Search Results

Search found 13682 results on 548 pages for 'move constructor'.

Page 260/548 | < Previous Page | 256 257 258 259 260 261 262 263 264 265 266 267  | Next Page >

  • Scheduling thread tiles with C++ AMP

    - by Daniel Moth
    This post assumes you are totally comfortable with, what some of us call, the simple model of C++ AMP, i.e. you could write your own matrix multiplication. We are now ready to explore the tiled model, which builds on top of the non-tiled one. Tiling the extent We know that when we pass a grid (which is just an extent under the covers) to the parallel_for_each call, it determines the number of threads to schedule and their index values (including dimensionality). For the single-, two-, and three- dimensional cases you can go a step further and subdivide the threads into what we call tiles of threads (others may call them thread groups). So here is a single-dimensional example: extent<1> e(20); // 20 units in a single dimension with indices from 0-19 grid<1> g(e);      // same as extent tiled_grid<4> tg = g.tile<4>(); …on the 3rd line we subdivided the single-dimensional space into 5 single-dimensional tiles each having 4 elements, and we captured that result in a concurrency::tiled_grid (a new class in amp.h). Let's move on swiftly to another example, in pictures, this time 2-dimensional: So we start on the left with a grid of a 2-dimensional extent which has 8*6=48 threads. We then have two different examples of tiling. In the first case, in the middle, we subdivide the 48 threads into tiles where each has 4*3=12 threads, hence we have 2*2=4 tiles. In the second example, on the right, we subdivide the original input into tiles where each has 2*2=4 threads, hence we have 4*3=12 tiles. Notice how you can play with the tile size and achieve different number of tiles. The numbers you pick must be such that the original total number of threads (in our example 48), remains the same, and every tile must have the same size. Of course, you still have no clue why you would do that, but stick with me. First, we should see how we can use this tiled_grid, since the parallel_for_each function that we know expects a grid. Tiled parallel_for_each and tiled_index It turns out that we have additional overloads of parallel_for_each that accept a tiled_grid instead of a grid. However, those overloads, also expect that the lambda you pass in accepts a concurrency::tiled_index (new in amp.h), not an index<N>. So how is a tiled_index different to an index? A tiled_index object, can have only 1 or 2 or 3 dimensions (matching exactly the tiled_grid), and consists of 4 index objects that are accessible via properties: global, local, tile_origin, and tile. The global index is the same as the index we know and love: the global thread ID. The local index is the local thread ID within the tile. The tile_origin index returns the global index of the thread that is at position 0,0 of this tile, and the tile index is the position of the tile in relation to the overall grid. Confused? Here is an example accompanied by a picture that hopefully clarifies things: array_view<int, 2> data(8, 6, p_my_data); parallel_for_each(data.grid.tile<2,2>(), [=] (tiled_index<2,2> t_idx) restrict(direct3d) { /* todo */ }); Given the code above and the picture on the right, what are the values of each of the 4 index objects that the t_idx variables exposes, when the lambda is executed by T (highlighted in the picture on the right)? If you can't work it out yourselves, the solution follows: t_idx.global       = index<2> (6,3) t_idx.local          = index<2> (0,1) t_idx.tile_origin = index<2> (6,2) t_idx.tile             = index<2> (3,1) Don't move on until you are comfortable with this… the picture really helps, so use it. Tiled Matrix Multiplication Example – part 1 Let's paste here the C++ AMP matrix multiplication example, bolding the lines we are going to change (can you guess what the changes will be?) 01: void MatrixMultiplyTiled_Part1(vector<float>& vC, const vector<float>& vA, const vector<float>& vB, int M, int N, int W) 02: { 03: 04: array_view<const float,2> a(M, W, vA); 05: array_view<const float,2> b(W, N, vB); 06: array_view<writeonly<float>,2> c(M, N, vC); 07: parallel_for_each(c.grid, 08: [=](index<2> idx) restrict(direct3d) { 09: 10: int row = idx[0]; int col = idx[1]; 11: float sum = 0.0f; 12: for(int i = 0; i < W; i++) 13: sum += a(row, i) * b(i, col); 14: c[idx] = sum; 15: }); 16: } To turn this into a tiled example, first we need to decide our tile size. Let's say we want each tile to be 16*16 (which assumes that we'll have at least 256 threads to process, and that c.grid.extent.size() is divisible by 256, and moreover that c.grid.extent[0] and c.grid.extent[1] are divisible by 16). So we insert at line 03 the tile size (which must be a compile time constant). 03: static const int TS = 16; ...then we need to tile the grid to have tiles where each one has 16*16 threads, so we change line 07 to be as follows 07: parallel_for_each(c.grid.tile<TS,TS>(), ...that means that our index now has to be a tiled_index with the same characteristics as the tiled_grid, so we change line 08 08: [=](tiled_index<TS, TS> t_idx) restrict(direct3d) { ...which means, without changing our core algorithm, we need to be using the global index that the tiled_index gives us access to, so we insert line 09 as follows 09: index<2> idx = t_idx.global; ...and now this code just works and it is tiled! Closing thoughts on part 1 The process we followed just shows the mechanical transformation that can take place from the simple model to the tiled model (think of this as step 1). In fact, when we wrote the matrix multiplication example originally, the compiler was doing this mechanical transformation under the covers for us (and it has additional smarts to deal with the cases where the total number of threads scheduled cannot be divisible by the tile size). The point is that the thread scheduling is always tiled, even when you use the non-tiled model. But with this mechanical transformation, we haven't gained anything… Hint: our goal with explicitly using the tiled model is to gain even more performance. In the next post, we'll evolve this further (beyond what the compiler can automatically do for us, in this first release), so you can see the full usage of the tiled model and its benefits… Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Applications: The Mathematics of Movement, Part 2

    - by TechTwaddle
    In part 1 of this series we saw how we can make the marble move towards the click point, with a fixed speed. In this post we’ll see, first, how to get rid of Atan2(), sine() and cosine() in our calculations, and, second, reducing the speed of the marble as it approaches the destination, so it looks like the marble is easing into it’s final position. As I mentioned in one of the previous posts, this is achieved by making the speed of the marble a function of the distance between the marble and the destination point. Getting rid of Atan2(), sine() and cosine() Ok, to be fair we are not exactly getting rid of these trigonometric functions, rather, replacing one form with another. So instead of writing sin(?), we write y/length. You see the point. So instead of using the trig functions as below, double x = destX - marble1.x; double y = destY - marble1.y; //distance between destination and current position, before updating marble position distanceSqrd = x * x + y * y; double angle = Math.Atan2(y, x); //Cos and Sin give us the unit vector, 6 is the value we use to magnify the unit vector along the same direction incrX = speed * Math.Cos(angle); incrY = speed * Math.Sin(angle); marble1.x += incrX; marble1.y += incrY; we use the following, double x = destX - marble1.x; double y = destY - marble1.y; //distance between destination and marble (before updating marble position) lengthSqrd = x * x + y * y; length = Math.Sqrt(lengthSqrd); //unit vector along the same direction as vector(x, y) unitX = x / length; unitY = y / length; //update marble position incrX = speed * unitX; incrY = speed * unitY; marble1.x += incrX; marble1.y += incrY; so we replaced cos(?) with x/length and sin(?) with y/length. The result is the same.   Adding oomph to the way it moves In the last post we had the speed of the marble fixed at 6, double speed = 6; to make the marble decelerate as it moves, we have to keep updating the speed of the marble in every frame such that the speed is calculated as a function of the length. So we may have, speed = length/12; ‘length’ keeps decreasing as the marble moves and so does speed. The Form1_MouseUp() function remains the same as before, here is the UpdatePosition() method, private void UpdatePosition() {     double incrX = 0, incrY = 0;     double lengthSqrd = 0, length = 0, lengthSqrdNew = 0;     double unitX = 0, unitY = 0;     double speed = 0;     double x = destX - marble1.x;     double y = destY - marble1.y;     //distance between destination and marble (before updating marble position)     lengthSqrd = x * x + y * y;     length = Math.Sqrt(lengthSqrd);     //unit vector along the same direction as vector(x, y)     unitX = x / length;     unitY = y / length;     //speed as a function of length     speed = length / 12;     //update marble position     incrX = speed * unitX;     incrY = speed * unitY;     marble1.x += incrX;     marble1.y += incrY;     //check for bounds     if ((int)marble1.x < MinX + marbleWidth / 2)     {         marble1.x = MinX + marbleWidth / 2;     }     else if ((int)marble1.x > (MaxX - marbleWidth / 2))     {         marble1.x = MaxX - marbleWidth / 2;     }     if ((int)marble1.y < MinY + marbleHeight / 2)     {         marble1.y = MinY + marbleHeight / 2;     }     else if ((int)marble1.y > (MaxY - marbleHeight / 2))     {         marble1.y = MaxY - marbleHeight / 2;     }     //distance between destination and marble (after updating marble position)     x = destX - (marble1.x);     y = destY - (marble1.y);     lengthSqrdNew = x * x + y * y;     /*      * End Condition:      * 1. If there is not much difference between lengthSqrd and lengthSqrdNew      * 2. If the marble has moved more than or equal to a distance of totLenToTravel (see Form1_MouseUp)      */     x = startPosX - marble1.x;     y = startPosY - marble1.y;     double totLenTraveledSqrd = x * x + y * y;     if ((int)totLenTraveledSqrd >= (int)totLenToTravelSqrd)     {         System.Console.WriteLine("Stopping because Total Len has been traveled");         timer1.Enabled = false;     }     else if (Math.Abs((int)lengthSqrd - (int)lengthSqrdNew) < 4)     {         System.Console.WriteLine("Stopping because no change in Old and New");         timer1.Enabled = false;     } } A point to note here is that, in this implementation, the marble never stops because it travelled a distance of totLenToTravelSqrd (first if condition). This happens because speed is a function of the length. During the final few frames length becomes very small and so does speed; and so the amount by which the marble shifts is quite small, and the second if condition always hits true first. I’ll end this series with a third post. In part 3 we will cover two things, one, when the user clicks, the marble keeps moving in that direction, rebounding off the screen edges and keeps moving forever. Two, when the user clicks on the screen, the marble moves towards it, with it’s speed reducing by every frame. It doesn’t come to a halt when the destination point is reached, instead, it continues to move, rebounds off the screen edges and slowly comes to halt. The amount of time that the marble keeps moving depends on how far the user clicks from the marble. I had mentioned this second situation here. Finally, here’s a video of this program running,

    Read the article

  • trouble running smooth animation in thread only when using key listener

    - by heysuse renard
    first time using a forum for coding help so sorry if i post this all wrong. i have more than a few classes i don't think screenManger or core holds the problem but i included them just incase. i got most of this code working through a set of tutorials. but a certain point started trying to do more on my own. i want to play the animation only when i'm moving my sprite. in my KeyTest class i am using threads to run the animation it used to work (poorly) but now not at all pluss it really gunks up my computer. i think it's because of the thread. im new to threads so i'm not to sure if i should even be using one in this situation or if its dangerous for my computer. the animation worked smoothly when i had the sprite bouce around the screen forever. the animation loop played with out stopping. i think the main problem is between the animationThread, Sprite, and keyTest classes, but itcould be more indepth. if someone could point me in the right direction for making the animation run smoothly when i push down a key and stop runing when i let off it would be greatly apriciated. i already looked at this Java a moving animation (sprite) obviously we were doing the same tutorial. but i feel my problem is slightly different. p.s. sorry for the typos. import java.awt.*; import java.awt.event.KeyEvent; import java.awt.event.KeyListener; import java.awt.image.BufferStrategy; import java.awt.image.BufferedImage; import java.util.ArrayList; import javax.swing.ImageIcon; import javax.swing.JFrame; public class KeyTest extends Core implements KeyListener { public static void main(String[] args) { new KeyTest().run(); } Sprite player1; Image hobo; Image background; animation hoboRun; animationThread t1; //init also calls init form superclass public void init() { super.init(); loadImages(); Window w = s.getFullScreenWindow(); w.setFocusTraversalKeysEnabled(false); w.addKeyListener(this); } //load method will go here. //load all pics need for animation and sprite public void loadImages() { background = new ImageIcon("\\\\STUART-PC\\Users\\Stuart\\workspace\\Gaming\\yellow square.jpg").getImage(); Image face1 = new ImageIcon("\\\\STUART-PC\\Users\\Stuart\\workspace\\Gaming\\circle.png").getImage(); Image face2 = new ImageIcon("\\\\STUART-PC\\Users\\Stuart\\workspace\\Gaming\\one eye.png").getImage(); hoboRun = new animation(); hoboRun.addScene(face1, 250); hoboRun.addScene(face2, 250); player1 = new Sprite(hoboRun); this.t1 = new animationThread(); this.t1.setAnimation(player1); } //key pressed public void keyPressed(KeyEvent e) { int keyCode = e.getKeyCode(); if (keyCode == KeyEvent.VK_ESCAPE) { stop(); } if (keyCode == KeyEvent.VK_RIGHT) { player1.setVelocityX(0.3f); try { this.t1.setRunning(true); Thread th1 = new Thread(this.t1); th1.start(); } catch (Exception ex) { System.out.println("noooo"); } } if (keyCode == KeyEvent.VK_LEFT) { player1.setVelocityX(-0.3f); try { this.t1.setRunning(true); Thread th1 = new Thread(this.t1); th1.start(); } catch (Exception ex) { System.out.println("noooo"); } } if (keyCode == KeyEvent.VK_DOWN) { player1.setVelocityY(0.3f); try { this.t1.setRunning(true); Thread th1 = new Thread(this.t1); th1.start(); } catch (Exception ex) { System.out.println("noooo"); } } if (keyCode == KeyEvent.VK_UP) { player1.setVelocityY(-0.3f); try { this.t1.setRunning(true); Thread th1 = new Thread(this.t1);; th1.start(); } catch (Exception ex) { System.out.println("noooo"); } } else { e.consume(); } } //keyReleased @SuppressWarnings("static-access") public void keyReleased(KeyEvent e) { int keyCode = e.getKeyCode(); if (keyCode == KeyEvent.VK_RIGHT || keyCode == KeyEvent.VK_LEFT) { player1.setVelocityX(0); try { this.t1.setRunning(false); } catch (Exception ex) { } } if (keyCode == KeyEvent.VK_UP || keyCode == KeyEvent.VK_DOWN) { player1.setVelocityY(0); try { this.t1.setRunning(false); } catch (Exception ex) { } } else { e.consume(); } } //last method from interface public void keyTyped(KeyEvent e) { e.consume(); } //draw public void draw(Graphics2D g) { Window w = s.getFullScreenWindow(); g.setColor(w.getBackground()); g.fillRect(0, 0, s.getWidth(), s.getHieght()); g.setColor(w.getForeground()); g.drawImage(player1.getImage(), Math.round(player1.getX()), Math.round(player1.getY()), null); } public void update(long timePassed) { player1.update(timePassed); } } abstract class Core { private static DisplayMode modes[] = { new DisplayMode(1600, 900, 64, 0), new DisplayMode(800, 600, 32, 0), new DisplayMode(800, 600, 24, 0), new DisplayMode(800, 600, 16, 0), new DisplayMode(800, 480, 32, 0), new DisplayMode(800, 480, 24, 0), new DisplayMode(800, 480, 16, 0),}; private boolean running; protected ScreenManager s; //stop method public void stop() { running = false; } public void run() { try { init(); gameLoop(); } finally { s.restoreScreen(); } } //set to full screen //set current background here public void init() { s = new ScreenManager(); DisplayMode dm = s.findFirstCompatibleMode(modes); s.setFullScreen(dm); Window w = s.getFullScreenWindow(); w.setFont(new Font("Arial", Font.PLAIN, 20)); w.setBackground(Color.GREEN); w.setForeground(Color.WHITE); running = true; } //main gameLoop public void gameLoop() { long startTime = System.currentTimeMillis(); long cumTime = startTime; while (running) { long timePassed = System.currentTimeMillis() - cumTime; cumTime += timePassed; update(timePassed); Graphics2D g = s.getGraphics(); draw(g); g.dispose(); s.update(); try { Thread.sleep(20); } catch (Exception ex) { } } } //update animation public void update(long timePassed) { } //draws to screen abstract void draw(Graphics2D g); } class animationThread implements Runnable { String name; boolean playing; Sprite a; //constructor takes input from keyboard public animationThread() { } //The run method for animation public void run() { long startTime = System.currentTimeMillis(); long cumTime = startTime; boolean test = getRunning(); while (test) { long timePassed = System.currentTimeMillis() - cumTime; cumTime += timePassed; test = getRunning(); } } public String getName() { return name; } public void setAnimation(Sprite a) { this.a = a; } public void setName(String name) { this.name = name; } public void setRunning(boolean running) { this.playing = running; } public boolean getRunning() { return playing; } } class animation { private ArrayList scenes; private int sceneIndex; private long movieTime; private long totalTime; //constructor public animation() { scenes = new ArrayList(); totalTime = 0; start(); } //add scene to ArrayLisy and set time for each scene public synchronized void addScene(Image i, long t) { totalTime += t; scenes.add(new OneScene(i, totalTime)); } public synchronized void start() { movieTime = 0; sceneIndex = 0; } //change scenes public synchronized void update(long timePassed) { if (scenes.size() > 1) { movieTime += timePassed; if (movieTime >= totalTime) { movieTime = 0; sceneIndex = 0; } while (movieTime > getScene(sceneIndex).endTime) { sceneIndex++; } } } //get animations current scene(aka image) public synchronized Image getImage() { if (scenes.size() == 0) { return null; } else { return getScene(sceneIndex).pic; } } //get scene private OneScene getScene(int x) { return (OneScene) scenes.get(x); } //Private Inner CLASS////////////// private class OneScene { Image pic; long endTime; public OneScene(Image pic, long endTime) { this.pic = pic; this.endTime = endTime; } } } class Sprite { private animation a; private float x; private float y; private float vx; private float vy; //Constructor public Sprite(animation a) { this.a = a; } //change position public void update(long timePassed) { x += vx * timePassed; y += vy * timePassed; } public void startAnimation(long timePassed) { a.update(timePassed); } //get x position public float getX() { return x; } //get y position public float getY() { return y; } //set x public void setX(float x) { this.x = x; } //set y public void setY(float y) { this.y = y; } //get sprite width public int getWidth() { return a.getImage().getWidth(null); } //get sprite height public int getHeight() { return a.getImage().getHeight(null); } //get horizontal velocity public float getVelocityX() { return vx; } //get vertical velocity public float getVelocityY() { return vx; } //set horizontal velocity public void setVelocityX(float vx) { this.vx = vx; } //set vertical velocity public void setVelocityY(float vy) { this.vy = vy; } //get sprite / image public Image getImage() { return a.getImage(); } } class ScreenManager { private GraphicsDevice vc; public ScreenManager() { GraphicsEnvironment e = GraphicsEnvironment.getLocalGraphicsEnvironment(); vc = e.getDefaultScreenDevice(); } //get all compatible DM public DisplayMode[] getCompatibleDisplayModes() { return vc.getDisplayModes(); } //compares DM passed into vc DM and see if they match public DisplayMode findFirstCompatibleMode(DisplayMode modes[]) { DisplayMode goodModes[] = vc.getDisplayModes(); for (int x = 0; x < modes.length; x++) { for (int y = 0; y < goodModes.length; y++) { if (displayModesMatch(modes[x], goodModes[y])) { return modes[x]; } } } return null; } //get current DM public DisplayMode getCurrentDisplayMode() { return vc.getDisplayMode(); } //checks if two modes match each other public boolean displayModesMatch(DisplayMode m1, DisplayMode m2) { if (m1.getWidth() != m2.getWidth() || m1.getHeight() != m2.getHeight()) { return false; } if (m1.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && m2.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && m1.getBitDepth() != m2.getBitDepth()) { return false; } if (m1.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && m2.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && m1.getRefreshRate() != m2.getRefreshRate()) { return false; } return true; } //make frame full screen public void setFullScreen(DisplayMode dm) { JFrame f = new JFrame(); f.setUndecorated(true); f.setIgnoreRepaint(true); f.setResizable(false); vc.setFullScreenWindow(f); if (dm != null && vc.isDisplayChangeSupported()) { try { vc.setDisplayMode(dm); } catch (Exception ex) { } } f.createBufferStrategy(2); } //sets graphics object = this return public Graphics2D getGraphics() { Window w = vc.getFullScreenWindow(); if (w != null) { BufferStrategy s = w.getBufferStrategy(); return (Graphics2D) s.getDrawGraphics(); } else { return null; } } //updates display public void update() { Window w = vc.getFullScreenWindow(); if (w != null) { BufferStrategy s = w.getBufferStrategy(); if (!s.contentsLost()) { s.show(); } } } //returns full screen window public Window getFullScreenWindow() { return vc.getFullScreenWindow(); } //get width of window public int getWidth() { Window w = vc.getFullScreenWindow(); if (w != null) { return w.getWidth(); } else { return 0; } } //get height of window public int getHieght() { Window w = vc.getFullScreenWindow(); if (w != null) { return w.getHeight(); } else { return 0; } } //get out of full screen public void restoreScreen() { Window w = vc.getFullScreenWindow(); if (w != null) { w.dispose(); } vc.setFullScreenWindow(null); } //create image compatible with monitor public BufferedImage createCopatibleImage(int w, int h, int t) { Window win = vc.getFullScreenWindow(); if (win != null) { GraphicsConfiguration gc = win.getGraphicsConfiguration(); return gc.createCompatibleImage(w, h, t); } return null; } }

    Read the article

  • PASS Summit – looking back on my first time

    - by Fatherjack
      So I was lucky enough to get my first experience of PASS Summit this year and took some time beforehand to read some blogs and reference material to get an idea on what to do and how to get the best out of my visit. Having been to other conferences – technical and non-technical – I had a reasonable idea on the routine and what to expect in general. Here is a list of a few things that I have learned/remembered as the week has gone by. Wear comfortable shoes. This actually needs to be broadened to Take several pairs of comfortable shoes. You will be spending many many hours, for several days one after another. Having comfortable feet that can literally support you for the duration will make the week in general a whole lot better. Not only at the conference but getting to and from you could well be walking. In the evenings you will be walking around town and standing talking in various bars and clubs. Looking back, on some days I was on my feet for over 20 hours. Make friends. This is a given for the long term benefits it brings but there is also an immediate reward in being at a conference with a friend or two. Some events are bigger and more popular than others and some have the type of session that every single attendee will want to be in. This is great for those that get in but if you are in the bathroom or queuing for coffee and you miss out it sucks. Having a friend that can get in to a room and reserve you a seat is a great advantage to make sure you get the content that you want to see and still have the coffee that you need. Don’t go to every session you want to see This might sound counter intuitive and it relies on the sessions being recorded in some way to guarantee you don’t totally miss out. Both PASS Summit and SQL Bits sessions are recorded (summit is audio, SQLBits is video) and this means that if you get into a good conversation with someone over a coffee you don’t have to break it up to go to a session. Obviously there is a trade-off here and you need to decide on the tipping point for yourself but a conversation at a place like this could make a big difference to the next contract or employer you have or it might simply be great catching up with some friends you don’t see so often. Go to at least one session you don’t want to Again, this will seem to be contrary to normal logic but there is no reason why you shouldn’t learn about a part of SQL Server that isn’t part of your daily routine. Not only will you learn something new but you will also pick up on the feelings and attitudes of the people in the session. So, if you are a DBA, head off to a BI session and so on. You’ll hear BI speakers speaking to a BI audience and get to understand their point of view and reasoning for making the decisions they do. You will also appreciate the way that your decisions and instructions affect the way they have to work. This will help you a lot when you are on a project, working with multiple teams and make you all more productive. Socialise While you are at the conference venue, speak to people. Ask questions, be interested in whoever you are speaking to. You get chances to talk to new friends at breakfast, dinner and every break between sessions. The only people that might not talk to you would be speakers that are about to go and give a session, in most cases speakers like peace and quiet before going on stage. Other than that the people around you are just waiting for someone to talk to them so make the first move. There is a whole lot going on outside of the conference hours and you should make an effort to join in with some of this too. At karaoke evenings or just out for a quiet drink with a few of the people you meet at the conference. Either way, don’t be a recluse and hide in your room or be alone out in the town. Don’t talk to people Once again this sounds wrong but stay with me. I have spoken to a number of speakers since Summit 2013 finished and they have all mentioned the time it has taken them to move about the conference venue due to people stopping them for a chat or to ask a question. 45 minutes to walk from a session room to the speaker room in one case. Wow. While none of the speakers were upset about this sort of delay I think delegates should take the situation into account and possibly defer their question to an email or to a time when the person they want is clearly less in demand. Give them a chance to enjoy the conference in the same way that you are, they may actually want to go to a session or just have a rest after giving their session – talking for 75 minutes is hard work, taking an extra 45 minutes right after is unbelievable. I certainly hope that they get good feedback on their sessions and perhaps if you spoke to a speaker outside a session you can give them a mention in the ‘any other comments’ part of the feedback, just to convey your gratitude for them giving up their time and expertise for free. Say thank you I just mentioned giving the speakers a clear, visible ‘thank you’ in the feedback but there are plenty of people that help make any conference the success it is that would really appreciate hearing that their efforts are valued. People on the registration desk, volunteers giving schedule guidance and directions, people on the community zone are all volunteers giving their time to help you have the best experience possible. Send an email to PASS and convey your thoughts about the work that was done. Maybe you want to be a volunteer next time so you could enquire how you get into that position at the same time. This isn’t an exclusive list and you may agree or disagree with the points I have made, please add anything you think is good advice in the comments. I’d like to finish by saying a huge thank you to all the people involved in planning, facilitating and executing the PASS Summit 2013, it was an excellent event and I know many others think it was a totally worthwhile event to attend.

