Search Results

Search found 2207 results on 89 pages for 'nick locking'.

Page 26/89 | < Previous Page | 22 23 24 25 26 27 28 29 30 31 32 33  | Next Page >

  • PHP mutual exclusion (mutex)

    - by Poni
    Read some texts about locking in PHP. They all, mainly, direct to http://php.net/manual/en/function.flock.php . This page talks about opening a file on the hard-disk!! Is it really so? I mean, this makes locking really expensive - it means each time I want to lock I'll have to access the hard-disk )= Can anymore comfort me with a delightful news?

    Read the article

  • C++ Linked List - Reading data from a file with a sentinel

    - by Nick
    So I've done quite a bit of research on this and can't get my output to work correctly. I need to read in data from a file and have it stored into a Linked List. The while loop used should stop once it hits the $$$$$ sentinel. Then I am to display the data (by searching by ID Number[user input]) I am not that far yet I just want to properly display the data and get it read in for right now. My problem is when it displays the data is isn't stopping at the $$$$$ (even if I do "inFile.peek() != EOF and omit the $$$$$) I am still getting an extra garbage record. I know it has something to do with my while loop and how I am creating a new Node but I can't get it to work any other way. Any help would be appreciated. students.txt Nick J Cooley 324123 60 70 80 90 Jay M Hill 412254 70 80 90 100 $$$$$ assign6.h file #pragma once #include <iostream> #include <string> using namespace std; class assign6 { public: assign6(); // constructor void displayStudents(); private: struct Node { string firstName; string midIni; string lastName; int idNum; int sco1; //Test score 1 int sco2; //Test score 2 int sco3; //Test score 3 int sco4; //Test score 4 Node *next; }; Node *head; Node *headPtr; }; assign6Imp.cpp // Implementation File #include "assign6.h" #include <fstream> #include <iostream> #include <string> using namespace std; assign6::assign6() //constructor { ifstream inFile; inFile.open("students.txt"); head = NULL; head = new Node; headPtr = head; while (inFile.peek() != EOF) //reading in from file and storing in linked list { inFile >> head->firstName >> head->midIni >> head->lastName; inFile >> head->idNum; inFile >> head->sco1; inFile >> head->sco2; inFile >> head->sco3; inFile >> head->sco4; if (inFile != "$$$$$") { head->next = NULL; head->next = new Node; head = head->next; } } head->next = NULL; inFile.close(); } void assign6::displayStudents() { int average = 0; for (Node *cur = headPtr; cur != NULL; cur = cur->next) { cout << cur->firstName << " " << cur->midIni << " " << cur->lastName << endl; cout << cur->idNum << endl; average = (cur->sco1 + cur->sco2 + cur->sco3 + cur->sco4)/4; cout << cur->sco1 << " " << cur->sco2 << " " << cur->sco3 << " " << cur->sco4 << " " << "average: " << average << endl; } }

    Read the article

  • pre-commit hook in svn: could not be translated from the native locale to UTF-8

    - by Alexandre Moraes
    Hi everybody, I have a problem with my pre-commit hook. This hook test if a file is locked when the user commits. When a bad condition happens, it should output that the another user is locking this file or if nobody is locking, it should show "you are not locking this file message (file´s name)". The error happens when the file´s name has some latin character like "ç" and tortoise show me this in the output. Commit failed (details follow): Commit blocked by pre-commit hook (exit code 1) with output: [Erro output could not be translated from the native locale to UTF-8.] Do you know how can I solve this? Thanks, Alexandre My shell script is here: #!/bin/sh REPOS="$1" TXN="$2" export LANG="en_US.UTF-8" /app/svn/hooks/ensure-has-need-lock.pl "$REPOS" "$TXN" if [ $? -ne 0 ]; then exit 1; fi exit 0 And my perl is here: !/usr/bin/env perl #Turn on warnings the best way depending on the Perl version. BEGIN { if ( $] >= 5.006_000) { require warnings; import warnings; } else { $^W = 1; } } use strict; use Carp; &usage unless @ARGV == 2; my $repos = shift; my $txn = shift; my $svnlook = "/usr/local/bin/svnlook"; my $user; my $ok = 1; foreach my $program ($svnlook) { if (-e $program) { unless (-x $program) { warn "$0: required program $program' is not executable, ", "edit $0.\n"; $ok = 0; } } else { warn "$0: required program $program' does not exist, edit $0.\n"; $ok = 0; } } exit 1 unless $ok; unless (-e $repos){ &usage("$0: repository directory $repos' does not exist."); } unless (-d $repos){ &usage("$0: repository directory $repos' is not a directory."); } foreach my $user_tmp (&read_from_process($svnlook, 'author', $repos, '-t', $txn)) { $user = $user_tmp; } my @errors; foreach my $transaction (&read_from_process($svnlook, 'changed', $repos, '-t', $txn)){ if ($transaction =~ /^U. (.*[^\/])$/){ my $file = $1; my $err = 0; foreach my $locks (&read_from_process($svnlook, 'lock', $repos, $file)){ $err = 1; if($locks=~ /Owner: (.*)/){ if($1 != $user){ push @errors, "$file : You are not locking this file!"; } } } if($err==0){ push @errors, "$file : You are not locking this file!"; } } elsif($transaction =~ /^D. (.*[^\/])$/){ my $file = $1; my $tchan = &read_from_process($svnlook, 'lock', $repos, $file); foreach my $locks (&read_from_process($svnlook, 'lock', $repos, $file)){ push @errors, "$1 : cannot delete locked Files"; } } elsif($transaction =~ /^A. (.*[^\/])$/){ my $needs_lock; my $path = $1; foreach my $prop (&read_from_process($svnlook, 'proplist', $repos, '-t', $txn, '--verbose', $path)){ if ($prop =~ /^\s*svn:needs-lock : (\S+)/){ $needs_lock = $1; } } if (not $needs_lock){ push @errors, "$path : svn:needs-lock is not set. Pleas ask TCC for support."; } } } if (@errors) { warn "$0:\n\n", join("\n", @errors), "\n\n"; exit 1; } else { exit 0; } sub usage { warn "@_\n" if @_; die "usage: $0 REPOS TXN-NAME\n"; } sub safe_read_from_pipe { unless (@_) { croak "$0: safe_read_from_pipe passed no arguments.\n"; } print "Running @_\n"; my $pid = open(SAFE_READ, '-|'); unless (defined $pid) { die "$0: cannot fork: $!\n"; } unless ($pid) { open(STDERR, ">&STDOUT") or die "$0: cannot dup STDOUT: $!\n"; exec(@_) or die "$0: cannot exec @_': $!\n"; } my @output; while (<SAFE_READ>) { chomp; push(@output, $_); } close(SAFE_READ); my $result = $?; my $exit = $result >> 8; my $signal = $result & 127; my $cd = $result & 128 ? "with core dump" : ""; if ($signal or $cd) { warn "$0: pipe from @_' failed $cd: exit=$exit signal=$signal\n"; } if (wantarray) { return ($result, @output); } else { return $result; } } sub read_from_process { unless (@_) { croak "$0: read_from_process passed no arguments.\n"; } my ($status, @output) = &safe_read_from_pipe(@_); if ($status) { if (@output) { die "$0: @_' failed with this output:\n", join("\n", @output), "\n"; } else { die "$0: @_' failed with no output.\n"; } } else { return @output; } }

