Search Results

Search found 16565 results on 663 pages for 'private meta'.

Page 26/663 | < Previous Page | 22 23 24 25 26 27 28 29 30 31 32 33  | Next Page >

  • Can't declare an abstract method private....

    - by Zombies
    I want to do this, yet I can't. Here is my scenario and rational. I have an abstract class for test cases that has an abstract method called test(). The test() method is to be defined by the subclass; it is to be implemented with logic for a certain application, such as CRMAppTestCase extends CompanyTestCase. I don't want the test() method to be invoked directly, I want the super class to call the test() method while the sub class can call a method which calls this (and does other work too, such as setting a current date-time right before the test is executed for example). Example code: public abstract class CompanyTestCase { //I wish this would compile, but it cannot be declared private private abstract void test(); public TestCaseResult performTest() { //do some work which must be done and should be invoked whenever //this method is called (it would be improper to expect the caller // to perform initialization) TestCaseResult result = new TestCaseResult(); result.setBeginTime(new Date()); long time = System.currentTimeMillis(); test(); //invoke test logic result.setDuration(System.currentTimeMillis() - time); return result; } } Then to extend this.... public class CRMAppTestCase extends CompanyTestCase { public void test() { //test logic here } } Then to call it.... TestCaseResult result = new CRMAppTestCase().performTest();

    Read the article

  • Access to and availability of private member functions in C++

    - by David
    I am wandering the desert of my brain. I'm trying to write something like the following: class MyClass { // Peripherally Related Stuff public: void TakeAnAction(int oneThing, int anotherThing) { switch(oneThing){ case THING_A: TakeThisActionWith(anotherThing); break; //cases THINGS_NOT_A: }; }; private: void TakeThisActionWith(int thing) { string outcome = new string; outcome = LookUpOutcome(thing); // Do some stuff based on outcome return; } string LookUpOutcome(int key) { string oc = new string; oc = MyPrivateMap[key]; return oc; } map<int, string> MyPrivateMap; Then in the .cc file where I am actually using these things, while compiling the TakeAnAction section, it [CC, the solaris compiler] throws an an error: 'The function LookUpOutcome must have a prototype' and bombs out. In my header file, I have declared 'string LookUpOutcome(int key);' in the private section of the class. I have tried all sorts of variations. I tried to use 'this' for a little while, and it gave me 'Can only use this in non-static member function.' Sadly, I haven't declared anything static and these are all, putatively, member functions. I tried it [on TakeAnAction and LookUp] when I got the error, but I got something like, 'Can't access MyPrivateMap from LookUp'. MyPrivateMap could be made public and I could refer to it directly, I guess, but my sensibility says that is not the right way to go about this [that means that namespace scoped helper functions are out, I think]. I also guess I could just inline the lookup and subsequent other stuff, but my line-o-meter goes on tilt. I'm trying desperately not to kludge it.

    Read the article

  • Make FalseClass behave like TrueClass with meta programming

    - by Edvinas Bartkus
    This is theoretical question: is it possible to change FalseClass behavior to act like TrueClass? It is possible to override to_s, xor, &, | behavior but that is not enough. If you like Test Driven Development, follow my colleague's suggestion: puts "false is new true!" if false puts "never happens" if true Asserts won't work, would it? Is it possible to pass the test successfully?

    Read the article

  • Help with Collision Resolution?