    Read the article

  • Car animations in Frogger on Javascript

    - by Mijoro Nicolas Rasoanaivo
    I have to finish a Frogger game in Javascript for my engineering school degree, but I don't know how to animate the cars. Right now I tried to manipulate the CSS, the DOM, I wrote a script with a setTimeout(), but none of them works.Can I have some help please? Here's my code and my CSS: <html> <head> <title>Image d&eacute;filante</title> <link rel="stylesheet" type="text/css" href="map_style.css"/> </head> <body onload="start()"> <canvas id="jeu" width="800" height="450"> </canvas> <img id="voiture" class="voiture" src="car.png" onload="startTimerCar()"> <img id="voiture2" class="voiture" src="car.png" onload="startTimerCar()"> <img id="voiture3" class="voiture" src="car.png" onload="startTimerCar()"> <img id="bigrig" class="bigrig" src="bigrig.png" onload="startTimerBigrig()"> <img id="bigrig2" class="bigrig" src="bigrig.png" onload="startTimerBigrig()"> <img id="bigrig3" class="bigrig" src="bigrig.png" onload="startTimerBigrig()"> <img id="hotrod" src="hotrod.png" onload="startTimerHotrod()"> <img id="hotrod2" src="hotrod.png" onload="startTimerHotrod()"> <img id="turtle" src="turtles_diving.png" onload="startTimerTurtle()"> <img id="turtle2" src="turtles_diving.png" onload="startTimerTurtle()"> <img id="turtle3" src="turtles_diving.png" onload="startTimerTurtle()"> <img id="small" src="log_small.png" onload="startTimerSmall()"> <img id="small2" src="log_small.png" onload="startTimerSmall()"> <img id="small3" src="log_small.png" onload="startTimerSmall()"> <img id="small4" src="log_small.png" onload="startTimerSmall()"> <img id="med" src="log_medium.png" onload="startTimerMedium()"> <img id="med2" src="log_medium.png" onload="startTimerMedium()"> <img id="med3" src="log_medium.png" onload="startTimerMedium()"> <script type="text/javascript"> var X = 1; var timer; function start(){ setInterval(init,10); document.onkeydown = move; var canvas = document.getElementById('jeu'); var context = canvas.getContext('2d'); var frog = document.getElementById('frog'); var posX_frog = 415; var posY_frog = 400; var voiture = [document.getElementById('voiture'),document.getElementById('voiture2'),document.getElementById('voiture3')]; var bigrig = [document.getElementById('bigrig'),document.getElementById('bigrig2'),document.getElementById('bigrig3')]; var hotrod = [document.getElementById('hotrod'),document.getElementById('hotrod2')]; var turtle = [document.getElementById('turtle'),document.getElementById('turtle2'),document.getElementById('turtle3')]; var small = [document.getElementById('small'),document.getElementById('small2'),document.getElementById('small3'),document.getElementById('small4')]; var med = [document.getElementById('med'),document.getElementById('med2'),document.getElementById('med3')]; function init() { context.fillStyle = "#AEEE00"; context.fillRect(0,0,800,50); context.fillRect(0,200,800,50); context.fillRect(0,400,800,50); context.fillStyle = "#046380"; context.fillRect(0,50,800,150); context.fillStyle = "#000000"; context.fillRect(0,250,800,150); var img= new Image(); img.src="./frog.png"; context.drawImage(img,posX_frog, posY_frog, 46, 38); } function move(event){ if (event.keyCode == 39){ if( posX_frog < 716 ){ posX_frog += 50; } } if(event.keyCode == 37){ if( posX_frog >25 ){ posX_frog -= 50; } } if (event.keyCode == 38){ if( posY_frog > 10 ){ posY_frog -= 50; } } if(event.keyCode == 40){ if( posY_frog <400 ){ posY_frog += 50; } } } } </script> </body> And my map_css: #jeu{ z-index:10; width: 800px; height: 450px; border: 2px black solid; overflow: hidden; position: relative; transition:width 2s; -moz-transition:width 2s; /* Firefox 4 */ -webkit-transition:width 2s; /* Safari and Chrome */ } #voiture{ z-index: 100; position: absolute; top: 315px; left: 48px; transition-timing-function: linear; -webkit-transition-timing-function: linear; -moz-transition-timing-function: linear; } #voiture2{ z-index: 100; position: absolute; top: 315px; left: 144px; } #voiture3{ z-index: 100; position: absolute; top: 315px; left: 240px; } #bigrig{ z-index: 100; position: absolute; top: 365px; left: 200px; } #bigrig2{ z-index: 100; position: absolute; top: 365px; left: 400px; } #bigrig3{ z-index: 100; position: absolute; top: 365px; left: 600px; } #hotrod{ z-index: 100; position: absolute; top: 265px; left: 200px; } #hotrod2{ z-index: 100; position: absolute; top: 265px; left: 500px; } #hotrod3{ z-index: 100; position: absolute; top: 265px; left: 750px; } #turtle{ z-index: 100; position: absolute; top: 175px; left: 50px; } #turtle2{ z-index: 100; position: absolute; top: 175px; left: 450px; } #turtle3{ z-index: 100; position: absolute; top: 175px; left: 250px; } #small{ z-index: 100; position: absolute; top: 125px; left: 20px; } #small2{ z-index: 100; position: absolute; top: 125px; left: 220px; } #small3{ z-index: 100; position: absolute; top: 125px; left: 420px; } #small4{ z-index: 100; position: absolute; top: 125px; left: 620px; } #med{ z-index: 100; position: absolute; top: 75px; left: 120px; } #med2{ z-index: 100; position: absolute; top: 75px; left: 320px; } #med3{ z-index: 100; position: absolute; top: 75px; left: 520px; } I had to say that I'm in the obligation to code in HTML5, CSS3, and Javascript but not jQuery, who is way more easier, I already created games in jQuery... It takes me too much time and too much code lines right here.

    Read the article

  • Metrics - A little knowledge can be a dangerous thing (or 'Why you're not clever enough to interpret metrics data')

    - by Jason Crease
    At RedGate Software, I work on a .NET obfuscator  called SmartAssembly.  Various features of it use a database to store various things (exception reports, name-mappings, etc.) The user is given the option of using either a SQL-Server database (which requires them to have Microsoft SQL Server), or a Microsoft Access MDB file (which requires nothing). MDB is the default option, but power-users soon switch to using a SQL Server database because it offers better performance and data-sharing. In the fashionable spirit of optimization and metrics, an obvious product-management question is 'Which is the most popular? SQL Server or MDB?' We've collected data about this fact, using our 'Feature-Usage-Reporting' technology (available as part of SmartAssembly) and more recently our 'Application Metrics' technology: Parameter Number of users % of total users Number of sessions Number of usages SQL Server 28 19.0 8115 8115 MDB 114 77.6 1449 1449 (As a disclaimer, please note than SmartAssembly has far more than 132 users . This data is just a selection of one build) So, it would appear that SQL-Server is used by fewer users, but more often. Great. But here's why these numbers are useless to me: Only the original developers understand the data What does a single 'usage' of 'MDB' mean? Does this happen once per run? Once per option change? On clicking the 'Obfuscate Now' button? When running the command-line version or just from the UI version? Each question could skew the data 10-fold either way, and the answers only known by the developer that instrumented the application in the first place. In other words, only the original developer can interpret the data - product-managers cannot interpret the data unaided. Most of the data is from uninterested users About half of people who download and run a free-trial from the internet quit it almost immediately. Only a small fraction use it sufficiently to make informed choices. Since the MDB option is the default one, we don't know how many of those 114 were people CHOOSING to use the MDB, or how many were JUST HAPPENING to use this MDB default for their 20-second trial. This is a problem we see across all our metrics: Are people are using X because it's the default or are they using X because they want to use X? We need to segment the data further - asking what percentage of each percentage meet our criteria for an 'established user' or 'informed user'. You end up spending hours writing sophisticated and dubious SQL queries to segment the data further. Not fun. You can't find out why they used this feature Metrics can answer the when and what, but not the why. Why did people use feature X? If you're anything like me, you often click on random buttons in unfamiliar applications just to explore the feature-set. If we listened uncritically to metrics at RedGate, we would eliminate the most-important and more-complex features which people actually buy the software for, leaving just big buttons on the main page and the About-Box. "Ah, that's interesting!" rather than "Ah, that's actionable!" People do love data. Did you know you eat 1201 chickens in a lifetime? But just 4 cows? Interesting, but useless. Often metrics give you a nice number: '5.8% of users have 3 or more monitors' . But unless the statistic is both SUPRISING and ACTIONABLE, it's useless. Most metrics are collected, reviewed with lots of cooing. and then forgotten. Unless a piece-of-data could change things, it's useless collecting it. People get obsessed with significance levels The first things that lots of people do with this data is do a t-test to get a significance level ("Hey! We know with 99.64% confidence that people prefer SQL Server to MDBs!") Believe me: other causes of error/misinterpretation in your data are FAR more significant than your t-test could ever comprehend. Confirmation bias prevents objectivity If the data appears to match our instinct, we feel satisfied and move on. If it doesn't, we suspect the data and dig deeper, plummeting down a rabbit-hole of segmentation and filtering until we give-up and move-on. Data is only useful if it can change our preconceptions. Do you trust this dodgy data more than your own understanding, knowledge and intelligence?  I don't. There's always multiple plausible ways to interpret/action any data Let's say we segment the above data, and get this data: Post-trial users (i.e. those using a paid version after the 14-day free-trial is over): Parameter Number of users % of total users Number of sessions Number of usages SQL Server 13 9.0 1115 1115 MDB 5 4.2 449 449 Trial users: Parameter Number of users % of total users Number of sessions Number of usages SQL Server 15 10.0 7000 7000 MDB 114 77.6 1000 1000 How do you interpret this data? It's one of: Mostly SQL Server users buy our software. People who can't afford SQL Server tend to be unable to afford or unwilling to buy our software. Therefore, ditch MDB-support. Our MDB support is so poor and buggy that our massive MDB user-base doesn't buy it.  Therefore, spend loads of money improving it, and think about ditching SQL-Server support. People 'graduate' naturally from MDB to SQL Server as they use the software more. Things are fine the way they are. We're marketing the tool wrong. The large number of MDB users represent uninformed downloaders. Tell marketing to aggressively target SQL Server users. To choose an interpretation you need to segment again. And again. And again, and again. Opting-out is correlated with feature-usage Metrics tends to be opt-in. This skews the data even further. Between 5% and 30% of people choose to opt-in to metrics (often called 'customer improvement program' or something like that). Casual trial-users who are uninterested in your product or company are less likely to opt-in. This group is probably also likely to be MDB users. How much does this skew your data by? Who knows? It's not all doom and gloom. There are some things metrics can answer well. Environment facts. How many people have 3 monitors? Have Windows 7? Have .NET 4 installed? Have Japanese Windows? Minor optimizations.  Is the text-box big enough for average user-input? Performance data. How long does our app take to start? How many databases does the average user have on their server? As you can see, questions about who-the-user-is rather than what-the-user-does are easier to answer and action. Conclusion Use SmartAssembly. If not for the metrics (called 'Feature-Usage-Reporting'), then at least for the obfuscation/error-reporting. Data raises more questions than it answers. Questions about environment are the easiest to answer.

    Read the article

  • Big data: An evening in the life of an actual buyer

    - by Jean-Pierre Dijcks
    Here I am, and this is an actual story of one of my evenings, trying to spend money with a company and ultimately failing. I just gave up and bought a service from another vendor, not the incumbent. Here is that story and how I think big data could actually fix this (and potentially prevent some of this from happening). In the end this story should illustrate how big data can benefit me (get me what I want without causing grief) and the company I am trying to buy something from. Note: Lots of details left out, I have no intention of being the annoyed blogger moaning about a specific company. What did I want to get? We watch TV, we have internet and we do have a land line. The land line is from a different vendor then the TV and the internet. I have decided that this makes no sense and I was going to get a bundle (no need to infer who this is, I just picked the generic bundle word as this is what I want to get) of all three services as this seems to save me money. I also want to not talk to people, I just want to click on a website when I feel like it and get it all sorted. I do think that is reality. I want to just do my shopping at 9.30pm while watching silly reruns on TV. Problem 1 - Bad links So, I'm an existing customer of the company I want to buy my bundle from. I go to the website, I click on offers. Turns out they are offers for new customers. After grumbling about how good they are, I click on offers for existing customers. Bummer, it goes to offers for new customers, so I click again on the link for offers for existing customers. No cigar... it just does not work. Big data solutions: 1) Do not show an existing customer the offers for new customers unless they are the same => This is only partially doable without login, but if a customer logs in the application should always know that this is an existing customer. But in general, imagine I do this from my home going through the internet service of this vendor to their domain... an instant filter should move me into the "existing customer route". 2) Flag dead or incorrect links => I've clicked the link for "existing customer offers" at least 3 times in under 5 seconds... Identifying patterns like this is easy in Hadoop and can very quickly make a list of potentially incorrect links. No need for realtime fixing, just the fact that this link can be pro-actively fixed across my entire web domain is a good thing. Preventative maintenance! Problem 2 - Purchase cannot be completed Apart from the fact that the browsing pattern to actually get to what I want is poorly designed, my purchase never gets past a specific point. In other words, I put something into my shopping cart and when I want to move on the application either crashes (with me going to an error page) or hangs or goes into something like chat. So I try again, and again and again. I think I tried this entire path (while being logged in!!) at least 10 times over the course of 20 minutes. I also clicked on the feedback button and, frustrated as I was, tried to explain this did not work... Big Data Solutions: 1) This web site does shopping cart analysis. I got an email next day stating I have things in my shopping cart, just click here to complete my purchase. After the above experience, this just added insult to my pain... 2) What should have happened, is a Hadoop job going over all logged in customers that are on the buy flow. It should flag anyone who is trying (multiple attempts from the same user to do the same thing), analyze the shopping card, the clicks to identify what the customers wants, his feedback provided (note: always own your own website feedback, never just farm this out!!) and in a short turn around time (30 minutes to 2 hours or so) email me with a link to complete my purchase. Not with a link to my shopping cart 12 hours later, but a link to actually achieve what I wanted... Why should this company go through the big data effort? I do believe this is relatively easy to do using our Oracle Event Processing and Big Data Appliance solutions combined. It is almost so simple (to my mind) that it makes no sense that this is not in place? But, now I am ranting... Why is this interesting? It is because of $$$$. After trying really hard, I mean I did this all in the evening, and again in the morning before going to work. I kept on failing, But I really wanted this to work... so an email that said, sorry, we noticed you tried to get a bundle (the log knows what I wanted, where I failed, so easy to generate), here is the link to click and complete your purchase. And here is 2 movies on us as an apology would have kept me as a customer, and got the additional $$$$ per month for the next couple of years. It would also lead to upsell on my phone package etc. Instead, I went to a completely different company, bought service from them. Lost money for company A, negative sentiment for company A and me telling this story at the water cooler so I'm influencing more people to think negatively about company A. All in all, a loss of easy money, a ding in sentiment and image where a relatively simple solution exists and can be in place on the software I describe routinely in this blog... For those who are coming to Openworld and maybe see value in solving the above, or are thinking of how to solve this, come visit us in Moscone North - Oracle Red Lounge or in the Engineered Systems Showcase.

    Read the article

  • collision detection problems - Javascript/canvas game

    - by Tom Burman
    Ok here is a more detailed version of my question. What i want to do: i simply want the have a 2d array to represent my game map. i want a player sprite and i want that sprite to be able to move around my map freely using the keyboard and also have collisions with certain tiles of my map array. i want to use very large maps so i need a viewport. What i have: I have a loop to load the tile images into an array: /Loop to load tile images into an array var mapTiles = []; for (x = 0; x <= 256; x++) { var imageObj = new Image(); // new instance for each image imageObj.src = "images/prototype/"+x+".jpg"; mapTiles.push(imageObj); } I have a 2d array for my game map: //Array to hold map data var board = [ [1,2,3,4,3,4,3,4,5,6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [17,18,19,20,19,20,19,20,21,22,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [33,34,35,36,35,36,35,36,37,38,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [49,50,51,52,51,52,51,52,53,54,1,1,1,1,1,1,1,1,1,1,1,1,1,197,198,199,1,1,1,1], [65,66,67,68,146,147,67,68,69,70,1,1,1,1,1,1,1,1,216,217,1,1,1,213,214,215,1,1,1,1], [81,82,83,161,162,163,164,84,85,86,1,1,1,1,1,1,1,1,232,233,1,1,1,229,230,231,1,1,1,1], [97,98,99,177,178,179,180,100,101,102,1,1,1,1,59,1,1,1,248,249,1,1,1,245,246,247,1,1,1,1], [1,1,238,1,1,1,1,239,240,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [216,217,254,1,1,1,1,255,256,1,204,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [232,233,1,1,1,117,118,1,1,1,220,1,1,119,120,1,1,1,1,1,1,1,1,1,1,1,119,120,1,1], [248,249,1,1,1,133,134,1,1,1,1,1,1,135,136,1,1,1,1,1,1,59,1,1,1,1,135,136,1,1], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,1,216,217,1,1,1,1,1,1,60,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,1,232,233,1,1,1,1,1,1,1,1,1,1,1,1,1,1,204,1,1,1,1,1,1,1,1,1,1,1], [1,1,248,249,1,1,1,1,1,1,1,1,1,1,1,1,1,1,220,1,1,1,1,1,1,216,217,1,1,1], [1,1,1,1,1,1,1,1,1,1,1,1,149,150,151,1,1,1,1,1,1,1,1,1,1,232,233,1,1,1], [12,12,12,12,12,12,12,13,1,1,1,1,165,166,167,1,1,1,1,1,1,119,120,1,1,248,249,1,1,1], [28,28,28,28,28,28,28,29,1,1,1,1,181,182,183,1,1,1,1,1,1,135,136,1,1,1,1,1,1,1], [44,44,44,44,44,15,28,29,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,27,28,29,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,27,28,29,1,1,1,1,1,1,1,1,1,59,1,1,197,198,199,1,1,1,1,119,120,1], [1,1,1,1,1,27,28,29,1,1,216,217,1,1,1,1,1,1,1,1,213,214,215,1,1,1,1,135,136,1], [1,1,1,1,1,27,28,29,1,1,232,233,1,1,1,1,1,1,1,1,229,230,231,1,1,1,1,1,1,1], [1,1,1,1,1,27,28,29,1,1,248,249,1,1,1,1,1,1,1,1,245,246,247,1,1,1,1,1,1,1], [1,1,1,197,198,199,28,29,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,1,1,213,214,215,28,29,1,1,1,1,1,60,1,1,1,1,204,1,1,1,1,1,1,1,1,1,1,1], [1,1,1,229,230,231,28,29,1,1,1,1,1,1,1,1,1,1,220,1,1,1,1,119,120,1,1,1,1,1], [1,1,1,245,246,247,28,29,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,135,136,1,1,60,1,1], [1,1,1,1,1,27,28,29,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,27,28,29,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] ]; I have my loop to place the correct tile sin the correct positions: //Loop to place tiles onto screen in correct position for (x = 0; x <= viewWidth; x++){ for (y = 0; y <= viewHeight; y++){ var width = 32; var height = 32; context.drawImage(mapTiles[board[y+viewY][x+viewX]],x*width, y*height); } } I Have my player object : //Place player object context.drawImage(playerImg, (playerX-viewX)*32,(playerY-viewY)*32, 32, 32); I have my viewport setup: //Set viewport pos viewX = playerX - Math.floor(0.5 * viewWidth); if (viewX < 0) viewX = 0; if (viewX+viewWidth > worldWidth) viewX = worldWidth - viewWidth; viewY = playerY - Math.floor(0.5 * viewHeight); if (viewY < 0) viewY = 0; if (viewY+viewHeight > worldHeight) viewY = worldHeight - viewHeight; I have my player movement: canvas.addEventListener('keydown', function(e) { console.log(e); var key = null; switch (e.which) { case 37: // Left if (playerY > 0) playerY--; break; case 38: // Up if (playerX > 0) playerX--; break; case 39: // Right if (playerY < worldWidth) playerY++; break; case 40: // Down if (playerX < worldHeight) playerX++; break; } My Problem: I have my map loading an it looks fine, but my player position thinks it's on a different tile to what it actually is. So for instance, i know that if my player moves left 1 tile, the value of that tile should be 2, but if i print out the value it should be moving to (2), it comes up with a different value. How ive tried to solve the problem: I have tried swap X and Y values for the initialization of my player, for when my map prints. If i swap the x and y values in this part of my code: context.drawImage(mapTiles[board[y+viewY][x+viewX]],x*width, y*height); The map doesnt get draw correctly at all and tiles are placed all in random positions or orientations IF i sway the x and y values for my player in this line : context.drawImage(playerImg, (playerX-viewX)*32,(playerY-viewY)*32, 32, 32); The players movements are inversed, so up and down keys move my player left and right viceversa. My question: Where am i going wrong in my code, and how do i solve it so i have my map looking like it should and my player moving as it should as well as my player returning the correct tileID it is standing on or moving too. Thanks Again ALSO Here is a link to my whole code: prototype

    Read the article

  • Right-Time Retail Part 1

    - by David Dorf
    This is the first in a three-part series. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Right-Time Revolution Technology enables some amazing feats in retail. I can order flowers for my wife while flying 30,000 feet in the air. I can order my groceries in the subway and have them delivered later that day. I can even see how clothes look on me without setting foot in a store. Who knew that a TV, diamond necklace, or even a car would someday be as easy to purchase as a candy bar? Can technology make a mattress an impulse item? Wake-up and your back is hurting, so you rollover and grab your iPad, then a new mattress is delivered the next day. Behind the scenes the many processes are being choreographed to make the sale happen. This includes moving data between systems with the least amount for friction, which in some cases is near real-time. But real-time isn’t appropriate for all the integrations. Think about what a completely real-time retailer would look like. A consumer grabs toothpaste off the shelf, and all systems are immediately notified so that the backroom clerk comes running out and pushes the consumer aside so he can replace the toothpaste on the shelf. Such a system is not only cost prohibitive, but it’s also very inefficient and ineffectual. Retailers must balance the realities of people, processes, and systems to find the right speed of execution. That’ what “right-time retail” means. Retailers used to sell during the day and count the money and restock at night, but global expansion and the Web have complicated that simplistic viewpoint. Our 24hr society demands not only access but also speed, which constantly pushes the boundaries of our IT systems. In the last twenty years, there have been three major technology advancements that have moved us closer to real-time systems. Networking is the first technology that drove the real-time trend. As systems became connected, it became easier to move data between them. In retail we no longer had to mail the daily business report back to corporate each day as the dial-up modem could transfer the data. That was soon replaced with trickle-polling, when sale transactions were occasionally sent from stores to corporate throughout the day, often through VSAT. Then we got terrestrial networks like DSL and Ethernet that allowed the constant stream of data between stores and corporate. When corporate could see the sales transactions coming from stores, it could better plan for replenishment and promotions. That drove the need for speed into the supply chain and merchandising, but for many years those systems were stymied by the huge volumes of data. Nordstrom has 150 million SKU/Store combinations when planning (RPAS); The Gap generates 110 million price changes during end-of-season (RPM); Argos does 1.78 billion calculations executed each day for replenishment planning (AIP). These areas are now being alleviated by the second technology, storage. The typical laptop disk drive runs at 5,400rpm with PCs stepping up to 7,200rpm and servers hitting 15,000rpm. But the platters can only spin so fast, so to squeeze more performance we’ve had to rely on things like disk striping. Then solid state drives (SSDs) were introduced and prices continue to drop. (Augmenting your harddrive with a SSD is the single best PC upgrade these days.) RAM continues to be expensive, but compressing data in memory has allowed more efficient use. So a few years back, Oracle decided to build a box that incorporated all these advancements to move us closer to real-time. This family of products, often categorized as engineered systems, combines the hardware and software so that they work together to provide better performance. How much better? If Exadata powered a 747, you’d go from New York to Paris in 42 minutes, and it would carry 5,000 passengers. If Exadata powered baseball, games would last only 18 minutes and Boston’s Fenway would hold 370,000 fans. The Exa-family enables processing more data in less time. So with faster networks and storage, that brings us to the third and final ingredient. If we continue to process data in traditional ways, we won’t be able to take advantage of the faster networks and storage. Enter what Harvard calls “The Sexiest Job of the 21st Century” – the data scientist. New technologies like the Hadoop-powered Oracle Big Data Appliance, Oracle Advanced Analytics, and Oracle Endeca Information Discovery change the way in which we organize data. These technologies allow us to extract actionable information from raw data at incredible speeds, often ad-hoc. So the foundation to support the real-time enterprise exists, but how does a retailer begin to take advantage? The most visible way is through real-time marketing, but I’ll save that for part 3 and instead begin with improved integrations for the assets you already have in part 2.