    Read the article

  • linux thread synchronization

    - by johnnycrash
    I am new to linux and linux threads. I have spent some time googling to try to understand the differences between all the functions available for thread synchronization. I still have some questions. I have found all of these different types of synchronizations, each with a number of functions for locking, unlocking, testing the lock, etc. gcc atomic operations futexes mutexes spinlocks seqlocks rculocks conditions semaphores My current (but probably flawed) understanding is this: semaphores are process wide, involve the filesystem (virtually I assume), and are probably the slowest. Futexes might be the base locking mechanism used by mutexes, spinlocks, seqlocks, and rculocks. Futexes might be faster than the locking mechanisms that are based on them. Spinlocks dont block and thus avoid context swtiches. However they avoid the context switch at the expense of consuming all the cycles on a CPU until the lock is released (spinning). They should only should be used on multi processor systems for obvious reasons. Never sleep in a spinlock. The seq lock just tells you when you finished your work if a writer changed the data the work was based on. You have to go back and repeat the work in this case. Atomic operations are the fastest synch call, and probably are used in all the above locking mechanisms. You do not want to use atomic operations on all the fields in your shared data. You want to use a lock (mutex, futex, spin, seq, rcu) or a single atomic opertation on a lock flag when you are accessing multiple data fields. My questions go like this: Am I right so far with my assumptions? Does anyone know the cpu cycle cost of the various options? I am adding parallelism to the app so we can get better wall time response at the expense of running fewer app instances per box. Performances is the utmost consideration. I don't want to consume cpu with context switching, spinning, or lots of extra cpu cycles to read and write shared memory. I am absolutely concerned with number of cpu cycles consumed. Which (if any) of the locks prevent interruption of a thread by the scheduler or interrupt...or am I just an idiot and all synchonization mechanisms do this. What kinds of interruption are prevented? Can I block all threads or threads just on the locking thread's CPU? This question stems from my fear of interrupting a thread holding a lock for a very commonly used function. I expect that the scheduler might schedule any number of other workers who will likely run into this function and then block because it was locked. A lot of context switching would be wasted until the thread with the lock gets rescheduled and finishes. I can re-write this function to minimize lock time, but still it is so commonly called I would like to use a lock that prevents interruption...across all processors. I am writing user code...so I get software interrupts, not hardware ones...right? I should stay away from any functions (spin/seq locks) that have the word "irq" in them. Which locks are for writing kernel or driver code and which are meant for user mode? Does anyone think using an atomic operation to have multiple threads move through a linked list is nuts? I am thinking to atomicly change the current item pointer to the next item in the list. If the attempt works, then the thread can safely use the data the current item pointed to before it was moved. Other threads would now be moved along the list. futexes? Any reason to use them instead of mutexes? Is there a better way than using a condition to sleep a thread when there is no work? When using gcc atomic ops, specifically the test_and_set, can I get a performance increase by doing a non atomic test first and then using test_and_set to confirm? *I know this will be case specific, so here is the case. There is a large collection of work items, say thousands. Each work item has a flag that is initialized to 0. When a thread has exclusive access to the work item, the flag will be one. There will be lots of worker threads. Any time a thread is looking for work, they can non atomicly test for 1. If they read a 1, we know for certain that the work is unavailable. If they read a zero, they need to perform the atomic test_and_set to confirm. So if the atomic test_and_set is 500 cpu cycles because it is disabling pipelining, causes cpu's to communicate and L2 caches to flush/fill .... and a simple test is 1 cycle .... then as long as I had a better ratio of 500 to 1 when it came to stumbling upon already completed work items....this would be a win.* I hope to use mutexes or spinlocks to sparilngly protect sections of code that I want only one thread on the SYSTEM (not jsut the CPU) to access at a time. I hope to sparingly use gcc atomic ops to select work and minimize use of mutexes and spinlocks. For instance: a flag in a work item can be checked to see if a thread has worked it (0=no, 1=yes or in progress). A simple test_and_set tells the thread if it has work or needs to move on. I hope to use conditions to wake up threads when there is work. Thanks!