    - by Milo
    I'm trying to learn about physics by trying to make a simplified GTA 2 clone. My only problem is collision resolution. Everything else works great. I have a rigid body class and from there cars and a wheel class: class RigidBody extends Entity { //linear private Vector2D velocity = new Vector2D(); private Vector2D forces = new Vector2D(); private OBB2D predictionRect = new OBB2D(new Vector2D(), 1.0f, 1.0f, 0.0f); private float mass; private Vector2D deltaVec = new Vector2D(); private Vector2D v = new Vector2D(); //angular private float angularVelocity; private float torque; private float inertia; //graphical private Vector2D halfSize = new Vector2D(); private Bitmap image; private Matrix mat = new Matrix(); private float[] Vector2Ds = new float[2]; private Vector2D tangent = new Vector2D(); private static Vector2D worldRelVec = new Vector2D(); private static Vector2D relWorldVec = new Vector2D(); private static Vector2D pointVelVec = new Vector2D(); public RigidBody() { //set these defaults so we don't get divide by zeros mass = 1.0f; inertia = 1.0f; setLayer(LAYER_OBJECTS); } protected void rectChanged() { if(getWorld() != null) { getWorld().updateDynamic(this); } } //intialize out parameters public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //store physical parameters this.halfSize = halfSize; this.mass = mass; image = bitmap; inertia = (1.0f / 20.0f) * (halfSize.x * halfSize.x) * (halfSize.y * halfSize.y) * mass; RectF rect = new RectF(); float scalar = 10.0f; rect.left = (int)-halfSize.x * scalar; rect.top = (int)-halfSize.y * scalar; rect.right = rect.left + (int)(halfSize.x * 2.0f * scalar); rect.bottom = rect.top + (int)(halfSize.y * 2.0f * scalar); setRect(rect); predictionRect.set(rect); } public void setLocation(Vector2D position, float angle) { getRect().set(position, getWidth(), getHeight(), angle); rectChanged(); } public void setPredictionLocation(Vector2D position, float angle) { getPredictionRect().set(position, getWidth(), getHeight(), angle); } public void setPredictionCenter(Vector2D center) { getPredictionRect().moveTo(center); } public void setPredictionAngle(float angle) { predictionRect.setAngle(angle); } public Vector2D getPosition() { return getRect().getCenter(); } public OBB2D getPredictionRect() { return predictionRect; } @Override public void update(float timeStep) { doUpdate(false,timeStep); } public void doUpdate(boolean prediction, float timeStep) { //integrate physics //linear Vector2D acceleration = Vector2D.scalarDivide(forces, mass); if(prediction) { Vector2D velocity = Vector2D.add(this.velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); c = Vector2D.add(getRect().getCenter(), Vector2D.scalarMultiply(velocity , timeStep)); setPredictionCenter(c); //forces = new Vector2D(0,0); //clear forces } else { velocity.x += (acceleration.x * timeStep); velocity.y += (acceleration.y * timeStep); //velocity = Vector2D.add(velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); v.x = getRect().getCenter().getX() + (velocity.x * timeStep); v.y = getRect().getCenter().getY() + (velocity.y * timeStep); deltaVec.x = v.x - c.x; deltaVec.y = v.y - c.y; deltaVec.normalize(); setCenter(v.x, v.y); forces.x = 0; //clear forces forces.y = 0; } //angular float angAcc = torque / inertia; if(prediction) { float angularVelocity = this.angularVelocity + angAcc * timeStep; setPredictionAngle(getAngle() + angularVelocity * timeStep); //torque = 0; //clear torque } else { angularVelocity += angAcc * timeStep; setAngle(getAngle() + angularVelocity * timeStep); torque = 0; //clear torque } } public void updatePrediction(float timeStep) { doUpdate(true, timeStep); } //take a relative Vector2D and make it a world Vector2D public Vector2D relativeToWorld(Vector2D relative) { mat.reset(); Vector2Ds[0] = relative.x; Vector2Ds[1] = relative.y; mat.postRotate(JMath.radToDeg(getAngle())); mat.mapVectors(Vector2Ds); relWorldVec.x = Vector2Ds[0]; relWorldVec.y = Vector2Ds[1]; return new Vector2D(Vector2Ds[0], Vector2Ds[1]); } //take a world Vector2D and make it a relative Vector2D public