    Read the article

  • socket operation on nonsocket or bad file descriptor

    - by Magn3s1um
    I'm writing a pthread server which takes requests from clients and sends them back a bunch of .ppm files. Everything seems to go well, but sometimes when I have just 1 client connected, when trying to read from the file descriptor (for the file), it says Bad file Descriptor. This doesn't make sense, since my int fd isn't -1, and the file most certainly exists. Other times, I get this "Socket operation on nonsocket" error. This is weird because other times, it doesn't give me this error and everything works fine. When trying to connect multiple clients, for some reason, it will only send correctly to one, and then the other client gets the bad file descriptor or "nonsocket" error, even though both threads are processing the same messages and do the same routines. Anyone have an idea why? Here's the code that is giving me that error: while(mqueue.head != mqueue.tail && count < dis_m){ printf("Sending to client %s: %s\n", pointer->id, pointer->message); int fd; fd = open(pointer->message, O_RDONLY); char buf[58368]; int bytesRead; printf("This is fd %d\n", fd); bytesRead=read(fd,buf,58368); send(pointer->socket,buf,bytesRead,0); perror("Error:\n"); fflush(stdout); close(fd); mqueue.mcount--; mqueue.head = mqueue.head->next; free(pointer->message); free(pointer); pointer = mqueue.head; count++; } printf("Sending %s\n", pointer->message); int fd; fd = open(pointer->message, O_RDONLY); printf("This is fd %d\n", fd); printf("I am hhere2\n"); char buf[58368]; int bytesRead; bytesRead=read(fd,buf,58368); send(pointer->socket,buf,bytesRead,0); perror("Error:\n"); close(fd); mqueue.mcount--; if(mqueue.head != mqueue.tail){ mqueue.head = mqueue.head->next; } else{ mqueue.head->next = malloc(sizeof(struct message)); mqueue.head = mqueue.head->next; mqueue.head->next = malloc(sizeof(struct message)); mqueue.tail = mqueue.head->next; mqueue.head->message = NULL; } free(pointer->message); free(pointer); pthread_mutex_unlock(&numm); pthread_mutex_unlock(&circ); pthread_mutex_unlock(&slots); The messages for both threads are the same, being of the form ./path/imageXX.ppm where XX is the number that should go to the client. The file size of each image is 58368 bytes. Sometimes, this code hangs on the read, and stops execution. I don't know this would be either, because the file descriptor comes back as valid. Thanks in advanced. Edit: Here's some sample output: Sending to client a: ./support/images/sw90.ppm This is fd 4 Error: : Socket operation on non-socket Sending to client a: ./support/images/sw91.ppm This is fd 4 Error: : Socket operation on non-socket Sending ./support/images/sw92.ppm This is fd 4 I am hhere2 Error: : Socket operation on non-socket My dispatcher has defeated evil Sample with 2 clients (client b was serviced first) Sending to client b: ./support/images/sw87.ppm This is fd 6 Error: : Success Sending to client b: ./support/images/sw88.ppm This is fd 6 Error: : Success Sending to client b: ./support/images/sw89.ppm This is fd 6 Error: : Success This is fd 6 Error: : Bad file descriptor Sending to client a: ./support/images/sw85.ppm This is fd 6 Error: As you can see, who ever is serviced first in this instance can open the files, but not the 2nd person. Edit2: Full code. Sorry, its pretty long and terribly formatted. #include <netinet/in.h> #include <netinet/in.h> #include <netdb.h> #include <arpa/inet.h> #include <sys/types.h> #include <sys/socket.h> #include <errno.h> #include <stdio.h> #include <unistd.h> #include <pthread.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include "ring.h" /* Version 1 Here is what is implemented so far: The threads are created from the arguments specified (number of threads that is) The server will lock and update variables based on how many clients are in the system and such. The socket that is opened when a new client connects, must be passed to the threads. To do this, we need some sort of global array. I did this by specifying an int client and main_pool_busy, and two pointers poolsockets and nonpoolsockets. My thinking on this was that when a new client enters the system, the server thread increments the variable client. When a thread is finished with this client (after it sends it the data), the thread will decrement client and close the socket. HTTP servers act this way sometimes (they terminate the socket as soon as one transmission is sent). *Note down at bottom After the server portion increments the client counter, we must open up a new socket (denoted by new_sd) and get this value to the appropriate thread. To do this, I created global array poolsockets, which will hold all the socket descriptors for our pooled threads. The server portion gets the new socket descriptor, and places the value in the first spot of the array that has a 0. We only place a value in this array IF: 1. The variable main_pool_busy < worknum (If we have more clients in the system than in our pool, it doesn't mean we should always create a new thread. At the end of this, the server signals on the condition variable clientin that a new client has arrived. In our pooled thread, we then must walk this array and check the array until we hit our first non-zero value. This is the socket we will give to that thread. The thread then changes the array to have a zero here. What if our all threads in our pool our busy? If this is the case, then we will know it because our threads in this pool will increment main_pool_busy by one when they are working on a request and decrement it when they are done. If main_pool_busy >= worknum, then we must dynamically create a new thread. Then, we must realloc the size of our nonpoolsockets array by 1 int. We then add the new socket descriptor to our pool. Here's what we need to figure out: NOTE* Each worker should generate 100 messages which specify the worker thread ID, client socket descriptor and a copy of the client message. Additionally, each message should include a message number, starting from 0 and incrementing for each subsequent message sent to the same client. I don't know how to keep track of how many messages were to the same client. Maybe we shouldn't close the socket descriptor, but rather keep an array of structs for each socket that includes how many messages they have been sent. Then, the server adds the struct, the threads remove it, then the threads add it back once they've serviced one request (unless the count is 100). ------------------------------------------------------------- CHANGES Version 1 ---------- NONE: this is the first version. */ #define MAXSLOTS 30 #define dis_m 15 //problems with dis_m ==1 //Function prototypes void inc_clients(); void init_mutex_stuff(pthread_t*, pthread_t*); void *threadpool(void *); void server(int); void add_to_socket_pool(int); void inc_busy(); void dec_busy(); void *dispatcher(); void create_message(long, int, int, char *, char *); void init_ring(); void add_to_ring(char *, char *, int, int, int); int socket_from_string(char *); void add_to_head(char *); void add_to_tail(char *); struct message * reorder(struct message *, struct message *, int); int get_threadid(char *); void delete_socket_messages(int); struct message * merge(struct message *, struct message *, int); int get_request(char *, char *, char*); ///////////////////// //Global mutexes and condition variables pthread_mutex_t startservice; pthread_mutex_t numclients; pthread_mutex_t pool_sockets; pthread_mutex_t nonpool_sockets; pthread_mutex_t m_pool_busy; pthread_mutex_t slots; pthread_mutex_t numm; pthread_mutex_t circ; pthread_cond_t clientin; pthread_cond_t m; /////////////////////////////////////// //Global variables int clients; int main_pool_busy; int * poolsockets, nonpoolsockets; int worknum; struct ring mqueue; /////////////////////////////////////// int main(int argc, char ** argv){ //error handling if not enough arguments to program if(argc != 3){ printf("Not enough arguments to server: ./server portnum NumThreadsinPool\n"); _exit(-1); } //Convert arguments from strings to integer values int port = atoi(argv[1]); worknum = atoi(argv[2]); //Start server portion server(port); } /////////////////////////////////////////////////////////////////////////////////////////////// //The listen server thread///////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////// void server(int port){ int sd, new_sd; struct sockaddr_in name, cli_name; int sock_opt_val = 1; int cli_len; pthread_t threads[worknum]; //create our pthread id array pthread_t dis[1]; //create our dispatcher array (necessary to create thread) init_mutex_stuff(threads, dis); //initialize mutexes and stuff //Server setup /////////////////////////////////////////////////////// if ((sd = socket (AF_INET, SOCK_STREAM, 0)) < 0) { perror("(servConn): socket() error"); _exit (-1); } if (setsockopt (sd, SOL_SOCKET, SO_REUSEADDR, (char *) &sock_opt_val, sizeof(sock_opt_val)) < 0) { perror ("(servConn): Failed to set SO_REUSEADDR on INET socket"); _exit (-1); } name.sin_family = AF_INET; name.sin_port = htons (port); name.sin_addr.s_addr = htonl(INADDR_ANY); if (bind (sd, (struct sockaddr *)&name, sizeof(name)) < 0) { perror ("(servConn): bind() error"); _exit (-1); } listen (sd, 5); //End of server Setup ////////////////////////////////////////////////// for (;;) { cli_len = sizeof (cli_name); new_sd = accept (sd, (struct sockaddr *) &cli_name, &cli_len); printf ("Assigning new socket descriptor: %d\n", new_sd); inc_clients(); //New client has come in, increment clients add_to_socket_pool(new_sd); //Add client to the pool of sockets if (new_sd < 0) { perror ("(servConn): accept() error"); _exit (-1); } } pthread_exit(NULL); //Quit } //Adds the new socket to the array designated for pthreads in the pool void add_to_socket_pool(int socket){ pthread_mutex_lock(&m_pool_busy); //Lock so that we can check main_pool_busy int i; //If not all our main pool is busy, then allocate to one of them if(main_pool_busy < worknum){ pthread_mutex_unlock(&m_pool_busy); //unlock busy, we no longer need to hold it pthread_mutex_lock(&pool_sockets); //Lock the socket pool array so that we can edit it without worry for(i = 0; i < worknum; i++){ //Find a poolsocket that is -1; then we should put the real socket there. This value will be changed back to -1 when the thread grabs the sockfd if(poolsockets[i] == -1){ poolsockets[i] = socket; pthread_mutex_unlock(&pool_sockets); //unlock our pool array, we don't need it anymore inc_busy(); //Incrememnt busy (locks the mutex itself) pthread_cond_signal(&clientin); //Signal first thread waiting on a client that a client needs to be serviced break; } } } else{ //Dynamic thread creation goes here pthread_mutex_unlock(&m_pool_busy); } } //Increments the client number. If client number goes over worknum, we must dynamically create new pthreads void inc_clients(){ pthread_mutex_lock(&numclients); clients++; pthread_mutex_unlock(&numclients); } //Increments busy void inc_busy(){ pthread_mutex_lock(&m_pool_busy); main_pool_busy++; pthread_mutex_unlock(&m_pool_busy); } //Initialize all of our mutexes at the beginning and create our pthreads void init_mutex_stuff(pthread_t * threads, pthread_t * dis){ pthread_mutex_init(&startservice, NULL); pthread_mutex_init(&numclients, NULL); pthread_mutex_init(&pool_sockets, NULL); pthread_mutex_init(&nonpool_sockets, NULL); pthread_mutex_init(&m_pool_busy, NULL); pthread_mutex_init(&circ, NULL); pthread_cond_init (&clientin, NULL); main_pool_busy = 0; poolsockets = malloc(sizeof(int)*worknum); int threadreturn; //error checking variables long i = 0; //Loop and create pthreads for(i; i < worknum; i++){ threadreturn = pthread_create(&threads[i], NULL, threadpool, (void *) i); poolsockets[i] = -1; if(threadreturn){ perror("Thread pool created unsuccessfully"); _exit(-1); } } pthread_create(&dis[0], NULL, dispatcher, NULL); } ////////////////////////////////////////////////////////////////////////////////////////// /////////Main pool routines ///////////////////////////////////////////////////////////////////////////////////////// void dec_busy(){ pthread_mutex_lock(&m_pool_busy); main_pool_busy--; pthread_mutex_unlock(&m_pool_busy); } void dec_clients(){ pthread_mutex_lock(&numclients); clients--; pthread_mutex_unlock(&numclients); } //This is what our threadpool pthreads will be running. void *threadpool(void * threadid){ long id = (long) threadid; //Id of this thread int i; int socket; int counter = 0; //Try and gain access to the next client that comes in and wait until server signals that a client as arrived while(1){ pthread_mutex_lock(&startservice); //lock start service (required for cond wait) pthread_cond_wait(&clientin, &startservice); //wait for signal from server that client exists pthread_mutex_unlock(&startservice); //unlock mutex. pthread_mutex_lock(&pool_sockets); //Lock the pool socket so we can get the socket fd unhindered/interrupted for(i = 0; i < worknum; i++){ if(poolsockets[i] != -1){ socket = poolsockets[i]; poolsockets[i] = -1; pthread_mutex_unlock(&pool_sockets); } } printf("Thread #%d is past getting the socket\n", id); int incoming = 1; while(counter < 100 && incoming != 0){ char buffer[512]; bzero(buffer,512); int startcounter = 0; incoming = read(socket, buffer, 512); if(buffer[0] != 0){ //client ID:priority:request:arguments char id[100]; long prior; char request[100]; char arg1[100]; char message[100]; char arg2[100]; char * point; point = strtok(buffer, ":"); strcpy(id, point); point = strtok(NULL, ":"); prior = atoi(point); point = strtok(NULL, ":"); strcpy(request, point); point = strtok(NULL, ":"); strcpy(arg1, point); point = strtok(NULL, ":"); if(point != NULL){ strcpy(arg2, point); } int fd; if(strcmp(request, "start_movie") == 0){ int count = 1; while(count <= 100){ char temp[10]; snprintf(temp, 50, "%d\0", count); strcpy(message, "./support/images/"); strcat(message, arg1); strcat(message, temp); strcat(message, ".ppm"); printf("This is message %s to %s\n", message, id); count++; add_to_ring(message, id, prior, counter, socket); //Adds our created message to the ring counter++; } printf("I'm out of the loop\n"); } else if(strcmp(request, "seek_movie") == 0){ int count = atoi(arg2); while(count <= 100){ char temp[10]; snprintf(temp, 10, "%d\0", count); strcpy(message, "./support/images/"); strcat(message, arg1); strcat(message, temp); strcat(message, ".ppm"); printf("This is message %s\n", message); count++; } } //create_message(id, socket, counter, buffer, message); //Creates our message from the input from the client. Stores it in buffer } else{ delete_socket_messages(socket); break; } } counter = 0; close(socket);//Zero out counter again } dec_clients(); //client serviced, decrement clients dec_busy(); //thread finished, decrement busy } //Creates a message void create_message(long threadid, int socket, int counter, char * buffer, char * message){ snprintf(message, strlen(buffer)+15, "%d:%d:%d:%s", threadid, socket, counter, buffer); } //Gets the socket from the message string (maybe I should just pass in the socket to another method) int socket_from_string(char * message){ char * substr1 = strstr(message, ":"); char * substr2 = substr1; substr2++; int occurance = strcspn(substr2, ":"); char sock[10]; strncpy(sock, substr2, occurance); return atoi(sock); } //Adds message to our ring buffer's head void add_to_head(char * message){ printf("Adding to head of ring\n"); mqueue.head->message = malloc(strlen(message)+1); //Allocate space for message strcpy(mqueue.head->message, message); //copy bytes into allocated space } //Adds our message to our ring buffer's tail void add_to_tail(char * message){ printf("Adding to tail of ring\n"); mqueue.tail->message = malloc(strlen(message)+1); //allocate space for message strcpy(mqueue.tail->message, message); //copy bytes into allocated space mqueue.tail->next = malloc(sizeof(struct message)); //allocate space for the next message struct } //Adds a message to our ring void add_to_ring(char * message, char * id, int prior, int mnum, int socket){ //printf("This is message %s:" , message); pthread_mutex_lock(&circ); //Lock the ring buffer pthread_mutex_lock(&numm); //Lock the message count (will need this to make sure we can't fill the buffer over the max slots) if(mqueue.head->message == NULL){ add_to_head(message); //Adds it to head mqueue.head->socket = socket; //Set message socket mqueue.head->priority = prior; //Set its priority (thread id) mqueue.head->mnum = mnum; //Set its message number (used for sorting) mqueue.head->id = malloc(sizeof(id)); strcpy(mqueue.head->id, id); } else if(mqueue.tail->message == NULL){ //This is the problem for dis_m 1 I'm pretty sure add_to_tail(message); mqueue.tail->socket = socket; mqueue.tail->priority = prior; mqueue.tail->mnum = mnum; mqueue.tail->id = malloc(sizeof(id)); strcpy(mqueue.tail->id, id); } else{ mqueue.tail->next = malloc(sizeof(struct message)); mqueue.tail = mqueue.tail->next; add_to_tail(message); mqueue.tail->socket = socket; mqueue.tail->priority = prior; mqueue.tail->mnum = mnum; mqueue.tail->id = malloc(sizeof(id)); strcpy(mqueue.tail->id, id); } mqueue.mcount++; pthread_mutex_unlock(&circ); if(mqueue.mcount >= dis_m){ pthread_mutex_unlock(&numm); pthread_cond_signal(&m); } else{ pthread_mutex_unlock(&numm); } printf("out of add to ring\n"); fflush(stdout); } ////////////////////////////////// //Dispatcher routines ///////////////////////////////// void *dispatcher(){ init_ring(); while(1){ pthread_mutex_lock(&slots); pthread_cond_wait(&m, &slots); pthread_mutex_lock(&numm); pthread_mutex_lock(&circ); printf("Dispatcher to the rescue!\n"); mqueue.head = reorder(mqueue.head, mqueue.tail, mqueue.mcount); //printf("This is the head %s\n", mqueue.head->message); //printf("This is the tail %s\n", mqueue.head->message); fflush(stdout); struct message * pointer = mqueue.head; int count = 0; while(mqueue.head != mqueue.tail && count < dis_m){ printf("Sending to client %s: %s\n", pointer->id, pointer->message); int fd; fd = open(pointer->message, O_RDONLY); char buf[58368]; int bytesRead; printf("This is fd %d\n", fd); bytesRead=read(fd,buf,58368); send(pointer->socket,buf,bytesRead,0); perror("Error:\n"); fflush(stdout); close(fd); mqueue.mcount--; mqueue.head = mqueue.head->next; free(pointer->message); free(pointer); pointer = mqueue.head; count++; } printf("Sending %s\n", pointer->message); int fd; fd = open(pointer->message, O_RDONLY); printf("This is fd %d\n", fd); printf("I am hhere2\n"); char buf[58368]; int bytesRead; bytesRead=read(fd,buf,58368); send(pointer->socket,buf,bytesRead,0); perror("Error:\n"); close(fd); mqueue.mcount--; if(mqueue.head != mqueue.tail){ mqueue.head = mqueue.head->next; } else{ mqueue.head->next = malloc(sizeof(struct message)); mqueue.head = mqueue.head->next; mqueue.head->next = malloc(sizeof(struct message)); mqueue.tail = mqueue.head->next; mqueue.head->message = NULL; } free(pointer->message); free(pointer); pthread_mutex_unlock(&numm); pthread_mutex_unlock(&circ); pthread_mutex_unlock(&slots); printf("My dispatcher has defeated evil\n"); } } void init_ring(){ mqueue.head = malloc(sizeof(struct message)); mqueue.head->next = malloc(sizeof(struct message)); mqueue.tail = mqueue.head->next; mqueue.mcount = 0; } struct message * reorder(struct message * begin, struct message * end, int num){ //printf("I am reordering for size %d\n", num); fflush(stdout); int i; if(num == 1){ //printf("Begin: %s\n", begin->message); begin->next = NULL; return begin; } else{ struct message * left = begin; struct message * right; int middle = num/2; for(i = 1; i < middle; i++){ left = left->next; } right = left -> next; left -> next = NULL; //printf("Begin: %s\nLeft: %s\nright: %s\nend:%s\n", begin->message, left->message, right->message, end->message); left = reorder(begin, left, middle); if(num%2 != 0){ right = reorder(right, end, middle+1); } else{ right = reorder(right, end, middle); } return merge(left, right, num); } } struct message * merge(struct message * left, struct message * right, int num){ //printf("I am merginging! left: %s %d, right: %s %dnum: %d\n", left->message,left->priority, right->message, right->priority, num); struct message * start, * point; int lenL= 0; int lenR = 0; int flagL = 0; int flagR = 0; int count = 0; int middle1 = num/2; int middle2; if(num%2 != 0){ middle2 = middle1+1; } else{ middle2 = middle1; } while(lenL < middle1 && lenR < middle2){ count++; //printf("In here for count %d\n", count); if(lenL == 0 && lenR == 0){ if(left->priority < right->priority){ start = left; //Set the start point point = left; //set our enum; left = left->next; //move the left pointer point->next = NULL; //Set the next node to NULL lenL++; } else if(left->priority > right->priority){ start = right; point = right; right = right->next; point->next = NULL; lenR++; } else{ if(left->mnum < right->mnum){ ////printf("This is where we are\n"); start = left; //Set the start point point = left; //set our enum; left = left->next; //move the left pointer point->next = NULL; //Set the next node to NULL lenL++; } else{ start = right; point = right; right = right->next; point->next = NULL; lenR++; } } } else{ if(left->priority < right->priority){ point->next = left; left = left->next; //move the left pointer point = point->next; point->next = NULL; //Set the next node to NULL lenL++; } else if(left->priority > right->priority){ point->next = right; right = right->next; point = point->next; point->next = NULL; lenR++; } else{ if(left->mnum < right->mnum){ point->next = left; //set our enum; left = left->next; point = point->next;//move the left pointer point->next = NULL; //Set the next node to NULL lenL++; } else{ point->next = right; right = right->next; point = point->next; point->next = NULL; lenR++; } } } if(lenL == middle1){ flagL = 1; break; } if(lenR == middle2){ flagR = 1; break; } } if(flagL == 1){ point->next = right; point = point->next; for(lenR; lenR< middle2-1; lenR++){ point = point->next; } point->next = NULL; mqueue.tail = point; } else{ point->next = left; point = point->next; for(lenL; lenL< middle1-1; lenL++){ point = point->next; } point->next = NULL; mqueue.tail = point; } //printf("This is the start %s\n", start->message); //printf("This is mqueue.tail %s\n", mqueue.tail->message); return start; } void delete_socket_messages(int a){ }

