Search Results

Search found 6730 results on 270 pages for 'loaded'.

Page 266/270 | < Previous Page | 262 263 264 265 266 267 268 269 270  | Next Page >

  • Introducing the Earthquake Locator – A Bing Maps Silverlight Application, part 1

    - by Bobby Diaz
    Update: Live demo and source code now available!  The recent wave of earthquakes (no pun intended) being reported in the news got me wondering about the frequency and severity of earthquakes around the world. Since I’ve been doing a lot of Silverlight development lately, I decided to scratch my curiosity with a nice little Bing Maps application that will show the location and relative strength of recent seismic activity. Here is a list of technologies this application will utilize, so be sure to have everything downloaded and installed if you plan on following along. Silverlight 3 WCF RIA Services Bing Maps Silverlight Control * Managed Extensibility Framework (optional) MVVM Light Toolkit (optional) log4net (optional) * If you are new to Bing Maps or have not signed up for a Developer Account, you will need to visit www.bingmapsportal.com to request a Bing Maps key for your application. Getting Started We start out by creating a new Silverlight Application called EarthquakeLocator and specify that we want to automatically create the Web Application Project with RIA Services enabled. I cleaned up the web app by removing the Default.aspx and EarthquakeLocatorTestPage.html. Then I renamed the EarthquakeLocatorTestPage.aspx to Default.aspx and set it as my start page. I also set the development server to use a specific port, as shown below. RIA Services Next, I created a Services folder in the EarthquakeLocator.Web project and added a new Domain Service Class called EarthquakeService.cs. This is the RIA Services Domain Service that will provide earthquake data for our client application. I am not using LINQ to SQL or Entity Framework, so I will use the <empty domain service class> option. We will be pulling data from an external Atom feed, but this example could just as easily pull data from a database or another web service. This is an important distinction to point out because each scenario I just mentioned could potentially use a different Domain Service base class (i.e. LinqToSqlDomainService<TDataContext>). Now we can start adding Query methods to our EarthquakeService that pull data from the USGS web site. Here is the complete code for our service class: using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.ServiceModel.Syndication; using System.Web.DomainServices; using System.Web.Ria; using System.Xml; using log4net; using EarthquakeLocator.Web.Model;   namespace EarthquakeLocator.Web.Services {     /// <summary>     /// Provides earthquake data to client applications.     /// </summary>     [EnableClientAccess()]     public class EarthquakeService : DomainService     {         private static readonly ILog log = LogManager.GetLogger(typeof(EarthquakeService));           // USGS Data Feeds: http://earthquake.usgs.gov/earthquakes/catalogs/         private const string FeedForPreviousDay =             "http://earthquake.usgs.gov/earthquakes/catalogs/1day-M2.5.xml";         private const string FeedForPreviousWeek =             "http://earthquake.usgs.gov/earthquakes/catalogs/7day-M2.5.xml";           /// <summary>         /// Gets the earthquake data for the previous week.         /// </summary>         /// <returns>A queryable collection of <see cref="Earthquake"/> objects.</returns>         public IQueryable<Earthquake> GetEarthquakes()         {             var feed = GetFeed(FeedForPreviousWeek);             var list = new List<Earthquake>();               if ( feed != null )             {                 foreach ( var entry in feed.Items )                 {                     var quake = CreateEarthquake(entry);                     if ( quake != null )                     {                         list.Add(quake);                     }                 }             }               return list.AsQueryable();         }           /// <summary>         /// Creates an <see cref="Earthquake"/> object for each entry in the Atom feed.         /// </summary>         /// <param name="entry">The Atom entry.</param>         /// <returns></returns>         private Earthquake CreateEarthquake(SyndicationItem entry)         {             Earthquake quake = null;             string title = entry.Title.Text;             string summary = entry.Summary.Text;             string point = GetElementValue<String>(entry, "point");             string depth = GetElementValue<String>(entry, "elev");             string utcTime = null;             string localTime = null;             string depthDesc = null;             double? magnitude = null;             double? latitude = null;             double? longitude = null;             double? depthKm = null;               if ( !String.IsNullOrEmpty(title) && title.StartsWith("M") )             {                 title = title.Substring(2, title.IndexOf(',')-3).Trim();                 magnitude = TryParse(title);             }             if ( !String.IsNullOrEmpty(point) )             {                 var values = point.Split(' ');                 if ( values.Length == 2 )                 {                     latitude = TryParse(values[0]);                     longitude = TryParse(values[1]);                 }             }             if ( !String.IsNullOrEmpty(depth) )             {                 depthKm = TryParse(depth);                 if ( depthKm != null )                 {                     depthKm = Math.Round((-1 * depthKm.Value) / 100, 2);                 }             }             if ( !String.IsNullOrEmpty(summary) )             {                 summary = summary.Replace("</p>", "");                 var values = summary.Split(                     new string[] { "<p>" },                     StringSplitOptions.RemoveEmptyEntries);                   if ( values.Length == 3 )                 {                     var times = values[1].Split(                         new string[] { "<br>" },                         StringSplitOptions.RemoveEmptyEntries);                       if ( times.Length > 0 )                     {                         utcTime = times[0];                     }                     if ( times.Length > 1 )                     {                         localTime = times[1];                     }                       depthDesc = values[2];                     depthDesc = "Depth: " + depthDesc.Substring(depthDesc.IndexOf(":") + 2);                 }             }               if ( latitude != null && longitude != null )             {                 quake = new Earthquake()                 {                     Id = entry.Id,                     Title = entry.Title.Text,                     Summary = entry.Summary.Text,                     Date = entry.LastUpdatedTime.DateTime,                     Url = entry.Links.Select(l => Path.Combine(l.BaseUri.OriginalString,                         l.Uri.OriginalString)).FirstOrDefault(),                     Age = entry.Categories.Where(c => c.Label == "Age")                         .Select(c => c.Name).FirstOrDefault(),                     Magnitude = magnitude.GetValueOrDefault(),                     Latitude = latitude.GetValueOrDefault(),                     Longitude = longitude.GetValueOrDefault(),                     DepthInKm = depthKm.GetValueOrDefault(),                     DepthDesc = depthDesc,                     UtcTime = utcTime,                     LocalTime = localTime                 };             }               return quake;         }           private T GetElementValue<T>(SyndicationItem entry, String name)         {             var el = entry.ElementExtensions.Where(e => e.OuterName == name).FirstOrDefault();             T value = default(T);               if ( el != null )             {                 value = el.GetObject<T>();             }               return value;         }           private double? TryParse(String value)         {             double d;             if ( Double.TryParse(value, out d) )             {                 return d;             }             return null;         }           /// <summary>         /// Gets the feed at the specified URL.         /// </summary>         /// <param name="url">The URL.</param>         /// <returns>A <see cref="SyndicationFeed"/> object.</returns>         public static SyndicationFeed GetFeed(String url)         {             SyndicationFeed feed = null;               try             {                 log.Debug("Loading RSS feed: " + url);                   using ( var reader = XmlReader.Create(url) )                 {                     feed = SyndicationFeed.Load(reader);                 }             }             catch ( Exception ex )             {                 log.Error("Error occurred while loading RSS feed: " + url, ex);             }               return feed;         }     } }   The only method that will be generated in the client side proxy class, EarthquakeContext, will be the GetEarthquakes() method. The reason being that it is the only public instance method and it returns an IQueryable<Earthquake> collection that can be consumed by the client application. GetEarthquakes() calls the static GetFeed(String) method, which utilizes the built in SyndicationFeed API to load the external data feed. You will need to add a reference to the System.ServiceModel.Web library in order to take advantage of the RSS/Atom reader. The API will also allow you to create your own feeds to serve up in your applications. Model I have also created a Model folder and added a new class, Earthquake.cs. The Earthquake object will hold the various properties returned from the Atom feed. Here is a sample of the code for that class. Notice the [Key] attribute on the Id property, which is required by RIA Services to uniquely identify the entity. using System; using System.Collections.Generic; using System.Linq; using System.Runtime.Serialization; using System.ComponentModel.DataAnnotations;   namespace EarthquakeLocator.Web.Model {     /// <summary>     /// Represents an earthquake occurrence and related information.     /// </summary>     [DataContract]     public class Earthquake     {         /// <summary>         /// Gets or sets the id.         /// </summary>         /// <value>The id.</value>         [Key]         [DataMember]         public string Id { get; set; }           /// <summary>         /// Gets or sets the title.         /// </summary>         /// <value>The title.</value>         [DataMember]         public string Title { get; set; }           /// <summary>         /// Gets or sets the summary.         /// </summary>         /// <value>The summary.</value>         [DataMember]         public string Summary { get; set; }           // additional properties omitted     } }   View Model The recent trend to use the MVVM pattern for WPF and Silverlight provides a great way to separate the data and behavior logic out of the user interface layer of your client applications. I have chosen to use the MVVM Light Toolkit for the Earthquake Locator, but there are other options out there if you prefer another library. That said, I went ahead and created a ViewModel folder in the Silverlight project and added a EarthquakeViewModel class that derives from ViewModelBase. Here is the code: using System; using System.Collections.ObjectModel; using System.ComponentModel.Composition; using System.ComponentModel.Composition.Hosting; using Microsoft.Maps.MapControl; using GalaSoft.MvvmLight; using EarthquakeLocator.Web.Model; using EarthquakeLocator.Web.Services;   namespace EarthquakeLocator.ViewModel {     /// <summary>     /// Provides data for views displaying earthquake information.     /// </summary>     public class EarthquakeViewModel : ViewModelBase     {         [Import]         public EarthquakeContext Context;           /// <summary>         /// Initializes a new instance of the <see cref="EarthquakeViewModel"/> class.         /// </summary>         public EarthquakeViewModel()         {             var catalog = new AssemblyCatalog(GetType().Assembly);             var container = new CompositionContainer(catalog);             container.ComposeParts(this);             Initialize();         }           /// <summary>         /// Initializes a new instance of the <see cref="EarthquakeViewModel"/> class.         /// </summary>         /// <param name="context">The context.</param>         public EarthquakeViewModel(EarthquakeContext context)         {             Context = context;             Initialize();         }           private void Initialize()         {             MapCenter = new Location(20, -170);             ZoomLevel = 2;         }           #region Private Methods           private void OnAutoLoadDataChanged()         {             LoadEarthquakes();         }           private void LoadEarthquakes()         {             var query = Context.GetEarthquakesQuery();             Context.Earthquakes.Clear();               Context.Load(query, (op) =>             {                 if ( !op.HasError )                 {                     foreach ( var item in op.Entities )                     {                         Earthquakes.Add(item);                     }                 }             }, null);         }           #endregion Private Methods           #region Properties           private bool autoLoadData;         /// <summary>         /// Gets or sets a value indicating whether to auto load data.         /// </summary>         /// <value><c>true</c> if auto loading data; otherwise, <c>false</c>.</value>         public bool AutoLoadData         {             get { return autoLoadData; }             set             {                 if ( autoLoadData != value )                 {                     autoLoadData = value;                     RaisePropertyChanged("AutoLoadData");                     OnAutoLoadDataChanged();                 }             }         }           private ObservableCollection<Earthquake> earthquakes;         /// <summary>         /// Gets the collection of earthquakes to display.         /// </summary>         /// <value>The collection of earthquakes.</value>         public ObservableCollection<Earthquake> Earthquakes         {             get             {                 if ( earthquakes == null )                 {                     earthquakes = new ObservableCollection<Earthquake>();                 }                   return earthquakes;             }         }           private Location mapCenter;         /// <summary>         /// Gets or sets the map center.         /// </summary>         /// <value>The map center.</value>         public Location MapCenter         {             get { return mapCenter; }             set             {                 if ( mapCenter != value )                 {                     mapCenter = value;                     RaisePropertyChanged("MapCenter");                 }             }         }           private double zoomLevel;         /// <summary>         /// Gets or sets the zoom level.         /// </summary>         /// <value>The zoom level.</value>         public double ZoomLevel         {             get { return zoomLevel; }             set             {                 if ( zoomLevel != value )                 {                     zoomLevel = value;                     RaisePropertyChanged("ZoomLevel");                 }             }         }           #endregion Properties     } }   The EarthquakeViewModel class contains all of the properties that will be bound to by the various controls in our views. Be sure to read through the LoadEarthquakes() method, which handles calling the GetEarthquakes() method in our EarthquakeService via the EarthquakeContext proxy, and also transfers the loaded entities into the view model’s Earthquakes collection. Another thing to notice is what’s going on in the default constructor. I chose to use the Managed Extensibility Framework (MEF) for my composition needs, but you can use any dependency injection library or none at all. To allow the EarthquakeContext class to be discoverable by MEF, I added the following partial class so that I could supply the appropriate [Export] attribute: using System; using System.ComponentModel.Composition;   namespace EarthquakeLocator.Web.Services {     /// <summary>     /// The client side proxy for the EarthquakeService class.     /// </summary>     [Export]     public partial class EarthquakeContext     {     } }   One last piece I wanted to point out before moving on to the user interface, I added a client side partial class for the Earthquake entity that contains helper properties that we will bind to later: using System;   namespace EarthquakeLocator.Web.Model {     /// <summary>     /// Represents an earthquake occurrence and related information.     /// </summary>     public partial class Earthquake     {         /// <summary>         /// Gets the location based on the current Latitude/Longitude.         /// </summary>         /// <value>The location.</value>         public string Location         {             get { return String.Format("{0},{1}", Latitude, Longitude); }         }           /// <summary>         /// Gets the size based on the Magnitude.         /// </summary>         /// <value>The size.</value>         public double Size         {             get { return (Magnitude * 3); }         }     } }   View Now the fun part! Usually, I would create a Views folder to place all of my View controls in, but I took the easy way out and added the following XAML code to the default MainPage.xaml file. Be sure to add the bing prefix associating the Microsoft.Maps.MapControl namespace after adding the assembly reference to your project. The MVVM Light Toolkit project templates come with a ViewModelLocator class that you can use via a static resource, but I am instantiating the EarthquakeViewModel directly in my user control. I am setting the AutoLoadData property to true as a way to trigger the LoadEarthquakes() method call. The MapItemsControl found within the <bing:Map> control binds its ItemsSource property to the Earthquakes collection of the view model, and since it is an ObservableCollection<T>, we get the automatic two way data binding via the INotifyCollectionChanged interface. <UserControl x:Class="EarthquakeLocator.MainPage"     xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"     xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"     xmlns:d="http://schemas.microsoft.com/expression/blend/2008"     xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"     xmlns:bing="clr-namespace:Microsoft.Maps.MapControl;assembly=Microsoft.Maps.MapControl"     xmlns:vm="clr-namespace:EarthquakeLocator.ViewModel"     mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480" >     <UserControl.Resources>         <DataTemplate x:Key="EarthquakeTemplate">             <Ellipse Fill="Red" Stroke="Black" StrokeThickness="1"                      Width="{Binding Size}" Height="{Binding Size}"                      bing:MapLayer.Position="{Binding Location}"                      bing:MapLayer.PositionOrigin="Center">                 <ToolTipService.ToolTip>                     <StackPanel>                         <TextBlock Text="{Binding Title}" FontSize="14" FontWeight="Bold" />                         <TextBlock Text="{Binding UtcTime}" />                         <TextBlock Text="{Binding LocalTime}" />                         <TextBlock Text="{Binding DepthDesc}" />                     </StackPanel>                 </ToolTipService.ToolTip>             </Ellipse>         </DataTemplate>     </UserControl.Resources>       <UserControl.DataContext>         <vm:EarthquakeViewModel AutoLoadData="True" />     </UserControl.DataContext>       <Grid x:Name="LayoutRoot">           <bing:Map x:Name="map" CredentialsProvider="--Your-Bing-Maps-Key--"                   Center="{Binding MapCenter, Mode=TwoWay}"                   ZoomLevel="{Binding ZoomLevel, Mode=TwoWay}">             <bing:MapItemsControl ItemsSource="{Binding Earthquakes}"                                   ItemTemplate="{StaticResource EarthquakeTemplate}" />         </bing:Map>       </Grid> </UserControl>   The EarthquakeTemplate defines the Ellipse that will represent each earthquake, the Width and Height that are determined by the Magnitude, the Position on the map, and also the tooltip that will appear when we mouse over each data point. Running the application will give us the following result (shown with a tooltip example): That concludes this portion of our show but I plan on implementing additional functionality in later blog posts. Be sure to come back soon to see the next installments in this series. Enjoy!   Additional Resources USGS Earthquake Data Feeds Brad Abrams shows how RIA Services and MVVM can work together