    Read the article

  • Problem with sizes of EditText and Button in Android

    - by DixieFlatline
    I want to make the edittext width the same size as button. My EditText is currently very small. I use relative layout. <TextView android:id="@+id/aha4" android:layout_width="wrap_content" android:layout_height="wrap_content" android:textSize="17dip" android:text="Vzdevek:" android:layout_below="@id/aha3" /> <EditText android:id="@+id/nick" android:layout_height="wrap_content" android:layout_width="wrap_content" android:layout_below="@id/nivo" android:layout_toRightOf="@id/aha4"/> <Button android:id="@+id/poslji" android:text="Pošlji" android:layout_height="wrap_content" android:layout_width="20dip" android:typeface="serif" android:textStyle="bold" android:layout_alignParentRight="true" android:layout_below="@id/nivo" android:layout_toRightOf="@id/nick"/> What i currently get is this: What is the appropriate layout_width for edittext and button?

    Read the article

  • Cakephp doesn't write a cookie

    - by radious
    Hello! I have a problem with writing cookies in cakephp and even don't know how to debug it or where too look for a clue. I've inherited a project where cookie were only created using the Session component, of course i added 'Cookie' to $components array in app_controller and put this in beforeFilter: $this->Cookie->name = 'foo'; $this->Cookie->path = '/home/~nick'; $this->Cookie->domain = 'hostname'; $this->Cookie->secure = false; //i.e. only sent if using secure HTTPS $this->Cookie->key = 'some key'; and in some action i use: $this->Cookie->write('key', 'value'); I access page by http://hostname/home/~nick/foo and actually try to put even something so silly. I doesn't work. I would be really gratefully for any clue where to search problem. Thanks!

    Read the article

  • jtreg update, March 2012

    - by jjg
    There is a new update for jtreg 4.1, b04, available. The primary changes have been to support faster and more reliable test runs, especially for tests in the jdk/ repository. [ For users inside Oracle, there is preliminary direct support for gathering code coverage data using jcov while running tests, and for generating a coverage report when all the tests have been run. ] -- jtreg can be downloaded from the OpenJDK jtreg page: http://openjdk.java.net/jtreg/. Scratch directories On platforms like Windows, if a test leaves a file open when the test is over, that can cause a problem for downstream tests, because the scratch directory cannot be emptied beforehand. This is addressed in agentvm mode by discarding any agents using that scratch directory and starting new agents using a new empty scratch directory. Successive directives use suffices _1, _2, etc. If you see such directories appearing in the work directory, that is an indication that files were left open in the preceding directory in the series. Locking support Some tests use shared system resources such as fixed port numbers. This causes a problem when running tests concurrently. So, you can now mark a directory such that all the tests within all such directories will be run sequentially, even if you use -concurrency:N on the command line to run the rest of the tests in parallel. This is seen as a short term solution: it is recommended that tests not use shared system resources whenever possible. If you are running multiple instances of jtreg on the same machine at the same time, you can use a new option -lock:file to specify a file to be used for file locking; otherwise, the locking will just be within the JVM used to run jtreg. "autovm mode" By default, if no options to the contrary are given on the command line, tests will be run in othervm mode. Now, a test suite can be marked so that the default execution mode is "agentvm" mode. In conjunction with this, you can now mark a directory such that all the tests within that directory will be run in "othervm" mode. Conceptually, this is equivalent to putting /othervm on every appropriate action on every test in that directory and any subdirectories. This is seen as a short term solution: it is recommended tests be adapted to use agentvm mode, or use "@run main/othervm" explicitly. Info in test result files The user name and jtreg version info are now stored in the properties near the beginning of the .jtr file. Build The makefiles used to build and test jtreg have been reorganized and simplified. jtreg is now using JT Harness version 4.4. Other jtreg provides access to GNOME_DESKTOP_SESSION_ID when set. jtreg ensures that shell tests are given an absolute path for the JDK under test. jtreg now honors the "first sentence rule" for the description given by @summary. jtreg saves the default locale before executing a test in samevm or agentvm mode, and restores it afterwards. Bug fixes jtreg tried to execute a test even if the compilation failed in agentvm mode because of a JVM crash. jtreg did not correctly handle the -compilejdk option. Acknowledgements Thanks to Alan, Amy, Andrey, Brad, Christine, Dima, Max, Mike, Sherman, Steve and others for their help, suggestions, bug reports and for testing this latest version.