    Read the article

  • User Input That Involves A ' ' Causes A Substring Out Of Range Error

    - by Greenhouse Gases
    Hi Stackoverflow people. You have already helped me quite a bit but near the end of writing this program I have somewhat of a bug. You see in order to read in city names with a space in from a text file I use a '/' that is then replaced by the program for a ' ' (and when the serializer runs the opposite happens for next time the program is run). The problem is when a user inputs a name too add, search for, or delete that contains a space, for instance 'New York' I get a Debug Assertion Error with a substring out of range expression. I have a feeling it's to do with my correctCase function, or setElementsNull that looks at the string until it experiences a null element in the array, however ' ' is not null so I'm not sure how to fix this and I'm going a bit insane. Any help would be much appreciated. Here is my code: // U08221.cpp : main project file. #include "stdafx.h" #include <_iostream> #include <_string> #include <_fstream> #include <_cmath> using namespace std; class locationNode { public: string nodeCityName; double nodeLati; double nodeLongi; locationNode* Next; locationNode(string nameOf, double lat, double lon) { this->nodeCityName = nameOf; this->nodeLati = lat; this->nodeLongi = lon; this->Next = NULL; } locationNode() // NULL constructor { } void swapProps(locationNode *node2) { locationNode place; place.nodeCityName = this->nodeCityName; place.nodeLati = this->nodeLati; place.nodeLongi = this->nodeLongi; this->nodeCityName = node2->nodeCityName; this->nodeLati = node2->nodeLati; this->nodeLongi = node2->nodeLongi; node2->nodeCityName = place.nodeCityName; node2->nodeLati = place.nodeLati; node2->nodeLongi = place.nodeLongi; } void modify(string name) { this->nodeCityName = name; } void modify(double latlon, int mod) { switch(mod) { case 2: this->nodeLati = latlon; break; case 3: this->nodeLongi = latlon; break; } } void correctCase() // Correct upper and lower case letters of input { int MAX_SIZE = 35; int firstLetVal = this->nodeCityName[0], letVal; int n = 1; // variable for name index from second letter onwards if((this->nodeCityName[0] >90) && (this->nodeCityName[0] < 123)) // First letter is lower case { firstLetVal = firstLetVal - 32; // Capitalise first letter this->nodeCityName[0] = firstLetVal; } while(this->nodeCityName[n] != NULL) { if((this->nodeCityName[n] >= 65) && (this->nodeCityName[n] <= 90)) { if(this->nodeCityName[n - 1] != 32) { letVal = this->nodeCityName[n] + 32; this->nodeCityName[n] = letVal; } } n++; } } }; Here is the main part of the program: // U08221.cpp : main project file. #include "stdafx.h" #include "Locations2.h" #include <_iostream> #include <_string> #include <_fstream> #include <_cmath> using namespace std; #define pi 3.14159265358979323846264338327950288 #define radius 6371 #define gig 1073741824 //size of a gigabyte in bytes int n = 0,x, locationCount = 0, MAX_SIZE = 35 , g = 0, i = 0, modKey = 0, xx; string cityNameInput, alter; char targetCity[35], skipKey = ' '; double lat1, lon1, lat2, lon2, dist, dummy, modVal, result; bool acceptedInput = false, match = false, nodeExists = false;// note: addLocation(), set to true to enable user input as opposed to txt file locationNode *temp, *temp2, *example, *seek, *bridge, *start_ptr = NULL; class Menu { int junction; public: /* Convert decimal degrees to radians */ public: void setElementsNull(char cityParam[]) { int y=0; while(cityParam[y] != NULL) { y++; } while(y < MAX_SIZE) { cityParam[y] = NULL; y++; } } void correctCase(string name) // Correct upper and lower case letters of input { int MAX_SIZE = 35; int firstLetVal = name[0], letVal; int n = 1; // variable for name index from second letter onwards if((name[0] >90) && (name[0] < 123)) // First letter is lower case { firstLetVal = firstLetVal - 32; // Capitalise first letter name[0] = firstLetVal; } while(name[n] != NULL) { if((name[n] >= 65) && (name[n] <= 90)) { letVal = name[n] + 32; name[n] = letVal; } n++; } for(n = 0; targetCity[n] != NULL; n++) { targetCity[n] = name[n]; } } bool nodeExistTest(char targetCity[]) // see if entry is present in the database { match = false; seek = start_ptr; int letters = 0, letters2 = 0, x = 0, y = 0; while(targetCity[y] != NULL) { letters2++; y++; } while(x <= locationCount) // locationCount is number of entries currently in list { y=0, letters = 0; while(seek->nodeCityName[y] != NULL) // count letters in the current name { letters++; y++; } if(letters == letters2) // same amount of letters in the name { y = 0; while(y <= letters) // compare each letter against one another { if(targetCity[y] == seek->nodeCityName[y]) { match = true; y++; } else { match = false; y = letters + 1; // no match, terminate comparison } } } if(match) { x = locationCount + 1; //found match so terminate loop } else{ if(seek->Next != NULL) { bridge = seek; seek = seek->Next; x++; } else { x = locationCount + 1; // end of list so terminate loop } } } return match; } double deg2rad(double deg) { return (deg * pi / 180); } /* Convert radians to decimal degrees */ double rad2deg(double rad) { return (rad * 180 / pi); } /* Do the calculation */ double distance(double lat1, double lon1, double lat2, double lon2, double dist) { dist = sin(deg2rad(lat1)) * sin(deg2rad(lat2)) + cos(deg2rad(lat1)) * cos(deg2rad(lat2)) * cos(deg2rad(lon1 - lon2)); dist = acos(dist); dist = rad2deg(dist); dist = (radius * pi * dist) / 180; return dist; } void serialise() { // Serialize to format that can be written to text file fstream outfile; outfile.open("locations.txt",ios::out); temp = start_ptr; do { for(xx = 0; temp->nodeCityName[xx] != NULL; xx++) { if(temp->nodeCityName[xx] == 32) { temp->nodeCityName[xx] = 47; } } outfile << endl << temp->nodeCityName<< " "; outfile<<temp->nodeLati<< " "; outfile<<temp->nodeLongi; temp = temp->Next; }while(temp != NULL); outfile.close(); } void sortList() // do this { int changes = 1; locationNode *node1, *node2; while(changes > 0) // while changes are still being made to the list execute { node1 = start_ptr; node2 = node1->Next; changes = 0; do { xx = 1; if(node1->nodeCityName[0] > node2->nodeCityName[0]) //compare first letter of name with next in list { node1->swapProps(node2); // should come after the next in the list changes++; } else if(node1->nodeCityName[0] == node2->nodeCityName[0]) // if same first letter { while(node1->nodeCityName[xx] == node2->nodeCityName[xx]) // check next letter of name { if((node1->nodeCityName[xx + 1] != NULL) && (node2->nodeCityName[xx + 1] != NULL)) // check next letter until not the same { xx++; } else break; } if(node1->nodeCityName[xx] > node2->nodeCityName[xx]) { node1->swapProps(node2); // should come after the next in the list changes++; } } node1 = node2; node2 = node2->Next; // move to next pair in list } while(node2 != NULL); } } void initialise() { cout << "Populating List..."; ifstream inputFile; inputFile.open ("locations.txt", ios::in); char inputName[35] = " "; double inputLati = 0, inputLongi = 0; //temp = new locationNode(inputName, inputLati, inputLongi); do { inputFile.get(inputName, 35, ' '); inputFile >> inputLati; inputFile >> inputLongi; if(inputName[0] == 10 || 13) //remove linefeed from input { for(int i = 0; inputName[i] != NULL; i++) { inputName[i] = inputName[i + 1]; } } for(xx = 0; inputName[xx] != NULL; xx++) { if(inputName[xx] == 47) // if it is a '/' { inputName[xx] = 32; // replace it for a space } } temp = new locationNode(inputName, inputLati, inputLongi); if(start_ptr == NULL){ // if list is currently empty, start_ptr will point to this node start_ptr = temp; } else { temp2 = start_ptr; // We know this is not NULL - list not empty! while (temp2->Next != NULL) { temp2 = temp2->Next; // Move to next link in chain until reach end of list } temp2->Next = temp; } ++locationCount; // increment counter for number of records in list } while(!inputFile.eof()); cout << "Successful!" << endl << "List contains: " << locationCount << " entries" << endl; inputFile.close(); cout << endl << "*******************************************************************" << endl << "DISTANCE CALCULATOR v2.0\tAuthors: Darius Hodaei, Joe Clifton" << endl; } void menuInput() { char menuChoice = ' '; while(menuChoice != 'Q') { // Menu if(skipKey != 'X') // This is set by case 'S' below if a searched term does not exist but wants to be added { cout << endl << "*******************************************************************" << endl; cout << "Please enter a choice for the menu..." << endl << endl; cout << "(P) To print out the list" << endl << "(O) To order the list alphabetically" << endl << "(A) To add a location" << endl << "(D) To delete a record" << endl << "(C) To calculate distance between two points" << endl << "(S) To search for a location in the list" << endl << "(M) To check memory usage" << endl << "(U) To update a record" << endl << "(Q) To quit" << endl; cout << endl << "*******************************************************************" << endl; cin >> menuChoice; if(menuChoice >= 97) { menuChoice = menuChoice - 32; // Turn the lower case letter into an upper case letter } } skipKey = ' '; //Reset skipKey so that it does not skip the menu switch(menuChoice) { case 'P': temp = start_ptr; // set temp to the start of the list do { if (temp == NULL) { cout << "You have reached the end of the database" << endl; } else { // Display details for what temp points to at that stage cout << "Location : " << temp->nodeCityName << endl; cout << "Latitude : " << temp->nodeLati << endl; cout << "Longitude : " << temp->nodeLongi << endl; cout << endl; // Move on to next locationNode if one exists temp = temp->Next; } } while (temp != NULL); break; case 'O': { sortList(); // pass by reference??? cout << "List reordered alphabetically" << endl; } break; case 'A': char cityName[35]; double lati, longi; cout << endl << "Enter the name of the location: "; cin >> cityName; for(xx = 0; cityName[xx] != NULL; xx++) { if(cityName[xx] == 47) // if it is a '/' { cityName[xx] = 32; // replace it for a space } } if(!nodeExistTest(cityName)) { cout << endl << "Please enter the latitude value for this location: "; cin >> lati; cout << endl << "Please enter the longitude value for this location: "; cin >> longi; cout << endl; temp = new locationNode(cityName, lati, longi); temp->correctCase(); //start_ptr allignment if(start_ptr == NULL){ // if list is currently empty, start_ptr will point to this node start_ptr = temp; } else { temp2 = start_ptr; // We know this is not NULL - list not empty! while (temp2->Next != NULL) { temp2 = temp2->Next; // Move to next link in chain until reach end of list } temp2->Next = temp; } ++locationCount; // increment counter for number of records in list cout << "Location sucessfully added to the database! There are " << locationCount << " location(s) stored" << endl; } else { cout << "Node is already present in the list and so cannot be added again" << endl; } break; case 'D': { junction = 0; locationNode *place; cout << "Enter the name of the city you wish to remove" << endl; cin >> targetCity; setElementsNull(targetCity); correctCase(targetCity); for(xx = 0; targetCity[xx] != NULL; xx++) { if(targetCity[xx] == 47) { targetCity[xx] = 32; } } if(nodeExistTest(targetCity)) //if this node does exist { if(seek == start_ptr) // if it is the first in the list { junction = 1; } if(seek->Next == NULL) // if it is last in the list { junction = 2; } switch(junction) // will alter list accordingly dependant on where the searched for link is { case 1: start_ptr = start_ptr->Next; delete seek; --locationCount; break; case 2: place = seek; seek = bridge; seek->Next = NULL; delete place; --locationCount; break; default: bridge->Next = seek->Next; delete seek; --locationCount; break; } cout << endl << "Link deleted. There are now " << locationCount << " locations." << endl; } else { cout << "That entry does not currently exist" << endl << endl << endl; } } break; case 'C': { char city1[35], city2[35]; cout << "Enter the first city name" << endl; cin >> city1; setElementsNull(city1); correctCase(targetCity); if(nodeExistTest(city1)) { lat1 = seek->nodeLati; lon1 = seek->nodeLongi; cout << "Lati = " << seek->nodeLati << endl << "Longi = " << seek->nodeLongi << endl << endl; } cout << "Enter the second city name" << endl; cin >> city2; setElementsNull(city2); correctCase(targetCity); if(nodeExistTest(city2)) { lat2 = seek->nodeLati; lon2 = seek->nodeLongi; cout << "Lati = " << seek->nodeLati << endl << "Longi = " << seek->nodeLongi << endl << endl; } result = distance (lat1, lon1, lat2, lon2, dist); cout << "The distance between these two locations is " << result << " kilometres." << endl; } break; case 'S': { char choice; cout << "Enter search term..." << endl; cin >> targetCity; setElementsNull(targetCity); correctCase(targetCity); if(nodeExistTest(targetCity)) { cout << "Latitude: " << seek->nodeLati << endl << "Longitude: " << seek->nodeLongi << endl; } else { cout << "Sorry, that city is not currently present in the list." << endl << "Would you like to add this city now Y/N?" << endl; cin >> choice; /*while(choice != ('Y' || 'N')) { cout << "Please enter a valid choice..." << endl; cin >> choice; }*/ switch(choice) { case 'Y': skipKey = 'X'; menuChoice = 'A'; break; case 'N': break; default : cout << "Invalid choice" << endl; break; } } break; } case 'M': { cout << "Locations currently stored: " << locationCount << endl << "Memory used for this: " << (sizeof(start_ptr) * locationCount) << " bytes" << endl << endl << "You can store " << ((gig - (sizeof(start_ptr) * locationCount)) / sizeof(start_ptr)) << " more locations" << endl ; break; } case 'U': { cout << "Enter the name of the Location you would like to update: "; cin >> targetCity; setElementsNull(targetCity); correctCase(targetCity); if(nodeExistTest(targetCity)) { cout << "Select (1) to alter City Name, (2) to alter Longitude, (3) to alter Latitude" << endl; cin >> modKey; switch(modKey) { case 1: cout << "Enter the new name: "; cin >> alter; cout << endl; seek->modify(alter); break; case 2: cout << "Enter the new latitude: "; cin >> modVal; cout << endl; seek->modify(modVal, modKey); break; case 3: cout << "Enter the new longitude: "; cin >> modVal; cout << endl; seek->modify(modVal, modKey); break; default: break; } } else cout << "Location not found" << endl; break; } } } } }; int main(array<System::String ^> ^args) { Menu mm; //mm.initialise(); mm.menuInput(); mm.serialise(); }