    Read the article

  • Rendering ASP.NET MVC Views to String

    - by Rick Strahl
    It's not uncommon in my applications that I require longish text output that does not have to be rendered into the HTTP output stream. The most common scenario I have for 'template driven' non-Web text is for emails of all sorts. Logon confirmations and verifications, email confirmations for things like orders, status updates or scheduler notifications - all of which require merged text output both within and sometimes outside of Web applications. On other occasions I also need to capture the output from certain views for logging purposes. Rather than creating text output in code, it's much nicer to use the rendering mechanism that ASP.NET MVC already provides by way of it's ViewEngines - using Razor or WebForms views - to render output to a string. This is nice because it uses the same familiar rendering mechanism that I already use for my HTTP output and it also solves the problem of where to store the templates for rendering this content in nothing more than perhaps a separate view folder. The good news is that ASP.NET MVC's rendering engine is much more modular than the full ASP.NET runtime engine which was a real pain in the butt to coerce into rendering output to string. With MVC the rendering engine has been separated out from core ASP.NET runtime, so it's actually a lot easier to get View output into a string. Getting View Output from within an MVC Application If you need to generate string output from an MVC and pass some model data to it, the process to capture this output is fairly straight forward and involves only a handful of lines of code. The catch is that this particular approach requires that you have an active ControllerContext that can be passed to the view. This means that the following approach is limited to access from within Controller methods. Here's a class that wraps the process and provides both instance and static methods to handle the rendering:/// <summary> /// Class that renders MVC views to a string using the /// standard MVC View Engine to render the view. /// /// Note: This class can only be used within MVC /// applications that have an active ControllerContext. /// </summary> public class ViewRenderer { /// <summary> /// Required Controller Context /// </summary> protected ControllerContext Context { get; set; } public ViewRenderer(ControllerContext controllerContext) { Context = controllerContext; } /// <summary> /// Renders a full MVC view to a string. Will render with the full MVC /// View engine including running _ViewStart and merging into _Layout /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to render the view with</param> /// <returns>String of the rendered view or null on error</returns> public string RenderView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, false); } /// <summary> /// Renders a partial MVC view to string. Use this method to render /// a partial view that doesn't merge with _Layout and doesn't fire /// _ViewStart. /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to pass to the viewRenderer</param> /// <returns>String of the rendered view or null on error</returns> public string RenderPartialView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, true); } public static string RenderView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderView(viewPath, model); } public static string RenderPartialView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderPartialView(viewPath, model); } protected string RenderViewToStringInternal(string viewPath, object model, bool partial = false) { // first find the ViewEngine for this view ViewEngineResult viewEngineResult = null; if (partial) viewEngineResult = ViewEngines.Engines.FindPartialView(Context, viewPath); else viewEngineResult = ViewEngines.Engines.FindView(Context, viewPath, null); if (viewEngineResult == null) throw new FileNotFoundException(Properties.Resources.ViewCouldNotBeFound); // get the view and attach the model to view data var view = viewEngineResult.View; Context.Controller.ViewData.Model = model; string result = null; using (var sw = new StringWriter()) { var ctx = new ViewContext(Context, view, Context.Controller.ViewData, Context.Controller.TempData, sw); view.Render(ctx, sw); result = sw.ToString(); } return result; } } The key is the RenderViewToStringInternal method. The method first tries to find the view to render based on its path which can either be in the current controller's view path or the shared view path using its simple name (PasswordRecovery) or alternately by its full virtual path (~/Views/Templates/PasswordRecovery.cshtml). This code should work both for Razor and WebForms views although I've only tried it with Razor Views. Note that WebForms Views might actually be better for plain text as Razor adds all sorts of white space into its output when there are code blocks in the template. The Web Forms engine provides more accurate rendering for raw text scenarios. Once a view engine is found the view to render can be retrieved. Views in MVC render based on data that comes off the controller like the ViewData which contains the model along with the actual ViewData and ViewBag. From the View and some of the Context data a ViewContext is created which is then used to render the view with. The View picks up the Model and other data from the ViewContext internally and processes the View the same it would be processed if it were to send its output into the HTTP output stream. The difference is that we can override the ViewContext's output stream which we provide and capture into a StringWriter(). After rendering completes the result holds the output string. If an error occurs the error behavior is similar what you see with regular MVC errors - you get a full yellow screen of death including the view error information with the line of error highlighted. It's your responsibility to handle the error - or let it bubble up to your regular Controller Error filter if you have one. To use the simple class you only need a single line of code if you call the static methods. Here's an example of some Controller code that is used to send a user notification to a customer via email in one of my applications:[HttpPost] public ActionResult ContactSeller(ContactSellerViewModel model) { InitializeViewModel(model); var entryBus = new busEntry(); var entry = entryBus.LoadByDisplayId(model.EntryId); if ( string.IsNullOrEmpty(model.Email) ) entryBus.ValidationErrors.Add("Email address can't be empty.","Email"); if ( string.IsNullOrEmpty(model.Message)) entryBus.ValidationErrors.Add("Message can't be empty.","Message"); model.EntryId = entry.DisplayId; model.EntryTitle = entry.Title; if (entryBus.ValidationErrors.Count > 0) { ErrorDisplay.AddMessages(entryBus.ValidationErrors); ErrorDisplay.ShowError("Please correct the following:"); } else { string message = ViewRenderer.RenderView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); string title = entry.Title + " (" + entry.DisplayId + ") - " + App.Configuration.ApplicationName; AppUtils.SendEmail(title, message, model.Email, entry.User.Email, false, false)) } return View(model); } Simple! The view in this case is just a plain MVC view and in this case it's a very simple plain text email message (edited for brevity here) that is created and sent off:@model ContactSellerViewModel @{ Layout = null; }re: @Model.EntryTitle @Model.ListingUrl @Model.Message ** SECURITY ADVISORY - AVOID SCAMS ** Avoid: wiring money, cross-border deals, work-at-home ** Beware: cashier checks, money orders, escrow, shipping ** More Info: @(App.Configuration.ApplicationBaseUrl)scams.html Obviously this is a very simple view (I edited out more from this page to keep it brief) -  but other template views are much more complex HTML documents or long messages that are occasionally updated and they are a perfect fit for Razor rendering. It even works with nested partial views and _layout pages. Partial Rendering Notice that I'm rendering a full View here. In the view I explicitly set the Layout=null to avoid pulling in _layout.cshtml for this view. This can also be controlled externally by calling the RenderPartial method instead: string message = ViewRenderer.RenderPartialView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); with this line of code no layout page (or _viewstart) will be loaded, so the output generated is just what's in the view. I find myself using Partials most of the time when rendering templates, since the target of templates usually tend to be emails or other HTML fragment like output, so the RenderPartialView() method is definitely useful to me. Rendering without a ControllerContext The preceding class is great when you're need template rendering from within MVC controller actions or anywhere where you have access to the request Controller. But if you don't have a controller context handy - maybe inside a utility function that is static, a non-Web application, or an operation that runs asynchronously in ASP.NET - which makes using the above code impossible. I haven't found a way to manually create a Controller context to provide the ViewContext() what it needs from outside of the MVC infrastructure. However, there are ways to accomplish this,  but they are a bit more complex. It's possible to host the RazorEngine on your own, which side steps all of the MVC framework and HTTP and just deals with the raw rendering engine. I wrote about this process in Hosting the Razor Engine in Non-Web Applications a long while back. It's quite a process to create a custom Razor engine and runtime, but it allows for all sorts of flexibility. There's also a RazorEngine CodePlex project that does something similar. I've been meaning to check out the latter but haven't gotten around to it since I have my own code to do this. The trick to hosting the RazorEngine to have it behave properly inside of an ASP.NET application and properly cache content so templates aren't constantly rebuild and reparsed. Anyway, in the same app as above I have one scenario where no ControllerContext is available: I have a background scheduler running inside of the app that fires on timed intervals. This process could be external but because it's lightweight we decided to fire it right inside of the ASP.NET app on a separate thread. In my app the code that renders these templates does something like this:var model = new SearchNotificationViewModel() { Entries = entries, Notification = notification, User = user }; // TODO: Need logging for errors sending string razorError = null; var result = AppUtils.RenderRazorTemplate("~/views/template/SearchNotificationTemplate.cshtml", model, razorError); which references a couple of helper functions that set up my RazorFolderHostContainer class:public static string RenderRazorTemplate(string virtualPath, object model,string errorMessage = null) { var razor = AppUtils.CreateRazorHost(); var path = virtualPath.Replace("~/", "").Replace("~", "").Replace("/", "\\"); var merged = razor.RenderTemplateToString(path, model); if (merged == null) errorMessage = razor.ErrorMessage; return merged; } /// <summary> /// Creates a RazorStringHostContainer and starts it /// Call .Stop() when you're done with it. /// /// This is a static instance /// </summary> /// <param name="virtualPath"></param> /// <param name="binBasePath"></param> /// <param name="forceLoad"></param> /// <returns></returns> public static RazorFolderHostContainer CreateRazorHost(string binBasePath = null, bool forceLoad = false) { if (binBasePath == null) { if (HttpContext.Current != null) binBasePath = HttpContext.Current.Server.MapPath("~/"); else binBasePath = AppDomain.CurrentDomain.BaseDirectory; } if (_RazorHost == null || forceLoad) { if (!binBasePath.EndsWith("\\")) binBasePath += "\\"; //var razor = new RazorStringHostContainer(); var razor = new RazorFolderHostContainer(); razor.TemplatePath = binBasePath; binBasePath += "bin\\"; razor.BaseBinaryFolder = binBasePath; razor.UseAppDomain = false; razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsBusiness.dll"); razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsWeb.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Utilities.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.Mvc.dll"); razor.ReferencedAssemblies.Add("System.Web.dll"); razor.ReferencedNamespaces.Add("System.Web"); razor.ReferencedNamespaces.Add("ClassifiedsBusiness"); razor.ReferencedNamespaces.Add("ClassifiedsWeb"); razor.ReferencedNamespaces.Add("Westwind.Web"); razor.ReferencedNamespaces.Add("Westwind.Utilities"); _RazorHost = razor; _RazorHost.Start(); //_RazorHost.Engine.Configuration.CompileToMemory = false; } return _RazorHost; } The RazorFolderHostContainer essentially is a full runtime that mimics a folder structure like a typical Web app does including caching semantics and compiling code only if code changes on disk. It maps a folder hierarchy to views using the ~/ path syntax. The host is then configured to add assemblies and namespaces. Unfortunately the engine is not exactly like MVC's Razor - the expression expansion and code execution are the same, but some of the support methods like sections, helpers etc. are not all there so templates have to be a bit simpler. There are other folder hosts provided as well to directly execute templates from strings (using RazorStringHostContainer). The following is an example of an HTML email template @inherits RazorHosting.RazorTemplateFolderHost <ClassifiedsWeb.SearchNotificationViewModel> <html> <head> <title>Search Notifications</title> <style> body { margin: 5px;font-family: Verdana, Arial; font-size: 10pt;} h3 { color: SteelBlue; } .entry-item { border-bottom: 1px solid grey; padding: 8px; margin-bottom: 5px; } </style> </head> <body> Hello @Model.User.Name,<br /> <p>Below are your Search Results for the search phrase:</p> <h3>@Model.Notification.SearchPhrase</h3> <small>since @TimeUtils.ShortDateString(Model.Notification.LastSearch)</small> <hr /> You can see that the syntax is a little different. Instead of the familiar @model header the raw Razor  @inherits tag is used to specify the template base class (which you can extend). I took a quick look through the feature set of RazorEngine on CodePlex (now Github I guess) and the template implementation they use is closer to MVC's razor but there are other differences. In the end don't expect exact behavior like MVC templates if you use an external Razor rendering engine. This is not what I would consider an ideal solution, but it works well enough for this project. My biggest concern is the overhead of hosting a second razor engine in a Web app and the fact that here the differences in template rendering between 'real' MVC Razor views and another RazorEngine really are noticeable. You win some, you lose some It's extremely nice to see that if you have a ControllerContext handy (which probably addresses 99% of Web app scenarios) rendering a view to string using the native MVC Razor engine is pretty simple. Kudos on making that happen - as it solves a problem I see in just about every Web application I work on. But it is a bummer that a ControllerContext is required to make this simple code work. It'd be really sweet if there was a way to render views without being so closely coupled to the ASP.NET or MVC infrastructure that requires a ControllerContext. Alternately it'd be nice to have a way for an MVC based application to create a minimal ControllerContext from scratch - maybe somebody's been down that path. I tried for a few hours to come up with a way to make that work but gave up in the soup of nested contexts (MVC/Controller/View/Http). I suspect going down this path would be similar to hosting the ASP.NET runtime requiring a WorkerRequest. Brrr…. The sad part is that it seems to me that a View should really not require much 'context' of any kind to render output to string. Yes there are a few things that clearly are required like paths to the virtual and possibly the disk paths to the root of the app, but beyond that view rendering should not require much. But, no such luck. For now custom RazorHosting seems to be the only way to make Razor rendering go outside of the MVC context… Resources Full ViewRenderer.cs source code from Westwind.Web.Mvc library Hosting the Razor Engine for Non-Web Applications RazorEngine on GitHub© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET   ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Creating Custom Ajax Control Toolkit Controls