    Read the article

  • Faster Memory Allocation Using vmtasks

    - by Steve Sistare
    You may have noticed a new system process called "vmtasks" on Solaris 11 systems: % pgrep vmtasks 8 % prstat -p 8 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP 8 root 0K 0K sleep 99 -20 9:10:59 0.0% vmtasks/32 What is vmtasks, and why should you care? In a nutshell, vmtasks accelerates creation, locking, and destruction of pages in shared memory segments. This is particularly helpful for locked memory, as creating a page of physical memory is much more expensive than creating a page of virtual memory. For example, an ISM segment (shmflag & SHM_SHARE_MMU) is locked in memory on the first shmat() call, and a DISM segment (shmflg & SHM_PAGEABLE) is locked using mlock() or memcntl(). Segment operations such as creation and locking are typically single threaded, performed by the thread making the system call. In many applications, the size of a shared memory segment is a large fraction of total physical memory, and the single-threaded initialization is a scalability bottleneck which increases application startup time. To break the bottleneck, we apply parallel processing, harnessing the power of the additional CPUs that are always present on modern platforms. For sufficiently large segments, as many of 16 threads of vmtasks are employed to assist an application thread during creation, locking, and destruction operations. The segment is implicitly divided at page boundaries, and each thread is given a chunk of pages to process. The per-page processing time can vary, so for dynamic load balancing, the number of chunks is greater than the number of threads, and threads grab chunks dynamically as they finish their work. Because the threads modify a single application address space in compressed time interval, contention on locks protecting VM data structures locks was a problem, and we had to re-scale a number of VM locks to get good parallel efficiency. The vmtasks process has 1 thread per CPU and may accelerate multiple segment operations simultaneously, but each operation gets at most 16 helper threads to avoid monopolizing CPU resources. We may reconsider this limit in the future. Acceleration using vmtasks is enabled out of the box, with no tuning required, and works for all Solaris platform architectures (SPARC sun4u, SPARC sun4v, x86). The following tables show the time to create + lock + destroy a large segment, normalized as milliseconds per gigabyte, before and after the introduction of vmtasks: ISM system ncpu before after speedup ------ ---- ------ ----- ------- x4600 32 1386 245 6X X7560 64 1016 153 7X M9000 512 1196 206 6X T5240 128 2506 234 11X T4-2 128 1197 107 11x DISM system ncpu before after speedup ------ ---- ------ ----- ------- x4600 32 1582 265 6X X7560 64 1116 158 7X M9000 512 1165 152 8X T5240 128 2796 198 14X (I am missing the data for T4 DISM, for no good reason; it works fine). The following table separates the creation and destruction times: ISM, T4-2 before after ------ ----- create 702 64 destroy 495 43 To put this in perspective, consider creating a 512 GB ISM segment on T4-2. Creating the segment would take 6 minutes with the old code, and only 33 seconds with the new. If this is your Oracle SGA, you save over 5 minutes when starting the database, and you also save when shutting it down prior to a restart. Those minutes go directly to your bottom line for service availability.

    Read the article

  • ADO.NET DataTable/DataRow Thread Safety

    - by Allen E. Scharfenberg
    Introduction A user reported to me this morning that he was having an issue with inconsistent results (namely, column values sometimes coming out null when they should not be) of some parallel execution code that we provide as part of an internal framework. This code has worked fine in the past and has not been tampered with lately, but it got me to thinking about the following snippet: Code Sample lock (ResultTable) { newRow = ResultTable.NewRow(); } newRow["Key"] = currentKey; foreach (KeyValuePair<string, object> output in outputs) { object resultValue = output.Value; newRow[output.Name] = resultValue != null ? resultValue : DBNull.Value; } lock (ResultTable) { ResultTable.Rows.Add(newRow); } (No guarantees that that compiles, hand-edited to mask proprietery information.) Explanation We have this cascading type of locking code other places in our system, and it works fine, but this is the first instance of cascading locking code that I have come across that interacts with ADO .NET. As we all know, members of framework objects are usually not thread safe (which is the case in this situation), but the cascading locking should ensure that we are not reading and writing to ResultTable.Rows concurrently. We are safe, right? Hypothesis Well, the cascading lock code does not ensure that we are not reading from or writing to ResultTable.Rows at the same time that we are assigning values to columns in the new row. What if ADO .NET uses some kind of buffer for assigning column values that is not thread safe--even when different object types are involved (DataTable vs. DataRow)? Has anyone run into anything like this before? I thought I would ask here at StackOverflow before beating my head against this for hours on end :) Conclusion Well, the consensus appears to be that changing the cascading lock to a full lock has resolved the issue. That is not the result that I expected, but the full lock version has not produced the issue after many, many, many tests. The lesson: be wary of cascading locks used on APIs that you do not control. Who knows what may be going on under the covers!