    Read the article

  • What's New in ASP.NET 4

    - by Navaneeth
    The .NET Framework version 4 includes enhancements for ASP.NET 4 in targeted areas. Visual Studio 2010 and Microsoft Visual Web Developer Express also include enhancements and new features for improved Web development. This document provides an overview of many of the new features that are included in the upcoming release. This topic contains the following sections: ASP.NET Core Services ASP.NET Web Forms ASP.NET MVC Dynamic Data ASP.NET Chart Control Visual Web Developer Enhancements Web Application Deployment with Visual Studio 2010 Enhancements to ASP.NET Multi-Targeting ASP.NET Core Services ASP.NET 4 introduces many features that improve core ASP.NET services such as output caching and session state storage. Extensible Output Caching Since the time that ASP.NET 1.0 was released, output caching has enabled developers to store the generated output of pages, controls, and HTTP responses in memory. On subsequent Web requests, ASP.NET can serve content more quickly by retrieving the generated output from memory instead of regenerating the output from scratch. However, this approach has a limitation — generated content always has to be stored in memory. On servers that experience heavy traffic, the memory requirements for output caching can compete with memory requirements for other parts of a Web application. ASP.NET 4 adds extensibility to output caching that enables you to configure one or more custom output-cache providers. Output-cache providers can use any storage mechanism to persist HTML content. These storage options can include local or remote disks, cloud storage, and distributed cache engines. Output-cache provider extensibility in ASP.NET 4 lets you design more aggressive and more intelligent output-caching strategies for Web sites. For example, you can create an output-cache provider that caches the "Top 10" pages of a site in memory, while caching pages that get lower traffic on disk. Alternatively, you can cache every vary-by combination for a rendered page, but use a distributed cache so that the memory consumption is offloaded from front-end Web servers. You create a custom output-cache provider as a class that derives from the OutputCacheProvider type. You can then configure the provider in the Web.config file by using the new providers subsection of the outputCache element For more information and for examples that show how to configure the output cache, see outputCache Element for caching (ASP.NET Settings Schema). For more information about the classes that support caching, see the documentation for the OutputCache and OutputCacheProvider classes. By default, in ASP.NET 4, all HTTP responses, rendered pages, and controls use the in-memory output cache. The defaultProvider attribute for ASP.NET is AspNetInternalProvider. You can change the default output-cache provider used for a Web application by specifying a different provider name for defaultProvider attribute. In addition, you can select different output-cache providers for individual control and for individual requests and programmatically specify which provider to use. For more information, see the HttpApplication.GetOutputCacheProviderName(HttpContext) method. The easiest way to choose a different output-cache provider for different Web user controls is to do so declaratively by using the new providerName attribute in a page or control directive, as shown in the following example: <%@ OutputCache Duration="60" VaryByParam="None" providerName="DiskCache" %> Preloading Web Applications Some Web applications must load large amounts of data or must perform expensive initialization processing before serving the first request. In earlier versions of ASP.NET, for these situations you had to devise custom approaches to "wake up" an ASP.NET application and then run initialization code during the Application_Load method in the Global.asax file. To address this scenario, a new application preload manager (autostart feature) is available when ASP.NET 4 runs on IIS 7.5 on Windows Server 2008 R2. The preload feature provides a controlled approach for starting up an application pool, initializing an ASP.NET application, and then accepting HTTP requests. It lets you perform expensive application initialization prior to processing the first HTTP request. For example, you can use the application preload manager to initialize an application and then signal a load-balancer that the application was initialized and ready to accept HTTP traffic. To use the application preload manager, an IIS administrator sets an application pool in IIS 7.5 to be automatically started by using the following configuration in the applicationHost.config file: <applicationPools> <add name="MyApplicationPool" startMode="AlwaysRunning" /> </applicationPools> Because a single application pool can contain multiple applications, you specify individual applications to be automatically started by using the following configuration in the applicationHost.config file: <sites> <site name="MySite" id="1"> <application path="/" serviceAutoStartEnabled="true" serviceAutoStartProvider="PrewarmMyCache" > <!-- Additional content --> </application> </site> </sites> <!-- Additional content --> <serviceAutoStartProviders> <add name="PrewarmMyCache" type="MyNamespace.CustomInitialization, MyLibrary" /> </serviceAutoStartProviders> When an IIS 7.5 server is cold-started or when an individual application pool is recycled, IIS 7.5 uses the information in the applicationHost.config file to determine which Web applications have to be automatically started. For each application that is marked for preload, IIS7.5 sends a request to ASP.NET 4 to start the application in a state during which the application temporarily does not accept HTTP requests. When it is in this state, ASP.NET instantiates the type defined by the serviceAutoStartProvider attribute (as shown in the previous example) and calls into its public entry point. You create a managed preload type that has the required entry point by implementing the IProcessHostPreloadClient interface, as shown in the following example: public class CustomInitialization : System.Web.Hosting.IProcessHostPreloadClient { public void Preload(string[] parameters) { // Perform initialization. } } After your initialization code runs in the Preload method and after the method returns, the ASP.NET application is ready to process requests. Permanently Redirecting a Page Content in Web applications is often moved over the lifetime of the application. This can lead to links to be out of date, such as the links that are returned by search engines. In ASP.NET, developers have traditionally handled requests to old URLs by using the Redirect method to forward a request to the new URL. However, the Redirect method issues an HTTP 302 (Found) response (which is used for a temporary redirect). This results in an extra HTTP round trip. ASP.NET 4 adds a RedirectPermanent helper method that makes it easy to issue HTTP 301 (Moved Permanently) responses, as in the following example: RedirectPermanent("/newpath/foroldcontent.aspx"); Search engines and other user agents that recognize permanent redirects will store the new URL that is associated with the content, which eliminates the unnecessary round trip made by the browser for temporary redirects. Session State Compression By default, ASP.NET provides two options for storing session state across a Web farm. The first option is a session state provider that invokes an out-of-process session state server. The second option is a session state provider that stores data in a Microsoft SQL Server database. Because both options store state information outside a Web application's worker process, session state has to be serialized before it is sent to remote storage. If a large amount of data is saved in session state, the size of the serialized data can become very large. ASP.NET 4 introduces a new compression option for both kinds of out-of-process session state providers. By using this option, applications that have spare CPU cycles on Web servers can achieve substantial reductions in the size of serialized session state data. You can set this option using the new compressionEnabled attribute of the sessionState element in the configuration file. When the compressionEnabled configuration option is set to true, ASP.NET compresses (and decompresses) serialized session state by using the .NET Framework GZipStreamclass. The following example shows how to set this attribute. <sessionState mode="SqlServer" sqlConnectionString="data source=dbserver;Initial Catalog=aspnetstate" allowCustomSqlDatabase="true" compressionEnabled="true" /> ASP.NET Web Forms Web Forms has been a core feature in ASP.NET since the release of ASP.NET 1.0. Many enhancements have been in this area for ASP.NET 4, such as the following: The ability to set meta tags. More control over view state. Support for recently introduced browsers and devices. Easier ways to work with browser capabilities. Support for using ASP.NET routing with Web Forms. More control over generated IDs. The ability to persist selected rows in data controls. More control over rendered HTML in the FormView and ListView controls. Filtering support for data source controls. Enhanced support for Web standards and accessibility Setting Meta Tags with the Page.MetaKeywords and Page.MetaDescription Properties Two properties have been added to the Page class: MetaKeywords and MetaDescription. These two properties represent corresponding meta tags in the HTML rendered for a page, as shown in the following example: <head id="Head1" runat="server"> <title>Untitled Page</title> <meta name="keywords" content="keyword1, keyword2' /> <meta name="description" content="Description of my page" /> </head> These two properties work like the Title property does, and they can be set in the @ Page directive. For more information, see Page.MetaKeywords and Page.MetaDescription. Enabling View State for Individual Controls A new property has been added to the Control class: ViewStateMode. You can use this property to disable view state for all controls on a page except those for which you explicitly enable view state. View state data is included in a page's HTML and increases the amount of time it takes to send a page to the client and post it back. Storing more view state than is necessary can cause significant decrease in performance. In earlier versions of ASP.NET, you could reduce the impact of view state on a page's performance by disabling view state for specific controls. But sometimes it is easier to enable view state for a few controls that need it instead of disabling it for many that do not need it. For more information, see Control.ViewStateMode. Support for Recently Introduced Browsers and Devices ASP.NET includes a feature that is named browser capabilities that lets you determine the capabilities of the browser that a user is using. Browser capabilities are represented by the HttpBrowserCapabilities object which is stored in the HttpRequest.Browser property. Information about a particular browser's capabilities is defined by a browser definition file. In ASP.NET 4, these browser definition files have been updated to contain information about recently introduced browsers and devices such as Google Chrome, Research in Motion BlackBerry smart phones, and Apple iPhone. Existing browser definition files have also been updated. For more information, see How to: Upgrade an ASP.NET Web Application to ASP.NET 4 and ASP.NET Web Server Controls and Browser Capabilities. The browser definition files that are included with ASP.NET 4 are shown in the following list: •blackberry.browser •chrome.browser •Default.browser •firefox.browser •gateway.browser •generic.browser •ie.browser •iemobile.browser •iphone.browser •opera.browser •safari.browser A New Way to Define Browser Capabilities ASP.NET 4 includes a new feature referred to as browser capabilities providers. As the name suggests, this lets you build a provider that in turn lets you write custom code to determine browser capabilities. In ASP.NET version 3.5 Service Pack 1, you define browser capabilities in an XML file. This file resides in a machine-level folder or an application-level folder. Most developers do not need to customize these files, but for those who do, the provider approach can be easier than dealing with complex XML syntax. The provider approach makes it possible to simplify the process by implementing a common browser definition syntax, or a database that contains up-to-date browser definitions, or even a Web service for such a database. For more information about the new browser capabilities provider, see the What's New for ASP.NET 4 White Paper. Routing in ASP.NET 4 ASP.NET 4 adds built-in support for routing with Web Forms. Routing is a feature that was introduced with ASP.NET 3.5 SP1 and lets you configure an application to use URLs that are meaningful to users and to search engines because they do not have to specify physical file names. This can make your site more user-friendly and your site content more discoverable by search engines. For example, the URL for a page that displays product categories in your application might look like the following example: http://website/products.aspx?categoryid=12 By using routing, you can use the following URL to render the same information: http://website/products/software The second URL lets the user know what to expect and can result in significantly improved rankings in search engine results. the new features include the following: The PageRouteHandler class is a simple HTTP handler that you use when you define routes. You no longer have to write a custom route handler. The HttpRequest.RequestContext and Page.RouteData properties make it easier to access information that is passed in URL parameters. The RouteUrl expression provides a simple way to create a routed URL in markup. The RouteValue expression provides a simple way to extract URL parameter values in markup. The RouteParameter class makes it easier to pass URL parameter values to a query for a data source control (similar to FormParameter). You no longer have to change the Web.config file to enable routing. For more information about routing, see the following topics: ASP.NET Routing Walkthrough: Using ASP.NET Routing in a Web Forms Application How to: Define Routes for Web Forms Applications How to: Construct URLs from Routes How to: Access URL Parameters in a Routed Page Setting Client IDs The new ClientIDMode property makes it easier to write client script that references HTML elements rendered for server controls. Increasing use of Microsoft Ajax makes the need to do this more common. For example, you may have a data control that renders a long list of products with prices and you want to use client script to make a Web service call and update individual prices in the list as they change without refreshing the entire page. Typically you get a reference to an HTML element in client script by using the document.GetElementById method. You pass to this method the value of the id attribute of the HTML element you want to reference. In the case of elements that are rendered for ASP.NET server controls earlier versions of ASP.NET could make this difficult or impossible. You were not always able to predict what id values ASP.NET would generate, or ASP.NET could generate very long id values. The problem was especially difficult for data controls that would generate multiple rows for a single instance of the control in your markup. ASP.NET 4 adds two new algorithms for generating id attributes. These algorithms can generate id attributes that are easier to work with in client script because they are more predictable and that are easier to work with because they are simpler. For more information about how to use the new algorithms, see the following topics: ASP.NET Web Server Control Identification Walkthrough: Making Data-Bound Controls Easier to Access from JavaScript Walkthrough: Making Controls Located in Web User Controls Easier to Access from JavaScript How to: Access Controls from JavaScript by ID Persisting Row Selection in Data Controls The GridView and ListView controls enable users to select a row. In previous versions of ASP.NET, row selection was based on the row index on the page. For example, if you select the third item on page 1 and then move to page 2, the third item on page 2 is selected. In most cases, is more desirable not to select any rows on page 2. ASP.NET 4 supports Persisted Selection, a new feature that was initially supported only in Dynamic Data projects in the .NET Framework 3.5 SP1. When this feature is enabled, the selected item is based on the row data key. This means that if you select the third row on page 1 and move to page 2, nothing is selected on page 2. When you move back to page 1, the third row is still selected. This is a much more natural behavior than the behavior in earlier versions of ASP.NET. Persisted selection is now supported for the GridView and ListView controls in all projects. You can enable this feature in the GridView control, for example, by setting the EnablePersistedSelection property, as shown in the following example: <asp:GridView id="GridView2" runat="server" PersistedSelection="true"> </asp:GridView> FormView Control Enhancements The FormView control is enhanced to make it easier to style the content of the control with CSS. In previous versions of ASP.NET, the FormView control rendered it contents using an item template. This made styling more difficult in the markup because unexpected table row and table cell tags were rendered by the control. The FormView control supports RenderOuterTable, a property in ASP.NET 4. When this property is set to false, as show in the following example, the table tags are not rendered. This makes it easier to apply CSS style to the contents of the control. <asp:FormView ID="FormView1" runat="server" RenderTable="false"> For more information, see FormView Web Server Control Overview. ListView Control Enhancements The ListView control, which was introduced in ASP.NET 3.5, has all the functionality of the GridView control while giving you complete control over the output. This control has been made easier to use in ASP.NET 4. The earlier version of the control required that you specify a layout template that contained a server control with a known ID. The following markup shows a typical example of how to use the ListView control in ASP.NET 3.5. <asp:ListView ID="ListView1" runat="server"> <LayoutTemplate> <asp:PlaceHolder ID="ItemPlaceHolder" runat="server"></asp:PlaceHolder> </LayoutTemplate> <ItemTemplate> <% Eval("LastName")%> </ItemTemplate> </asp:ListView> In ASP.NET 4, the ListView control does not require a layout template. The markup shown in the previous example can be replaced with the following markup: <asp:ListView ID="ListView1" runat="server"> <ItemTemplate> <% Eval("LastName")%> </ItemTemplate> </asp:ListView> For more information, see ListView Web Server Control Overview. Filtering Data with the QueryExtender Control A very common task for developers who create data-driven Web pages is to filter data. This traditionally has been performed by building Where clauses in data source controls. This approach can be complicated, and in some cases the Where syntax does not let you take advantage of the full functionality of the underlying database. To make filtering easier, a new QueryExtender control has been added in ASP.NET 4. This control can be added to EntityDataSource or LinqDataSource controls in order to filter the data returned by these controls. Because the QueryExtender control relies on LINQ, but you do not to need to know how to write LINQ queries to use the query extender. The QueryExtender control supports a variety of filter options. The following lists QueryExtender filter options. Term Definition SearchExpression Searches a field or fields for string values and compares them to a specified string value. RangeExpression Searches a field or fields for values in a range specified by a pair of values. PropertyExpression Compares a specified value to a property value in a field. If the expression evaluates to true, the data that is being examined is returned. OrderByExpression Sorts data by a specified column and sort direction. CustomExpression Calls a function that defines custom filter in the page. For more information, see QueryExtenderQueryExtender Web Server Control Overview. Enhanced Support for Web Standards and Accessibility Earlier versions of ASP.NET controls sometimes render markup that does not conform to HTML, XHTML, or accessibility standards. ASP.NET 4 eliminates most of these exceptions. For details about how the HTML that is rendered by each control meets accessibility standards, see ASP.NET Controls and Accessibility. CSS for Controls that Can be Disabled In ASP.NET 3.5, when a control is disabled (see WebControl.Enabled), a disabled attribute is added to the rendered HTML element. For example, the following markup creates a Label control that is disabled: <asp:Label id="Label1" runat="server"   Text="Test" Enabled="false" /> In ASP.NET 3.5, the previous control settings generate the following HTML: <span id="Label1" disabled="disabled">Test</span> In HTML 4.01, the disabled attribute is not considered valid on span elements. It is valid only on input elements because it specifies that they cannot be accessed. On display-only elements such as span elements, browsers typically support rendering for a disabled appearance, but a Web page that relies on this non-standard behavior is not robust according to accessibility standards. For display-only elements, you should use CSS to indicate a disabled visual appearance. Therefore, by default ASP.NET 4 generates the following HTML for the control settings shown previously: <span id="Label1" class="aspNetDisabled">Test</span> You can change the value of the class attribute that is rendered by default when a control is disabled by setting the DisabledCssClass property. CSS for Validation Controls In ASP.NET 3.5, validation controls render a default color of red as an inline style. For example, the following markup creates a RequiredFieldValidator control: <asp:RequiredFieldValidator ID="RequiredFieldValidator1" runat="server"   ErrorMessage="Required Field" ControlToValidate="RadioButtonList1" /> ASP.NET 3.5 renders the following HTML for the validator control: <span id="RequiredFieldValidator1"   style="color:Red;visibility:hidden;">RequiredFieldValidator</span> By default, ASP.NET 4 does not render an inline style to set the color to red. An inline style is used only to hide or show the validator, as shown in the following example: <span id="RequiredFieldValidator1"   style"visibility:hidden;">RequiredFieldValidator</span> Therefore, ASP.NET 4 does not automatically show error messages in red. For information about how to use CSS to specify a visual style for a validation control, see Validating User Input in ASP.NET Web Pages. CSS for the Hidden Fields Div Element ASP.NET uses hidden fields to store state information such as view state and control state. These hidden fields are contained by a div element. In ASP.NET 3.5, this div element does not have a class attribute or an id attribute. Therefore, CSS rules that affect all div elements could unintentionally cause this div to be visible. To avoid this problem, ASP.NET 4 renders the div element for hidden fields with a CSS class that you can use to differentiate the hidden fields div from others. The new classvalue is shown in the following example: <div class="aspNetHidden"> CSS for the Table, Image, and ImageButton Controls By default, in ASP.NET 3.5, some controls set the border attribute of rendered HTML to zero (0). The following example shows HTML that is generated by the Table control in ASP.NET 3.5: <table id="Table2" border="0"> The Image control and the ImageButton control also do this. Because this is not necessary and provides visual formatting information that should be provided by using CSS, the attribute is not generated in ASP.NET 4. CSS for the UpdatePanel and UpdateProgress Controls In ASP.NET 3.5, the UpdatePanel and UpdateProgress controls do not support expando attributes. This makes it impossible to set a CSS class on the HTMLelements that they render. In ASP.NET 4 these controls have been changed to accept expando attributes, as shown in the following example: <asp:UpdatePanel runat="server" class="myStyle"> </asp:UpdatePanel> The following HTML is rendered for this markup: <div id="ctl00_MainContent_UpdatePanel1" class="expandoclass"> </div> Eliminating Unnecessary Outer Tables In ASP.NET 3.5, the HTML that is rendered for the following controls is wrapped in a table element whose purpose is to apply inline styles to the entire control: FormView Login PasswordRecovery ChangePassword If you use templates to customize the appearance of these controls, you can specify CSS styles in the markup that you provide in the templates. In that case, no extra outer table is required. In ASP.NET 4, you can prevent the table from being rendered by setting the new RenderOuterTable property to false. Layout Templates for Wizard Controls In ASP.NET 3.5, the Wizard and CreateUserWizard controls generate an HTML table element that is used for visual formatting. In ASP.NET 4 you can use a LayoutTemplate element to specify the layout. If you do this, the HTML table element is not generated. In the template, you create placeholder controls to indicate where items should be dynamically inserted into the control. (This is similar to how the template model for the ListView control works.) For more information, see the Wizard.LayoutTemplate property. New HTML Formatting Options for the CheckBoxList and RadioButtonList Controls ASP.NET 3.5 uses HTML table elements to format the output for the CheckBoxList and RadioButtonList controls. To provide an alternative that does not use tables for visual formatting, ASP.NET 4 adds two new options to the RepeatLayout enumeration: UnorderedList. This option causes the HTML output to be formatted by using ul and li elements instead of a table. OrderedList. This option causes the HTML output to be formatted by using ol and li elements instead of a table. For examples of HTML that is rendered for the new options, see the RepeatLayout enumeration. Header and Footer Elements for the Table Control In ASP.NET 3.5, the Table control can be configured to render thead and tfoot elements by setting the TableSection property of the TableHeaderRow class and the TableFooterRow class. In ASP.NET 4 these properties are set to the appropriate values by default. CSS and ARIA Support for the Menu Control In ASP.NET 3.5, the Menu control uses HTML table elements for visual formatting, and in some configurations it is not keyboard-accessible. ASP.NET 4 addresses these problems and improves accessibility in the following ways: The generated HTML is structured as an unordered list (ul and li elements). CSS is used for visual formatting. The menu behaves in accordance with ARIA standards for keyboard access. You can use arrow keys to navigate menu items. (For information about ARIA, see Accessibility in Visual Studio and ASP.NET.) ARIA role and property attributes are added to the generated HTML. (Attributes are added by using JavaScript instead of included in the HTML, to avoid generating HTML that would cause markup validation errors.) Styles for the Menu control are rendered in a style block at the top of the page, instead of inline with the rendered HTML elements. If you want to use a separate CSS file so that you can modify the menu styles, you can set the Menu control's new IncludeStyleBlock property to false, in which case the style block is not generated. Valid XHTML for the HtmlForm Control In ASP.NET 3.5, the HtmlForm control (which is created implicitly by the <form runat="server"> tag) renders an HTML form element that has both name and id attributes. The name attribute is deprecated in XHTML 1.1. Therefore, this control does not render the name attribute in ASP.NET 4. Maintaining Backward Compatibility in Control Rendering An existing ASP.NET Web site might have code in it that assumes that controls are rendering HTML the way they do in ASP.NET 3.5. To avoid causing backward compatibility problems when you upgrade the site to ASP.NET 4, you can have ASP.NET continue to generate HTML the way it does in ASP.NET 3.5 after you upgrade the site. To do so, you can set the controlRenderingCompatibilityVersion attribute of the pages element to "3.5" in the Web.config file of an ASP.NET 4 Web site, as shown in the following example: <system.web>   <pages controlRenderingCompatibilityVersion="3.5"/> </system.web> If this setting is omitted, the default value is the same as the version of ASP.NET that the Web site targets. (For information about multi-targeting in ASP.NET, see .NET Framework Multi-Targeting for ASP.NET Web Projects.) ASP.NET MVC ASP.NET MVC helps Web developers build compelling standards-based Web sites that are easy to maintain because it decreases the dependency among application layers by using the Model-View-Controller (MVC) pattern. MVC provides complete control over the page markup. It also improves testability by inherently supporting Test Driven Development (TDD). Web sites created using ASP.NET MVC have a modular architecture. This allows members of a team to work independently on the various modules and can be used to improve collaboration. For example, developers can work on the model and controller layers (data and logic), while the designer work on the view (presentation). For tutorials, walkthroughs, conceptual content, code samples, and a complete API reference, see ASP.NET MVC 2. Dynamic Data Dynamic Data was introduced in the .NET Framework 3.5 SP1 release in mid-2008. This feature provides many enhancements for creating data-driven applications, such as the following: A RAD experience for quickly building a data-driven Web site. Automatic validation that is based on constraints defined in the data model. The ability to easily change the markup that is generated for fields in the GridView and DetailsView controls by using field templates that are part of your Dynamic Data project. For ASP.NET 4, Dynamic Data has been enhanced to give developers even more power for quickly building data-driven Web sites. For more information, see ASP.NET Dynamic Data Content Map. Enabling Dynamic Data for Individual Data-Bound Controls in Existing Web Applications You can use Dynamic Data features in existing ASP.NET Web applications that do not use scaffolding by enabling Dynamic Data for individual data-bound controls. Dynamic Data provides the presentation and data layer support for rendering these controls. When you enable Dynamic Data for data-bound controls, you get the following benefits: Setting default values for data fields. Dynamic Data enables you to provide default values at run time for fields in a data control. Interacting with the database without creating and registering a data model. Automatically validating the data that is entered by the user without writing any code. For more information, see Walkthrough: Enabling Dynamic Data in ASP.NET Data-Bound Controls. New Field Templates for URLs and E-mail Addresses ASP.NET 4 introduces two new built-in field templates, EmailAddress.ascx and Url.ascx. These templates are used for fields that are marked as EmailAddress or Url using the DataTypeAttribute attribute. For EmailAddress objects, the field is displayed as a hyperlink that is created by using the mailto: protocol. When users click the link, it opens the user's e-mail client and creates a skeleton message. Objects typed as Url are displayed as ordinary hyperlinks. The following example shows how to mark fields. [DataType(DataType.EmailAddress)] public object HomeEmail { get; set; } [DataType(DataType.Url)] public object Website { get; set; } Creating Links with the DynamicHyperLink Control Dynamic Data uses the new routing feature that was added in the .NET Framework 3.5 SP1 to control the URLs that users see when they access the Web site. The new DynamicHyperLink control makes it easy to build links to pages in a Dynamic Data site. For information, see How to: Create Table Action Links in Dynamic Data Support for Inheritance in the Data Model Both the ADO.NET Entity Framework and LINQ to SQL support inheritance in their data models. An example of this might be a database that has an InsurancePolicy table. It might also contain CarPolicy and HousePolicy tables that have the same fields as InsurancePolicy and then add more fields. Dynamic Data has been modified to understand inherited objects in the data model and to support scaffolding for the inherited tables. For more information, see Walkthrough: Mapping Table-per-Hierarchy Inheritance in Dynamic Data. Support for Many-to-Many Relationships (Entity Framework Only) The Entity Framework has rich support for many-to-many relationships between tables, which is implemented by exposing the relationship as a collection on an Entity object. New field templates (ManyToMany.ascx and ManyToMany_Edit.ascx) have been added to provide support for displaying and editing data that is involved in many-to-many relationships. For more information, see Working with Many-to-Many Data Relationships in Dynamic Data. New Attributes to Control Display and Support Enumerations The DisplayAttribute has been added to give you additional control over how fields are displayed. The DisplayNameAttribute attribute in earlier versions of Dynamic Data enabled you to change the name that is used as a caption for a field. The new DisplayAttribute class lets you specify more options for displaying a field, such as the order in which a field is displayed and whether a field will be used as a filter. The attribute also provides independent control of the name that is used for the labels in a GridView control, the name that is used in a DetailsView control, the help text for the field, and the watermark used for the field (if the field accepts text input). The EnumDataTypeAttribute class has been added to let you map fields to enumerations. When you apply this attribute to a field, you specify an enumeration type. Dynamic Data uses the new Enumeration.ascx field template to create UI for displaying and editing enumeration values. The template maps the values from the database to the names in the enumeration. Enhanced Support for Filters Dynamic Data 1.0 had built-in filters for Boolean columns and foreign-key columns. The filters did not let you specify the order in which they were displayed. The new DisplayAttribute attribute addresses this by giving you control over whether a column appears as a filter and in what order it will be displayed. An additional enhancement is that filtering support has been rewritten to use the new QueryExtender feature of Web Forms. This lets you create filters without requiring knowledge of the data source control that the filters will be used with. Along with these extensions, filters have also been turned into template controls, which lets you add new ones. Finally, the DisplayAttribute class mentioned earlier allows the default filter to be overridden, in the same way that UIHint allows the default field template for a column to be overridden. For more information, see Walkthrough: Filtering Rows in Tables That Have a Parent-Child Relationship and QueryableFilterRepeater. ASP.NET Chart Control The ASP.NET chart server control enables you to create ASP.NET pages applications that have simple, intuitive charts for complex statistical or financial analysis. The chart control supports the following features: Data series, chart areas, axes, legends, labels, titles, and more. Data binding. Data manipulation, such as copying, splitting, merging, alignment, grouping, sorting, searching, and filtering. Statistical formulas and financial formulas. Advanced chart appearance, such as 3-D, anti-aliasing, lighting, and perspective. Events and customizations. Interactivity and Microsoft Ajax. Support for the Ajax Content Delivery Network (CDN), which provides an optimized way for you to add Microsoft Ajax Library and jQuery scripts to your Web applications. For more information, see Chart Web Server Control Overview. Visual Web Developer Enhancements The following sections provide information about enhancements and new features in Visual Studio 2010 and Visual Web Developer Express. The Web page designer in Visual Studio 2010 has been enhanced for better CSS compatibility, includes additional support for HTML and ASP.NET markup snippets, and features a redesigned version of IntelliSense for JScript. Improved CSS Compatibility The Visual Web Developer designer in Visual Studio 2010 has been updated to improve CSS 2.1 standards compliance. The designer better preserves HTML source code and is more robust than in previous versions of Visual Studio. HTML and JScript Snippets In the HTML editor, IntelliSense auto-completes tag names. The IntelliSense Snippets feature auto-completes whole tags and more. In Visual Studio 2010, IntelliSense snippets are supported for JScript, alongside C# and Visual Basic, which were supported in earlier versions of Visual Studio. Visual Studio 2010 includes over 200 snippets that help you auto-complete common ASP.NET and HTML tags, including required attributes (such as runat="server") and common attributes specific to a tag (such as ID, DataSourceID, ControlToValidate, and Text). You can download additional snippets, or you can write your own snippets that encapsulate the blocks of markup that you or your team use for common tasks. For more information on HTML snippets, see Walkthrough: Using HTML Snippets. JScript IntelliSense Enhancements In Visual 2010, JScript IntelliSense has been redesigned to provide an even richer editing experience. IntelliSense now recognizes objects that have been dynamically generated by methods such as registerNamespace and by similar techniques used by other JavaScript frameworks. Performance has been improved to analyze large libraries of script and to display IntelliSense with little or no processing delay. Compatibility has been significantly increased to support almost all third-party libraries and to support diverse coding styles. Documentation comments are now parsed as you type and are immediately leveraged by IntelliSense. Web Application Deployment with Visual Studio 2010 For Web application projects, Visual Studio now provides tools that work with the IIS Web Deployment Tool (Web Deploy) to automate many processes that had to be done manually in earlier versions of ASP.NET. For example, the following tasks can now be automated: Creating an IIS application on the destination computer and configuring IIS settings. Copying files to the destination computer. Changing Web.config settings that must be different in the destination environment. Propagating changes to data or data structures in SQL Server databases that are used by the Web application. For more information about Web application deployment, see ASP.NET Deployment Content Map. Enhancements to ASP.NET Multi-Targeting ASP.NET 4 adds new features to the multi-targeting feature to make it easier to work with projects that target earlier versions of the .NET Framework. Multi-targeting was introduced in ASP.NET 3.5 to enable you to use the latest version of Visual Studio without having to upgrade existing Web sites or Web services to the latest version of the .NET Framework. In Visual Studio 2008, when you work with a project targeted for an earlier version of the .NET Framework, most features of the development environment adapt to the targeted version. However, IntelliSense displays language features that are available in the current version, and property windows display properties available in the current version. In Visual Studio 2010, only language features and properties available in the targeted version of the .NET Framework are shown. For more information about multi-targeting, see the following topics: .NET Framework Multi-Targeting for ASP.NET Web Projects ASP.NET Side-by-Side Execution Overview How to: Host Web Applications That Use Different Versions of the .NET Framework on the Same Server How to: Deploy Web Site Projects Targeted for Earlier Versions of the .NET Framework

    Read the article

  • ASP.Net MVC 2 Auto Complete Textbox With Custom View Model Attribute & EditorTemplate

