object value) { if (typeof(T).IsValueType) { field.SetValueDirect(__makeref(obj), value); // For value type. } else { field.SetValue(obj, value); // For reference type. } } } Here __makeref is a undocumented keyword of C#. But method invocation has problem. This is the source code of TryInvokeMember(): public override bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object result) { if (binder == null) { throw new ArgumentNullException("binder"); } MethodInfo method = this._type.GetTypeMethod(binder.Name, args) ?? this._type.GetInterfaceMethod(binder.Name, args) ?? this._type.GetBaseMethod(binder.Name, args); if (method != null) { // Oops! // If the returnValue is a struct, it is copied to heap. object resultValue = method.Invoke(this._value, args); // And result is a wrapper of that copied struct. result = new DynamicWrapper<object>(ref resultValue); return true; } result = null; return false; } If the returned value is of value type, it will definitely copied, because MethodInfo.Invoke() does return object. If changing the value of the result, the copied struct is changed instead of the original struct. And so is the property and index accessing. They are both actually method invocation. For less confusion, setting property and index are not allowed on struct. Conclusions The DynamicWrapper<T> provides a simplified solution for reflection programming. It works for normal classes (reference types), accessing both instance and static members. In most of the scenarios, just remember to invoke ToDynamic() method, and access whatever you want: StaticType result = someValue.ToDynamic()._field.Method().Property[index]; In some special scenarios which requires changing the value of a struct (value type), this DynamicWrapper<T> does not work perfectly. Only changing struct’s field value is supported. The source code can be downloaded from here, including a few unit test code.

    Read the article

  • Best Practices - Dynamic Reconfiguration

    - by jsavit
    This post is one of a series of "best practices" notes for Oracle VM Server for SPARC (formerly named Logical Domains) Overview of dynamic Reconfiguration Oracle VM Server for SPARC supports Dynamic Reconfiguration (DR), making it possible to add or remove resources to or from a domain (virtual machine) while it is running. This is extremely useful because resources can be shifted to or from virtual machines in response to load conditions without having to reboot or interrupt running applications. For example, if an application requires more CPU capacity, you can add CPUs to improve performance, and remove them when they are no longer needed. You can use even use Dynamic Resource Management (DRM) policies that automatically add and remove CPUs to domains based on load. How it works (in broad general terms) Dynamic Reconfiguration is done in coordination with Solaris, which recognises a hypervisor request to change its virtual machine configuration and responds appropriately. In essence, Solaris receives a message saying "you now have 16 more CPUs numbered 16 to 31" or "8GB more RAM starting at address X" or "here's a new network or disk device - have fun with it". These actions take very little time. Solaris then can start using the new resource. In the case of added CPUs, that means dispatching processes and potentially binding interrupts to the new CPUs. For memory, Solaris adds the new memory pages to its "free" list and starts using them. Comparable actions occur with network and disk devices: they are recognised by Solaris and then used. Removing is the reverse process: after receiving the DR message to free specific CPUs, Solaris unbinds interrupts assigned to the CPUs and stops dispatching process threads. That takes very little time. primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 1.0% 6d 22h 29m ldom1 active -n---- 5000 16 8G 0.9% 6h 59m primary # ldm set-core 5 ldom1 primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 0.2% 6d 22h 29m ldom1 active -n---- 5000 40 8G 0.1% 6h 59m primary # ldm set-core 2 ldom1 primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 1.0% 6d 22h 29m ldom1 active -n---- 5000 16 8G 0.9% 6h 59m Memory pages are vacated by copying their contents to other memory locations and wiping them clean. Solaris may have to swap memory contents to disk if the remaining RAM isn't enough to hold all the contents. For this reason, deallocating memory can take longer on a loaded system. Even on a lightly loaded system it took several 7 or 8 seconds to switch the domain below between 8GB and 24GB of RAM. primary # ldm set-mem 24g ldom1 primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 0.1% 6d 22h 36m ldom1 active -n---- 5000 16 24G 0.2% 7h 6m primary # ldm set-mem 8g ldom1 primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 0.7% 6d 22h 37m ldom1 active -n---- 5000 16 8G 0.3% 7h 7m What if the device is in use? (this is the anecdote that inspired this blog post) If CPU or memory is being removed, releasing it pretty straightforward, using the method described above. The resources are released, and Solaris continues with less capacity. It's not as simple with a network or I/O device: you don't want to yank a device out from underneath an application that might be using it. In the following example, I've added a virtual network device to ldom1 and want to take it away, even though it's been plumbed. primary # ldm rm-vnet vnet19 ldom1 Guest LDom returned the following reason for failing the operation: Resource Information ---------------------------------------------------------- ----------------------- /devices/virtual-devices@100/channel-devices@200/network@1 Network interface net1 VIO operation failed because device is being used in LDom ldom1 Failed to remove VNET instance That's what I call a helpful error message - telling me exactly what was wrong. In this case the problem is easily solved. I know this NIC is seen in the guest as net1 so: ldom1 # ifconfig net1 down unplumb Now I can dispose of it, and even the virtual switch I had created for it: primary # ldm rm-vnet vnet19 ldom1 primary # ldm rm-vsw primary-vsw9 If I had to take away the device disruptively, I could have used ldm rm-vnet -f but that could disrupt whoever was using it. It's better if that can be avoided. Summary Oracle VM Server for SPARC provides dynamic reconfiguration, which lets you modify a guest domain's CPU, memory and I/O configuration on the fly without reboot. You can add and remove resources as needed, and even automate this for CPUs by setting up resource policies. Taking things away can be more complicated than giving, especially for devices like disks and networks that may contain application and system state or be involved in a transaction. LDoms and Solaris cooperative work together to coordinate resource allocation and de-allocation in a safe and effective way. For best practices, use dynamic reconfiguration to make the best use of your system's resources.

    Read the article

  • Efficiently representing a dynamic transform hierarchy

    - by Mattia
    I'm looking for a way to represent a dynamic transform hierarchy (i.e. one where nodes can be inserted and removed arbitrarily) that's a bit more efficient than using a standard tree of pointers . I saw the answers to this question ( Efficient structure for representing a transform hierarchy. ), but as far as I can determine the tree-as-array approach only works for static hierarchies or dynamic ones where nodes have a fixed number of children (both deal-breakers for me). I'm probably wrong about that but could anyone point out how? If I'm not wrong are there other alternatives that work for dynamic hierarchies?

    Read the article

  • Alignment requirements: converting basic disk to dynamic disk in order to set up software RAID?

    - by 0xC0000022L
    On Windows 7 x64 Professional I am struggling to convert a basic disk to a dynamic one. Under Disk Management in the MMC the conversion is supposed to be initiated automatically, but it doesn't. My guess: because of using third-party partitioning tools there isn't enough space in front and after the partitions (system-reserved/boot + system volume) to store the required meta-data. When demoting a dynamic disk to a basic disk manually, I noticed that some space seems to be required before and after the partitions. What are the exact alignment requirements that allow the on-board tools in Windows to do the conversion?

    Read the article

< Previous Page | 22 23 24 25 26 27 28 29 30 31 32 33  | Next Page >