    Read the article

  • optimistic and pessimistic locks

    - by billmce
    Working on my first php/Codeigniter project and I’ve scoured the ‘net for information on locking access to editing data and haven’t found very much information. I expect it to be a fairly regular occurrence for 2 users to attempt to edit the same form simultaneously. My experience (in the stateful world of BBx, filePro, and other RAD apps) is that the data being edited is locked using a pessimistic lock—one user has access to the edit form at the time. The second user basically has to wait for the first to finish. I understand this can be done using Ajax sending XMLHttpRequests to maintain a ‘lock’ database. The php world, lacking state, seems to prefer optimistic locking. If I understand it correctly it works like this: both users get to access the data and they each record a ‘before changes’ version of the data. Before saving their changes, the data is once again retrieved and compared the ‘before changes’ version. If the two versions are identical then the users changes are written. If they are different; the user is shown what has changed since he/she started editing and some mechanism is added to resolve the differences—or the user is shown a ‘Sorry, try again’ message. I’m interested in any experience people here have had with implementing both pessimistic and optimistic locking. If there are any libraries, tools, or ‘how-to’s available I’m appreciate a link. Thanks

    Read the article

  • .NET List Thread-Safe Implementation Suggestion needed

    - by Bamboo
    .Net List class isn't thread safe. I hope to achieve the minimal lock needed and yet still fulfilling the requirement such that as for reading, phantom record is allowed, and for writing, they must be thread-safe so there won't be any lost updates. So I have something like public static List<string> list = new List<string>(); In Methods that have **List.Add**/**List.Remove** , I always lock to assure thread safety lock (lockHelper) { list.Add(obj); or list.Remove(obj); } In Methods that requires **List Reading** I don't care about phantom record so I go ahead to read without any locking. In this case. Return a bool by checking whether a string had been added. if (list.Count() != 0) { return list.Contains("some string") } All I did was locking write accesses, and allow read accesses to go through without any locking. Is my thread safety idea valid? I understand there is List size expansion. Will it be ok? My guess is that when a List is expanding, it may uses a temp. list. This is ok becasue the temp list size will always have a boundary, and .Net class is well implemented, ie. there shouldn't be any indexOutOfBound or circular reference problems when reading was caught in updates.

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Google Chrome Extensions: Launch Event (part 6)

    Google Chrome Extensions: Launch Event (part 6) Video Footage from the Google Chrome Extensions launch event on 12/09/09. Nick Baum, product manager for Google Chrome's extension system presents the gallery approval process, gives tips to extensions developers on how to make their extension successful and discusses the team's short term plans. From: GoogleDevelopers Views: 5659 17 ratings Time: 08:42 More in Science & Technology

    Read the article

  • Daily tech links for .net and related technologies - Mar 29-31, 2010

    - by SanjeevAgarwal
    Daily tech links for .net and related technologies - Mar 29-31, 2010 Web Development Querying the Future With Reactive Extensions - Phil Haack Creating an OData API for StackOverflow including XML and JSON in 30 minutes - Scott Hanselman MVC Automatic Menu - Nuri Halperin jqGrid for ASP.NET MVC - TriRand Team Foolproof Provides Contingent Data Annotation Validation for ASP.NET MVC 2 -Nick Riggs Using FubuMVC.UI in asp.net MVC : Getting started - Cannibal Coder Building A Custom ActionResult in MVC...(read more)

    Read the article

  • links for 2010-04-27

    - by Bob Rhubart
    @oracletechnet: Oracle Technology Network Newsletters Revisited "You may find this hard to believe, but some analysts contend that email newsletters are still among the most preferred methods of "information awareness" by developers today. And in our experience, the numbers back it up: subscriptions to Oracle Technology Network newsletters grow organically by 15% every year, even after you take continual list cleanup into account. " -- Justin Kestelyn (tags: oracle otn newsletters developers architects) Sylvain Duloutre: Directory Services as a Web Service Sylvain Duloutre shares a WSDL file he created to deal with issues involved in XML binding generation. (tags: oracle sun wsdl webservices DSEE netbeans jdeveloper) Nick Wooler: Iron-Clad Cloud: Secure Cloud Computing "One solution to the security problem with cloud services can be overcome using Service Oriented Security. The Oracle approach to using Service Oriented Security allows developers to pull from a centralized, authoritative source of identity services. This allows developers to build security into every application from the inside-out. This is critical to ensuring this is done in a standardized manner and most importantly it allows developers to develop without being security experts." -- Nick Wooler (tags: oracle sun security cloud saas) Andy Mulholland: A week of visits; Cisco, HP, Oracle, SAP and VMware (in alphabetical order!) "I now am considering that we should be thinking about ‘clouds’ in virtual way, by which I mean that a succession of virtual ‘clouds’ will need to exist, each possessing specific characteristics that suit certain types of services. Really it’s no different to what we see with servers today. Adding a hypervisor to a server adds new flexibility, but creating a virtualised environment means much more. What I suspect will happen is that we will start to use vendor specific approaches to building what I will term a physical cloud solution using their technology and approach to supporting a specific objective, but with time we will find these physical clouds will interoperate as a fully virtualised cloud environment." -- Andy Mulholland (tags: entarch enterprisearchitecture cloudcomputing virtualization) @fteter: Highlights From The Bright Lights - Tuesday #c10 Oracle Ace Director Floyd Teter of JPL with one last wrap-up of Collaborate 10. (tags: oracle otn collaborate2010 las vegas) Rittman Mead India – Call for very good Oracle BI Developers/Architects "Now that we have an office in India and if you are interested in joining us, do drop us a line at [email protected], and we will be glad to have technical discussions with you. If you are also an Oracle BI, DW or EPM customer looking for help on projects in the Asia-Pacific region, again we’ll be pleased to hear from you and to let you know how we can help." -- Venkatakrishnan J (tags: otn oracle jobs india developers architects software)

    Read the article

  • My Speaking Engagements in the Last Two Months

    - by gsusx
    I’ve been so busy lately with the activities around Moesion that I haven’t had time to blog about a couple of great conferences I had the opportunity to speak at in the last two months. Software Architect Conference, UK ( http://www.software-architect.co.uk/ ) This conference is becoming one of my favorite events of the year. As always Nick Payne and his team did a remarkable job lining up an all-star group of speakers that covered some of the hottest topics in today’s software industry. The first...(read more)

    Read the article

  • OrbitFX: JavaFX 8 3D & NetBeans Platform in Space!