    - by SeanMcAlinden
    In this post I’m going to show how to create a generic, ajax driven Auto Complete text box using the new MVC 2 Templates and the jQuery UI library. The template will be automatically displayed when a property is decorated with a custom attribute within the view model. The AutoComplete text box in action will look like the following:   The first thing to do is to do is visit my previous blog post to put the custom model metadata provider in place, this is necessary when using custom attributes on the view model. http://weblogs.asp.net/seanmcalinden/archive/2010/06/11/custom-asp-net-mvc-2-modelmetadataprovider-for-using-custom-view-model-attributes.aspx Once this is in place, make sure you visit the jQuery UI and download the latest stable release – in this example I’m using version 1.8.2. You can download it here. Add the jQuery scripts and css theme to your project and add references to them in your master page. Should look something like the following: Site.Master <head runat="server">     <title><asp:ContentPlaceHolder ID="TitleContent" runat="server" /></title>     <link href="../../Content/Site.css" rel="stylesheet" type="text/css" />     <link href="../../css/ui-lightness/jquery-ui-1.8.2.custom.css" rel="stylesheet" type="text/css" />     <script src="../../Scripts/jquery-1.4.2.min.js" type="text/javascript"></script>     <script src="../../Scripts/jquery-ui-1.8.2.custom.min.js" type="text/javascript"></script> </head> Once this is place we can get started. Creating the AutoComplete Custom Attribute The auto complete attribute will derive from the abstract MetadataAttribute created in my previous post. It will look like the following: AutoCompleteAttribute using System.Collections.Generic; using System.Web.Mvc; using System.Web.Routing; namespace Mvc2Templates.Attributes {     public class AutoCompleteAttribute : MetadataAttribute     {         public RouteValueDictionary RouteValueDictionary;         public AutoCompleteAttribute(string controller, string action, string parameterName)         {             this.RouteValueDictionary = new RouteValueDictionary();             this.RouteValueDictionary.Add("Controller", controller);             this.RouteValueDictionary.Add("Action", action);             this.RouteValueDictionary.Add(parameterName, string.Empty);         }         public override void Process(ModelMetadata modelMetaData)         {             modelMetaData.AdditionalValues.Add("AutoCompleteUrlData", this.RouteValueDictionary);             modelMetaData.TemplateHint = "AutoComplete";         }     } } As you can see, the constructor takes in strings for the controller, action and parameter name. The parameter name will be used for passing the search text within the auto complete text box. The constructor then creates a new RouteValueDictionary which we will use later to construct the url for getting the auto complete results via ajax. The main interesting method is the method override called Process. With the process method, the route value dictionary is added to the modelMetaData AdditionalValues collection. The TemplateHint is also set to AutoComplete, this means that when the view model is parsed for display, the MVC 2 framework will look for a view user control template called AutoComplete, if it finds one, it uses that template to display the property. The View Model To show you how the attribute will look, this is the view model I have used in my example which can be downloaded at the end of this post. View Model using System.ComponentModel; using Mvc2Templates.Attributes; namespace Mvc2Templates.Models {     public class TemplateDemoViewModel     {         [AutoComplete("Home", "AutoCompleteResult", "searchText")]         [DisplayName("European Country Search")]         public string SearchText { get; set; }     } } As you can see, the auto complete attribute is called with the controller name, action name and the name of the action parameter that the search text will be passed into. The AutoComplete Template Now all of this is in place, it’s time to create the AutoComplete template. Create a ViewUserControl called AutoComplete.ascx at the following location within your application – Views/Shared/EditorTemplates/AutoComplete.ascx Add the following code: AutoComplete.ascx <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %> <%     var propertyName = ViewData.ModelMetadata.PropertyName;     var propertyValue = ViewData.ModelMetadata.Model;     var id = Guid.NewGuid().ToString();     RouteValueDictionary urlData =         (RouteValueDictionary)ViewData.ModelMetadata.AdditionalValues.Where(x => x.Key == "AutoCompleteUrlData").Single().Value;     var url = Mvc2Templates.Views.Shared.Helpers.RouteHelper.GetUrl(this.ViewContext.RequestContext, urlData); %> <input type="text" name="<%= propertyName %>" value="<%= propertyValue %>" id="<%= id %>" class="autoComplete" /> <script type="text/javascript">     $(function () {         $("#<%= id %>").autocomplete({             source: function (request, response) {                 $.ajax({                     url: "<%= url %>" + request.term,                     dataType: "json",                     success: function (data) {                         response(data);                     }                 });             },             minLength: 2         });     }); </script> There is a lot going on in here but when you break it down it’s quite simple. Firstly, the property name and property value are retrieved through the model meta data. These are required to ensure that the text box input has the correct name and data to allow for model binding. If you look at line 14 you can see them being used in the text box input creation. The interesting bit is on line 8 and 9, this is the code to retrieve the route value dictionary we added into the model metada via the custom attribute. Line 11 is used to create the url, in order to do this I created a quick helper class which looks like the code below titled RouteHelper. The last bit of script is the code to initialise the jQuery UI AutoComplete control with the correct url for calling back to our controller action. RouteHelper using System.Web.Mvc; using System.Web.Routing; namespace Mvc2Templates.Views.Shared.Helpers {     public static class RouteHelper     {         const string Controller = "Controller";         const string Action = "Action";         const string ReplaceFormatString = "REPLACE{0}";         public static string GetUrl(RequestContext requestContext, RouteValueDictionary routeValueDictionary)         {             RouteValueDictionary urlData = new RouteValueDictionary();             UrlHelper urlHelper = new UrlHelper(requestContext);                          int i = 0;             foreach(var item in routeValueDictionary)             {                 if (item.Value == string.Empty)                 {                     i++;                     urlData.Add(item.Key, string.Format(ReplaceFormatString, i.ToString()));                 }                 else                 {                     urlData.Add(item.Key, item.Value);                 }             }             var url = urlHelper.RouteUrl(urlData);             for (int index = 1; index <= i; index++)             {                 url = url.Replace(string.Format(ReplaceFormatString, index.ToString()), string.Empty);             }             return url;         }     } } See it in action All you need to do to see it in action is pass a view model from your controller with the new AutoComplete attribute attached and call the following within your view: <%= this.Html.EditorForModel() %> NOTE: The jQuery UI auto complete control expects a JSON string returned from your controller action method… as you can’t use the JsonResult to perform GET requests, use a normal action result, convert your data into json and return it as a string via a ContentResult. If you download the solution it will be very clear how to handle the controller and action for this demo. The full source code for this post can be downloaded here. It has been developed using MVC 2 and Visual Studio 2010. As always, I hope this has been interesting/useful. Kind Regards, Sean McAlinden.

    Read the article

  • Synchronize Data between a Silverlight ListBox and a User Control

    - by psheriff
    One of the great things about XAML is the powerful data-binding capabilities. If you load up a list box with a collection of objects, you can display detail data about each object without writing any C# or VB.NET code. Take a look at Figure 1 that shows a collection of Product objects in a list box. When you click on a list box you bind the current Product object selected in the list box to a set of controls in a user control with just a very simple Binding statement in XAML.  Figure 1: Synchronizing a ListBox to a User Control is easy with Data Binding Product and Products Classes To illustrate this data binding feature I am going to just create some local data instead of using a WCF service. The code below shows a Product class that has three properties, namely, ProductId, ProductName and Price. This class also has a constructor that takes 3 parameters and allows us to set the 3 properties in an instance of our Product class. C#public class Product{  public Product(int productId, string productName, decimal price)  {    ProductId = productId;    ProductName = productName;    Price = price;  }   public int ProductId { get; set; }  public string ProductName { get; set; }  public decimal Price { get; set; }} VBPublic Class Product  Public Sub New(ByVal _productId As Integer, _                 ByVal _productName As String, _                 ByVal _price As Decimal)    ProductId = _productId    ProductName = _productName    Price = _price  End Sub   Private mProductId As Integer  Private mProductName As String  Private mPrice As Decimal   Public Property ProductId() As Integer    Get      Return mProductId    End Get    Set(ByVal value As Integer)      mProductId = value    End Set  End Property   Public Property ProductName() As String    Get      Return mProductName    End Get    Set(ByVal value As String)      mProductName = value    End Set  End Property   Public Property Price() As Decimal    Get      Return mPrice    End Get    Set(ByVal value As Decimal)      mPrice = value    End Set  End PropertyEnd Class To fill up a list box you need a collection class of Product objects. The code below creates a generic collection class of Product objects. In the constructor of the Products class I have hard-coded five product objects and added them to the collection. In a real-world application you would get your data through a call to service to fill the list box, but for simplicity and just to illustrate the data binding, I am going to just hard code the data. C#public class Products : List<Product>{  public Products()  {    this.Add(new Product(1, "Microsoft VS.NET 2008", 1000));    this.Add(new Product(2, "Microsoft VS.NET 2010", 1000));    this.Add(new Product(3, "Microsoft Silverlight 4", 1000));    this.Add(new Product(4, "Fundamentals of N-Tier eBook", 20));    this.Add(new Product(5, "ASP.NET Security eBook", 20));  }} VBPublic Class Products  Inherits List(Of Product)   Public Sub New()    Me.Add(New Product(1, "Microsoft VS.NET 2008", 1000))    Me.Add(New Product(2, "Microsoft VS.NET 2010", 1000))    Me.Add(New Product(3, "Microsoft Silverlight 4", 1000))    Me.Add(New Product(4, "Fundamentals of N-Tier eBook", 20))    Me.Add(New Product(5, "ASP.NET Security eBook", 20))  End SubEnd Class The Product Detail User Control Below is a user control (named ucProduct) that is used to display the product detail information seen in the bottom portion of Figure 1. This is very basic XAML that just creates a text block and a text box control for each of the three properties in the Product class. Notice the {Binding Path=[PropertyName]} on each of the text box controls. This means that if the DataContext property of this user control is set to an instance of a Product class, then the data in the properties of that Product object will be displayed in each of the text boxes. <UserControl x:Class="SL_SyncListBoxAndUserControl_CS.ucProduct"  xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"  xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"  HorizontalAlignment="Left"  VerticalAlignment="Top">  <Grid Margin="4">    <Grid.RowDefinitions>      <RowDefinition Height="Auto" />      <RowDefinition Height="Auto" />      <RowDefinition Height="Auto" />    </Grid.RowDefinitions>    <Grid.ColumnDefinitions>      <ColumnDefinition MinWidth="120" />      <ColumnDefinition />    </Grid.ColumnDefinitions>    <TextBlock Grid.Row="0"               Grid.Column="0"               Text="Product Id" />    <TextBox Grid.Row="0"             Grid.Column="1"             Text="{Binding Path=ProductId}" />    <TextBlock Grid.Row="1"               Grid.Column="0"               Text="Product Name" />    <TextBox Grid.Row="1"             Grid.Column="1"             Text="{Binding Path=ProductName}" />    <TextBlock Grid.Row="2"               Grid.Column="0"               Text="Price" />    <TextBox Grid.Row="2"             Grid.Column="1"             Text="{Binding Path=Price}" />  </Grid></UserControl> Synchronize ListBox with User Control You are now ready to fill the list box with the collection class of Product objects and then bind the SelectedItem of the list box to the Product detail user control. The XAML below is the complete code for Figure 1. <UserControl x:Class="SL_SyncListBoxAndUserControl_CS.MainPage"  xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"  xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"  xmlns:src="clr-namespace:SL_SyncListBoxAndUserControl_CS"  VerticalAlignment="Top"  HorizontalAlignment="Left">  <UserControl.Resources>    <src:Products x:Key="productCollection" />  </UserControl.Resources>  <Grid x:Name="LayoutRoot"        Margin="4"        Background="White">    <Grid.RowDefinitions>      <RowDefinition Height="Auto" />      <RowDefinition Height="*" />    </Grid.RowDefinitions>    <ListBox x:Name="lstData"             Grid.Row="0"             BorderBrush="Black"             BorderThickness="1"             ItemsSource="{Binding                   Source={StaticResource productCollection}}"             DisplayMemberPath="ProductName" />    <src:ucProduct x:Name="prodDetail"                   Grid.Row="1"                   DataContext="{Binding ElementName=lstData,                                          Path=SelectedItem}" />  </Grid></UserControl> The first step to making this happen is to reference the Silverlight project (SL_SyncListBoxAndUserControl_CS) where the Product and Products classes are located. I added this namespace and assigned it a namespace prefix of “src” as shown in the line below: xmlns:src="clr-namespace:SL_SyncListBoxAndUserControl_CS" Next, to use the data from an instance of the Products collection, you create a UserControl.Resources section in the XAML and add a tag that creates an instance of the Products class and assigns it a key of “productCollection”.   <UserControl.Resources>    <src:Products x:Key="productCollection" />  </UserControl.Resources> Next, you bind the list box to this productCollection object using the ItemsSource property. You bind the ItemsSource of the list box to the static resource named productCollection. You can then set the DisplayMemberPath attribute of the list box to any property of the Product class that you want. In the XAML below I used the ProductName property. <ListBox x:Name="lstData"         ItemsSource="{Binding             Source={StaticResource productCollection}}"         DisplayMemberPath="ProductName" /> You now need to create an instance of the ucProduct user contol below the list box. You do this by once again referencing the “src” namespace and typing in the name of the user control. You then set the DataContext property on this user control to a binding. The binding uses the ElementName attribute to bind to the list box name, in this case “lstData”. The Path of the data is SelectedItem. These two attributes together tell Silverlight to bind the DataContext to the selected item of the list box. That selected item is a Product object. So, once this is bound, the bindings on each text box in the user control are updated and display the current product information. <src:ucProduct x:Name="prodDetail"               DataContext="{Binding ElementName=lstData,                                      Path=SelectedItem}" /> Summary Once you understand the basics of data binding in XAML, you eliminate a lot code that is otherwise needed to move data into controls and out of controls back into an object. Connecting two controls together is easy by just binding using the ElementName and Path properties of the Binding markup extension. Another good tip out of this blog is use user controls and set the DataContext of the user control to have all of the data on the user control update through the bindings. NOTE: You can download the complete sample code (in both VB and C#) at my website. http://www.pdsa.com/downloads. Choose Tips & Tricks, then "SL – Synchronize List Box Data with User Control" from the drop-down. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free eBook on "Fundamentals of N-Tier".

    Read the article

  • Running SSIS packages from C#

    - by Piotr Rodak
    Most of the developers and DBAs know about two ways of deploying packages: You can deploy them to database server and run them using SQL Server Agent job or you can deploy the packages to file system and run them using dtexec.exe utility. Both approaches have their pros and cons. However I would like to show you that there is a third way (sort of) that is often overlooked, and it can give you capabilities the ‘traditional’ approaches can’t. I have been working for a few years with applications that run packages from host applications that are implemented in .NET. As you know, SSIS provides programming model that you can use to implement more flexible solutions. SSIS applications are usually thought to be batch oriented, with fairly rigid architecture and processing model, with fixed timeframes when the packages are executed to process data. It doesn’t to be the case, you don’t have to limit yourself to batch oriented architecture. I have very good experiences with service oriented architectures processing large amounts of data. These applications are more complex than what I would like to show here, but the principle stays the same: you can execute packages as a service, on ad-hoc basis. You can also implement and schedule various signals, HTTP calls, file drops, time schedules, Tibco messages and other to run the packages. You can implement event handler that will trigger execution of SSIS when a certain event occurs in StreamInsight stream. This post is just a small example of how you can use the API and other features to create a service that can run SSIS packages on demand. I thought it might be a good idea to implement a restful service that would listen to requests and execute appropriate actions. As it turns out, it is trivial in C#. The application is implemented as console application for the ease of debugging and running. In reality, you might want to implement the application as Windows service. To begin, you have to reference namespace System.ServiceModel.Web and then add a few lines of code: Uri baseAddress = new Uri("http://localhost:8011/");               WebServiceHost svcHost = new WebServiceHost(typeof(PackRunner), baseAddress);                           try             {                 svcHost.Open();                   Console.WriteLine("Service is running");                 Console.WriteLine("Press enter to stop the service.");                 Console.ReadLine();                   svcHost.Close();             }             catch (CommunicationException cex)             {                 Console.WriteLine("An exception occurred: {0}", cex.Message);                 svcHost.Abort();             } The interesting lines are 3, 7 and 13. In line 3 you create a WebServiceHost object. In line 7 you start listening on the defined URL and then in line 13 you shut down the service. As you have noticed, the WebServiceHost constructor is accepting type of an object (here: PackRunner) that will be instantiated as singleton and subsequently used to process the requests. This is the class where you put your logic, but to tell WebServiceHost how to use it, the class must implement an interface which declares methods to be used by the host. The interface itself must be ornamented with attribute ServiceContract. [ServiceContract]     public interface IPackRunner     {         [OperationContract]         [WebGet(UriTemplate = "runpack?package={name}")]         string RunPackage1(string name);           [OperationContract]         [WebGet(UriTemplate = "runpackwithparams?package={name}&rows={rows}")]         string RunPackage2(string name, int rows);     } Each method that is going to be used by WebServiceHost has to have attribute OperationContract, as well as WebGet or WebInvoke attribute. The detailed discussion of the available options is outside of scope of this post. I also recommend using more descriptive names to methods . Then, you have to provide the implementation of the interface: public class PackRunner : IPackRunner     {         ... There are two methods defined in this class. I think that since the full code is attached to the post, I will show only the more interesting method, the RunPackage2.   /// <summary> /// Runs package and sets some of its variables. /// </summary> /// <param name="name">Name of the package</param> /// <param name="rows">Number of rows to export</param> /// <returns></returns> public string RunPackage2(string name, int rows) {     try     {         string pkgLocation = ConfigurationManager.AppSettings["PackagePath"];           pkgLocation = Path.Combine(pkgLocation, name.Replace("\"", ""));           Console.WriteLine();         Console.WriteLine("Calling package {0} with parameter {1}.", name, rows);                  Application app = new Application();         Package pkg = app.LoadPackage(pkgLocation, null);           pkg.Variables["User::ExportRows"].Value = rows;         DTSExecResult pkgResults = pkg.Execute();         Console.WriteLine();         Console.WriteLine(pkgResults.ToString());         if (pkgResults == DTSExecResult.Failure)         {             Console.WriteLine();             Console.WriteLine("Errors occured during execution of the package:");             foreach (DtsError er in pkg.Errors)                 Console.WriteLine("{0}: {1}", er.ErrorCode, er.Description);             Console.WriteLine();             return "Errors occured during execution. Contact your support.";         }                  Console.WriteLine();         Console.WriteLine();         return "OK";     }     catch (Exception ex)     {         Console.WriteLine(ex);         return ex.ToString();     } }   The method accepts package name and number of rows to export. The packages are deployed to the file system. The path to the packages is configured in the application configuration file. This way, you can implement multiple services on the same machine, provided you also configure the URL for each instance appropriately. To run a package, you have to reference Microsoft.SqlServer.Dts.Runtime namespace. This namespace is implemented in Microsoft.SQLServer.ManagedDTS.dll which in my case was installed in the folder “C:\Program Files (x86)\Microsoft SQL Server\100\SDK\Assemblies”. Once you have done it, you can create an instance of Microsoft.SqlServer.Dts.Runtime.Application as in line 18 in the above snippet. It may be a good idea to create the Application object in the constructor of the PackRunner class, to avoid necessity of recreating it each time the service is invoked. Then, in line 19 you see that an instance of Microsoft.SqlServer.Dts.Runtime.Package is created. The method LoadPackage in its simplest form just takes package file name as the first parameter. Before you run the package, you can set its variables to certain values. This is a great way of configuring your packages without all the hassle with dtsConfig files. In the above code sample, variable “User:ExportRows” is set to value of the parameter “rows” of the method. Eventually, you execute the package. The method doesn’t throw exceptions, you have to test the result of execution yourself. If the execution wasn’t successful, you can examine collection of errors exposed by the package. These are the familiar errors you often see during development and debugging of the package. I you run the package from the code, you have opportunity to persist them or log them using your favourite logging framework. The package itself is very simple; it connects to my AdventureWorks database and saves number of rows specified in variable “User::ExportRows” to a file. You should know that before you run the package, you can change its connection strings, logging, events and many more. I attach solution with the test service, as well as a project with two test packages. To test the service, you have to run it and wait for the message saying that the host is started. Then, just type (or copy and paste) the below command to your browser. http://localhost:8011/runpackwithparams?package=%22ExportEmployees.dtsx%22&rows=12 When everything works fine, and you modified the package to point to your AdventureWorks database, you should see "OK” wrapped in xml: I stopped the database service to simulate invalid connection string situation. The output of the request is different now: And the service console window shows more information: As you see, implementing service oriented ETL framework is not a very difficult task. You have ability to configure the packages before you run them, you can implement logging that is consistent with the rest of your system. In application I have worked with we also have resource monitoring and execution control. We don’t allow to run more than certain number of packages to run simultaneously. This ensures we don’t strain the server and we use memory and CPUs efficiently. The attached zip file contains two projects. One is the package runner. It has to be executed with administrative privileges as it registers HTTP namespace. The other project contains two simple packages. This is really a cool thing, you should check it out!