    - by Stephen Walther
    The goal of this blog entry is to explain how you can extend the Ajax Control Toolkit with custom Ajax Control Toolkit controls. I describe how you can create the two halves of an Ajax Control Toolkit control: the server-side control extender and the client-side control behavior. Finally, I explain how you can use the new Ajax Control Toolkit control in a Web Forms page. At the end of this blog entry, there is a link to download a Visual Studio 2010 solution which contains the code for two Ajax Control Toolkit controls: SampleExtender and PopupHelpExtender. The SampleExtender contains the minimum skeleton for creating a new Ajax Control Toolkit control. You can use the SampleExtender as a starting point for your custom Ajax Control Toolkit controls. The PopupHelpExtender control is a super simple custom Ajax Control Toolkit control. This control extender displays a help message when you start typing into a TextBox control. The animated GIF below demonstrates what happens when you click into a TextBox which has been extended with the PopupHelp extender. Here’s a sample of a Web Forms page which uses the control: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowPopupHelp.aspx.cs" Inherits="MyACTControls.Web.Default" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html > <head runat="server"> <title>Show Popup Help</title> </head> <body> <form id="form1" runat="server"> <div> <act:ToolkitScriptManager ID="tsm" runat="server" /> <%-- Social Security Number --%> <asp:Label ID="lblSSN" Text="SSN:" AssociatedControlID="txtSSN" runat="server" /> <asp:TextBox ID="txtSSN" runat="server" /> <act:PopupHelpExtender id="ph1" TargetControlID="txtSSN" HelpText="Please enter your social security number." runat="server" /> <%-- Social Security Number --%> <asp:Label ID="lblPhone" Text="Phone Number:" AssociatedControlID="txtPhone" runat="server" /> <asp:TextBox ID="txtPhone" runat="server" /> <act:PopupHelpExtender id="ph2" TargetControlID="txtPhone" HelpText="Please enter your phone number." runat="server" /> </div> </form> </body> </html> In the page above, the PopupHelp extender is used to extend the functionality of the two TextBox controls. When focus is given to a TextBox control, the popup help message is displayed. An Ajax Control Toolkit control extender consists of two parts: a server-side control extender and a client-side behavior. For example, the PopupHelp extender consists of a server-side PopupHelpExtender control (PopupHelpExtender.cs) and a client-side PopupHelp behavior JavaScript script (PopupHelpBehavior.js). Over the course of this blog entry, I describe how you can create both the server-side extender and the client-side behavior. Writing the Server-Side Code Creating a Control Extender You create a control extender by creating a class that inherits from the abstract ExtenderControlBase class. For example, the PopupHelpExtender control is declared like this: public class PopupHelpExtender: ExtenderControlBase { } The ExtenderControlBase class is part of the Ajax Control Toolkit. This base class contains all of the common server properties and methods of every Ajax Control Toolkit extender control. The ExtenderControlBase class inherits from the ExtenderControl class. The ExtenderControl class is a standard class in the ASP.NET framework located in the System.Web.UI namespace. This class is responsible for generating a client-side behavior. The class generates a call to the Microsoft Ajax Library $create() method which looks like this: <script type="text/javascript"> $create(MyACTControls.PopupHelpBehavior, {"HelpText":"Please enter your social security number.","id":"ph1"}, null, null, $get("txtSSN")); }); </script> The JavaScript $create() method is part of the Microsoft Ajax Library. The reference for this method can be found here: http://msdn.microsoft.com/en-us/library/bb397487.aspx This method accepts the following parameters: type – The type of client behavior to create. The $create() method above creates a client PopupHelpBehavior. Properties – Enables you to pass initial values for the properties of the client behavior. For example, the initial value of the HelpText property. This is how server property values are passed to the client. Events – Enables you to pass client-side event handlers to the client behavior. References – Enables you to pass references to other client components. Element – The DOM element associated with the client behavior. This will be the DOM element associated with the control being extended such as the txtSSN TextBox. The $create() method is generated for you automatically. You just need to focus on writing the server-side control extender class. Specifying the Target Control All Ajax Control Toolkit extenders inherit a TargetControlID property from the ExtenderControlBase class. This property, the TargetControlID property, points at the control that the extender control extends. For example, the Ajax Control Toolkit TextBoxWatermark control extends a TextBox, the ConfirmButton control extends a Button, and the Calendar control extends a TextBox. You must indicate the type of control which your extender is extending. You indicate the type of control by adding a [TargetControlType] attribute to your control. For example, the PopupHelp extender is declared like this: [TargetControlType(typeof(TextBox))] public class PopupHelpExtender: ExtenderControlBase { } The PopupHelp extender can be used to extend a TextBox control. If you try to use the PopupHelp extender with another type of control then an exception is thrown. If you want to create an extender control which can be used with any type of ASP.NET control (Button, DataView, TextBox or whatever) then use the following attribute: [TargetControlType(typeof(Control))] Decorating Properties with Attributes If you decorate a server-side property with the [ExtenderControlProperty] attribute then the value of the property gets passed to the control’s client-side behavior. The value of the property gets passed to the client through the $create() method discussed above. The PopupHelp control contains the following HelpText property: [ExtenderControlProperty] [RequiredProperty] public string HelpText { get { return GetPropertyValue("HelpText", "Help Text"); } set { SetPropertyValue("HelpText", value); } } The HelpText property determines the help text which pops up when you start typing into a TextBox control. Because the HelpText property is decorated with the [ExtenderControlProperty] attribute, any value assigned to this property on the server is passed to the client automatically. For example, if you declare the PopupHelp extender in a Web Form page like this: <asp:TextBox ID="txtSSN" runat="server" /> <act:PopupHelpExtender id="ph1" TargetControlID="txtSSN" HelpText="Please enter your social security number." runat="server" />   Then the PopupHelpExtender renders the call to the the following Microsoft Ajax Library $create() method: $create(MyACTControls.PopupHelpBehavior, {"HelpText":"Please enter your social security number.","id":"ph1"}, null, null, $get("txtSSN")); You can see this call to the JavaScript $create() method by selecting View Source in your browser. This call to the $create() method calls a method named set_HelpText() automatically and passes the value “Please enter your social security number”. There are several attributes which you can use to decorate server-side properties including: ExtenderControlProperty – When a property is marked with this attribute, the value of the property is passed to the client automatically. ExtenderControlEvent – When a property is marked with this attribute, the property represents a client event handler. Required – When a value is not assigned to this property on the server, an error is displayed. DefaultValue – The default value of the property passed to the client. ClientPropertyName – The name of the corresponding property in the JavaScript behavior. For example, the server-side property is named ID (uppercase) and the client-side property is named id (lower-case). IDReferenceProperty – Applied to properties which refer to the IDs of other controls. URLProperty – Calls ResolveClientURL() to convert from a server-side URL to a URL which can be used on the client. ElementReference – Returns a reference to a DOM element by performing a client $get(). The WebResource, ClientResource, and the RequiredScript Attributes The PopupHelp extender uses three embedded resources named PopupHelpBehavior.js, PopupHelpBehavior.debug.js, and PopupHelpBehavior.css. The first two files are JavaScript files and the final file is a Cascading Style sheet file. These files are compiled as embedded resources. You don’t need to mark them as embedded resources in your Visual Studio solution because they get added to the assembly when the assembly is compiled by a build task. You can see that these files get embedded into the MyACTControls assembly by using Red Gate’s .NET Reflector tool: In order to use these files with the PopupHelp extender, you need to work with both the WebResource and the ClientScriptResource attributes. The PopupHelp extender includes the following three WebResource attributes. [assembly: WebResource("PopupHelp.PopupHelpBehavior.js", "text/javascript")] [assembly: WebResource("PopupHelp.PopupHelpBehavior.debug.js", "text/javascript")] [assembly: WebResource("PopupHelp.PopupHelpBehavior.css", "text/css", PerformSubstitution = true)] These WebResource attributes expose the embedded resource from the assembly so that they can be accessed by using the ScriptResource.axd or WebResource.axd handlers. The first parameter passed to the WebResource attribute is the name of the embedded resource and the second parameter is the content type of the embedded resource. The PopupHelp extender also includes the following ClientScriptResource and ClientCssResource attributes: [ClientScriptResource("MyACTControls.PopupHelpBehavior", "PopupHelp.PopupHelpBehavior.js")] [ClientCssResource("PopupHelp.PopupHelpBehavior.css")] Including these attributes causes the PopupHelp extender to request these resources when you add the PopupHelp extender to a page. If you open View Source in a browser which uses the PopupHelp extender then you will see the following link for the Cascading Style Sheet file: <link href="/WebResource.axd?d=0uONMsWXUuEDG-pbJHAC1kuKiIMteQFkYLmZdkgv7X54TObqYoqVzU4mxvaa4zpn5H9ch0RDwRYKwtO8zM5mKgO6C4WbrbkWWidKR07LD1d4n4i_uNB1mHEvXdZu2Ae5mDdVNDV53znnBojzCzwvSw2&amp;t=634417392021676003" type="text/css" rel="stylesheet" /> You also will see the following script include for the JavaScript file: <script src="/ScriptResource.axd?d=pIS7xcGaqvNLFBvExMBQSp_0xR3mpDfS0QVmmyu1aqDUjF06TrW1jVDyXNDMtBHxpRggLYDvgFTWOsrszflZEDqAcQCg-hDXjun7ON0Ol7EXPQIdOe1GLMceIDv3OeX658-tTq2LGdwXhC1-dE7_6g2&amp;t=ffffffff88a33b59" type="text/javascript"></script> The JavaScrpt file returned by this request to ScriptResource.axd contains the combined scripts for any and all Ajax Control Toolkit controls in a page. By default, the Ajax Control Toolkit combines all of the JavaScript files required by a page into a single JavaScript file. Combining files in this way really speeds up how quickly all of the JavaScript files get delivered from the web server to the browser. So, by default, there will be only one ScriptResource.axd include for all of the JavaScript files required by a page. If you want to disable Script Combining, and create separate links, then disable Script Combining like this: <act:ToolkitScriptManager ID="tsm" runat="server" CombineScripts="false" /> There is one more important attribute used by Ajax Control Toolkit extenders. The PopupHelp behavior uses the following two RequirdScript attributes to load the JavaScript files which are required by the PopupHelp behavior: [RequiredScript(typeof(CommonToolkitScripts), 0)] [RequiredScript(typeof(PopupExtender), 1)] The first parameter of the RequiredScript attribute represents either the string name of a JavaScript file or the type of an Ajax Control Toolkit control. The second parameter represents the order in which the JavaScript files are loaded (This second parameter is needed because .NET attributes are intrinsically unordered). In this case, the RequiredScript attribute will load the JavaScript files associated with the CommonToolkitScripts type and the JavaScript files associated with the PopupExtender in that order. The PopupHelp behavior depends on these JavaScript files. Writing the Client-Side Code The PopupHelp extender uses a client-side behavior written with the Microsoft Ajax Library. Here is the complete code for the client-side behavior: (function () { // The unique name of the script registered with the // client script loader var scriptName = "PopupHelpBehavior"; function execute() { Type.registerNamespace('MyACTControls'); MyACTControls.PopupHelpBehavior = function (element) { /// <summary> /// A behavior which displays popup help for a textbox /// </summmary> /// <param name="element" type="Sys.UI.DomElement">The element to attach to</param> MyACTControls.PopupHelpBehavior.initializeBase(this, [element]); this._textbox = Sys.Extended.UI.TextBoxWrapper.get_Wrapper(element); this._cssClass = "ajax__popupHelp"; this._popupBehavior = null; this._popupPosition = Sys.Extended.UI.PositioningMode.BottomLeft; this._popupDiv = null; this._helpText = "Help Text"; this._element$delegates = { focus: Function.createDelegate(this, this._element_onfocus), blur: Function.createDelegate(this, this._element_onblur) }; } MyACTControls.PopupHelpBehavior.prototype = { initialize: function () { MyACTControls.PopupHelpBehavior.callBaseMethod(this, 'initialize'); // Add event handlers for focus and blur var element = this.get_element(); $addHandlers(element, this._element$delegates); }, _ensurePopup: function () { if (!this._popupDiv) { var element = this.get_element(); var id = this.get_id(); this._popupDiv = $common.createElementFromTemplate({ nodeName: "div", properties: { id: id + "_popupDiv" }, cssClasses: ["ajax__popupHelp"] }, element.parentNode); this._popupBehavior = new $create(Sys.Extended.UI.PopupBehavior, { parentElement: element }, {}, {}, this._popupDiv); this._popupBehavior.set_positioningMode(this._popupPosition); } }, get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, _element_onfocus: function (e) { this.show(); }, _element_onblur: function (e) { this.hide(); }, show: function () { this._popupBehavior.show(); }, hide: function () { if (this._popupBehavior) { this._popupBehavior.hide(); } }, dispose: function() { var element = this.get_element(); $clearHandlers(element); if (this._popupBehavior) { this._popupBehavior.dispose(); this._popupBehavior = null; } } }; MyACTControls.PopupHelpBehavior.registerClass('MyACTControls.PopupHelpBehavior', Sys.Extended.UI.BehaviorBase); Sys.registerComponent(MyACTControls.PopupHelpBehavior, { name: "popupHelp" }); } // execute if (window.Sys && Sys.loader) { Sys.loader.registerScript(scriptName, ["ExtendedBase", "ExtendedCommon"], execute); } else { execute(); } })();   In the following sections, we’ll discuss how this client-side behavior works. Wrapping the Behavior for the Script Loader The behavior is wrapped with the following script: (function () { // The unique name of the script registered with the // client script loader var scriptName = "PopupHelpBehavior"; function execute() { // Behavior Content } // execute if (window.Sys && Sys.loader) { Sys.loader.registerScript(scriptName, ["ExtendedBase", "ExtendedCommon"], execute); } else { execute(); } })(); This code is required by the Microsoft Ajax Library Script Loader. You need this code if you plan to use a behavior directly from client-side code and you want to use the Script Loader. If you plan to only use your code in the context of the Ajax Control Toolkit then you can leave out this code. Registering a JavaScript Namespace The PopupHelp behavior is declared within a namespace named MyACTControls. In the code above, this namespace is created with the following registerNamespace() method: Type.registerNamespace('MyACTControls'); JavaScript does not have any built-in way of creating namespaces to prevent naming conflicts. The Microsoft Ajax Library extends JavaScript with support for namespaces. You can learn more about the registerNamespace() method here: http://msdn.microsoft.com/en-us/library/bb397723.aspx Creating the Behavior The actual Popup behavior is created with the following code. MyACTControls.PopupHelpBehavior = function (element) { /// <summary> /// A behavior which displays popup help for a textbox /// </summmary> /// <param name="element" type="Sys.UI.DomElement">The element to attach to</param> MyACTControls.PopupHelpBehavior.initializeBase(this, [element]); this._textbox = Sys.Extended.UI.TextBoxWrapper.get_Wrapper(element); this._cssClass = "ajax__popupHelp"; this._popupBehavior = null; this._popupPosition = Sys.Extended.UI.PositioningMode.BottomLeft; this._popupDiv = null; this._helpText = "Help Text"; this._element$delegates = { focus: Function.createDelegate(this, this._element_onfocus), blur: Function.createDelegate(this, this._element_onblur) }; } MyACTControls.PopupHelpBehavior.prototype = { initialize: function () { MyACTControls.PopupHelpBehavior.callBaseMethod(this, 'initialize'); // Add event handlers for focus and blur var element = this.get_element(); $addHandlers(element, this._element$delegates); }, _ensurePopup: function () { if (!this._popupDiv) { var element = this.get_element(); var id = this.get_id(); this._popupDiv = $common.createElementFromTemplate({ nodeName: "div", properties: { id: id + "_popupDiv" }, cssClasses: ["ajax__popupHelp"] }, element.parentNode); this._popupBehavior = new $create(Sys.Extended.UI.PopupBehavior, { parentElement: element }, {}, {}, this._popupDiv); this._popupBehavior.set_positioningMode(this._popupPosition); } }, get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, _element_onfocus: function (e) { this.show(); }, _element_onblur: function (e) { this.hide(); }, show: function () { this._popupBehavior.show(); }, hide: function () { if (this._popupBehavior) { this._popupBehavior.hide(); } }, dispose: function() { var element = this.get_element(); $clearHandlers(element); if (this._popupBehavior) { this._popupBehavior.dispose(); this._popupBehavior = null; } } }; The code above has two parts. The first part of the code is used to define the constructor function for the PopupHelp behavior. This is a factory method which returns an instance of a PopupHelp behavior: MyACTControls.PopupHelpBehavior = function (element) { } The second part of the code modified the prototype for the PopupHelp behavior: MyACTControls.PopupHelpBehavior.prototype = { } Any code which is particular to a single instance of the PopupHelp behavior should be placed in the constructor function. For example, the default value of the _helpText field is assigned in the constructor function: this._helpText = "Help Text"; Any code which is shared among all instances of the PopupHelp behavior should be added to the PopupHelp behavior’s prototype. For example, the public HelpText property is added to the prototype: get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, Registering a JavaScript Class After you create the PopupHelp behavior, you must register the behavior as a class by using the Microsoft Ajax registerClass() method like this: MyACTControls.PopupHelpBehavior.registerClass('MyACTControls.PopupHelpBehavior', Sys.Extended.UI.BehaviorBase); This call to registerClass() registers PopupHelp behavior as a class which derives from the base Sys.Extended.UI.BehaviorBase class. Like the ExtenderControlBase class on the server side, the BehaviorBase class on the client side contains method used by every behavior. The documentation for the BehaviorBase class can be found here: http://msdn.microsoft.com/en-us/library/bb311020.aspx The most important methods and properties of the BehaviorBase class are the following: dispose() – Use this method to clean up all resources used by your behavior. In the case of the PopupHelp behavior, the dispose() method is used to remote the event handlers created by the behavior and disposed the Popup behavior. get_element() -- Use this property to get the DOM element associated with the behavior. In other words, the DOM element which the behavior extends. get_id() – Use this property to the ID of the current behavior. initialize() – Use this method to initialize the behavior. This method is called after all of the properties are set by the $create() method. Creating Debug and Release Scripts You might have noticed that the PopupHelp behavior uses two scripts named PopupHelpBehavior.js and PopupHelpBehavior.debug.js. However, you never create these two scripts. Instead, you only create a single script named PopupHelpBehavior.pre.js. The pre in PopupHelpBehavior.pre.js stands for preprocessor. When you build the Ajax Control Toolkit (or the sample Visual Studio Solution at the end of this blog entry), a build task named JSBuild generates the PopupHelpBehavior.js release script and PopupHelpBehavior.debug.js debug script automatically. The JSBuild preprocessor supports the following directives: #IF #ELSE #ENDIF #INCLUDE #LOCALIZE #DEFINE #UNDEFINE The preprocessor directives are used to mark code which should only appear in the debug version of the script. The directives are used extensively in the Microsoft Ajax Library. For example, the Microsoft Ajax Library Array.contains() method is created like this: $type.contains = function Array$contains(array, item) { //#if DEBUG var e = Function._validateParams(arguments, [ {name: "array", type: Array, elementMayBeNull: true}, {name: "item", mayBeNull: true} ]); if (e) throw e; //#endif return (indexOf(array, item) >= 0); } Notice that you add each of the preprocessor directives inside a JavaScript comment. The comment prevents Visual Studio from getting confused with its Intellisense. The release version, but not the debug version, of the PopupHelpBehavior script is also minified automatically by the Microsoft Ajax Minifier. The minifier is invoked by a build step in the project file. Conclusion The goal of this blog entry was to explain how you can create custom AJAX Control Toolkit controls. In the first part of this blog entry, you learned how to create the server-side portion of an Ajax Control Toolkit control. You learned how to derive a new control from the ExtenderControlBase class and decorate its properties with the necessary attributes. Next, in the second part of this blog entry, you learned how to create the client-side portion of an Ajax Control Toolkit control by creating a client-side behavior with JavaScript. You learned how to use the methods of the Microsoft Ajax Library to extend your client behavior from the BehaviorBase class. Download the Custom ACT Starter Solution