    - by Geertjan
    Here is a collection of screenshots from a proof of concept tool being developed by Nickolas Sabey and Sean Phillips from a.i. solutions. Before going further, read a great new article here written on java.net by Kevin Farnham, in light of the Duke's Choice Award (DCA) recently received at JavaOne 2013 by the a.i. solutions team. Here's Sean receiving the award on behalf of the a.i. solutions team, surrounded by the DCA selection committee and other officials: They won the DCA for helping facilitate and deploy the 2014 launch of NASA's Magnetospheric Multiscale mission, using JDK 7, the NetBeans Platform, and JavaFX to create the GEONS Ground Support System, helping reduce software development time by approximately 35%. The prototype tool that Nicklas and Sean are now working on uses JavaFX 3D with the NetBeans Platform and is nicknamed OrbitFX. Much of the early development is being done to experiment with different patterns, so that accuracy is currently not the goal. For example, you'll notice in the screenshots that the Earth is really close to the Sun, which is obviously not correct. The screenshots are generated using Java 8 build 111, together with NetBeans Platform 7.4. Inspired by various JavaOne demos using JavaFX 3D, Nick began development integrating them into their existing NetBeans Platform infrastructure. The 3D scene showing the Sun and Earth objects is all JavaFX 8 3D, demonstrating the use of Phong Material support, along with multiple light and camera objects. Each JavaFX component extends a JFXPanel type, so that each can easily be added to NetBeans Platform TopComponents. Right-clicking an item in the explorer view offers a context menu that animates and centers the 3D scene on the selected celestial body.  With each JavaFX scene component wrapped in a JFXPanel, they can easily be integrated into a NetBeans Platform Visual Library scene.  In this case, Nick and Sean are using an instance of their custom Slipstream PinGraphScene, which is an extension of the NetBeans Platform VMDGraphScene. Now, via the NetBeans Platform Visual Library, the OrbitFX celestial body viewer can be used in the same space as a WorldWind viewer, which is provided by a previously developed plugin. "This is a clear demonstration of the power of the NetBeans Platform as an application development framework," says Sean Phillips. "How else could you have so much rich application support placed literally side by side so easily?"