    Read the article

  • Inside the Concurrent Collections: ConcurrentDictionary

    - by Simon Cooper
    Using locks to implement a thread-safe collection is rather like using a sledgehammer - unsubtle, easy to understand, and tends to make any other tool redundant. Unlike the previous two collections I looked at, ConcurrentStack and ConcurrentQueue, ConcurrentDictionary uses locks quite heavily. However, it is careful to wield locks only where necessary to ensure that concurrency is maximised. This will, by necessity, be a higher-level look than my other posts in this series, as there is quite a lot of code and logic in ConcurrentDictionary. Therefore, I do recommend that you have ConcurrentDictionary open in a decompiler to have a look at all the details that I skip over. The problem with locks There's several things to bear in mind when using locks, as encapsulated by the lock keyword in C# and the System.Threading.Monitor class in .NET (if you're unsure as to what lock does in C#, I briefly covered it in my first post in the series): Locks block threads The most obvious problem is that threads waiting on a lock can't do any work at all. No preparatory work, no 'optimistic' work like in ConcurrentQueue and ConcurrentStack, nothing. It sits there, waiting to be unblocked. This is bad if you're trying to maximise concurrency. Locks are slow Whereas most of the methods on the Interlocked class can be compiled down to a single CPU instruction, ensuring atomicity at the hardware level, taking out a lock requires some heavy lifting by the CLR and the operating system. There's quite a bit of work required to take out a lock, block other threads, and wake them up again. If locks are used heavily, this impacts performance. Deadlocks When using locks there's always the possibility of a deadlock - two threads, each holding a lock, each trying to aquire the other's lock. Fortunately, this can be avoided with careful programming and structured lock-taking, as we'll see. So, it's important to minimise where locks are used to maximise the concurrency and performance of the collection. Implementation As you might expect, ConcurrentDictionary is similar in basic implementation to the non-concurrent Dictionary, which I studied in a previous post. I'll be using some concepts introduced there, so I recommend you have a quick read of it. So, if you were implementing a thread-safe dictionary, what would you do? The naive implementation is to simply have a single lock around all methods accessing the dictionary. This would work, but doesn't allow much concurrency. Fortunately, the bucketing used by Dictionary allows a simple but effective improvement to this - one lock per bucket. This allows different threads modifying different buckets to do so in parallel. Any thread making changes to the contents of a bucket takes the lock for that bucket, ensuring those changes are thread-safe. The method that maps each bucket to a lock is the GetBucketAndLockNo method: private void GetBucketAndLockNo( int hashcode, out int bucketNo, out int lockNo, int bucketCount) { // the bucket number is the hashcode (without the initial sign bit) // modulo the number of buckets bucketNo = (hashcode & 0x7fffffff) % bucketCount; // and the lock number is the bucket number modulo the number of locks lockNo = bucketNo % m_locks.Length; } However, this does require some changes to how the buckets are implemented. The 'implicit' linked list within a single backing array used by the non-concurrent Dictionary adds a dependency between separate buckets, as every bucket uses the same backing array. Instead, ConcurrentDictionary uses a strict linked list on each bucket: This ensures that each bucket is entirely separate from all other buckets; adding or removing an item from a bucket is independent to any changes to other buckets. Modifying the dictionary All the operations on the dictionary follow the same basic pattern: void AlterBucket(TKey key, ...) { int bucketNo, lockNo; 1: GetBucketAndLockNo( key.GetHashCode(), out bucketNo, out lockNo, m_buckets.Length); 2: lock (m_locks[lockNo]) { 3: Node headNode = m_buckets[bucketNo]; 4: Mutate the node linked list as appropriate } } For example, when adding another entry to the dictionary, you would iterate through the linked list to check whether the key exists already, and add the new entry as the head node. When removing items, you would find the entry to remove (if it exists), and remove the node from the linked list. Adding, updating, and removing items all follow this pattern. Performance issues There is a problem we have to address at this point. If the number of buckets in the dictionary is fixed in the constructor, then the performance will degrade from O(1) to O(n) when a large number of items are added to the dictionary. As more and more items get added to the linked lists in each bucket, the lookup operations will spend most of their time traversing a linear linked list. To fix this, the buckets array has to be resized once the number of items in each bucket has gone over a certain limit. (In ConcurrentDictionary this limit is when the size of the largest bucket is greater than the number of buckets for each lock. This check is done at the end of the TryAddInternal method.) Resizing the bucket array and re-hashing everything affects every bucket in the collection. Therefore, this operation needs to take out every lock in the collection. Taking out mutiple locks at once inevitably summons the spectre of the deadlock; two threads each hold a lock, and each trying to acquire the other lock. How can we eliminate this? Simple - ensure that threads never try to 'swap' locks in this fashion. When taking out multiple locks, always take them out in the same order, and always take out all the locks you need before starting to release them. In ConcurrentDictionary, this is controlled by the AcquireLocks, AcquireAllLocks and ReleaseLocks methods. Locks are always taken out and released in the order they are in the m_locks array, and locks are all released right at the end of the method in a finally block. At this point, it's worth pointing out that the locks array is never re-assigned, even when the buckets array is increased in size. The number of locks is fixed in the constructor by the concurrencyLevel parameter. This simplifies programming the locks; you don't have to check if the locks array has changed or been re-assigned before taking out a lock object. And you can be sure that when a thread takes out a lock, another thread isn't going to re-assign the lock array. This would create a new series of lock objects, thus allowing another thread to ignore the existing locks (and any threads controlling them), breaking thread-safety. Consequences of growing the array Just because we're using locks doesn't mean that race conditions aren't a problem. We can see this by looking at the GrowTable method. The operation of this method can be boiled down to: private void GrowTable(Node[] buckets) { try { 1: Acquire first lock in the locks array // this causes any other thread trying to take out // all the locks to block because the first lock in the array // is always the one taken out first // check if another thread has already resized the buckets array // while we were waiting to acquire the first lock 2: if (buckets != m_buckets) return; 3: Calculate the new size of the backing array 4: Node[] array = new array[size]; 5: Acquire all the remaining locks 6: Re-hash the contents of the existing buckets into array 7: m_buckets = array; } finally { 8: Release all locks } } As you can see, there's already a check for a race condition at step 2, for the case when the GrowTable method is called twice in quick succession on two separate threads. One will successfully resize the buckets array (blocking the second in the meantime), when the second thread is unblocked it'll see that the array has already been resized & exit without doing anything. There is another case we need to consider; looking back at the AlterBucket method above, consider the following situation: Thread 1 calls AlterBucket; step 1 is executed to get the bucket and lock numbers. Thread 2 calls GrowTable and executes steps 1-5; thread 1 is blocked when it tries to take out the lock in step 2. Thread 2 re-hashes everything, re-assigns the buckets array, and releases all the locks (steps 6-8). Thread 1 is unblocked and continues executing, but the calculated bucket and lock numbers are no longer valid. Between calculating the correct bucket and lock number and taking out the lock, another thread has changed where everything is. Not exactly thread-safe. Well, a similar problem was solved in ConcurrentStack and ConcurrentQueue by storing a local copy of the state, doing the necessary calculations, then checking if that state is still valid. We can use a similar idea here: void AlterBucket(TKey key, ...) { while (true) { Node[] buckets = m_buckets; int bucketNo, lockNo; GetBucketAndLockNo( key.GetHashCode(), out bucketNo, out lockNo, buckets.Length); lock (m_locks[lockNo]) { // if the state has changed, go back to the start if (buckets != m_buckets) continue; Node headNode = m_buckets[bucketNo]; Mutate the node linked list as appropriate } break; } } TryGetValue and GetEnumerator And so, finally, we get onto TryGetValue and GetEnumerator. I've left these to the end because, well, they don't actually use any locks. How can this be? Whenever you change a bucket, you need to take out the corresponding lock, yes? Indeed you do. However, it is important to note that TryGetValue and GetEnumerator don't actually change anything. Just as immutable objects are, by definition, thread-safe, read-only operations don't need to take out a lock because they don't change anything. All lockless methods can happily iterate through the buckets and linked lists without worrying about locking anything. However, this does put restrictions on how the other methods operate. Because there could be another thread in the middle of reading the dictionary at any time (even if a lock is taken out), the dictionary has to be in a valid state at all times. Every change to state has to be made visible to other threads in a single atomic operation (all relevant variables are marked volatile to help with this). This restriction ensures that whatever the reading threads are doing, they never read the dictionary in an invalid state (eg items that should be in the collection temporarily removed from the linked list, or reading a node that has had it's key & value removed before the node itself has been removed from the linked list). Fortunately, all the operations needed to change the dictionary can be done in that way. Bucket resizes are made visible when the new array is assigned back to the m_buckets variable. Any additions or modifications to a node are done by creating a new node, then splicing it into the existing list using a single variable assignment. Node removals are simply done by re-assigning the node's m_next pointer. Because the dictionary can be changed by another thread during execution of the lockless methods, the GetEnumerator method is liable to return dirty reads - changes made to the dictionary after GetEnumerator was called, but before the enumeration got to that point in the dictionary. It's worth listing at this point which methods are lockless, and which take out all the locks in the dictionary to ensure they get a consistent view of the dictionary: Lockless: TryGetValue GetEnumerator The indexer getter ContainsKey Takes out every lock (lockfull?): Count IsEmpty Keys Values CopyTo ToArray Concurrent principles That covers the overall implementation of ConcurrentDictionary. I haven't even begun to scratch the surface of this sophisticated collection. That I leave to you. However, we've looked at enough to be able to extract some useful principles for concurrent programming: Partitioning When using locks, the work is partitioned into independant chunks, each with its own lock. Each partition can then be modified concurrently to other partitions. Ordered lock-taking When a method does need to control the entire collection, locks are taken and released in a fixed order to prevent deadlocks. Lockless reads Read operations that don't care about dirty reads don't take out any lock; the rest of the collection is implemented so that any reading thread always has a consistent view of the collection. That leads us to the final collection in this little series - ConcurrentBag. Lacking a non-concurrent analogy, it is quite different to any other collection in the class libraries. Prepare your thinking hats!

    Read the article

  • Creating a new instance, C#

    - by Dave Voyles
    This sounds like a very n00b question, but bear with me here: I'm trying to access the position of my bat (paddle) in my pong game and use it in my ball class. I'm doing this because I want a particle effect to go off at the point of contact where the ball hits the bat. Each time the ball hits the bat, I receive an error stating that I haven't created an instance of the bat. I understand that I have to (or can use a static class), but I'm not sure of how to do so in this example. I've included both my Bat and Ball classes. namespace Pong { #region Using Statements using System; using System.Collections.Generic; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Audio; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework.Input; #endregion public class Ball { #region Fields private readonly Random rand; private readonly Texture2D texture; private readonly SoundEffect warp; private double direction; private bool isVisible; private float moveSpeed; private Vector2 position; private Vector2 resetPos; private Rectangle size; private float speed; private bool isResetting; private bool collided; private Vector2 oldPos; private ParticleEngine particleEngine; private ContentManager contentManager; private SpriteBatch spriteBatch; private bool hasHitBat; private AIBat aiBat; private Bat bat; #endregion #region Constructors and Destructors /// <summary> /// Constructor for the ball /// </summary> public Ball(ContentManager contentManager, Vector2 ScreenSize) { moveSpeed = 15f; speed = 0; texture = contentManager.Load<Texture2D>(@"gfx/balls/redBall"); direction = 0; size = new Rectangle(0, 0, texture.Width, texture.Height); resetPos = new Vector2(ScreenSize.X / 2, ScreenSize.Y / 2); position = resetPos; rand = new Random(); isVisible = true; hasHitBat = false; // Everything to do with particles List<Texture2D> textures = new List<Texture2D>(); textures.Add(contentManager.Load<Texture2D>(@"gfx/particle/circle")); textures.Add(contentManager.Load<Texture2D>(@"gfx/particle/star")); textures.Add(contentManager.Load<Texture2D>(@"gfx/particle/diamond")); particleEngine = new ParticleEngine(textures, new Vector2()); } #endregion #region Public Methods and Operators /// <summary> /// Checks for the collision between the bat and the ball. Sends ball in the appropriate /// direction /// </summary> public void BatHit(int block) { if (direction > Math.PI * 1.5f || direction < Math.PI * 0.5f) { hasHitBat = true; particleEngine.EmitterLocation = new Vector2(aiBat.Position.X, aiBat.Position.Y); switch (block) { case 1: direction = MathHelper.ToRadians(200); break; case 2: direction = MathHelper.ToRadians(195); break; case 3: direction = MathHelper.ToRadians(180); break; case 4: direction = MathHelper.ToRadians(180); break; case 5: direction = MathHelper.ToRadians(165); break; } } else { hasHitBat = true; particleEngine.EmitterLocation = new Vector2(bat.Position.X, bat.Position.Y); switch (block) { case 1: direction = MathHelper.ToRadians(310); break; case 2: direction = MathHelper.ToRadians(345); break; case 3: direction = MathHelper.ToRadians(0); break; case 4: direction = MathHelper.ToRadians(15); break; case 5: direction = MathHelper.ToRadians(50); break; } } if (rand.Next(2) == 0) { direction += MathHelper.ToRadians(rand.Next(3)); } else { direction -= MathHelper.ToRadians(rand.Next(3)); } AudioManager.Instance.PlaySoundEffect("hit"); } /// <summary> /// JEP - added method to slow down ball after powerup deactivates /// </summary> public void DecreaseSpeed() { moveSpeed -= 0.6f; } /// <summary> /// Draws the ball on the screen /// </summary> public void Draw(SpriteBatch spriteBatch) { if (isVisible) { spriteBatch.Begin(); spriteBatch.Draw(texture, size, Color.White); spriteBatch.End(); // Draws sprites for particles when contact is made particleEngine.Draw(spriteBatch); } } /// <summary> /// Checks for the current direction of the ball /// </summary> public double GetDirection() { return direction; } /// <summary> /// Checks for the current position of the ball /// </summary> public Vector2 GetPosition() { return position; } /// <summary> /// Checks for the current size of the ball (for the powerups) /// </summary> public Rectangle GetSize() { return size; } /// <summary> /// Grows the size of the ball when the GrowBall powerup is used. /// </summary> public void GrowBall() { size = new Rectangle(0, 0, texture.Width * 2, texture.Height * 2); } /// <summary> /// Was used to increased the speed of the ball after each point is scored. /// No longer used, but am considering implementing again. /// </summary> public void IncreaseSpeed() { moveSpeed += 0.6f; } /// <summary> /// Check for the ball to return normal size after the Powerup has expired /// </summary> public void NormalBallSize() { size = new Rectangle(0, 0, texture.Width, texture.Height); } /// <summary> /// Check for the ball to return normal speed after the Powerup has expired /// </summary> public void NormalSpeed() { moveSpeed += 15f; } /// <summary> /// Checks to see if ball went out of bounds, and triggers warp sfx /// </summary> public void OutOfBounds() { // Checks if the player is still alive or not if (isResetting) { AudioManager.Instance.PlaySoundEffect("warp"); { // Used to stop the the issue where the ball hit sfx kept going off when detecting collison isResetting = false; AudioManager.Instance.Dispose(); } } } /// <summary> /// Speed for the ball when Speedball powerup is activated /// </summary> public void PowerupSpeed() { moveSpeed += 20.0f; } /// <summary> /// Check for where to reset the ball after each point is scored /// </summary> public void Reset(bool left) { if (left) { direction = 0; } else { direction = Math.PI; } // Used to stop the the issue where the ball hit sfx kept going off when detecting collison isResetting = true; position = resetPos; // Resets the ball to the center of the screen isVisible = true; speed = 15f; // Returns the ball back to the default speed, in case the speedBall was active if (rand.Next(2) == 0) { direction += MathHelper.ToRadians(rand.Next(30)); } else { direction -= MathHelper.ToRadians(rand.Next(30)); } } /// <summary> /// Shrinks the ball when the ShrinkBall powerup is activated /// </summary> public void ShrinkBall() { size = new Rectangle(0, 0, texture.Width / 2, texture.Height / 2); } /// <summary> /// Stops the ball each time it is reset. Ex: Between points / rounds /// </summary> public void Stop() { isVisible = true; speed = 0; } /// <summary> /// Updates position of the ball /// </summary> public void UpdatePosition() { size.X = (int)position.X; size.Y = (int)position.Y; oldPos.X = position.X; oldPos.Y = position.Y; position.X += speed * (float)Math.Cos(direction); position.Y += speed * (float)Math.Sin(direction); bool collided = CheckWallHit(); particleEngine.Update(); // Stops the issue where ball was oscillating on the ceiling or floor if (collided) { position.X = oldPos.X + speed * (float)Math.Cos(direction); position.Y = oldPos.Y + speed * (float)Math.Sin(direction); } } #endregion #region Methods /// <summary> /// Checks for collision with the ceiling or floor. 2*Math.pi = 360 degrees /// </summary> private bool CheckWallHit() { while (direction > 2 * Math.PI) { direction -= 2 * Math.PI; return true; } while (direction < 0) { direction += 2 * Math.PI; return true; } if (position.Y <= 0 || (position.Y > resetPos.Y * 2 - size.Height)) { direction = 2 * Math.PI - direction; return true; } return true; } #endregion } } namespace Pong { using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.Graphics; using System; public class Bat { public Vector2 Position; public float moveSpeed; public Rectangle size; private int points; private int yHeight; private Texture2D leftBat; public float turbo; public float recharge; public float interval; public bool isTurbo; /// <summary> /// Constructor for the bat /// </summary> public Bat(ContentManager contentManager, Vector2 screenSize, bool side) { moveSpeed = 7f; turbo = 15f; recharge = 100f; points = 0; interval = 5f; leftBat = contentManager.Load<Texture2D>(@"gfx/bats/batGrey"); size = new Rectangle(0, 0, leftBat.Width, leftBat.Height); // True means left bat, false means right bat. if (side) Position = new Vector2(30, screenSize.Y / 2 - size.Height / 2); else Position = new Vector2(screenSize.X - 30, screenSize.Y / 2 - size.Height / 2); yHeight = (int)screenSize.Y; } public void IncreaseSpeed() { moveSpeed += .5f; } /// <summary> /// The speed of the bat when Turbo is activated /// </summary> public void Turbo() { moveSpeed += 8.0f; } /// <summary> /// Returns the speed of the bat back to normal after Turbo is deactivated /// </summary> public void DisableTurbo() { moveSpeed = 7.0f; isTurbo = false; } /// <summary> /// Returns the bat to the nrmal size after the Grow/Shrink powerup has expired /// </summary> public void NormalSize() { size = new Rectangle(0, 0, leftBat.Width, leftBat.Height); } /// <summary> /// Checks for the size of the bat /// </summary> public Rectangle GetSize() { return size; } /// <summary> /// Adds point to the player or the AI after scoring. Currently Disabled. /// </summary> public void IncrementPoints() { points++; } /// <summary> /// Checks for the number of points at the moment /// </summary> public int GetPoints() { return points; } /// <summary> /// Sets thedefault starting position for the bats /// </summary> /// <param name="position"></param> public void SetPosition(Vector2 position) { if (position.Y < 0) { position.Y = 0; } if (position.Y > yHeight - size.Height) { position.Y = yHeight - size.Height; } this.Position = position; } /// <summary> /// Checks for the current position of the bat /// </summary> public Vector2 GetPosition() { return Position; } /// <summary> /// Controls the bat moving up the screen /// </summary> public void MoveUp() { SetPosition(Position + new Vector2(0, -moveSpeed)); } /// <summary> /// Controls the bat moving down the screen /// </summary> public void MoveDown() { SetPosition(Position + new Vector2(0, moveSpeed)); } /// <summary> /// Updates the position of the AI bat, in order to track the ball /// </summary> /// <param name="ball"></param> public virtual void UpdatePosition(Ball ball) { size.X = (int)Position.X; size.Y = (int)Position.Y; } /// <summary> /// Resets the bat to the center location after a new game starts /// </summary> public void ResetPosition() { SetPosition(new Vector2(GetPosition().X, yHeight / 2 - size.Height)); } /// <summary> /// Used for the Growbat powerup /// </summary> public void GrowBat() { // Doubles the size of the bat collision size = new Rectangle(0, 0, leftBat.Width * 2, leftBat.Height * 2); } /// <summary> /// Used for the Shrinkbat powerup /// </summary> public void ShrinkBat() { // 1/2 the size of the bat collision size = new Rectangle(0, 0, leftBat.Width / 2, leftBat.Height / 2); } /// <summary> /// Draws the bats /// </summary> public virtual void Draw(SpriteBatch batch) { batch.Draw(leftBat, size, Color.White); } } }

    Read the article

  • A ToDynamic() Extension Method For Fluent Reflection

    - by Dixin
    Recently I needed to demonstrate some code with reflection, but I felt it inconvenient and tedious. To simplify the reflection coding, I created a ToDynamic() extension method. The source code can be downloaded from here. Problem One example for complex reflection is in LINQ to SQL. The DataContext class has a property Privider, and this Provider has an Execute() method, which executes the query expression and returns the result. Assume this Execute() needs to be invoked to query SQL Server database, then the following code will be expected: using (NorthwindDataContext database = new NorthwindDataContext()) { // Constructs the query. IQueryable<Product> query = database.Products.Where(product => product.ProductID > 0) .OrderBy(product => product.ProductName) .Take(2); // Executes the query. Here reflection is required, // because Provider, Execute(), and ReturnValue are not public members. IEnumerable<Product> results = database.Provider.Execute(query.Expression).ReturnValue; // Processes the results. foreach (Product product in results) { Console.WriteLine("{0}, {1}", product.ProductID, product.ProductName); } } Of course, this code cannot compile. And, no one wants to write code like this. Again, this is just an example of complex reflection. using (NorthwindDataContext database = new NorthwindDataContext()) { // Constructs the query. IQueryable<Product> query = database.Products.Where(product => product.ProductID > 0) .OrderBy(product => product.ProductName) .Take(2); // database.Provider PropertyInfo providerProperty = database.GetType().GetProperty( "Provider", BindingFlags.NonPublic | BindingFlags.GetProperty | BindingFlags.Instance); object provider = providerProperty.GetValue(database, null); // database.Provider.Execute(query.Expression) // Here GetMethod() cannot be directly used, // because Execute() is a explicitly implemented interface method. Assembly assembly = Assembly.Load("System.Data.Linq"); Type providerType = assembly.GetTypes().SingleOrDefault( type => type.FullName == "System.Data.Linq.Provider.IProvider"); InterfaceMapping mapping = provider.GetType().GetInterfaceMap(providerType); MethodInfo executeMethod = mapping.InterfaceMethods.Single(method => method.Name == "Execute"); IExecuteResult executeResult = executeMethod.Invoke(provider, new object[] { query.Expression }) as IExecuteResult; // database.Provider.Execute(query.Expression).ReturnValue IEnumerable<Product> results = executeResult.ReturnValue as IEnumerable<Product>; // Processes the results. foreach (Product product in results) { Console.WriteLine("{0}, {1}", product.ProductID, product.ProductName); } } This may be not straight forward enough. So here a solution will implement fluent reflection with a ToDynamic() extension method: IEnumerable<Product> results = database.ToDynamic() // Starts fluent reflection. .Provider.Execute(query.Expression).ReturnValue; C# 4.0 dynamic In this kind of scenarios, it is easy to have dynamic in mind, which enables developer to write whatever code after a dot: using (NorthwindDataContext database = new NorthwindDataContext()) { // Constructs the query. IQueryable<Product> query = database.Products.Where(product => product.ProductID > 0) .OrderBy(product => product.ProductName) .Take(2); // database.Provider dynamic dynamicDatabase = database; dynamic results = dynamicDatabase.Provider.Execute(query).ReturnValue; } This throws a RuntimeBinderException at runtime: 'System.Data.Linq.DataContext.Provider' is inaccessible due to its protection level. Here dynamic is able find the specified member. So the next thing is just writing some custom code to access the found member. .NET 4.0 DynamicObject, and DynamicWrapper<T> Where to put the custom code for dynamic? The answer is DynamicObject’s derived class. I first heard of DynamicObject from Anders Hejlsberg's video in PDC2008. It is very powerful, providing useful virtual methods to be overridden, like: TryGetMember() TrySetMember() TryInvokeMember() etc.  (In 2008 they are called GetMember, SetMember, etc., with different signature.) For example, if dynamicDatabase is a DynamicObject, then the following code: dynamicDatabase.Provider will invoke dynamicDatabase.TryGetMember() to do the actual work, where custom code can be put into. Now create a type to inherit DynamicObject: public class DynamicWrapper<T> : DynamicObject { private readonly bool _isValueType; private readonly Type _type; private T _value; // Not readonly, for value type scenarios. public DynamicWrapper(ref T value) // Uses ref in case of value type. { if (value == null) { throw new ArgumentNullException("value"); } this._value = value; this._type = value.GetType(); this._isValueType = this._type.IsValueType; } public override bool TryGetMember(GetMemberBinder binder, out object result) { // Searches in current type's public and non-public properties. PropertyInfo property = this._type.GetTypeProperty(binder.Name); if (property != null) { result = property.GetValue(this._value, null).ToDynamic(); return true; } // Searches in explicitly implemented properties for interface. MethodInfo method = this._type.GetInterfaceMethod(string.Concat("get_", binder.Name), null); if (method != null) { result = method.Invoke(this._value, null).ToDynamic(); return true; } // Searches in current type's public and non-public fields. FieldInfo field = this._type.GetTypeField(binder.Name); if (field != null) { result = field.GetValue(this._value).ToDynamic(); return true; } // Searches in base type's public and non-public properties. property = this._type.GetBaseProperty(binder.Name); if (property != null) { result = property.GetValue(this._value, null).ToDynamic(); return true; } // Searches in base type's public and non-public fields. field = this._type.GetBaseField(binder.Name); if (field != null) { result = field.GetValue(this._value).ToDynamic(); return true; } // The specified member is not found. result = null; return false; } // Other overridden methods are not listed. } In the above code, GetTypeProperty(), GetInterfaceMethod(), GetTypeField(), GetBaseProperty(), and GetBaseField() are extension methods for Type class. For example: internal static class TypeExtensions { internal static FieldInfo GetBaseField(this Type type, string name) { Type @base = type.BaseType; if (@base == null) { return null; } return @base.GetTypeField(name) ?? @base.GetBaseField(name); } internal static PropertyInfo GetBaseProperty(this Type type, string name) { Type @base = type.BaseType; if (@base == null) { return null; } return @base.GetTypeProperty(name) ?? @base.GetBaseProperty(name); } internal static MethodInfo GetInterfaceMethod(this Type type, string name, params object[] args) { return type.GetInterfaces().Select(type.GetInterfaceMap).SelectMany(mapping => mapping.TargetMethods) .FirstOrDefault( method => method.Name.Split('.').Last().Equals(name, StringComparison.Ordinal) && method.GetParameters().Count() == args.Length && method.GetParameters().Select( (parameter, index) => parameter.ParameterType.IsAssignableFrom(args[index].GetType())).Aggregate( true, (a, b) => a && b)); } internal static FieldInfo GetTypeField(this Type type, string name) { return type.GetFields( BindingFlags.GetField | BindingFlags.Instance | BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic).FirstOrDefault( field => field.Name.Equals(name, StringComparison.Ordinal)); } internal static PropertyInfo GetTypeProperty(this Type type, string name) { return type.GetProperties( BindingFlags.GetProperty | BindingFlags.Instance | BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic).FirstOrDefault( property => property.Name.Equals(name, StringComparison.Ordinal)); } // Other extension methods are not listed. } So now, when invoked, TryGetMember() searches the specified member and invoke it. The code can be written like this: dynamic dynamicDatabase = new DynamicWrapper<NorthwindDataContext>(ref database); dynamic dynamicReturnValue = dynamicDatabase.Provider.Execute(query.Expression).ReturnValue; This greatly simplified reflection. ToDynamic() and fluent reflection To make it even more straight forward, A ToDynamic() method is provided: public static class DynamicWrapperExtensions { public static dynamic ToDynamic<T>(this T value) { return new DynamicWrapper<T>(ref value); } } and a ToStatic() method is provided to unwrap the value: public class DynamicWrapper<T> : DynamicObject { public T ToStatic() { return this._value; } } In the above TryGetMember() method, please notice it does not output the member’s value, but output a wrapped member value (that is, memberValue.ToDynamic()). This is very important to make the reflection fluent. Now the code becomes: IEnumerable<Product> results = database.ToDynamic() // Here starts fluent reflection. .Provider.Execute(query.Expression).ReturnValue .ToStatic(); // Unwraps to get the static value. With the help of TryConvert(): public class DynamicWrapper<T> : DynamicObject { public override bool TryConvert(ConvertBinder binder, out object result) { result = this._value; return true; } } ToStatic() can be omitted: IEnumerable<Product> results = database.ToDynamic() .Provider.Execute(query.Expression).ReturnValue; // Automatically converts to expected static value. Take a look at the reflection code at the beginning of this post again. Now it is much much simplified! Special scenarios In 90% of the scenarios ToDynamic() is enough. But there are some special scenarios. Access static members Using extension method ToDynamic() for accessing static members does not make sense. Instead, DynamicWrapper<T> has a parameterless constructor to handle these scenarios: public class DynamicWrapper<T> : DynamicObject { public DynamicWrapper() // For static. { this._type = typeof(T); this._isValueType = this._type.IsValueType; } } The reflection code should be like this: dynamic wrapper = new DynamicWrapper<StaticClass>(); int value = wrapper._value; int result = wrapper.PrivateMethod(); So accessing static member is also simple, and fluent of course. Change instances of value types Value type is much more complex. The main problem is, value type is copied when passing to a method as a parameter. This is why ref keyword is used for the constructor. That is, if a value type instance is passed to DynamicWrapper<T>, the instance itself will be stored in this._value of DynamicWrapper<T>. Without the ref keyword, when this._value is changed, the value type instance itself does not change. Consider FieldInfo.SetValue(). In the value type scenarios, invoking FieldInfo.SetValue(this._value, value) does not change this._value, because it changes the copy of this._value. I searched the Web and found a solution for setting the value of field: internal static class FieldInfoExtensions { internal static void SetValue<T>(this FieldInfo field, ref T obj, object value) { if (typeof(T).IsValueType) { field.SetValueDirect(__makeref(obj), value); // For value type. } else { field.SetValue(obj, value); // For reference type. } } } Here __makeref is a undocumented keyword of C#. But method invocation has problem. This is the source code of TryInvokeMember(): public override bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object result) { if (binder == null) { throw new ArgumentNullException("binder"); } MethodInfo method = this._type.GetTypeMethod(binder.Name, args) ?? this._type.GetInterfaceMethod(binder.Name, args) ?? this._type.GetBaseMethod(binder.Name, args); if (method != null) { // Oops! // If the returnValue is a struct, it is copied to heap. object resultValue = method.Invoke(this._value, args); // And result is a wrapper of that copied struct. result = new DynamicWrapper<object>(ref resultValue); return true; } result = null; return false; } If the returned value is of value type, it will definitely copied, because MethodInfo.Invoke() does return object. If changing the value of the result, the copied struct is changed instead of the original struct. And so is the property and index accessing. They are both actually method invocation. For less confusion, setting property and index are not allowed on struct. Conclusions The DynamicWrapper<T> provides a simplified solution for reflection programming. It works for normal classes (reference types), accessing both instance and static members. In most of the scenarios, just remember to invoke ToDynamic() method, and access whatever you want: StaticType result = someValue.ToDynamic()._field.Method().Property[index]; In some special scenarios which requires changing the value of a struct (value type), this DynamicWrapper<T> does not work perfectly. Only changing struct’s field value is supported. The source code can be downloaded from here, including a few unit test code.