    Read the article

  • Another "Windows 7 entry missing from Grub2" Question

    - by 4x10
    Like many before me had the following problem that after installing Ubuntu (with windows 7 already installed), the grub boot loader wouldnt show windows 7 as a boot option, though i can boot fine if I use the "Choose Boot Device" options on the x220. The difference is that I try using UEFI only so many answers didn't really fit my problem, though i tried several stuffs: after running boot repair it destroyed the ubuntu boot loader custom entry in /etc/grub.d/40_custom for windows which doesnt show up many update-grub and reboots trying windows repair recovery thing while being there i also did bootrec.exe /FixBoot and update-grub and reboot again and finaly because it was so much fun, i installed linux all over again, while formatting and deleting everything linux related before that. Now that i think of it, Ubuntu also didn't notice Windows being there during the Setup and it still doesnt according to the Boot Info from Boot Repair. Boot Info Script 0.61-git-patched [23 April 2012] ============================= Boot Info Summary: =============================== => No boot loader is installed in the MBR of /dev/sda. sda1: __________________________________________________________________________ File system: vfat Boot sector type: Windows 7: FAT32 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: /efi/Boot/bootx64.efi /efi/ubuntu/grubx64.efi sda2: __________________________________________________________________________ File system: Boot sector type: - Boot sector info: Mounting failed: mount: unknown filesystem type '' sda3: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Windows 7 Boot files: /Windows/System32/winload.exe sda4: __________________________________________________________________________ File system: ext4 Boot sector type: - Boot sector info: Operating System: Ubuntu precise (development branch) Boot files: /boot/grub/grub.cfg /etc/fstab sda5: __________________________________________________________________________ File system: ext4 Boot sector type: - Boot sector info: Operating System: Boot files: sda6: __________________________________________________________________________ File system: swap Boot sector type: - Boot sector info: ============================ Drive/Partition Info: ============================= Drive: sda _____________________________________________________________________ Disk /dev/sda: 320.1 GB, 320072933376 bytes 255 heads, 63 sectors/track, 38913 cylinders, total 625142448 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sda1 1 625,142,447 625,142,447 ee GPT GUID Partition Table detected. Partition Start Sector End Sector # of Sectors System /dev/sda1 2,048 206,847 204,800 EFI System partition /dev/sda2 206,848 468,991 262,144 Microsoft Reserved Partition (Windows) /dev/sda3 468,992 170,338,303 169,869,312 Data partition (Windows/Linux) /dev/sda4 170,338,304 330,338,304 160,000,001 Data partition (Windows/Linux) /dev/sda5 330,338,305 617,141,039 286,802,735 Data partition (Windows/Linux) /dev/sda6 617,141,040 625,141,040 8,000,001 Swap partition (Linux) "blkid" output: ________________________________________________________________ Device UUID TYPE LABEL /dev/sda1 885C-ED1B vfat /dev/sda3 EE06CC0506CBCCB1 ntfs /dev/sda4 604dd3b2-64ca-4200-b8fb-820e8d0ca899 ext4 /dev/sda5 d62515fd-8120-4a74-b17b-0bdf244124a3 ext4 /dev/sda6 7078b649-fb2a-4c59-bd03-fd31ef440d37 swap ================================ Mount points: ================================= Device Mount_Point Type Options /dev/sda1 /boot/efi vfat (rw) /dev/sda4 / ext4 (rw,errors=remount-ro) /dev/sda5 /home ext4 (rw) =========================== sda4/boot/grub/grub.cfg: =========================== -------------------------------------------------------------------------------- # # DO NOT EDIT THIS FILE # # It is automatically generated by grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s $prefix/grubenv ]; then set have_grubenv=true load_env fi set default="0" if [ "${prev_saved_entry}" ]; then set saved_entry="${prev_saved_entry}" save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z "${boot_once}" ]; then saved_entry="${chosen}" save_env saved_entry fi } function recordfail { set recordfail=1 if [ -n "${have_grubenv}" ]; then if [ -z "${boot_once}" ]; then save_env recordfail; fi; fi } function load_video { insmod efi_gop insmod efi_uga insmod video_bochs insmod video_cirrus } insmod part_gpt insmod ext2 set root='(hd0,gpt4)' search --no-floppy --fs-uuid --set=root 604dd3b2-64ca-4200-b8fb-820e8d0ca899 if loadfont /usr/share/grub/unicode.pf2 ; then set gfxmode=auto load_video insmod gfxterm insmod part_gpt insmod ext2 set root='(hd0,gpt4)' search --no-floppy --fs-uuid --set=root 604dd3b2-64ca-4200-b8fb-820e8d0ca899 set locale_dir=($root)/boot/grub/locale set lang=en_US insmod gettext fi terminal_output gfxterm if [ "${recordfail}" = 1 ]; then set timeout=-1 else set timeout=10 fi ### END /etc/grub.d/00_header ### ### BEGIN /etc/grub.d/05_debian_theme ### set menu_color_normal=white/black set menu_color_highlight=black/light-gray if background_color 44,0,30; then clear fi ### END /etc/grub.d/05_debian_theme ### ### BEGIN /etc/grub.d/10_linux ### function gfxmode { set gfxpayload="$1" if [ "$1" = "keep" ]; then set vt_handoff=vt.handoff=7 else set vt_handoff= fi } if [ ${recordfail} != 1 ]; then if [ -e ${prefix}/gfxblacklist.txt ]; then if hwmatch ${prefix}/gfxblacklist.txt 3; then if [ ${match} = 0 ]; then set linux_gfx_mode=keep else set linux_gfx_mode=text fi else set linux_gfx_mode=text fi else set linux_gfx_mode=keep fi else set linux_gfx_mode=text fi export linux_gfx_mode if [ "$linux_gfx_mode" != "text" ]; then load_video; fi menuentry 'Ubuntu, with Linux 3.2.0-20-generic' --class ubuntu --class gnu-linux --class gnu --class os { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_gpt insmod ext2 set root='(hd0,gpt4)' search --no-floppy --fs-uuid --set=root 604dd3b2-64ca-4200-b8fb-820e8d0ca899 linux /boot/vmlinuz-3.2.0-20-generic root=UUID=604dd3b2-64ca-4200-b8fb-820e8d0ca899 ro quiet splash $vt_handoff initrd /boot/initrd.img-3.2.0-20-generic } menuentry 'Ubuntu, with Linux 3.2.0-20-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os { recordfail insmod gzio insmod part_gpt insmod ext2 set root='(hd0,gpt4)' search --no-floppy --fs-uuid --set=root 604dd3b2-64ca-4200-b8fb-820e8d0ca899 echo 'Loading Linux 3.2.0-20-generic ...' linux /boot/vmlinuz-3.2.0-20-generic root=UUID=604dd3b2-64ca-4200-b8fb-820e8d0ca899 ro recovery nomodeset echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.2.0-20-generic } ### END /etc/grub.d/10_linux ### ### BEGIN /etc/grub.d/20_linux_xen ### ### END /etc/grub.d/20_linux_xen ### ### BEGIN /etc/grub.d/20_memtest86+ ### menuentry "Memory test (memtest86+)" { insmod part_gpt insmod ext2 set root='(hd0,gpt4)' search --no-floppy --fs-uuid --set=root 604dd3b2-64ca-4200-b8fb-820e8d0ca899 linux16 /boot/memtest86+.bin } menuentry "Memory test (memtest86+, serial console 115200)" { insmod part_gpt insmod ext2 set root='(hd0,gpt4)' search --no-floppy --fs-uuid --set=root 604dd3b2-64ca-4200-b8fb-820e8d0ca899 linux16 /boot/memtest86+.bin console=ttyS0,115200n8 } ### END /etc/grub.d/20_memtest86+ ### ### BEGIN /etc/grub.d/30_os-prober ### ### END /etc/grub.d/30_os-prober ### ### BEGIN /etc/grub.d/40_custom ### # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. ### END /etc/grub.d/40_custom ### ### BEGIN /etc/grub.d/41_custom ### if [ -f $prefix/custom.cfg ]; then source $prefix/custom.cfg; fi ### END /etc/grub.d/41_custom ### -------------------------------------------------------------------------------- =============================== sda4/etc/fstab: ================================ -------------------------------------------------------------------------------- # /etc/fstab: static file system information. # # Use 'blkid' to print the universally unique identifier for a # device; this may be used with UUID= as a more robust way to name devices # that works even if disks are added and removed. See fstab(5). # # <file system> <mount point> <type> <options> <dump> <pass> proc /proc proc nodev,noexec,nosuid 0 0 # / was on /dev/sda4 during installation UUID=604dd3b2-64ca-4200-b8fb-820e8d0ca899 / ext4 errors=remount-ro 0 1 # /boot/efi was on /dev/sda1 during installation UUID=885C-ED1B /boot/efi vfat defaults 0 1 # /home was on /dev/sda5 during installation UUID=d62515fd-8120-4a74-b17b-0bdf244124a3 /home ext4 defaults 0 2 # swap was on /dev/sda6 during installation UUID=7078b649-fb2a-4c59-bd03-fd31ef440d37 none swap sw 0 0 -------------------------------------------------------------------------------- =================== sda4: Location of files loaded by Grub: ==================== GiB - GB File Fragment(s) 129.422874451 = 138.966753280 boot/grub/grub.cfg 1 83.059570312 = 89.184534528 boot/initrd.img-3.2.0-20-generic 2 101.393131256 = 108.870045696 boot/vmlinuz-3.2.0-20-generic 1 83.059570312 = 89.184534528 initrd.img 2 101.393131256 = 108.870045696 vmlinuz 1 ADDITIONAL INFORMATION : =================== log of boot-repair 2012-04-25__23h40 =================== boot-repair version : 3.18-0ppa3~precise boot-sav version : 3.18-0ppa4~precise glade2script version : 0.3.2.1-0ppa7~precise internet: connected python-software-properties version : 0.82.7 0 upgraded, 0 newly installed, 1 reinstalled, 0 to remove and 591 not upgraded. dpkg-preconfigure: unable to re-open stdin: No such file or directory boot-repair is executed in installed-session (Ubuntu precise (development branch) , precise , Ubuntu , x86_64) WARNING: GPT (GUID Partition Table) detected on '/dev/sda'! The util fdisk doesn't support GPT. Use GNU Parted. =================== OSPROBER: /dev/sda4:The OS now in use - Ubuntu precise (development branch) CurrentSession:linux =================== BLKID: /dev/sda3: UUID="EE06CC0506CBCCB1" TYPE="ntfs" /dev/sda1: UUID="885C-ED1B" TYPE="vfat" /dev/sda4: UUID="604dd3b2-64ca-4200-b8fb-820e8d0ca899" TYPE="ext4" /dev/sda5: UUID="d62515fd-8120-4a74-b17b-0bdf244124a3" TYPE="ext4" /dev/sda6: UUID="7078b649-fb2a-4c59-bd03-fd31ef440d37" TYPE="swap" 1 disks with OS, 1 OS : 1 Linux, 0 MacOS, 0 Windows, 0 unknown type OS. WARNING: GPT (GUID Partition Table) detected on '/dev/sda'! The util sfdisk doesn't support GPT. Use GNU Parted. =================== /etc/default/grub : # If you change this file, run 'update-grub' afterwards to update # /boot/grub/grub.cfg. # For full documentation of the options in this file, see: # info -f grub -n 'Simple configuration' GRUB_DEFAULT=0 #GRUB_HIDDEN_TIMEOUT=0 #GRUB_HIDDEN_TIMEOUT_QUIET=true GRUB_TIMEOUT=10 GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian` GRUB_CMDLINE_LINUX_DEFAULT="quiet splash" GRUB_CMDLINE_LINUX="" # Uncomment to enable BadRAM filtering, modify to suit your needs # This works with Linux (no patch required) and with any kernel that obtains # the memory map information from GRUB (GNU Mach, kernel of FreeBSD ...) #GRUB_BADRAM="0x01234567,0xfefefefe,0x89abcdef,0xefefefef" # Uncomment to disable graphical terminal (grub-pc only) #GRUB_TERMINAL=console # The resolution used on graphical terminal # note that you can use only modes which your graphic card supports via VBE # you can see them in real GRUB with the command `vbeinfo' #GRUB_GFXMODE=640x480 # Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux #GRUB_DISABLE_LINUX_UUID=true # Uncomment to disable generation of recovery mode menu entries #GRUB_DISABLE_RECOVERY="true" # Uncomment to get a beep at grub start #GRUB_INIT_TUNE="480 440 1" EFI_OF_PART[1] (, ) =================== dmesg | grep EFI : [ 0.000000] EFI v2.00 by Lenovo [ 0.000000] Kernel-defined memdesc doesn't match the one from EFI! [ 0.000000] EFI: mem00: type=3, attr=0xf, range=[0x0000000000000000-0x0000000000001000) (0MB) [ 0.000000] EFI: mem01: type=7, attr=0xf, range=[0x0000000000001000-0x000000000004e000) (0MB) [ 0.000000] EFI: mem02: type=3, attr=0xf, range=[0x000000000004e000-0x0000000000058000) (0MB) [ 0.000000] EFI: mem03: type=10, attr=0xf, range=[0x0000000000058000-0x0000000000059000) (0MB) [ 0.000000] EFI: mem04: type=7, attr=0xf, range=[0x0000000000059000-0x000000000005e000) (0MB) [ 0.000000] EFI: mem05: type=4, attr=0xf, range=[0x000000000005e000-0x000000000005f000) (0MB) [ 0.000000] EFI: mem06: type=3, attr=0xf, range=[0x000000000005f000-0x00000000000a0000) (0MB) [ 0.000000] EFI: mem07: type=2, attr=0xf, range=[0x0000000000100000-0x00000000005b9000) (4MB) [ 0.000000] EFI: mem08: type=7, attr=0xf, range=[0x00000000005b9000-0x0000000020000000) (506MB) [ 0.000000] EFI: mem09: type=0, attr=0xf, range=[0x0000000020000000-0x0000000020200000) (2MB) [ 0.000000] EFI: mem10: type=7, attr=0xf, range=[0x0000000020200000-0x00000000364e4000) (354MB) [ 0.000000] EFI: mem11: type=2, attr=0xf, range=[0x00000000364e4000-0x000000003726a000) (13MB) [ 0.000000] EFI: mem12: type=7, attr=0xf, range=[0x000000003726a000-0x0000000040000000) (141MB) [ 0.000000] EFI: mem13: type=0, attr=0xf, range=[0x0000000040000000-0x0000000040200000) (2MB) [ 0.000000] EFI: mem14: type=7, attr=0xf, range=[0x0000000040200000-0x000000009df35000) (1501MB) [ 0.000000] EFI: mem15: type=2, attr=0xf, range=[0x000000009df35000-0x00000000d39a0000) (858MB) [ 0.000000] EFI: mem16: type=4, attr=0xf, range=[0x00000000d39a0000-0x00000000d39c0000) (0MB) [ 0.000000] EFI: mem17: type=7, attr=0xf, range=[0x00000000d39c0000-0x00000000d5df5000) (36MB) [ 0.000000] EFI: mem18: type=4, attr=0xf, range=[0x00000000d5df5000-0x00000000d6990000) (11MB) [ 0.000000] EFI: mem19: type=7, attr=0xf, range=[0x00000000d6990000-0x00000000d6b82000) (1MB) [ 0.000000] EFI: mem20: type=1, attr=0xf, range=[0x00000000d6b82000-0x00000000d6b9f000) (0MB) [ 0.000000] EFI: mem21: type=7, attr=0xf, range=[0x00000000d6b9f000-0x00000000d77b0000) (12MB) [ 0.000000] EFI: mem22: type=4, attr=0xf, range=[0x00000000d77b0000-0x00000000d780a000) (0MB) [ 0.000000] EFI: mem23: type=7, attr=0xf, range=[0x00000000d780a000-0x00000000d7826000) (0MB) [ 0.000000] EFI: mem24: type=4, attr=0xf, range=[0x00000000d7826000-0x00000000d7868000) (0MB) [ 0.000000] EFI: mem25: type=7, attr=0xf, range=[0x00000000d7868000-0x00000000d7869000) (0MB) [ 0.000000] EFI: mem26: type=4, attr=0xf, range=[0x00000000d7869000-0x00000000d786a000) (0MB) [ 0.000000] EFI: mem27: type=7, attr=0xf, range=[0x00000000d786a000-0x00000000d786b000) (0MB) [ 0.000000] EFI: mem28: type=4, attr=0xf, range=[0x00000000d786b000-0x00000000d786c000) (0MB) [ 0.000000] EFI: mem29: type=7, attr=0xf, range=[0x00000000d786c000-0x00000000d786d000) (0MB) [ 0.000000] EFI: mem30: type=4, attr=0xf, range=[0x00000000d786d000-0x00000000d825f000) (9MB) [ 0.000000] EFI: mem31: type=7, attr=0xf, range=[0x00000000d825f000-0x00000000d8261000) (0MB) [ 0.000000] EFI: mem32: type=4, attr=0xf, range=[0x00000000d8261000-0x00000000d82f7000) (0MB) [ 0.000000] EFI: mem33: type=7, attr=0xf, range=[0x00000000d82f7000-0x00000000d82f8000) (0MB) [ 0.000000] EFI: mem34: type=4, attr=0xf, range=[0x00000000d82f8000-0x00000000d8705000) (4MB) [ 0.000000] EFI: mem35: type=7, attr=0xf, range=[0x00000000d8705000-0x00000000d8706000) (0MB) [ 0.000000] EFI: mem36: type=4, attr=0xf, range=[0x00000000d8706000-0x00000000d8761000) (0MB) [ 0.000000] EFI: mem37: type=7, attr=0xf, range=[0x00000000d8761000-0x00000000d8768000) (0MB) [ 0.000000] EFI: mem38: type=4, attr=0xf, range=[0x00000000d8768000-0x00000000d9b9f000) (20MB) [ 0.000000] EFI: mem39: type=7, attr=0xf, range=[0x00000000d9b9f000-0x00000000d9e4c000) (2MB) [ 0.000000] EFI: mem40: type=2, attr=0xf, range=[0x00000000d9e4c000-0x00000000d9e52000) (0MB) [ 0.000000] EFI: mem41: type=3, attr=0xf, range=[0x00000000d9e52000-0x00000000da59f000) (7MB) [ 0.000000] EFI: mem42: type=5, attr=0x800000000000000f, range=[0x00000000da59f000-0x00000000da6c3000) (1MB) [ 0.000000] EFI: mem43: type=5, attr=0x800000000000000f, range=[0x00000000da6c3000-0x00000000da79f000) (0MB) [ 0.000000] EFI: mem44: type=6, attr=0x800000000000000f, range=[0x00000000da79f000-0x00000000da8b1000) (1MB) [ 0.000000] EFI: mem45: type=6, attr=0x800000000000000f, range=[0x00000000da8b1000-0x00000000da99f000) (0MB) [ 0.000000] EFI: mem46: type=0, attr=0xf, range=[0x00000000da99f000-0x00000000daa22000) (0MB) [ 0.000000] EFI: mem47: type=0, attr=0xf, range=[0x00000000daa22000-0x00000000daa9b000) (0MB) [ 0.000000] EFI: mem48: type=0, attr=0xf, range=[0x00000000daa9b000-0x00000000daa9c000) (0MB) [ 0.000000] EFI: mem49: type=0, attr=0xf, range=[0x00000000daa9c000-0x00000000daa9f000) (0MB) [ 0.000000] EFI: mem50: type=10, attr=0xf, range=[0x00000000daa9f000-0x00000000daadd000) (0MB) [ 0.000000] EFI: mem51: type=10, attr=0xf, range=[0x00000000daadd000-0x00000000dab9f000) (0MB) [ 0.000000] EFI: mem52: type=9, attr=0xf, range=[0x00000000dab9f000-0x00000000dabdc000) (0MB) [ 0.000000] EFI: mem53: type=9, attr=0xf, range=[0x00000000dabdc000-0x00000000dabff000) (0MB) [ 0.000000] EFI: mem54: type=4, attr=0xf, range=[0x00000000dabff000-0x00000000dac00000) (0MB) [ 0.000000] EFI: mem55: type=7, attr=0xf, range=[0x0000000100000000-0x000000021e600000) (4582MB) [ 0.000000] EFI: mem56: type=11, attr=0x8000000000000001, range=[0x00000000f80f8000-0x00000000f80f9000) (0MB) [ 0.000000] EFI: mem57: type=11, attr=0x8000000000000001, range=[0x00000000fed1c000-0x00000000fed20000) (0MB) [ 0.000000] ACPI: UEFI 00000000dabde000 0003E (v01 LENOVO TP-8D 00001280 PTL 00000002) [ 0.000000] ACPI: UEFI 00000000dabdd000 00042 (v01 PTL COMBUF 00000001 PTL 00000001) [ 0.000000] ACPI: UEFI 00000000dabdc000 00292 (v01 LENOVO TP-8D 00001280 PTL 00000002) [ 0.795807] fb0: EFI VGA frame buffer device [ 1.057243] EFI Variables Facility v0.08 2004-May-17 [ 9.122104] fb: conflicting fb hw usage inteldrmfb vs EFI VGA - removing generic driver ReadEFI: /dev/sda , N 128 , 0 , , PRStart 1024 , PRSize 128 WARNING: GPT (GUID Partition Table) detected on '/dev/sda'! The util fdisk doesn't support GPT. Use GNU Parted. =================== PARTITIONS & DISKS: sda4 : sda, not-sepboot, grubenv-ok grub2, grub-efi, update-grub, 64, with-boot, is-os, gpt-but-not-EFI, fstab-has-bad-efi, no-nt, no-winload, no-recov-nor-hid, no-bmgr, no-grldr, no-b-bcd, apt-get, grub-install, . sda3 : sda, maybesepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, gpt-but-not-EFI, part-has-no-fstab, no-nt, haswinload, no-recov-nor-hid, no-bmgr, no-grldr, no-b-bcd, nopakmgr, nogrubinstall, /mnt/boot-sav/sda3. sda1 : sda, maybesepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, is-correct-EFI, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, no-grldr, no-b-bcd, nopakmgr, nogrubinstall, /boot/efi. sda5 : sda, maybesepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, gpt-but-not-EFI, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, no-grldr, no-b-bcd, nopakmgr, nogrubinstall, /home. sda : GPT-BIS, GPT, no-BIOS_boot, has-correctEFI, 2048 sectors * 512 bytes =================== PARTED: Model: ATA HITACHI HTS72323 (scsi) Disk /dev/sda: 320GB Sector size (logical/physical): 512B/512B Partition Table: gpt Number Start End Size File system Name Flags 1 1049kB 106MB 105MB fat32 EFI system partition boot 2 106MB 240MB 134MB Microsoft reserved partition msftres 3 240MB 87.2GB 87.0GB ntfs Basic data partition 4 87.2GB 169GB 81.9GB ext4 5 169GB 316GB 147GB ext4 6 316GB 320GB 4096MB linux-swap(v1) =================== MOUNT: /dev/sda4 on / type ext4 (rw,errors=remount-ro) proc on /proc type proc (rw,noexec,nosuid,nodev) sysfs on /sys type sysfs (rw,noexec,nosuid,nodev) none on /sys/fs/fuse/connections type fusectl (rw) none on /sys/kernel/debug type debugfs (rw) none on /sys/kernel/security type securityfs (rw) udev on /dev type devtmpfs (rw,mode=0755) devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620) tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755) none on /run/lock type tmpfs (rw,noexec,nosuid,nodev,size=5242880) none on /run/shm type tmpfs (rw,nosuid,nodev) /dev/sda1 on /boot/efi type vfat (rw) /dev/sda5 on /home type ext4 (rw) gvfs-fuse-daemon on /home/vierlex/.gvfs type fuse.gvfs-fuse-daemon (rw,nosuid,nodev,user=vierlex) /dev/sda3 on /mnt/boot-sav/sda3 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /sys/block/sda: alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro sda1 sda2 sda3 sda4 sda5 sda6 size slaves stat subsystem trace uevent /dev: agpgart autofs block bsg btrfs-control bus char console core cpu cpu_dma_latency disk dri ecryptfs fb0 fd full fuse hpet input kmsg log mapper mcelog mei mem net network_latency network_throughput null oldmem port ppp psaux ptmx pts random rfkill rtc rtc0 sda sda1 sda2 sda3 sda4 sda5 sda6 sg0 shm snapshot snd stderr stdin stdout tpm0 uinput urandom usbmon0 usbmon1 usbmon2 v4l vga_arbiter video0 watchdog zero /dev/mapper: control /boot/efi: EFI /boot/efi/EFI: Boot Microsoft ubuntu /boot/efi/efi: Boot Microsoft ubuntu /boot/efi/efi/Boot: bootx64.efi /boot/efi/efi/ubuntu: grubx64.efi WARNING: GPT (GUID Partition Table) detected on '/dev/sda'! The util fdisk doesn't support GPT. Use GNU Parted. =================== DF: Filesystem Type Size Used Avail Use% Mounted on /dev/sda4 ext4 77G 4.1G 69G 6% / udev devtmpfs 3.9G 12K 3.9G 1% /dev tmpfs tmpfs 1.6G 864K 1.6G 1% /run none tmpfs 5.0M 0 5.0M 0% /run/lock none tmpfs 3.9G 152K 3.9G 1% /run/shm /dev/sda1 vfat 96M 18M 79M 19% /boot/efi /dev/sda5 ext4 137G 2.2G 128G 2% /home /dev/sda3 fuseblk 81G 30G 52G 37% /mnt/boot-sav/sda3 =================== FDISK: Disk /dev/sda: 320.1 GB, 320072933376 bytes 255 heads, 63 sectors/track, 38913 cylinders, total 625142448 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0xf34fe538 Device Boot Start End Blocks Id System /dev/sda1 1 625142447 312571223+ ee GPT =================== Before mainwindow FSCK no PASTEBIN yes WUBI no WINBOOT yes recommendedrepair, purge, QTY_OF_PART_FOR_REINSTAL 1 no-kernel-purge UNHIDEBOOT_ACTION yes (10s), noflag () PART_TO_REINSTALL_GRUB sda4, FORCE_GRUB no (sda) REMOVABLEDISK no USE_SEPARATEBOOTPART no (sda3) grub2 () UNCOMMENT_GFXMODE no ATA ADD_KERNEL_OPTION no (acpi=off) MBR_TO_RESTORE ( ) EFI detected. Please check the options. =================== Actions FSCK no PASTEBIN yes WUBI no WINBOOT no bootinfo, nombraction, QTY_OF_PART_FOR_REINSTAL 1 no-kernel-purge UNHIDEBOOT_ACTION no (10s), noflag () PART_TO_REINSTALL_GRUB sda4, FORCE_GRUB no (sda) REMOVABLEDISK no USE_SEPARATEBOOTPART no (sda3) grub2 () UNCOMMENT_GFXMODE no ATA ADD_KERNEL_OPTION no (acpi=off) MBR_TO_RESTORE ( ) No change has been performed on your computer. See you soon! internet: connected Thanks for your time and attention. EDIT: additional Info Request =No boot loader is installed in the MBR of /dev/sda. But maybe this is how it is supposed to work? yea this is ok. boot stuff seems to be on a seperate partition, in my case sda1. I'm very new to this UEFI thing too. missing files like bootmgr i don't really have a clue :D but yea, maybe thats how it suppose to be? Instead and whats not shown in the log for some reason: There is additional microsoft bootfiles on sda1 under /efi/microsoft/ [much stuff] I remember also doing some kind of hack to make a UEFI windows 7 usb stick. http://jake.io/b/2011/installing-windows-7-with-uefi-boot-on-an-x220-from-usb/ In short: creating and placing bootx64.efi on the stick so it can be booted in UEFI mode. boot order i decide that in my BIOS. i read somwhere that the thinkpad x220 (essential part of the serial number: 4921 http://www.lenovo.com/shop/americas/content/user_guides/x220_x220i_x220tablet_x220itablet_ug_en.pdf) doesnt really have UEFI interface or something, still, these 2 options are listed with all the other usual devices you can give a boot priority to. Right now it looks like this: Boot Priority Order 1. ubuntu 2. Windows Boot Manager 3. USB FDD 4. USB HDD 5. ATA HDD0 HITACHI [random string]

