Search Results

Search found 4028 results on 162 pages for 'mysqld safe'.

Page 26/162 | < Previous Page | 22 23 24 25 26 27 28 29 30 31 32 33  | Next Page >

  • Can a python view template be made to be 'safe/secure' if I make it user editable?

    - by Blankman
    Say I need to have a templating system where a user can edit it online using an online editor. So they can put if tags, looping tags etc., but ONLY for specific objects that I want to inject into the template. Can this be made to be safe from security issues? i.e. them somehow outputing sql connection string information or scripting things outside of the allowable tags and injected objects.

    Read the article

  • Is it safe to make GL calls with multiple threads?

    - by user146780
    I was wondering if it was safe to make GL calls with multiple threads. Basically I'm using a GLUtesselator and was wondering if I could divide the objects to draw into 4 and assign a thread to each one. I'm just wondering if this would cause trouble since the tesselator uses callback functions. Can 2 threads run the same callback at the same time as long as that callback does not access ant global variables? Are there also other ways I could optimize OpenGL drawing using multithreading? Thanks

    Read the article

  • Is this safe? Is this OK to do in MYSQL?

    - by alex
    I have always done this: mysqldump -hlocalhost -uuser -ppass MYDATABASE > /home/f/db_backup/MYDATABASE.sql mysql -uuser -ppass MYDATABASE < MYDATABASE.sql But, if I do this instead...is this safe? Is this identical to the above??? mysqldump -hlocalhost -uuser -ppass MYDATABASE | gzip > /home/f/db_backup/MYDATABASE.sql.gz zcat MYDATABASE.sql.gz | mysql -uuser -ppass MYDATABASE

    Read the article

  • How to make mysql accept connections externally

    - by Tam
    I have a VPS and I want to make mysql DB accept connection externally (from my PC for instance). I have Debian Linux installed on the server. I checked some tutorials online and they said to comment out: bind-address = 127.0.0.1 But this didn't seem to help! is there anything specific for VPSs? or Am I missing something else? The command that runs mysql is: /usr/sbin/mysqld --basedir=/usr --datadir=/var/lib/mysql --user=mysql --pid-file=/var/run/mysqld/mysqld.pid --skip-external-locking --port=3306 --socket=/var/run/mysqld/mysqld.sock

    Read the article

  • Rails 3.o MYSQL connection problem

    - by palani
    Hi I have installed RVM in my ubunut linux box and configured the Rails 3 app in that ... i can able to start app server... my problem is when i invoke http://localhost:3000 . i getting the follwing error Mysql::Error (Can't connect to local MySQL server through socket '/var/run/mysqld/mysqld.sock' (2)): I checked mysqld service is running well. I checked my database.yml file .... the defined well development: adapter: mysql encoding: utf8 reconnect: false database: test_development username: root password: admin socket: /var/run/mysqld/mysqld.sock my installed mysql gem version is 2.8.1.... I really don't know what is the problem here....

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Is it possible to use WinMerge inside Visual Studio 2008 and Visual Source Safe 6.0?

    - by Tim Santeford
    I would like to use WinMerge as the default diff tool inside VS2008 from the solutions explorer in place of the "Compare..." context menu item. Is this possible? I'm looking for a quick replacement of the current bland diff tool an I just like WinMerge better. I'm not interested in going to the folder explorer and doing the comparison there. Im using Visual Source Safe 6.0 not TFS Is this possible? Thanks in advanced!

    Read the article

  • Is it safe to spin on a volatile variable in user-mode threads?

    - by yongsun
    I'm not quite sure if it's safe to spin on a volatile variable in user-mode threads, to implement a light-weight spin_lock, I looked at the tbb source code, tbb_machine.h:170, //! Spin WHILE the value of the variable is equal to a given value /** T and U should be comparable types. */ template<typename T, typename U> void spin_wait_while_eq( const volatile T& location, U value ) { atomic_backoff backoff; while( location==value ) backoff.pause(); } And there is no fences in atomic_backoff class as I can see. While from other user-mode spin_lock implementation, most of them use CAS (Compare and Swap).