    Read the article

  • CodePlex Daily Summary for Sunday, May 16, 2010

    CodePlex Daily Summary for Sunday, May 16, 2010New Projects3D Calculator: 3D Calc is a simple calculator application for Windows Phone 7, the purpose of this project is to demo the 3D animations capabilities of WP7 and sh...azaleas: AzaleasBlueset Studio Opensource Projects: Only for Opensource projects form Blueset Studio.Breck: A Phoenix and Jumper Moneky Production: Breck is a first person non-violent shooter developed in C++ and Dark GDK. After the main game is developed we are looking into making a sequel or...Discuz! Forum SDK: This project is use to login in and post or reply topic on discuz forum.Dominion.NET: Evolving Dominion source code originally written in VB6 and posted by "jatill" on Collectible Card Game Headquarters. Migration of the design and s...EkspSys2010-ITR: A mini project for the course Experimental System devolopment in spring 2010Facebook Graph Toolkit: This project is a .Net implementation of the Facebook Graph API. The aim of this project is to be a replacement to the existing Facebook Toolkit (h...iFree: This is a solution for Vietnamese network socialInfoPath Editor for Developer: InfoPath Editor for developer allows user to modify the html text directly inside InfoPath designer or filler and push the change back to InfoPath ...iZeit: Run your own online calendar, with blog integration, recurrence, todo list and categories.machgos dotNet Tests: Just some little test-projects for learningmim: TBAMinePost: MinePost is a game made for the first 48 hour Reddit Game Jam.Mockina: Mockina is a mock framework. Expression tree syntax is used to specify which members to mock, both public and non-public. The code is easy to under...MSBuild Launch Pad (mPad): This is just another shell extension for MSBuild to enable quick execution of MSBuild scripts via Windows Explorer context menu. (C) 2010 Lex LiPeacock: A browser like tabbed applicationPrimeCalculation: PrimeCalculation is a .NET app to calculate primes in a given range. Speed on Core2Duo 2,4GHZ: Found all primes from 0 to 1 billion in 35 seconds (...Slightly Silverlight: A Framework that leverages Silverlight for processing, business logic but standard HTML for the presentation layer.Stopwatch: Stopwatch is a tool for measuring the time. To start and pause stopwatch you only need to press a key on the keyboard. An additional context menu a...YAXLib: Yet Another XML Serialization Library for the .NET Framework: YAXLib is an XML Serialization library which helps you structure freely the XML result, choose among private and public fields to be serialized, an...New ReleasesActivate Your Glutes: v1.0.3.0: This release is a migration to VS2010, .Net 4, MVC2 and Entity Framework 4. The code has also been considerably cleaned up - taking advantage of E...AnyCAD: AnyCAD.Free.ENU.v1.1: http://www.anycad.net Modeling •2D: Line, Rectangle, Arc, Arch, Circle, Spline, Polygon •Feature: Extrude, Loft, Chamfer, Sweep, Revol •Boolean: ...Blueset Studio Opensource Projects: 多功能计算器 3.5: 稳定版本。Code for Rapid C# Windows Development eBook: LLBLGen LINQPad Data Context Driver Ver 1.0.0.0: First release of a Static LLBLGen Pro Data Context Driver for LINQPad I recommend LINQPad 4 as it seems more stable with this driver than LINQPad 2.DSQLT - Dynamic SQL Templates: Release 1.2. Some behaviour has changed!!: Attention. Some behaviour has changed! Now its necessary to use WildCards in the pattern-parameter for DSQLT.AllSourceContains DSQLT.Databases DSQ...FDS AutoCAD plug-in: FDS to AutoCAD plug-in: Basic functionality was implemented. Some routines like setting fds executable location are still not automated.Feature Builder Guidance Extensions: FBGX 2 - Standalone FX: Background: The Feature Builder Guidance is extensible and displays guidance content supplied by all the Feature Builder Guidance Extensions (FBGX...Floe IRC Client: Floe IRC Client 2010-05 R3: - You can now right click on the input box to get options for toggling bold, underline, colors, etc. - The size of the nickname column is now saved...Floe IRC Client: Floe IRC Client 2010-05 R4: - A user's channel status now appears next to their nick when they talk (e.g. @Nick or +Nick) - Fixed an error where certain kinds of network probl...HD-Trailers.NET Downloader: HD-Trailers.NET Downloader v1.0: Version 1.0 Thanks to Wolfgang for all his help. I let this project languish for too long while focusing on other things, but his involvement has ...InfoPath Editor for Developer: InfoPath Editor Beta 1: Intial Release: Can load InfoPath inner html. Can edit InfoPath inner html. InfoPath 2007 only.LinkSharp: LinkSharp 0.1.0: First release of LinkSharp. Set up iis, and use the sql script to create a new database.PowerAuras: PowerAuras V3.0.0F: This version adds better integration with GTFO New Flags Added PvP flag In 5-Man Instance In Raid Instance In Battleground In ArenaRx Contrib: V1.4: Add the ability to catch internal exception and the ability to publish error by queue adaptersSEO SiteMap: SEO SiteMap RC1: -SevenZipLib Library: v9.13.2: Stable release associated with 7z.dll 9.13 beta. Ability to create and update archives not implemente yet.Silverlight / WPF Controls: Upload, FlipPanel, DeepZoom, Animation, Encryption: Code Camp Demonstration: This code example demonstrates MVVM/MEF with WPF with attached properties,security and custom ICommand class.SQL Data Capture - Black Box Application Testing: SQLDataCapture V1.2: Added Entity Framework Support to CRUD generator (Insert Stored Procedure) and switched to VS 2010 for development.Stopwatch: Stopwatch 0.1: Stopwatch Release 0.1VCC: Latest build, v2.1.30515.0: Automatic drop of latest buildYet another developer blog - Examples: Asynchronous TreeView in ASP.NET MVC: This sample application shows how to use jQuery TreeView plugin for creating an asynchronous TreeView in ASP.NET MVC. This application is accompani...Most Popular ProjectsRawrWBFS ManagerAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitWindows Presentation Foundation (WPF)patterns & practices – Enterprise LibraryMicrosoft SQL Server Community & SamplesPHPExcelASP.NETMost Active Projectspatterns & practices – Enterprise LibraryRawrPHPExcelBlogEngine.NETMicrosoft Biology FoundationCustomer Portal Accelerator for Microsoft Dynamics CRMWindows Azure Command-line Tools for PHP DevelopersMirror Testing SystemN2 CMSStyleCop

    Read the article

  • Google I/O 2011: Optimizing Android Apps with Google Analytics

    Google I/O 2011: Optimizing Android Apps with Google Analytics Nick Mihailovski, Philip Mui, Jim Cotugno Thousands of apps have taken advantage of Google Analytics' native Android tracking capabilities to improve the adoption and usability of Andriod Apps. This session covers best practices for tracking apps on mobile, TV and other devices. We'll also show you how to gain actionable insights from new tracking and reporting capabilities. From: GoogleDevelopers Views: 6819 34 ratings Time: 47:40 More in Science & Technology

    Read the article

  • Google Python Class Day 2 Part 1

    Google Python Class Day 2 Part 1 Google Python Class Day 2 Part 1: Regular Expressions. By Nick Parlante. Support materials and exercises: code.google.com From: GoogleDevelopers Views: 18 0 ratings Time: 42:00 More in Science & Technology

    Read the article

  • Google Python Class Day 1 Part 3

    Google Python Class Day 1 Part 3 Google Python Class Day 1 Part 3: Dicts and Files. By Nick Parlante. Support materials and exercises: code.google.com From: GoogleDevelopers Views: 7 0 ratings Time: 28:59 More in Science & Technology

    Read the article

  • xml file save/read error (making a highscore system for XNA game)