Vector2D worldToRelative(Vector2D world) { mat.reset(); Vector2Ds[0] = world.x; Vector2Ds[1] = world.y; mat.postRotate(JMath.radToDeg(-getAngle())); mat.mapVectors(Vector2Ds); return new Vector2D(Vector2Ds[0], Vector2Ds[1]); } //velocity of a point on body public Vector2D pointVelocity(Vector2D worldOffset) { tangent.x = -worldOffset.y; tangent.y = worldOffset.x; return Vector2D.add( Vector2D.scalarMultiply(tangent, angularVelocity) , velocity); } public void applyForce(Vector2D worldForce, Vector2D worldOffset) { //add linear force forces.x += worldForce.x; forces.y += worldForce.y; //add associated torque torque += Vector2D.cross(worldOffset, worldForce); } @Override public void draw( GraphicsContext c) { c.drawRotatedScaledBitmap(image, getPosition().x, getPosition().y, getWidth(), getHeight(), getAngle()); } public Vector2D getVelocity() { return velocity; } public void setVelocity(Vector2D velocity) { this.velocity = velocity; } public Vector2D getDeltaVec() { return deltaVec; } } Vehicle public class Wheel { private Vector2D forwardVec; private Vector2D sideVec; private float wheelTorque; private float wheelSpeed; private float wheelInertia; private float wheelRadius; private Vector2D position = new Vector2D(); public Wheel(Vector2D position, float radius) { this.position = position; setSteeringAngle(0); wheelSpeed = 0; wheelRadius = radius; wheelInertia = (radius * radius) * 1.1f; } public void setSteeringAngle(float newAngle) { Matrix mat = new Matrix(); float []vecArray = new float[4]; //forward Vector vecArray[0] = 0; vecArray[1] = 1; //side Vector vecArray[2] = -1; vecArray[3] = 0; mat.postRotate(newAngle / (float)Math.PI * 180.0f); mat.mapVectors(vecArray); forwardVec = new Vector2D(vecArray[0], vecArray[1]); sideVec = new Vector2D(vecArray[2], vecArray[3]); } public void addTransmissionTorque(float newValue) { wheelTorque += newValue; } public float getWheelSpeed() { return wheelSpeed; } public Vector2D getAnchorPoint() { return position; } public Vector2D calculateForce(Vector2D relativeGroundSpeed, float timeStep, boolean prediction) { //calculate speed of tire patch at ground Vector2D patchSpeed = Vector2D.scalarMultiply(Vector2D.scalarMultiply( Vector2D.negative(forwardVec), wheelSpeed), wheelRadius); //get velocity difference between ground and patch Vector2D velDifference = Vector2D.add(relativeGroundSpeed , patchSpeed); //project ground speed onto side axis Float forwardMag = new Float(0.0f); Vector2D sideVel = velDifference.project(sideVec); Vector2D forwardVel = velDifference.project(forwardVec, forwardMag); //calculate super fake friction forces //calculate response force Vector2D responseForce = Vector2D.scalarMultiply(Vector2D.negative(sideVel), 2.0f); responseForce = Vector2D.subtract(responseForce, forwardVel); float topSpeed = 500.0f; //calculate torque on wheel wheelTorque += forwardMag * wheelRadius; //integrate total torque into wheel wheelSpeed += wheelTorque / wheelInertia * timeStep; //top speed limit (kind of a hack) if(wheelSpeed > topSpeed) { wheelSpeed = topSpeed; } //clear our transmission torque accumulator wheelTorque = 0; //return force acting on body return responseForce; } public void setTransmissionTorque(float newValue) { wheelTorque = newValue; } public float getTransmissionTourque() { return wheelTorque; } public void setWheelSpeed(float speed) { wheelSpeed = speed; } } //our vehicle object public class Vehicle extends RigidBody { private Wheel [] wheels = new Wheel[4]; private boolean throttled = false; public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //front wheels wheels[0] = new Wheel(new Vector2D(halfSize.x, halfSize.y), 0.45f); wheels[1] = new Wheel(new Vector2D(-halfSize.x, halfSize.y), 0.45f); //rear wheels wheels[2] = new Wheel(new Vector2D(halfSize.x, -halfSize.y), 0.75f); wheels[3] = new Wheel(new Vector2D(-halfSize.x, -halfSize.y), 0.75f); super.initialize(halfSize, mass, bitmap); } public void setSteering(float steering) { float steeringLock = 0.13f; //apply steering angle to front wheels wheels[0].setSteeringAngle(steering * steeringLock); wheels[1].setSteeringAngle(steering * steeringLock); } public void setThrottle(float throttle, boolean allWheel) { float torque = 85.0f; throttled = true; //apply transmission torque to back wheels if (allWheel) { wheels[0].addTransmissionTorque(throttle * torque); wheels[1].addTransmissionTorque(throttle * torque); } wheels[2].addTransmissionTorque(throttle * torque); wheels[3].addTransmissionTorque(throttle * torque); } public void setBrakes(float brakes) { float brakeTorque = 15.0f; //apply brake torque opposing wheel vel for (Wheel wheel : wheels) { float wheelVel = wheel.getWheelSpeed(); wheel.addTransmissionTorque(-wheelVel * brakeTorque * brakes); } } public void doUpdate(float timeStep, boolean prediction) { for (Wheel wheel : wheels) { float wheelVel = wheel.getWheelSpeed(); //apply negative force to naturally slow down car if(!throttled && !prediction) wheel.addTransmissionTorque(-wheelVel * 0.11f); Vector2D worldWheelOffset = relativeToWorld(wheel.getAnchorPoint()); Vector2D worldGroundVel = pointVelocity(worldWheelOffset); Vector2D relativeGroundSpeed = worldToRelative(worldGroundVel); Vector2D relativeResponseForce = wheel.calculateForce(relativeGroundSpeed, timeStep,prediction); Vector2D worldResponseForce = relativeToWorld(relativeResponseForce); applyForce(worldResponseForce, worldWheelOffset); } //no throttling yet this frame throttled = false; if(prediction) { super.updatePrediction(timeStep); } else { super.update(timeStep); } } @Override public void update(float timeStep) { doUpdate(timeStep,false); } public void updatePrediction(float timeStep) { doUpdate(timeStep,true); } public void inverseThrottle() { float scalar = 0.2f; for(Wheel wheel : wheels) { wheel.setTransmissionTorque(-wheel.getTransmissionTourque() * scalar); wheel.setWheelSpeed(-wheel.getWheelSpeed() * 0.1f); } } } And my big hack collision resolution: private void update() { camera.setPosition((vehicle.getPosition().x * camera.getScale()) - ((getWidth() ) / 2.0f), (vehicle.getPosition().y * camera.getScale()) - ((getHeight() ) / 2.0f)); //camera.move(input.getAnalogStick().getStickValueX() * 15.0f, input.getAnalogStick().getStickValueY() * 15.0f); if(input.isPressed(ControlButton.BUTTON_GAS)) { vehicle.setThrottle(1.0f, false); } if(input.isPressed(ControlButton.BUTTON_STEAL_CAR)) { vehicle.setThrottle(-1.0f, false); } if(input.isPressed(ControlButton.BUTTON_BRAKE)) { vehicle.setBrakes(1.0f); } vehicle.setSteering(input.getAnalogStick().getStickValueX()); //vehicle.update(16.6666666f / 1000.0f); boolean colided = false; vehicle.updatePrediction(16.66666f / 1000.0f); List<Entity> buildings = world.queryStaticSolid(vehicle,vehicle.getPredictionRect()); if(buildings.size() > 0) { colided = true; } if(!colided) { vehicle.update(16.66f / 1000.0f); } else { Vector2D delta = vehicle.getDeltaVec(); vehicle.setVelocity(Vector2D.negative(vehicle.getVelocity().multiply(0.2f)). add(delta.multiply(-1.0f))); vehicle.inverseThrottle(); } } Here is OBB public class OBB2D { // Corners of the box, where 0 is the lower left. private Vector2D corner[] = new Vector2D[4]; private Vector2D center = new Vector2D(); private Vector2D extents = new Vector2D(); private RectF boundingRect = new RectF(); private float angle; //Two edges of the box extended away from corner[0]. private Vector2D axis[] = new Vector2D[2]; private double origin[] = new double[2]; public OBB2D(Vector2D center, float w, float h, float angle) { set(center,w,h,angle); } public OBB2D(float left, float top, float width, float height) { set(new Vector2D(left + (width / 2), top + (height / 2)),width,height,0.0f); } public void set(Vector2D center,float w, float h,float angle) { Vector2D X = new Vector2D( (float)Math.cos(angle), (float)Math.sin(angle)); Vector2D Y = new Vector2D((float)-Math.sin(angle), (float)Math.cos(angle)); X = X.multiply( w / 2); Y = Y.multiply( h / 2); corner[0] = center.subtract(X).subtract(Y); corner[1] = center.add(X).subtract(Y); corner[2] = center.add(X).add(Y); corner[3] = center.subtract(X).add(Y); computeAxes(); extents.x = w / 2; extents.y = h / 2; computeDimensions(center,angle); } private