    Read the article

  • Is it safe to use Select Top and Delete Top in sequence?

    - by Rob Nicholson
    I often write T-SQL loops that look like this While Exists (Select * From #MyTable) Begin Declare @ID int, @Word nvarchar(max) Select Top 1 @ID=ID, @Word=[Word] From #MyTable -- Do something -- Delete #MyTable Where ID=@ID End Works a treat but I noticed the new Delete Top function which would be useful when #MyTable is just a list of strings. In this case, would this work: While Exists (Select * From #MyTable) Begin Declare @Word nvarchar(max) Select Top 1 @Word=[Word] From #MyTable -- Do something -- Delete Top(1) #MyTable End Well yes, it works in my test script but is this safe? Will Select Top 1 and Delete Top(1) always refer to the same record or is Top a little more vague. Thanks, Rob.

    Read the article

  • Is there an extensible SQL like query language that is safe for exposing via a public API?

    - by Lokkju
    I want to expose some spatial (and a few non-spatial) datasets via a public API. The backend store will either be PostgreSQL/PostGIS, sqlite/spatialite, or CouchDB/GeoCouch. My goal is to find a some, preferably standard, way to allow people to make complex spatial queries against the data. I would like it to be a simple GET based request. The idea is to allow safe SQL type queries, without allowing unsafe ones. I would rather modify something that is off the shelf than doing the entire thing myself. I specifically want to support requesting specific fields from a table; joining results; and spatial functions that are already implemented by the underlying datastore. Ideas anyone?

    Read the article

  • PHPMailer safe practices - Send escaped / sanitized variables or not ?

    - by FreekOne
    I'm using the PHPMailer-Lite class to build an email sending script and I'm not sure if I should use addslashses() on the $name variable when adding it to the constructor. If somebody's last name would be O'Riley (or any other name that contains characters which should normally be sanitized before handling) and I would send it unescaped, wouldn't it mess with the script/email sending ? Is it safe to send it unescaped ? As a side note, I would also like to avoid having my message body say "Hello, O\'Riley". Looking at the source, I saw that it only trims the whitespace and line ending (\r\n) characters from the received $name variable, so any advice on this would be more than welcome. Thank you all in advance !

    Read the article

  • Is it safe to convert a mysqlpp::sql_blob to a std::string?

    - by Runcible
    I'm grabbing some binary data out of my MySQL database. It comes out as a mysqlpp::sql_blob type. It just so happens that this BLOB is a serialized Google Protobuf. I need to de-serialize it so that I can access it normally. This gives a compile error, since ParseFromString() is not intended for mysqlpp:sql_blob types: protobuf.ParseFromString( record.data ); However, if I force the cast, it compiles OK: protobuf.ParseFromString( (std::string) record.data ); Is this safe? I'm particularly worried because of this snippet from the mysqlpp documentation: "Because C++ strings handle binary data just fine, you might think you can use std::string instead of sql_blob, but the current design of String converts to std::string via a C string. As a result, the BLOB data is truncated at the first embedded null character during population of the SSQLS. There’s no way to fix that without completely redesigning either String or the SSQLS mechanism." Thanks for your assistance!

    Read the article

  • Using memtables in sql. When is it reasonable and is it safe?

    - by Spiros
    I was just reading an update from a friend's project, mentioning the use of memtables to store data temporatily and then flush to a table on disk. Up to now, I have never faced a situation where I would use a memtable, or a situation where I would think the use of a mem table would be beneficial; so I wonder, when would someone use mem tables? what makes a memtable (appart from access speed) a reasonable choice? and how safe is it, even for temp data? there is always the limitation of available physical memory.

    Read the article

  • Is it possible to create thread-safe collections without locks?