    Read the article

  • Creating STA COM compatible ASP.NET Applications

    - by Rick Strahl
    When building ASP.NET applications that interface with old school COM objects like those created with VB6 or Visual FoxPro (MTDLL), it's extremely important that the threads that are serving requests use Single Threaded Apartment Threading. STA is a COM built-in technology that allows essentially single threaded components to operate reliably in a multi-threaded environment. STA's guarantee that COM objects instantiated on a specific thread stay on that specific thread and any access to a COM object from another thread automatically marshals that thread to the STA thread. The end effect is that you can have multiple threads, but a COM object instance lives on a fixed never changing thread. ASP.NET by default uses MTA (multi-threaded apartment) threads which are truly free spinning threads that pay no heed to COM object marshaling. This is vastly more efficient than STA threading which has a bit of overhead in determining whether it's OK to run code on a given thread or whether some sort of thread/COM marshaling needs to occur. MTA COM components can be very efficient, but STA COM components in a multi-threaded environment always tend to have a fair amount of overhead. It's amazing how much COM Interop I still see today so while it seems really old school to be talking about this topic, it's actually quite apropos for me as I have many customers using legacy COM systems that need to interface with other .NET applications. In this post I'm consolidating some of the hacks I've used to integrate with various ASP.NET technologies when using STA COM Components. STA in ASP.NET Support for STA threading in the ASP.NET framework is fairly limited. Specifically only the original ASP.NET WebForms technology supports STA threading directly via its STA Page Handler implementation or what you might know as ASPCOMPAT mode. For WebForms running STA components is as easy as specifying the ASPCOMPAT attribute in the @Page tag:<%@ Page Language="C#" AspCompat="true" %> which runs the page in STA mode. Removing it runs in MTA mode. Simple. Unfortunately all other ASP.NET technologies built on top of the core ASP.NET engine do not support STA natively. So if you want to use STA COM components in MVC or with class ASMX Web Services, there's no automatic way like the ASPCOMPAT keyword available. So what happens when you run an STA COM component in an MTA application? In low volume environments - nothing much will happen. The COM objects will appear to work just fine as there are no simultaneous thread interactions and the COM component will happily run on a single thread or multiple single threads one at a time. So for testing running components in MTA environments may appear to work just fine. However as load increases and threads get re-used by ASP.NET COM objects will end up getting created on multiple different threads. This can result in crashes or hangs, or data corruption in the STA components which store their state in thread local storage on the STA thread. If threads overlap this global store can easily get corrupted which in turn causes problems. STA ensures that any COM object instance loaded always stays on the same thread it was instantiated on. What about COM+? COM+ is supposed to address the problem of STA in MTA applications by providing an abstraction with it's own thread pool manager for COM objects. It steps in to the COM instantiation pipeline and hands out COM instances from its own internally maintained STA Thread pool. This guarantees that the COM instantiation threads are STA threads if using STA components. COM+ works, but in my experience the technology is very, very slow for STA components. It adds a ton of overhead and reduces COM performance noticably in load tests in IIS. COM+ can make sense in some situations but for Web apps with STA components it falls short. In addition there's also the need to ensure that COM+ is set up and configured on the target machine and the fact that components have to be registered in COM+. COM+ also keeps components up at all times, so if a component needs to be replaced the COM+ package needs to be unloaded (same is true for IIS hosted components but it's more common to manage that). COM+ is an option for well established components, but native STA support tends to provide better performance and more consistent usability, IMHO. STA for non supporting ASP.NET Technologies As mentioned above only WebForms supports STA natively. However, by utilizing the WebForms ASP.NET Page handler internally it's actually possible to trick various other ASP.NET technologies and let them work with STA components. This is ugly but I've used each of these in various applications and I've had minimal problems making them work with FoxPro STA COM components which is about as dififcult as it gets for COM Interop in .NET. In this post I summarize several STA workarounds that enable you to use STA threading with these ASP.NET Technologies: ASMX Web Services ASP.NET MVC WCF Web Services ASP.NET Web API ASMX Web Services I start with classic ASP.NET ASMX Web Services because it's the easiest mechanism that allows for STA modification. It also clearly demonstrates how the WebForms STA Page Handler is the key technology to enable the various other solutions to create STA components. Essentially the way this works is to override the WebForms Page class and hijack it's init functionality for processing requests. Here's what this looks like for Web Services:namespace FoxProAspNet { public class WebServiceStaHandler : System.Web.UI.Page, IHttpAsyncHandler { protected override void OnInit(EventArgs e) { IHttpHandler handler = new WebServiceHandlerFactory().GetHandler( this.Context, this.Context.Request.HttpMethod, this.Context.Request.FilePath, this.Context.Request.PhysicalPath); handler.ProcessRequest(this.Context); this.Context.ApplicationInstance.CompleteRequest(); } public IAsyncResult BeginProcessRequest( HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } } public class AspCompatWebServiceStaHandlerWithSessionState : WebServiceStaHandler, IRequiresSessionState { } } This class overrides the ASP.NET WebForms Page class which has a little known AspCompatBeginProcessRequest() and AspCompatEndProcessRequest() method that is responsible for providing the WebForms ASPCOMPAT functionality. These methods handle routing requests to STA threads. Note there are two classes - one that includes session state and one that does not. If you plan on using ASP.NET Session state use the latter class, otherwise stick to the former. This maps to the EnableSessionState page setting in WebForms. This class simply hooks into this functionality by overriding the BeginProcessRequest and EndProcessRequest methods and always forcing it into the AspCompat methods. The way this works is that BeginProcessRequest() fires first to set up the threads and starts intializing the handler. As part of that process the OnInit() method is fired which is now already running on an STA thread. The code then creates an instance of the actual WebService handler factory and calls its ProcessRequest method to start executing which generates the Web Service result. Immediately after ProcessRequest the request is stopped with Application.CompletRequest() which ensures that the rest of the Page handler logic doesn't fire. This means that even though the fairly heavy Page class is overridden here, it doesn't end up executing any of its internal processing which makes this code fairly efficient. In a nutshell, we're highjacking the Page HttpHandler and forcing it to process the WebService process handler in the context of the AspCompat handler behavior. Hooking up the Handler Because the above is an HttpHandler implementation you need to hook up the custom handler and replace the standard ASMX handler. To do this you need to modify the web.config file (here for IIS 7 and IIS Express): <configuration> <system.webServer> <handlers> <remove name="WebServiceHandlerFactory-Integrated-4.0" /> <add name="Asmx STA Web Service Handler" path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" precondition="integrated"/> </handlers> </system.webServer> </configuration> (Note: The name for the WebServiceHandlerFactory-Integrated-4.0 might be slightly different depending on your server version. Check the IIS Handler configuration in the IIS Management Console for the exact name or simply remove the handler from the list there which will propagate to your web.config). For IIS 5 & 6 (Windows XP/2003) or the Visual Studio Web Server use:<configuration> <system.web> <httpHandlers> <remove path="*.asmx" verb="*" /> <add path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" /> </httpHandlers> </system.web></configuration> To test, create a new ASMX Web Service and create a method like this: [WebService(Namespace = "http://foxaspnet.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] public class FoxWebService : System.Web.Services.WebService { [WebMethod] public string HelloWorld() { return "Hello World. Threading mode is: " + System.Threading.Thread.CurrentThread.GetApartmentState(); } } Run this before you put in the web.config configuration changes and you should get: Hello World. Threading mode is: MTA Then put the handler mapping into Web.config and you should see: Hello World. Threading mode is: STA And you're on your way to using STA COM components. It's a hack but it works well! I've used this with several high volume Web Service installations with various customers and it's been fast and reliable. ASP.NET MVC ASP.NET MVC has quickly become the most popular ASP.NET technology, replacing WebForms for creating HTML output. MVC is more complex to get started with, but once you understand the basic structure of how requests flow through the MVC pipeline it's easy to use and amazingly flexible in manipulating HTML requests. In addition, MVC has great support for non-HTML output sources like JSON and XML, making it an excellent choice for AJAX requests without any additional tools. Unlike WebForms ASP.NET MVC doesn't support STA threads natively and so some trickery is needed to make it work with STA threads as well. MVC gets its handler implementation through custom route handlers using ASP.NET's built in routing semantics. To work in an STA handler requires working in the Page Handler as part of the Route Handler implementation. As with the Web Service handler the first step is to create a custom HttpHandler that can instantiate an MVC request pipeline properly:public class MvcStaThreadHttpAsyncHandler : Page, IHttpAsyncHandler, IRequiresSessionState { private RequestContext _requestContext; public MvcStaThreadHttpAsyncHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); _requestContext = requestContext; } public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } protected override void OnInit(EventArgs e) { var controllerName = _requestContext.RouteData.GetRequiredString("controller"); var controllerFactory = ControllerBuilder.Current.GetControllerFactory(); var controller = controllerFactory.CreateController(_requestContext, controllerName); if (controller == null) throw new InvalidOperationException("Could not find controller: " + controllerName); try { controller.Execute(_requestContext); } finally { controllerFactory.ReleaseController(controller); } this.Context.ApplicationInstance.CompleteRequest(); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } public override void ProcessRequest(HttpContext httpContext) { throw new NotSupportedException("STAThreadRouteHandler does not support ProcessRequest called (only BeginProcessRequest)"); } } This handler code figures out which controller to load and then executes the controller. MVC internally provides the information needed to route to the appropriate method and pass the right parameters. Like the Web Service handler the logic occurs in the OnInit() and performs all the processing in that part of the request. Next, we need a RouteHandler that can actually pick up this handler. Unlike the Web Service handler where we simply registered the handler, MVC requires a RouteHandler to pick up the handler. RouteHandlers look at the URL's path and based on that decide on what handler to invoke. The route handler is pretty simple - all it does is load our custom handler: public class MvcStaThreadRouteHandler : IRouteHandler { public IHttpHandler GetHttpHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); return new MvcStaThreadHttpAsyncHandler(requestContext); } } At this point you can instantiate this route handler and force STA requests to MVC by specifying a route. The following sets up the ASP.NET Default Route:Route mvcRoute = new Route("{controller}/{action}/{id}", new RouteValueDictionary( new { controller = "Home", action = "Index", id = UrlParameter.Optional }), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute);   To make this code a little easier to work with and mimic the behavior of the routes.MapRoute() functionality extension method that MVC provides, here is an extension method for MapMvcStaRoute(): public static class RouteCollectionExtensions { public static void MapMvcStaRoute(this RouteCollection routeTable, string name, string url, object defaults = null) { Route mvcRoute = new Route(url, new RouteValueDictionary(defaults), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute); } } With this the syntax to add  route becomes a little easier and matches the MapRoute() method:RouteTable.Routes.MapMvcStaRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } ); The nice thing about this route handler, STA Handler and extension method is that it's fully self contained. You can put all three into a single class file and stick it into your Web app, and then simply call MapMvcStaRoute() and it just works. Easy! To see whether this works create an MVC controller like this: public class ThreadTestController : Controller { public string ThreadingMode() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Try this test both with only the MapRoute() hookup in the RouteConfiguration in which case you should get MTA as the value. Then change the MapRoute() call to MapMvcStaRoute() leaving all the parameters the same and re-run the request. You now should see STA as the result. You're on your way using STA COM components reliably in ASP.NET MVC. WCF Web Services running through IIS WCF Web Services provide a more robust and wider range of services for Web Services. You can use WCF over HTTP, TCP, and Pipes, and WCF services support WS* secure services. There are many features in WCF that go way beyond what ASMX can do. But it's also a bit more complex than ASMX. As a basic rule if you need to serve straight SOAP Services over HTTP I 'd recommend sticking with the simpler ASMX services especially if COM is involved. If you need WS* support or want to serve data over non-HTTP protocols then WCF makes more sense. WCF is not my forte but I found a solution from Scott Seely on his blog that describes the progress and that seems to work well. I'm copying his code below so this STA information is all in one place and quickly explain. Scott's code basically works by creating a custom OperationBehavior which can be specified via an [STAOperation] attribute on every method. Using his attribute you end up with a class (or Interface if you separate the contract and class) that looks like this: [ServiceContract] public class WcfService { [OperationContract] public string HelloWorldMta() { return Thread.CurrentThread.GetApartmentState().ToString(); } // Make sure you use this custom STAOperationBehavior // attribute to force STA operation of service methods [STAOperationBehavior] [OperationContract] public string HelloWorldSta() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Pretty straight forward. The latter method returns STA while the former returns MTA. To make STA work every method needs to be marked up. The implementation consists of the attribute and OperationInvoker implementation. Here are the two classes required to make this work from Scott's post:public class STAOperationBehaviorAttribute : Attribute, IOperationBehavior { public void AddBindingParameters(OperationDescription operationDescription, System.ServiceModel.Channels.BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.ClientOperation clientOperation) { // If this is applied on the client, well, it just doesn’t make sense. // Don’t throw in case this attribute was applied on the contract // instead of the implementation. } public void ApplyDispatchBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.DispatchOperation dispatchOperation) { // Change the IOperationInvoker for this operation. dispatchOperation.Invoker = new STAOperationInvoker(dispatchOperation.Invoker); } public void Validate(OperationDescription operationDescription) { if (operationDescription.SyncMethod == null) { throw new InvalidOperationException("The STAOperationBehaviorAttribute " + "only works for synchronous method invocations."); } } } public class STAOperationInvoker : IOperationInvoker { IOperationInvoker _innerInvoker; public STAOperationInvoker(IOperationInvoker invoker) { _innerInvoker = invoker; } public object[] AllocateInputs() { return _innerInvoker.AllocateInputs(); } public object Invoke(object instance, object[] inputs, out object[] outputs) { // Create a new, STA thread object[] staOutputs = null; object retval = null; Thread thread = new Thread( delegate() { retval = _innerInvoker.Invoke(instance, inputs, out staOutputs); }); thread.SetApartmentState(ApartmentState.STA); thread.Start(); thread.Join(); outputs = staOutputs; return retval; } public IAsyncResult InvokeBegin(object instance, object[] inputs, AsyncCallback callback, object state) { // We don’t handle async… throw new NotImplementedException(); } public object InvokeEnd(object instance, out object[] outputs, IAsyncResult result) { // We don’t handle async… throw new NotImplementedException(); } public bool IsSynchronous { get { return true; } } } The key in this setup is the Invoker and the Invoke method which creates a new thread and then fires the request on this new thread. Because this approach creates a new thread for every request it's not super efficient. There's a bunch of overhead involved in creating the thread and throwing it away after each thread, but it'll work for low volume requests and insure each thread runs in STA mode. If better performance is required it would be useful to create a custom thread manager that can pool a number of STA threads and hand off threads as needed rather than creating new threads on every request. If your Web Service needs are simple and you need only to serve standard SOAP 1.x requests, I would recommend sticking with ASMX services. It's easier to set up and work with and for STA component use it'll be significantly better performing since ASP.NET manages the STA thread pool for you rather than firing new threads for each request. One nice thing about Scotts code is though that it works in any WCF environment including self hosting. It has no dependency on ASP.NET or WebForms for that matter. STA - If you must STA components are a  pain in the ass and thankfully there isn't too much stuff out there anymore that requires it. But when you need it and you need to access STA functionality from .NET at least there are a few options available to make it happen. Each of these solutions is a bit hacky, but they work - I've used all of them in production with good results with FoxPro components. I hope compiling all of these in one place here makes it STA consumption a little bit easier. I feel your pain :-) Resources Download STA Handler Code Examples Scott Seely's original STA WCF OperationBehavior Article© Rick Strahl, West Wind Technologies, 2005-2012Posted in FoxPro   ASP.NET  .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Entity Framework Code-First, OData & Windows Phone Client