    Read the article

  • From HttpRuntime.Cache to Windows Azure Caching (Preview)

    - by Jeff
    I don’t know about you, but the announcement of Windows Azure Caching (Preview) (yes, the parentheses are apparently part of the interim name) made me a lot more excited about using Azure. Why? Because one of the great performance tricks of any Web app is to cache frequently used data in memory, so it doesn’t have to hit the database, a service, or whatever. When you run your Web app on one box, HttpRuntime.Cache is a sweet and stupid-simple solution. Somewhere in the data fetching pieces of your app, you can see if an object is available in cache, and return that instead of hitting the data store. I did this quite a bit in POP Forums, and it dramatically cuts down on the database chatter. The problem is that it falls apart if you run the app on many servers, in a Web farm, where one server may initiate a change to that data, and the others will have no knowledge of the change, making it stale. Of course, if you have the infrastructure to do so, you can use something like memcached or AppFabric to do a distributed cache, and achieve the caching flavor you desire. You could do the same thing in Azure before, but it would cost more because you’d need to pay for another role or VM or something to host the cache. Now, you can use a portion of the memory from each instance of a Web role to act as that cache, with no additional cost. That’s huge. So if you’re using a percentage of memory that comes out to 100 MB, and you have three instances running, that’s 300 MB available for caching. For the uninitiated, a Web role in Azure is essentially a VM that runs a Web app (worker roles are the same idea, only without the IIS part). You can spin up many instances of the role, and traffic is load balanced to the various instances. It’s like adding or removing servers to a Web farm all willy-nilly and at your discretion, and it’s what the cloud is all about. I’d say it’s my favorite thing about Windows Azure. The slightly annoying thing about developing for a Web role in Azure is that the local emulator that’s launched by Visual Studio is a little on the slow side. If you’re used to using the built-in Web server, you’re used to building and then alt-tabbing to your browser and refreshing a page. If you’re just changing an MVC view, you’re not even doing the building part. Spinning up the simulated Azure environment is too slow for this, but ideally you want to code your app to use this fantastic distributed cache mechanism. So first off, here’s the link to the page showing how to code using the caching feature. If you’re used to using HttpRuntime.Cache, this should be pretty familiar to you. Let’s say that you want to use the Azure cache preview when you’re running in Azure, but HttpRuntime.Cache if you’re running local, or in a regular IIS server environment. Through the magic of dependency injection, we can get there pretty quickly. First, design an interface to handle the cache insertion, fetching and removal. Mine looks like this: public interface ICacheProvider {     void Add(string key, object item, int duration);     T Get<T>(string key) where T : class;     void Remove(string key); } Now we’ll create two implementations of this interface… one for Azure cache, one for HttpRuntime: public class AzureCacheProvider : ICacheProvider {     public AzureCacheProvider()     {         _cache = new DataCache("default"); // in Microsoft.ApplicationServer.Caching, see how-to      }         private readonly DataCache _cache;     public void Add(string key, object item, int duration)     {         _cache.Add(key, item, new TimeSpan(0, 0, 0, 0, duration));     }     public T Get<T>(string key) where T : class     {         return _cache.Get(key) as T;     }     public void Remove(string key)     {         _cache.Remove(key);     } } public class LocalCacheProvider : ICacheProvider {     public LocalCacheProvider()     {         _cache = HttpRuntime.Cache;     }     private readonly System.Web.Caching.Cache _cache;     public void Add(string key, object item, int duration)     {         _cache.Insert(key, item, null, DateTime.UtcNow.AddMilliseconds(duration), System.Web.Caching.Cache.NoSlidingExpiration);     }     public T Get<T>(string key) where T : class     {         return _cache[key] as T;     }     public void Remove(string key)     {         _cache.Remove(key);     } } Feel free to expand these to use whatever cache features you want. I’m not going to go over dependency injection here, but I assume that if you’re using ASP.NET MVC, you’re using it. Somewhere in your app, you set up the DI container that resolves interfaces to concrete implementations (Ninject call is a “kernel” instead of a container). For this example, I’ll show you how StructureMap does it. It uses a convention based scheme, where if you need to get an instance of IFoo, it looks for a class named Foo. You can also do this mapping explicitly. The initialization of the container looks something like this: ObjectFactory.Initialize(x =>             {                 x.Scan(scan =>                         {                             scan.AssembliesFromApplicationBaseDirectory();                             scan.WithDefaultConventions();                         });                 if (Microsoft.WindowsAzure.ServiceRuntime.RoleEnvironment.IsAvailable)                     x.For<ICacheProvider>().Use<AzureCacheProvider>();                 else                     x.For<ICacheProvider>().Use<LocalCacheProvider>();             }); If you use Ninject or Windsor or something else, that’s OK. Conceptually they’re all about the same. The important part is the conditional statement that checks to see if the app is running in Azure. If it is, it maps ICacheProvider to AzureCacheProvider, otherwise it maps to LocalCacheProvider. Now when a request comes into your MVC app, and the chain of dependency resolution occurs, you can see to it that the right caching code is called. A typical design may have a call stack that goes: Controller –> BusinessLogicClass –> Repository. Let’s say your repository class looks like this: public class MyRepo : IMyRepo {     public MyRepo(ICacheProvider cacheProvider)     {         _context = new MyDataContext();         _cache = cacheProvider;     }     private readonly MyDataContext _context;     private readonly ICacheProvider _cache;     public SomeType Get(int someTypeID)     {         var key = "somename-" + someTypeID;         var cachedObject = _cache.Get<SomeType>(key);         if (cachedObject != null)         {             _context.SomeTypes.Attach(cachedObject);             return cachedObject;         }         var someType = _context.SomeTypes.SingleOrDefault(p => p.SomeTypeID == someTypeID);         _cache.Add(key, someType, 60000);         return someType;     } ... // more stuff to update, delete or whatever, being sure to remove // from cache when you do so  When the DI container gets an instance of the repo, it passes an instance of ICacheProvider to the constructor, which in this case will be whatever implementation was specified when the container was initialized. The Get method first tries to hit the cache, and of course doesn’t care what the underlying implementation is, Azure, HttpRuntime, or otherwise. If it finds the object, it returns it right then. If not, it hits the database (this example is using Entity Framework), and inserts the object into the cache before returning it. The important thing not pictured here is that other methods in the repo class will construct the key for the cached object, in this case “somename-“ plus the ID of the object, and then remove it from cache, in any method that alters or deletes the object. That way, no matter what instance of the role is processing the request, it won’t find the object if it has been made stale, that is, updated or outright deleted, forcing it to attempt to hit the database. So is this good technique? Well, sort of. It depends on how you use it, and what your testing looks like around it. Because of differences in behavior and execution of the two caching providers, for example, you could see some strange errors. For example, I immediately got an error indicating there was no parameterless constructor for an MVC controller, because the DI resolver failed to create instances for the dependencies it had. In reality, the NuGet packaged DI resolver for StructureMap was eating an exception thrown by the Azure components that said my configuration, outlined in that how-to article, was wrong. That error wouldn’t occur when using the HttpRuntime. That’s something a lot of people debate about using different components like that, and how you configure them. I kinda hate XML config files, and like the idea of the code-based approach above, but you should be darn sure that your unit and integration testing can account for the differences.

    Read the article

  • java inheritance keyword super()

    - by gucciv12
    requirement: Given the class 'ReadOnly' with the following behavior: A (protected) integer instance variable named 'val'. A constructor that accepts an integer and assigns the value of the parameter to the instance variable 'val'. A method name 'getVal' that returns the value of 'val'. Write a subclass named 'ReadWrite' with the following additional behavior: Any necessary constructors. a method named 'setVal' that accepts an integer parameter and assigns it the the 'val' instance variable. a method 'isDirty' that returns true if the setVal method was used to override the value of the 'val' variable. Code class ReadWrite extends ReadOnly { super(int val); void setVal(int val){this.val = val;} boolean isDirty() {if (setVal()(return true)) else return false;}} More Hints: ?     You should be using: modified ?     You should be using: private ?     You should be using: public

    Read the article

  • Hibernate unable to instantiate default tuplizer - cannot find getter

    - by ZeldaPinwheel
    I'm trying to use Hibernate to persist a class that looks like this: public class Item implements Serializable, Comparable<Item> { // Item id private Integer id; // Description of item in inventory private String description; // Number of items described by this inventory item private int count; //Category item belongs to private String category; // Date item was purchased private GregorianCalendar purchaseDate; public Item() { } public Integer getId() { return id; } public void setId(Integer id) { this.id = id; } public String getDescription() { return description; } public void setDescription(String description) { this.description = description; } public int getCount() { return count; } public void setCount(int count) { this.count = count; } public String getCategory() { return category; } public void setCategory(String category) { this.category = category; } public GregorianCalendar getPurchaseDate() { return purchaseDate; } public void setPurchasedate(GregorianCalendar purchaseDate) { this.purchaseDate = purchaseDate; } My Hibernate mapping file contains the following: <property name="puchaseDate" type="java.util.GregorianCalendar"> <column name="purchase_date"></column> </property> When I try to run, I get error messages indicating there is no getter function for the purchaseDate attribute: 577 [main] INFO org.hibernate.connection.DriverManagerConnectionProvider - Using Hibernate built-in connection pool (not for production use!) 577 [main] INFO org.hibernate.connection.DriverManagerConnectionProvider - Hibernate connection pool size: 20 577 [main] INFO org.hibernate.connection.DriverManagerConnectionProvider - autocommit mode: false 592 [main] INFO org.hibernate.connection.DriverManagerConnectionProvider - using driver: com.mysql.jdbc.Driver at URL: jdbc:mysql://localhost:3306/home_inventory 592 [main] INFO org.hibernate.connection.DriverManagerConnectionProvider - connection properties: {user=root, password=****} 1078 [main] INFO org.hibernate.cfg.SettingsFactory - RDBMS: MySQL, version: 5.1.45 1078 [main] INFO org.hibernate.cfg.SettingsFactory - JDBC driver: MySQL-AB JDBC Driver, version: mysql-connector-java-5.1.12 ( Revision: ${bzr.revision-id} ) 1103 [main] INFO org.hibernate.dialect.Dialect - Using dialect: org.hibernate.dialect.MySQLDialect 1107 [main] INFO org.hibernate.engine.jdbc.JdbcSupportLoader - Disabling contextual LOB creation as JDBC driver reported JDBC version [3] less than 4 1109 [main] INFO org.hibernate.transaction.TransactionFactoryFactory - Using default transaction strategy (direct JDBC transactions) 1110 [main] INFO org.hibernate.transaction.TransactionManagerLookupFactory - No TransactionManagerLookup configured (in JTA environment, use of read-write or transactional second-level cache is not recommended) 1110 [main] INFO org.hibernate.cfg.SettingsFactory - Automatic flush during beforeCompletion(): disabled 1110 [main] INFO org.hibernate.cfg.SettingsFactory - Automatic session close at end of transaction: disabled 1110 [main] INFO org.hibernate.cfg.SettingsFactory - JDBC batch size: 15 1110 [main] INFO org.hibernate.cfg.SettingsFactory - JDBC batch updates for versioned data: disabled 1111 [main] INFO org.hibernate.cfg.SettingsFactory - Scrollable result sets: enabled 1111 [main] INFO org.hibernate.cfg.SettingsFactory - JDBC3 getGeneratedKeys(): enabled 1111 [main] INFO org.hibernate.cfg.SettingsFactory - Connection release mode: auto 1111 [main] INFO org.hibernate.cfg.SettingsFactory - Maximum outer join fetch depth: 2 1111 [main] INFO org.hibernate.cfg.SettingsFactory - Default batch fetch size: 1 1111 [main] INFO org.hibernate.cfg.SettingsFactory - Generate SQL with comments: disabled 1111 [main] INFO org.hibernate.cfg.SettingsFactory - Order SQL updates by primary key: disabled 1111 [main] INFO org.hibernate.cfg.SettingsFactory - Order SQL inserts for batching: disabled 1112 [main] INFO org.hibernate.cfg.SettingsFactory - Query translator: org.hibernate.hql.ast.ASTQueryTranslatorFactory 1113 [main] INFO org.hibernate.hql.ast.ASTQueryTranslatorFactory - Using ASTQueryTranslatorFactory 1113 [main] INFO org.hibernate.cfg.SettingsFactory - Query language substitutions: {} 1113 [main] INFO org.hibernate.cfg.SettingsFactory - JPA-QL strict compliance: disabled 1113 [main] INFO org.hibernate.cfg.SettingsFactory - Second-level cache: enabled 1113 [main] INFO org.hibernate.cfg.SettingsFactory - Query cache: disabled 1113 [main] INFO org.hibernate.cfg.SettingsFactory - Cache region factory : org.hibernate.cache.impl.NoCachingRegionFactory 1113 [main] INFO org.hibernate.cfg.SettingsFactory - Optimize cache for minimal puts: disabled 1114 [main] INFO org.hibernate.cfg.SettingsFactory - Structured second-level cache entries: disabled 1117 [main] INFO org.hibernate.cfg.SettingsFactory - Echoing all SQL to stdout 1118 [main] INFO org.hibernate.cfg.SettingsFactory - Statistics: disabled 1118 [main] INFO org.hibernate.cfg.SettingsFactory - Deleted entity synthetic identifier rollback: disabled 1118 [main] INFO org.hibernate.cfg.SettingsFactory - Default entity-mode: pojo 1118 [main] INFO org.hibernate.cfg.SettingsFactory - Named query checking : enabled 1118 [main] INFO org.hibernate.cfg.SettingsFactory - Check Nullability in Core (should be disabled when Bean Validation is on): enabled 1151 [main] INFO org.hibernate.impl.SessionFactoryImpl - building session factory org.hibernate.HibernateException: Unable to instantiate default tuplizer [org.hibernate.tuple.entity.PojoEntityTuplizer] at org.hibernate.tuple.entity.EntityTuplizerFactory.constructTuplizer(EntityTuplizerFactory.java:110) at org.hibernate.tuple.entity.EntityTuplizerFactory.constructDefaultTuplizer(EntityTuplizerFactory.java:135) at org.hibernate.tuple.entity.EntityEntityModeToTuplizerMapping.<init>(EntityEntityModeToTuplizerMapping.java:80) at org.hibernate.tuple.entity.EntityMetamodel.<init>(EntityMetamodel.java:323) at org.hibernate.persister.entity.AbstractEntityPersister.<init>(AbstractEntityPersister.java:475) at org.hibernate.persister.entity.SingleTableEntityPersister.<init>(SingleTableEntityPersister.java:133) at org.hibernate.persister.PersisterFactory.createClassPersister(PersisterFactory.java:84) at org.hibernate.impl.SessionFactoryImpl.<init>(SessionFactoryImpl.java:295) at org.hibernate.cfg.Configuration.buildSessionFactory(Configuration.java:1385) at service.HibernateSessionFactory.currentSession(HibernateSessionFactory.java:53) at service.ItemSvcHibImpl.generateReport(ItemSvcHibImpl.java:78) at service.test.ItemSvcTest.testGenerateReport(ItemSvcTest.java:226) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at junit.framework.TestCase.runTest(TestCase.java:164) at junit.framework.TestCase.runBare(TestCase.java:130) at junit.framework.TestResult$1.protect(TestResult.java:106) at junit.framework.TestResult.runProtected(TestResult.java:124) at junit.framework.TestResult.run(TestResult.java:109) at junit.framework.TestCase.run(TestCase.java:120) at junit.framework.TestSuite.runTest(TestSuite.java:230) at junit.framework.TestSuite.run(TestSuite.java:225) at org.eclipse.jdt.internal.junit.runner.junit3.JUnit3TestReference.run(JUnit3TestReference.java:130) at org.eclipse.jdt.internal.junit.runner.TestExecution.run(TestExecution.java:38) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:467) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:683) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.run(RemoteTestRunner.java:390) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.main(RemoteTestRunner.java:197) Caused by: java.lang.reflect.InvocationTargetException at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27) at java.lang.reflect.Constructor.newInstance(Constructor.java:513) at org.hibernate.tuple.entity.EntityTuplizerFactory.constructTuplizer(EntityTuplizerFactory.java:107) ... 29 more Caused by: org.hibernate.PropertyNotFoundException: Could not find a getter for puchaseDate in class domain.Item at org.hibernate.property.BasicPropertyAccessor.createGetter(BasicPropertyAccessor.java:328) at org.hibernate.property.BasicPropertyAccessor.getGetter(BasicPropertyAccessor.java:321) at org.hibernate.mapping.Property.getGetter(Property.java:304) at org.hibernate.tuple.entity.PojoEntityTuplizer.buildPropertyGetter(PojoEntityTuplizer.java:299) at org.hibernate.tuple.entity.AbstractEntityTuplizer.<init>(AbstractEntityTuplizer.java:158) at org.hibernate.tuple.entity.PojoEntityTuplizer.<init>(PojoEntityTuplizer.java:77) ... 34 more I'm new to Hibernate, so I don't know all the ins and outs, but I do have the getter and setter for the purchaseDate attribute. I don't know what I'm missing here - does anyone else? Thanks!

    Read the article

  • How to inject AutoMapper IMappingEngine with StructureMap

    - by Jay Walker
    Most of the examples I've found for Automapper use the static Mapper object for managing type mappings. For my project, I need to inject an IMapperEngine as part of object construction using StructureMap so that we can mock the mapper in unit tests so we can't use the static mapper. I also need to support configuring AutoMapper Profiles. My question is how can I configure the StructureMap registry so that it can supply an instance of IMappingEngine when an instance of MyService is constructed. Here is the Service constructor signature: public MyService(IMappingEngine mapper, IMyRepository myRepository, ILogger logger) And here is the StructureMap Registry public class MyRegistry : StructureMap.Configuration.DSL.Registry { public MyRegistry() { For<IMyRepository>().Use<MyRepository>(); For<ILogger>().Use<Logger>(); //what to do for IMappingEngine? } } And the profile I want to load public class MyAutoMapperProfile : AutoMapper.Profile { protected override void Configure() { this.CreateMap<MyModel, MyDTO>(); } }

    Read the article

  • Remove SelectedItems from a ListBox via MVVM RelayCommand

    - by dthrasher
    I have a list of items in a WPF ListBox. I want to allow the user to select several of these items and click a Remove button to eliminate these items from the list. Using the MVVM RealyCommand pattern, I've created a command with the following signature: public RelayCommand<IList> RemoveTagsCommand { get; private set; } My ViewModel constructor sets up an instance of the command: RemoveTagsCommand = new RelayCommand<IList>(RemoveTags, CanRemoveTags); My current implementation of RemoveTags feels clunky, with casts and copying. Is there a better way to implement this? public void RemoveTags(IList toRemove) { var collection = toRemove.Cast<Tag>(); List<Tag> copy = new List<Tag>(collection); foreach (Tag tag in copy) { Tags.Remove(tag); } }

    Read the article

  • WCF Binding Created In Code

    - by Daniel
    Hello I've a must to create wcf service with parameter. I'm following this http://social.msdn.microsoft.com/Forums/en-US/wcf/thread/8f18aed8-8e34-48ea-b8be-6c29ac3b4f41 First this is that I don't know how can I set this custom behavior "MyServiceBehavior" in my Web.config in ASP.NET MVC app that will host it. As far as I know behaviors must be declared in section in wcf.config. How can I add reference there to my behavior class from service assembly? An second thing is that I the following example the create local host, but how I can add headers used in constructor when I use service reference and it will already create instance of web service, right? Regards, Daniel Skowronski

    Read the article

  • [Android] Change language settings (locale) for the device

    - by raychenon
    Hi, I know it's possible to have multiple languages in a single application through the res/string and depending on Locale. Here is a case http://stackoverflow.com/questions/2078289/android-controling-the-user-language Now how can I change the language in the phone ? Like I'd do by Menu Settings Language & Keyboard Select locale languages Is there some real code to access to these settings ? Or should I create intent for a shortcut to the language settings. Please post some code Edit : With Locale class developer.android.com/intl/fr/reference/java/util/Locale.html The constructor is at least Locale(String language) The input is language. How can you retrieve the current language used on the device ?

    Read the article

< Previous Page | 256 257 258 259 260 261 262 263 264 265 266 267  | Next Page >