    - by Eddy
    i get an error after i write player name to the file for second or third time (An unhandled exception of type 'System.InvalidOperationException' occurred in System.Xml.dll Additional information: There is an error in XML document (18, 17).) (in highscores load method In data = (HighScoreData)serializer.Deserialize(stream); it stops) the problem is that some how it adds additional "" at the end of my .dat file could anyone tell me how to fix this? the file before save looks: <?xml version="1.0"?> <HighScoreData xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <PlayerName> <string>neil</string> <string>shawn</string> <string>mark</string> <string>cindy</string> <string>sam</string> </PlayerName> <Score> <int>200</int> <int>180</int> <int>150</int> <int>100</int> <int>50</int> </Score> <Count>5</Count> </HighScoreData> the file after save looks: <?xml version="1.0"?> <HighScoreData xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <PlayerName> <string>Nick</string> <string>Nick</string> <string>neil</string> <string>shawn</string> <string>mark</string> </PlayerName> <Score> <int>210</int> <int>210</int> <int>200</int> <int>180</int> <int>150</int> </Score> <Count>5</Count> </HighScoreData>> the part of my code that does all of save load to xml is: DECLARATIONS PART [Serializable] public struct HighScoreData { public string[] PlayerName; public int[] Score; public int Count; public HighScoreData(int count) { PlayerName = new string[count]; Score = new int[count]; Count = count; } } IAsyncResult result = null; bool inputName; HighScoreData data; int Score = 0; public string NAME; public string HighScoresFilename = "highscores.dat"; Game1 constructor public Game1() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; Width = graphics.PreferredBackBufferWidth = 960; Height = graphics.PreferredBackBufferHeight =640; GamerServicesComponent GSC = new GamerServicesComponent(this); Components.Add(GSC); } Inicialize function (end of it) protected override void Initialize() { //other game code base.Initialize(); string fullpath =Path.Combine(HighScoresFilename); if (!File.Exists(fullpath)) { //If the file doesn't exist, make a fake one... // Create the data to save data = new HighScoreData(5); data.PlayerName[0] = "neil"; data.Score[0] = 200; data.PlayerName[1] = "shawn"; data.Score[1] = 180; data.PlayerName[2] = "mark"; data.Score[2] = 150; data.PlayerName[3] = "cindy"; data.Score[3] = 100; data.PlayerName[4] = "sam"; data.Score[4] = 50; SaveHighScores(data, HighScoresFilename); } } all methods for loading saving and output public static void SaveHighScores(HighScoreData data, string filename) { // Get the path of the save game string fullpath = Path.Combine("highscores.dat"); // Open the file, creating it if necessary FileStream stream = File.Open(fullpath, FileMode.OpenOrCreate); try { // Convert the object to XML data and put it in the stream XmlSerializer serializer = new XmlSerializer(typeof(HighScoreData)); serializer.Serialize(stream, data); } finally { // Close the file stream.Close(); } } /* Load highscores */ public static HighScoreData LoadHighScores(string filename) { HighScoreData data; // Get the path of the save game string fullpath = Path.Combine("highscores.dat"); // Open the file FileStream stream = File.Open(fullpath, FileMode.OpenOrCreate, FileAccess.Read); try { // Read the data from the file XmlSerializer serializer = new XmlSerializer(typeof(HighScoreData)); data = (HighScoreData)serializer.Deserialize(stream);//this is the line // where program gives an error } finally { // Close the file stream.Close(); } return (data); } /* Save player highscore when game ends */ private void SaveHighScore() { // Create the data to saved HighScoreData data = LoadHighScores(HighScoresFilename); int scoreIndex = -1; for (int i = 0; i < data.Count ; i++) { if (Score > data.Score[i]) { scoreIndex = i; break; } } if (scoreIndex > -1) { //New high score found ... do swaps for (int i = data.Count - 1; i > scoreIndex; i--) { data.PlayerName[i] = data.PlayerName[i - 1]; data.Score[i] = data.Score[i - 1]; } data.PlayerName[scoreIndex] = NAME; //Retrieve User Name Here data.Score[scoreIndex] = Score; // Retrieve score here SaveHighScores(data, HighScoresFilename); } } /* Iterate through data if highscore is called and make the string to be saved*/ public string makeHighScoreString() { // Create the data to save HighScoreData data2 = LoadHighScores(HighScoresFilename); // Create scoreBoardString string scoreBoardString = "Highscores:\n\n"; for (int i = 0; i<5;i++) { scoreBoardString = scoreBoardString + data2.PlayerName[i] + "-" + data2.Score[i] + "\n"; } return scoreBoardString; } when ill make this work i will start this code when i call game over (now i start it when i press some buttons, so i could test it faster) public void InputYourName() { if (result == null && !Guide.IsVisible) { string title = "Name"; string description = "Write your name in order to save your Score"; string defaultText = "Nick"; PlayerIndex playerIndex = new PlayerIndex(); result= Guide.BeginShowKeyboardInput(playerIndex, title, description, defaultText, null, null); // NAME = result.ToString(); } if (result != null && result.IsCompleted) { NAME = Guide.EndShowKeyboardInput(result); result = null; inputName = false; SaveHighScore(); } } this where i call output to the screen (ill call this in highscores meniu section when i am done with debugging) spriteBatch.DrawString(Font1, "" + makeHighScoreString(),new Vector2(500,200), Color.White); }

    Read the article

< Previous Page | 22 23 24 25 26 27 28 29 30 31 32 33  | Next Page >