    - by Jon Galloway
    Entity Framework Code-First is the coolest thing since sliced bread, Windows  Phone is the hottest thing since Tickle-Me-Elmo and OData is just too great to ignore. As part of the Full Stack project, we wanted to put them together, which turns out to be pretty easy… once you know how.   EF Code-First CTP5 is available now and there should be very few breaking changes in the release edition, which is due early in 2011.  Note: EF Code-First evolved rapidly and many of the existing documents and blog posts which were written with earlier versions, may now be obsolete or at least misleading.   Code-First? With traditional Entity Framework you start with a database and from that you generate “entities” – classes that bridge between the relational database and your object oriented program. With Code-First (Magic-Unicorn) (see Hanselman’s write up and this later write up by Scott Guthrie) the Entity Framework looks at classes you created and says “if I had created these classes, the database would have to have looked like this…” and creates the database for you! By deriving your entity collections from DbSet and exposing them via a class that derives from DbContext, you "turn on" database backing for your POCO with a minimum of code and no hidden designer or configuration files. POCO == Plain Old CLR Objects Your entity objects can be used throughout your applications - in web applications, console applications, Silverlight and Windows Phone applications, etc. In our case, we'll want to read and update data from a Windows Phone client application, so we'll expose the entities through a DataService and hook the Windows Phone client application to that data via proxies.  Piece of Pie.  Easy as cake. The Demo Architecture To see this at work, we’ll create an ASP.NET/MVC application which will act as the host for our Data Service.  We’ll create an incredibly simple data layer using EF Code-First on top of SQLCE4 and we’ll expose the data in a WCF Data Service using the oData protocol.  Our Windows Phone 7 client will instantiate  the data context via a URI and load the data asynchronously. Setting up the Server project with MVC 3, EF Code First, and SQL CE 4 Create a new application of type ASP.NET MVC 3 and name it DeadSimpleServer.  We need to add the latest SQLCE4 and Entity Framework Code First CTP's to our project. Fortunately, NuGet makes that really easy. Open the Package Manager Console (View / Other Windows / Package Manager Console) and type in "Install-Package EFCodeFirst.SqlServerCompact" at the PM> command prompt. Since NuGet handles dependencies for you, you'll see that it installs everything you need to use Entity Framework Code First in your project. PM> install-package EFCodeFirst.SqlServerCompact 'SQLCE (= 4.0.8435.1)' not installed. Attempting to retrieve dependency from source... Done 'EFCodeFirst (= 0.8)' not installed. Attempting to retrieve dependency from source... Done 'WebActivator (= 1.0.0.0)' not installed. Attempting to retrieve dependency from source... Done You are downloading SQLCE from Microsoft, the license agreement to which is available at http://173.203.67.148/licenses/SQLCE/EULA_ENU.rtf. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'SQLCE 4.0.8435.1' You are downloading EFCodeFirst from Microsoft, the license agreement to which is available at http://go.microsoft.com/fwlink/?LinkID=206497. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'EFCodeFirst 0.8' Successfully installed 'WebActivator 1.0.0.0' You are downloading EFCodeFirst.SqlServerCompact from Microsoft, the license agreement to which is available at http://173.203.67.148/licenses/SQLCE/EULA_ENU.rtf. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'EFCodeFirst.SqlServerCompact 0.8' Successfully added 'SQLCE 4.0.8435.1' to EfCodeFirst-CTP5 Successfully added 'EFCodeFirst 0.8' to EfCodeFirst-CTP5 Successfully added 'WebActivator 1.0.0.0' to EfCodeFirst-CTP5 Successfully added 'EFCodeFirst.SqlServerCompact 0.8' to EfCodeFirst-CTP5 Note: We're using SQLCE 4 with Entity Framework here because they work really well together from a development scenario, but you can of course use Entity Framework Code First with other databases supported by Entity framework. Creating The Model using EF Code First Now we can create our model class. Right-click the Models folder and select Add/Class. Name the Class Person.cs and add the following code: using System.Data.Entity; namespace DeadSimpleServer.Models { public class Person { public int ID { get; set; } public string Name { get; set; } } public class PersonContext : DbContext { public DbSet<Person> People { get; set; } } } Notice that the entity class Person has no special interfaces or base class. There's nothing special needed to make it work - it's just a POCO. The context we'll use to access the entities in the application is called PersonContext, but you could name it anything you wanted. The important thing is that it inherits DbContext and contains one or more DbSet which holds our entity collections. Adding Seed Data We need some testing data to expose from our service. The simplest way to get that into our database is to modify the CreateCeDatabaseIfNotExists class in AppStart_SQLCEEntityFramework.cs by adding some seed data to the Seed method: protected virtual void Seed( TContext context ) { var personContext = context as PersonContext; personContext.People.Add( new Person { ID = 1, Name = "George Washington" } ); personContext.People.Add( new Person { ID = 2, Name = "John Adams" } ); personContext.People.Add( new Person { ID = 3, Name = "Thomas Jefferson" } ); personContext.SaveChanges(); } The CreateCeDatabaseIfNotExists class name is pretty self-explanatory - when our DbContext is accessed and the database isn't found, a new one will be created and populated with the data in the Seed method. There's one more step to make that work - we need to uncomment a line in the Start method at the top of of the AppStart_SQLCEEntityFramework class and set the context name, as shown here, public static class AppStart_SQLCEEntityFramework { public static void Start() { DbDatabase.DefaultConnectionFactory = new SqlCeConnectionFactory("System.Data.SqlServerCe.4.0"); // Sets the default database initialization code for working with Sql Server Compact databases // Uncomment this line and replace CONTEXT_NAME with the name of your DbContext if you are // using your DbContext to create and manage your database DbDatabase.SetInitializer(new CreateCeDatabaseIfNotExists<PersonContext>()); } } Now our database and entity framework are set up, so we can expose data via WCF Data Services. Note: This is a bare-bones implementation with no administration screens. If you'd like to see how those are added, check out The Full Stack screencast series. Creating the oData Service using WCF Data Services Add a new WCF Data Service to the project (right-click the project / Add New Item / Web / WCF Data Service). We’ll be exposing all the data as read/write.  Remember to reconfigure to control and minimize access as appropriate for your own application. Open the code behind for your service. In our case, the service was called PersonTestDataService.svc so the code behind class file is PersonTestDataService.svc.cs. using System.Data.Services; using System.Data.Services.Common; using System.ServiceModel; using DeadSimpleServer.Models; namespace DeadSimpleServer { [ServiceBehavior( IncludeExceptionDetailInFaults = true )] public class PersonTestDataService : DataService<PersonContext> { // This method is called only once to initialize service-wide policies. public static void InitializeService( DataServiceConfiguration config ) { config.SetEntitySetAccessRule( "*", EntitySetRights.All ); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; config.UseVerboseErrors = true; } } } We're enabling a few additional settings to make it easier to debug if you run into trouble. The ServiceBehavior attribute is set to include exception details in faults, and we're using verbose errors. You can remove both of these when your service is working, as your public production service shouldn't be revealing exception information. You can view the output of the service by running the application and browsing to http://localhost:[portnumber]/PersonTestDataService.svc/: <service xml:base="http://localhost:49786/PersonTestDataService.svc/" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:app="http://www.w3.org/2007/app" xmlns="http://www.w3.org/2007/app"> <workspace> <atom:title>Default</atom:title> <collection href="People"> <atom:title>People</atom:title> </collection> </workspace> </service> This indicates that the service exposes one collection, which is accessible by browsing to http://localhost:[portnumber]/PersonTestDataService.svc/People <?xml version="1.0" encoding="iso-8859-1" standalone="yes"?> <feed xml:base=http://localhost:49786/PersonTestDataService.svc/ xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata" xmlns="http://www.w3.org/2005/Atom"> <title type="text">People</title> <id>http://localhost:49786/PersonTestDataService.svc/People</id> <updated>2010-12-29T01:01:50Z</updated> <link rel="self" title="People" href="People" /> <entry> <id>http://localhost:49786/PersonTestDataService.svc/People(1)</id> <title type="text"></title> <updated>2010-12-29T01:01:50Z</updated> <author> <name /> </author> <link rel="edit" title="Person" href="People(1)" /> <category term="DeadSimpleServer.Models.Person" scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" /> <content type="application/xml"> <m:properties> <d:ID m:type="Edm.Int32">1</d:ID> <d:Name>George Washington</d:Name> </m:properties> </content> </entry> <entry> ... </entry> </feed> Let's recap what we've done so far. But enough with services and XML - let's get this into our Windows Phone client application. Creating the DataServiceContext for the Client Use the latest DataSvcUtil.exe from http://odata.codeplex.com. As of today, that's in this download: http://odata.codeplex.com/releases/view/54698 You need to run it with a few options: /uri - This will point to the service URI. In this case, it's http://localhost:59342/PersonTestDataService.svc  Pick up the port number from your running server (e.g., the server formerly known as Cassini). /out - This is the DataServiceContext class that will be generated. You can name it whatever you'd like. /Version - should be set to 2.0 /DataServiceCollection - Include this flag to generate collections derived from the DataServiceCollection base, which brings in all the ObservableCollection goodness that handles your INotifyPropertyChanged events for you. Here's the console session from when we ran it: <ListBox x:Name="MainListBox" Margin="0,0,-12,0" ItemsSource="{Binding}" SelectionChanged="MainListBox_SelectionChanged"> Next, to keep things simple, change the Binding on the two TextBlocks within the DataTemplate to Name and ID, <ListBox x:Name="MainListBox" Margin="0,0,-12,0" ItemsSource="{Binding}" SelectionChanged="MainListBox_SelectionChanged"> <ListBox.ItemTemplate> <DataTemplate> <StackPanel Margin="0,0,0,17" Width="432"> <TextBlock Text="{Binding Name}" TextWrapping="Wrap" Style="{StaticResource PhoneTextExtraLargeStyle}" /> <TextBlock Text="{Binding ID}" TextWrapping="Wrap" Margin="12,-6,12,0" Style="{StaticResource PhoneTextSubtleStyle}" /> </StackPanel> </DataTemplate> </ListBox.ItemTemplate> </ListBox> Getting The Context In the code-behind you’ll first declare a member variable to hold the context from the Entity Framework. This is named using convention over configuration. The db type is Person and the context is of type PersonContext, You initialize it by providing the URI, in this case using the URL obtained from the Cassini web server, PersonContext context = new PersonContext( new Uri( "http://localhost:49786/PersonTestDataService.svc/" ) ); Create a second member variable of type DataServiceCollection<Person> but do not initialize it, DataServiceCollection<Person> people; In the constructor you’ll initialize the DataServiceCollection using the PersonContext, public MainPage() { InitializeComponent(); people = new DataServiceCollection<Person>( context ); Finally, you’ll load the people collection using the LoadAsync method, passing in the fully specified URI for the People collection in the web service, people.LoadAsync( new Uri( "http://localhost:49786/PersonTestDataService.svc/People" ) ); Note that this method runs asynchronously and when it is finished the people  collection is already populated. Thus, since we didn’t need or want to override any of the behavior we don’t implement the LoadCompleted. You can use the LoadCompleted event if you need to do any other UI updates, but you don't need to. The final code is as shown below: using System; using System.Data.Services.Client; using System.Windows; using System.Windows.Controls; using DeadSimpleServer.Models; using Microsoft.Phone.Controls; namespace WindowsPhoneODataTest { public partial class MainPage : PhoneApplicationPage { PersonContext context = new PersonContext( new Uri( "http://localhost:49786/PersonTestDataService.svc/" ) ); DataServiceCollection<Person> people; // Constructor public MainPage() { InitializeComponent(); // Set the data context of the listbox control to the sample data // DataContext = App.ViewModel; people = new DataServiceCollection<Person>( context ); people.LoadAsync( new Uri( "http://localhost:49786/PersonTestDataService.svc/People" ) ); DataContext = people; this.Loaded += new RoutedEventHandler( MainPage_Loaded ); } // Handle selection changed on ListBox private void MainListBox_SelectionChanged( object sender, SelectionChangedEventArgs e ) { // If selected index is -1 (no selection) do nothing if ( MainListBox.SelectedIndex == -1 ) return; // Navigate to the new page NavigationService.Navigate( new Uri( "/DetailsPage.xaml?selectedItem=" + MainListBox.SelectedIndex, UriKind.Relative ) ); // Reset selected index to -1 (no selection) MainListBox.SelectedIndex = -1; } // Load data for the ViewModel Items private void MainPage_Loaded( object sender, RoutedEventArgs e ) { if ( !App.ViewModel.IsDataLoaded ) { App.ViewModel.LoadData(); } } } } With people populated we can set it as the DataContext and run the application; you’ll find that the Name and ID are displayed in the list on the Mainpage. Here's how the pieces in the client fit together: Complete source code available here