    - by Andrey
    This is pure just for interest question, any sort of questions are welcome. So is it possible to create thread-safe collections without any locks? By locks I mean any thread synchronization mechanisms, including Mutex, Semaphore, and even Interlocked, all of them. Is it possible at user level, without calling system functions? Ok, may be implementation is not effective, i am interested in theoretical possibility. If not what is the minimum means to do it? EDIT: Why immutable collections don't work. This of class Stack with methods Add that returns another Stack. Now here is program: Stack stack = new ...; ThreadedMethod() { loop { //Do the loop stack = stack.Add(element); } } this expression stack = stack.Add(element) is not atomic, and you can overwrite new stack from other thread. Thanks, Andrey

    Read the article

  • Is it safe to convert varchar and char into nvarchar and nchar in SQL Server?

    - by Svish
    We currently have a number of columns in the database which are of type varchar. The application that uses them are in C# and it uses Linq2Sql for the communication (or what to call it). We would like to support unicode characters, which means we would have to convert the varchar columns into nvarchar. Is this a safe operation? Is it just a matter of changing the column type and updating the dbml file, or are there more stuff that needs to be done? Any changes in the C# code? Do I need to somehow convert the text that already exist in the database manually, or is it handled for me?

    Read the article

  • "Thread-Safe Calls" with "Invoke" method to Winform control leads very heavy memory leak!!

    - by konnychen
    In the following link: "Make Thread-Safe Calls to Windows Forms Controls http://msdn.microsoft.com/en-us/library/ms171728.aspx" We can see an example which provide cross tread access to a winform control. But if the thread is in a while loop, it will cause the heavy memory leak. As I use taskmanage I can see the memory is increasing. Can anyone help me to solve the problem? oThread2 = new Thread(new ThreadStart(Cyclic_Call)); oThread2.Start(); delegate void SetText_lab_Statubar(string text); private void m_SetText_lab_Statubar(string text) { if (this.lab_Statubar.InvokeRequired) { SetText_lab_Statubar d = new SetText_lab_Statubar(m_SetText_lab_Statubar); this.Invoke(d, new object[] { text }); } else { this.lab_Statubar.Text = text; } } private void Cyclic_Call() { do { this.m_SetText_lab_Statubar("This string is set from thread"); Thread.Sleep(100); } while (!b_AbortThraed); }

    Read the article

  • Is it safe to use the same parameters for input and output in D3DX functions?

    - by JB
    Using the D3DX library that is a part of directX, specifically directx9 in this case, I'm wondering if it's safe to use the same matrix (or vector etc) for input and ouput D3DXMATRIX mat; D3DXMatrixInverse(&mat, NULL, &mat); I've been avoiding doing so, assuming that it would result in bad things happening when parts of the array got partly overwritten as results are calculated but I see an awful lot of code around that does exactly this. A brief test indicates that it seems to work ok, so I'm assuming that the D3DX functions take a copy where necessary of the input data, or some other method to ensure that this works ok, but I can't find it documented anywhere so I'm reluctant to rely on it working. Is there any official statement on using the functions like this?

    Read the article

  • How do I refactor this IEnumerable<T> to be thread-safe?

    - by DayOne
    I am looking at Skeet's AtomicEnumerable but I'm not sure how to integrate it into my current IEnumerable exmaple below (http://msmvps.com/blogs/jon_skeet/archive/2009/10/23/iterating-atomically.aspx) Basically I want to foreach my blahs type in a thread-safe way. thanks public sealed class Blahs : IEnumerable<string> { private readonly IList<string> _data = new List<string>() { "blah1", "blah2", "blah3" }; public IEnumerator<string> GetEnumerator() { return _data.GetEnumerator(); } IEnumerator IEnumerable.GetEnumerator() { return GetEnumerator(); } }

    Read the article

  • Is it safe to call a function to intialize a class in a ctor list?

    - by Michael Dorgan
    I have Angle class that I want initialized to a random value. The Angle constructor can accept an int from a random() function. Is it safe to place this call in the ctor list: foo::foo() : Angle(random(0xFFFF)) {...} or do I have to do it in the body of the constructor? foo::foo() { Angle = Angle(random(0xFFFF)); ...} If it matters, the foo class is derived from another class and does have virtual methods. In addition, no exception handling is allowed in our app.

    Read the article

< Previous Page | 22 23 24 25 26 27 28 29 30 31 32 33  | Next Page >