void computeDimensions(Vector2D center,float angle) { this.center.x = center.x; this.center.y = center.y; this.angle = angle; boundingRect.left = Math.min(Math.min(corner[0].x, corner[3].x), Math.min(corner[1].x, corner[2].x)); boundingRect.top = Math.min(Math.min(corner[0].y, corner[1].y),Math.min(corner[2].y, corner[3].y)); boundingRect.right = Math.max(Math.max(corner[1].x, corner[2].x), Math.max(corner[0].x, corner[3].x)); boundingRect.bottom = Math.max(Math.max(corner[2].y, corner[3].y),Math.max(corner[0].y, corner[1].y)); } public void set(RectF rect) { set(new Vector2D(rect.centerX(),rect.centerY()),rect.width(),rect.height(),0.0f); } // Returns true if other overlaps one dimension of this. private boolean overlaps1Way(OBB2D other) { for (int a = 0; a < axis.length; ++a) { double t = other.corner[0].dot(axis[a]); // Find the extent of box 2 on axis a double tMin = t; double tMax = t; for (int c = 1; c < corner.length; ++c) { t = other.corner[c].dot(axis[a]); if (t < tMin) { tMin = t; } else if (t > tMax) { tMax = t; } } // We have to subtract off the origin // See if [tMin, tMax] intersects [0, 1] if ((tMin > 1 + origin[a]) || (tMax < origin[a])) { // There was no intersection along this dimension; // the boxes cannot possibly overlap. return false; } } // There was no dimension along which there is no intersection. // Therefore the boxes overlap. return true; } //Updates the axes after the corners move. Assumes the //corners actually form a rectangle. private void computeAxes() { axis[0] = corner[1].subtract(corner[0]); axis[1] = corner[3].subtract(corner[0]); // Make the length of each axis 1/edge length so we know any // dot product must be less than 1 to fall within the edge. for (int a = 0; a < axis.length; ++a) { axis[a] = axis[a].divide((axis[a].length() * axis[a].length())); origin[a] = corner[0].dot(axis[a]); } } public void moveTo(Vector2D center) { Vector2D centroid = (corner[0].add(corner[1]).add(corner[2]).add(corner[3])).divide(4.0f); Vector2D translation = center.subtract(centroid); for (int c = 0; c < 4; ++c) { corner[c] = corner[c].add(translation); } computeAxes(); computeDimensions(center,angle); } // Returns true if the intersection of the boxes is non-empty. public boolean overlaps(OBB2D other) { if(right() < other.left()) { return false; } if(bottom() < other.top()) { return false; } if(left() > other.right()) { return false; } if(top() > other.bottom()) { return false; } if(other.getAngle() == 0.0f && getAngle() == 0.0f) { return true; } return overlaps1Way(other) && other.overlaps1Way(this); } public Vector2D getCenter() { return center; } public float getWidth() { return extents.x * 2; } public float getHeight() { return extents.y * 2; } public void setAngle(float angle) { set(center,getWidth(),getHeight(),angle); } public float getAngle() { return angle; } public void setSize(float w,float h) { set(center,w,h,angle); } public float left() { return boundingRect.left; } public float right() { return boundingRect.right; } public float bottom() { return boundingRect.bottom; } public float top() { return boundingRect.top; } public RectF getBoundingRect() { return boundingRect; } public boolean overlaps(float left, float top, float right, float bottom) { if(right() < left) { return false; } if(bottom() < top) { return false; } if(left() > right) { return false; } if(top() > bottom) { return false; } return true; } }; What I do is when I predict a hit on the car, I force it back. It does not work that well and seems like a bad idea. What could I do to have more proper collision resolution. Such that if I hit a wall I will never get stuck in it and if I hit the side of a wall I can steer my way out of it. Thanks I found this nice ppt. It talks about pulling objects apart and calculating new velocities. How could I calc new velocities in my case? http://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CC8QFjAB&url=http%3A%2F%2Fcoitweb.uncc.edu%2F~tbarnes2%2FGameDesignFall05%2FSlides%2FCh4.2-CollDet.ppt&ei=x4ucULy5M6-N0QGRy4D4Cg&usg=AFQjCNG7FVDXWRdLv8_-T5qnFyYld53cTQ&cad=rja

    Read the article

  • Using PVLANs with normal VLANs in a trunked environment

    - by user974896
    Assume a trunked environment with two switches, S1 and S2. The swtiches are connected with a trunk port designed to pass VLAN 26. What would happen if VLAN 26 on S2 is configured as a private-vlan with the default gateway and DHCP server and default gateway as promisc ports. What if S1's VLAN 26 is configured as a standard VLAN. Would the hosts on S1 be able to communicate with the promisc ports on S2? Would they be able to communicate with the hosts on S2? To further complicate things what if the DHCP server were to reside on S1 and I wanted S2 to have private VLANS with promisc ports as the gateway and DHCP server while still leaving S1 in a standard vlan configuration.

    Read the article

  • Import .pem public and private keys to JKS keystore

    - by Rolf
    Hi, I have public and private keys in separate .pem files that I would need to get into a JKS keystore somehow. Tried using the -import command in KeyTool for this, which gives an "not an X.509 certificate" error. I'm guessing the solution has to do with OpenSSL, but I'm not entirely sure what to do with it. Would really appreciate any help with this, since I'm completely clueless with everything crypto-related. Thanks in advance, --Rolf

    Read the article

  • How does DataContractSerializer write to private fields?

    - by Eric
    I understand how XMLSerializer could work by using reflection to figure out what public read/write fields or properties it should be using to serialize or de-serialize XML. Yet XMLSerializer requires that the fields be public and read/write. However, DataContractSerializer is able to read or write to or from completely private fields in a class. So I'm wondering how this is even possible with out explicitly giving DataContractSerializer additional access rights to my class(es).

    Read the article

  • Meet-in-the-Middle Atack on an NTRU Private key

    - by Elena Kirshanova
    Hello everyone. I was wondering if anyone could tell me how to represent the enumeration of vectors of privite key f in a Meet-In-the-Middle Attack on an NTRU Private key. I can not understand the example, given here http://securityinnovation.com/cryptolab/pdf/NTRUTech004v2.pdf I'll be very thankful if anyone could show an example in detail.

    Read the article

  • Network communication across two private network

    - by Sethu
    Hi All, I am trying to implement a peer to peer communication .. I use sockets for communication between them. I want to know if there are any ways i can use the same sort of communication when the two peers are behind two private Networks (They dont know each others public ip address.) I can think of a shared buffer in a well known location as a means of communication. But is there some other way to get this done?

    Read the article

  • Calculate private working set (memory) using C#.

    - by Gnucom
    Hello, How do I calculate the private working set of memory using C#? I'm interested in produces roughly the same figure as taskmgr.exe. I'm using the Process namespace and using methods/data like WorkingSet64 and PrivateMemorySize64, but these figures are off by 100MB or more at times. Thanks,

    Read the article

  • Private api's list

    - by Mohammed Sadiq
    Hi, Is there any link available that gives the list of private api's used in iPhone. My objective is to access the SMS, calendar, audi, video's from non jailbroken iPhone. I searched in the following link , but could not find any related informations. link text Best Regards, Mohamed Sadiq

    Read the article

  • Java - Should private instance variables be accessed in constructors through getters and setters met

    - by Yatendra Goel
    I know that private instance variables are accessed through their public getters and setters method. But when I generate constructors with the help of IDE, it initializes instance variables directly instead of initializing them through their setter methods. Q1. So should I change the IDE generated code for constructors to initialize those instance variables through their setter methods. Q2. If yes, then why IDE don't generate constructors code in that way?

    Read the article

  • MSMQ private queue size limit

    - by DaeMoohn
    Hi, I am trying to put messages in a private queue defined on my local computer, but the queue size cannot exceed 8 MB. I am getting an exception every time after that size is reached. The size for the specific queue is set at 10 GB. I am running Windows 7 Professional. Is there a limitation because of that?

    Read the article

  • Private WCF Web Service

    - by Bram
    I'm kind of a newb to WCF Web Services and have created a service. Here is what I'm after: If someone vists http://somesite.com/Poo.svc they are rejected straight off the bat (404 or something) Only I can add a reference to the service in VS. What I'm after is making the WCF service totally private. Any ideas?

    Read the article

  • paperclip private files

    - by Dmitriy Likhten
    Is there a way to make paperclip attachments private? As in only where I explicitly want a user to be able to access a file, can the user access the file. Obviously the file can't be in a public directory, but how do I get paperclip to check the user's access rights when trying to access that file to begin with?

    Read the article

  • Heroku powered private restricted beta

    - by Ben Sand
    I'd like to run an app in a restricted private beta on heroku. We're changing the app regularly and haven't done a security audit. To stop anyone exploiting stuff, we'd like to lock down the whole site, so you need a password to access anything. Ideally similar to using .htaccess and .htpasswd files to lock an entire site on an Apache server. Is there a simple one shot way to do this for a heroku hosted app?

    Read the article

< Previous Page | 22 23 24 25 26 27 28 29 30 31 32 33  | Next Page >