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Toorcon14

    - by danx
    Toorcon 2012 Information Security Conference San Diego, CA, http://www.toorcon.org/ Dan Anderson, October 2012 It's almost Halloween, and we all know what that means—yes, of course, it's time for another Toorcon Conference! Toorcon is an annual conference for people interested in computer security. This includes the whole range of hackers, computer hobbyists, professionals, security consultants, press, law enforcement, prosecutors, FBI, etc. We're at Toorcon 14—see earlier blogs for some of the previous Toorcon's I've attended (back to 2003). This year's "con" was held at the Westin on Broadway in downtown San Diego, California. The following are not necessarily my views—I'm just the messenger—although I could have misquoted or misparaphrased the speakers. Also, I only reviewed some of the talks, below, which I attended and interested me. MalAndroid—the Crux of Android Infections, Aditya K. Sood Programming Weird Machines with ELF Metadata, Rebecca "bx" Shapiro Privacy at the Handset: New FCC Rules?, Valkyrie Hacking Measured Boot and UEFI, Dan Griffin You Can't Buy Security: Building the Open Source InfoSec Program, Boris Sverdlik What Journalists Want: The Investigative Reporters' Perspective on Hacking, Dave Maas & Jason Leopold Accessibility and Security, Anna Shubina Stop Patching, for Stronger PCI Compliance, Adam Brand McAfee Secure & Trustmarks — a Hacker's Best Friend, Jay James & Shane MacDougall MalAndroid—the Crux of Android Infections Aditya K. Sood, IOActive, Michigan State PhD candidate Aditya talked about Android smartphone malware. There's a lot of old Android software out there—over 50% Gingerbread (2.3.x)—and most have unpatched vulnerabilities. Of 9 Android vulnerabilities, 8 have known exploits (such as the old Gingerbread Global Object Table exploit). Android protection includes sandboxing, security scanner, app permissions, and screened Android app market. The Android permission checker has fine-grain resource control, policy enforcement. Android static analysis also includes a static analysis app checker (bouncer), and a vulnerablity checker. What security problems does Android have? User-centric security, which depends on the user to grant permission and make smart decisions. But users don't care or think about malware (the're not aware, not paranoid). All they want is functionality, extensibility, mobility Android had no "proper" encryption before Android 3.0 No built-in protection against social engineering and web tricks Alternative Android app markets are unsafe. Simply visiting some markets can infect Android Aditya classified Android Malware types as: Type A—Apps. These interact with the Android app framework. For example, a fake Netflix app. Or Android Gold Dream (game), which uploads user files stealthy manner to a remote location. Type K—Kernel. Exploits underlying Linux libraries or kernel Type H—Hybrid. These use multiple layers (app framework, libraries, kernel). These are most commonly used by Android botnets, which are popular with Chinese botnet authors What are the threats from Android malware? These incude leak info (contacts), banking fraud, corporate network attacks, malware advertising, malware "Hackivism" (the promotion of social causes. For example, promiting specific leaders of the Tunisian or Iranian revolutions. Android malware is frequently "masquerated". That is, repackaged inside a legit app with malware. To avoid detection, the hidden malware is not unwrapped until runtime. The malware payload can be hidden in, for example, PNG files. Less common are Android bootkits—there's not many around. What they do is hijack the Android init framework—alteering system programs and daemons, then deletes itself. For example, the DKF Bootkit (China). Android App Problems: no code signing! all self-signed native code execution permission sandbox — all or none alternate market places no robust Android malware detection at network level delayed patch process Programming Weird Machines with ELF Metadata Rebecca "bx" Shapiro, Dartmouth College, NH https://github.com/bx/elf-bf-tools @bxsays on twitter Definitions. "ELF" is an executable file format used in linking and loading executables (on UNIX/Linux-class machines). "Weird machine" uses undocumented computation sources (I think of them as unintended virtual machines). Some examples of "weird machines" are those that: return to weird location, does SQL injection, corrupts the heap. Bx then talked about using ELF metadata as (an uintended) "weird machine". Some ELF background: A compiler takes source code and generates a ELF object file (hello.o). A static linker makes an ELF executable from the object file. A runtime linker and loader takes ELF executable and loads and relocates it in memory. The ELF file has symbols to relocate functions and variables. ELF has two relocation tables—one at link time and another one at loading time: .rela.dyn (link time) and .dynsym (dynamic table). GOT: Global Offset Table of addresses for dynamically-linked functions. PLT: Procedure Linkage Tables—works with GOT. The memory layout of a process (not the ELF file) is, in order: program (+ heap), dynamic libraries, libc, ld.so, stack (which includes the dynamic table loaded into memory) For ELF, the "weird machine" is found and exploited in the loader. ELF can be crafted for executing viruses, by tricking runtime into executing interpreted "code" in the ELF symbol table. One can inject parasitic "code" without modifying the actual ELF code portions. Think of the ELF symbol table as an "assembly language" interpreter. It has these elements: instructions: Add, move, jump if not 0 (jnz) Think of symbol table entries as "registers" symbol table value is "contents" immediate values are constants direct values are addresses (e.g., 0xdeadbeef) move instruction: is a relocation table entry add instruction: relocation table "addend" entry jnz instruction: takes multiple relocation table entries The ELF weird machine exploits the loader by relocating relocation table entries. The loader will go on forever until told to stop. It stores state on stack at "end" and uses IFUNC table entries (containing function pointer address). The ELF weird machine, called "Brainfu*k" (BF) has: 8 instructions: pointer inc, dec, inc indirect, dec indirect, jump forward, jump backward, print. Three registers - 3 registers Bx showed example BF source code that implemented a Turing machine printing "hello, world". More interesting was the next demo, where bx modified ping. Ping runs suid as root, but quickly drops privilege. BF modified the loader to disable the library function call dropping privilege, so it remained as root. Then BF modified the ping -t argument to execute the -t filename as root. It's best to show what this modified ping does with an example: $ whoami bx $ ping localhost -t backdoor.sh # executes backdoor $ whoami root $ The modified code increased from 285948 bytes to 290209 bytes. A BF tool compiles "executable" by modifying the symbol table in an existing ELF executable. The tool modifies .dynsym and .rela.dyn table, but not code or data. Privacy at the Handset: New FCC Rules? "Valkyrie" (Christie Dudley, Santa Clara Law JD candidate) Valkyrie talked about mobile handset privacy. Some background: Senator Franken (also a comedian) became alarmed about CarrierIQ, where the carriers track their customers. Franken asked the FCC to find out what obligations carriers think they have to protect privacy. The carriers' response was that they are doing just fine with self-regulation—no worries! Carriers need to collect data, such as missed calls, to maintain network quality. But carriers also sell data for marketing. Verizon sells customer data and enables this with a narrow privacy policy (only 1 month to opt out, with difficulties). The data sold is not individually identifiable and is aggregated. But Verizon recommends, as an aggregation workaround to "recollate" data to other databases to identify customers indirectly. The FCC has regulated telephone privacy since 1934 and mobile network privacy since 2007. Also, the carriers say mobile phone privacy is a FTC responsibility (not FCC). FTC is trying to improve mobile app privacy, but FTC has no authority over carrier / customer relationships. As a side note, Apple iPhones are unique as carriers have extra control over iPhones they don't have with other smartphones. As a result iPhones may be more regulated. Who are the consumer advocates? Everyone knows EFF, but EPIC (Electrnic Privacy Info Center), although more obsecure, is more relevant. What to do? Carriers must be accountable. Opt-in and opt-out at any time. Carriers need incentive to grant users control for those who want it, by holding them liable and responsible for breeches on their clock. Location information should be added current CPNI privacy protection, and require "Pen/trap" judicial order to obtain (and would still be a lower standard than 4th Amendment). Politics are on a pro-privacy swing now, with many senators and the Whitehouse. There will probably be new regulation soon, and enforcement will be a problem, but consumers will still have some benefit. Hacking Measured Boot and UEFI Dan Griffin, JWSecure, Inc., Seattle, @JWSdan Dan talked about hacking measured UEFI boot. First some terms: UEFI is a boot technology that is replacing BIOS (has whitelisting and blacklisting). UEFI protects devices against rootkits. TPM - hardware security device to store hashs and hardware-protected keys "secure boot" can control at firmware level what boot images can boot "measured boot" OS feature that tracks hashes (from BIOS, boot loader, krnel, early drivers). "remote attestation" allows remote validation and control based on policy on a remote attestation server. Microsoft pushing TPM (Windows 8 required), but Google is not. Intel TianoCore is the only open source for UEFI. Dan has Measured Boot Tool at http://mbt.codeplex.com/ with a demo where you can also view TPM data. TPM support already on enterprise-class machines. UEFI Weaknesses. UEFI toolkits are evolving rapidly, but UEFI has weaknesses: assume user is an ally trust TPM implicitly, and attached to computer hibernate file is unprotected (disk encryption protects against this) protection migrating from hardware to firmware delays in patching and whitelist updates will UEFI really be adopted by the mainstream (smartphone hardware support, bank support, apathetic consumer support) You Can't Buy Security: Building the Open Source InfoSec Program Boris Sverdlik, ISDPodcast.com co-host Boris talked about problems typical with current security audits. "IT Security" is an oxymoron—IT exists to enable buiness, uptime, utilization, reporting, but don't care about security—IT has conflict of interest. There's no Magic Bullet ("blinky box"), no one-size-fits-all solution (e.g., Intrusion Detection Systems (IDSs)). Regulations don't make you secure. The cloud is not secure (because of shared data and admin access). Defense and pen testing is not sexy. Auditors are not solution (security not a checklist)—what's needed is experience and adaptability—need soft skills. Step 1: First thing is to Google and learn the company end-to-end before you start. Get to know the management team (not IT team), meet as many people as you can. Don't use arbitrary values such as CISSP scores. Quantitive risk assessment is a myth (e.g. AV*EF-SLE). Learn different Business Units, legal/regulatory obligations, learn the business and where the money is made, verify company is protected from script kiddies (easy), learn sensitive information (IP, internal use only), and start with low-hanging fruit (customer service reps and social engineering). Step 2: Policies. Keep policies short and relevant. Generic SANS "security" boilerplate policies don't make sense and are not followed. Focus on acceptable use, data usage, communications, physical security. Step 3: Implementation: keep it simple stupid. Open source, although useful, is not free (implementation cost). Access controls with authentication & authorization for local and remote access. MS Windows has it, otherwise use OpenLDAP, OpenIAM, etc. Application security Everyone tries to reinvent the wheel—use existing static analysis tools. Review high-risk apps and major revisions. Don't run different risk level apps on same system. Assume host/client compromised and use app-level security control. Network security VLAN != segregated because there's too many workarounds. Use explicit firwall rules, active and passive network monitoring (snort is free), disallow end user access to production environment, have a proxy instead of direct Internet access. Also, SSL certificates are not good two-factor auth and SSL does not mean "safe." Operational Controls Have change, patch, asset, & vulnerability management (OSSI is free). For change management, always review code before pushing to production For logging, have centralized security logging for business-critical systems, separate security logging from administrative/IT logging, and lock down log (as it has everything). Monitor with OSSIM (open source). Use intrusion detection, but not just to fulfill a checkbox: build rules from a whitelist perspective (snort). OSSEC has 95% of what you need. Vulnerability management is a QA function when done right: OpenVas and Seccubus are free. Security awareness The reality is users will always click everything. Build real awareness, not compliance driven checkbox, and have it integrated into the culture. Pen test by crowd sourcing—test with logging COSSP http://www.cossp.org/ - Comprehensive Open Source Security Project What Journalists Want: The Investigative Reporters' Perspective on Hacking Dave Maas, San Diego CityBeat Jason Leopold, Truthout.org The difference between hackers and investigative journalists: For hackers, the motivation varies, but method is same, technological specialties. For investigative journalists, it's about one thing—The Story, and they need broad info-gathering skills. J-School in 60 Seconds: Generic formula: Person or issue of pubic interest, new info, or angle. Generic criteria: proximity, prominence, timeliness, human interest, oddity, or consequence. Media awareness of hackers and trends: journalists becoming extremely aware of hackers with congressional debates (privacy, data breaches), demand for data-mining Journalists, use of coding and web development for Journalists, and Journalists busted for hacking (Murdock). Info gathering by investigative journalists include Public records laws. Federal Freedom of Information Act (FOIA) is good, but slow. California Public Records Act is a lot stronger. FOIA takes forever because of foot-dragging—it helps to be specific. Often need to sue (especially FBI). CPRA is faster, and requests can be vague. Dumps and leaks (a la Wikileaks) Journalists want: leads, protecting ourselves, our sources, and adapting tools for news gathering (Google hacking). Anonomity is important to whistleblowers. They want no digital footprint left behind (e.g., email, web log). They don't trust encryption, want to feel safe and secure. Whistleblower laws are very weak—there's no upside for whistleblowers—they have to be very passionate to do it. Accessibility and Security or: How I Learned to Stop Worrying and Love the Halting Problem Anna Shubina, Dartmouth College Anna talked about how accessibility and security are related. Accessibility of digital content (not real world accessibility). mostly refers to blind users and screenreaders, for our purpose. Accessibility is about parsing documents, as are many security issues. "Rich" executable content causes accessibility to fail, and often causes security to fail. For example MS Word has executable format—it's not a document exchange format—more dangerous than PDF or HTML. Accessibility is often the first and maybe only sanity check with parsing. They have no choice because someone may want to read what you write. Google, for example, is very particular about web browser you use and are bad at supporting other browsers. Uses JavaScript instead of links, often requiring mouseover to display content. PDF is a security nightmare. Executible format, embedded flash, JavaScript, etc. 15 million lines of code. Google Chrome doesn't handle PDF correctly, causing several security bugs. PDF has an accessibility checker and PDF tagging, to help with accessibility. But no PDF checker checks for incorrect tags, untagged content, or validates lists or tables. None check executable content at all. The "Halting Problem" is: can one decide whether a program will ever stop? The answer, in general, is no (Rice's theorem). The same holds true for accessibility checkers. Language-theoretic Security says complicated data formats are hard to parse and cannot be solved due to the Halting Problem. W3C Web Accessibility Guidelines: "Perceivable, Operable, Understandable, Robust" Not much help though, except for "Robust", but here's some gems: * all information should be parsable (paraphrasing) * if not parsable, cannot be converted to alternate formats * maximize compatibility in new document formats Executible webpages are bad for security and accessibility. They say it's for a better web experience. But is it necessary to stuff web pages with JavaScript for a better experience? A good example is The Drudge Report—it has hand-written HTML with no JavaScript, yet drives a lot of web traffic due to good content. A bad example is Google News—hidden scrollbars, guessing user input. Solutions: Accessibility and security problems come from same source Expose "better user experience" myth Keep your corner of Internet parsable Remember "Halting Problem"—recognize false solutions (checking and verifying tools) Stop Patching, for Stronger PCI Compliance Adam Brand, protiviti @adamrbrand, http://www.picfun.com/ Adam talked about PCI compliance for retail sales. Take an example: for PCI compliance, 50% of Brian's time (a IT guy), 960 hours/year was spent patching POSs in 850 restaurants. Often applying some patches make no sense (like fixing a browser vulnerability on a server). "Scanner worship" is overuse of vulnerability scanners—it gives a warm and fuzzy and it's simple (red or green results—fix reds). Scanners give a false sense of security. In reality, breeches from missing patches are uncommon—more common problems are: default passwords, cleartext authentication, misconfiguration (firewall ports open). Patching Myths: Myth 1: install within 30 days of patch release (but PCI §6.1 allows a "risk-based approach" instead). Myth 2: vendor decides what's critical (also PCI §6.1). But §6.2 requires user ranking of vulnerabilities instead. Myth 3: scan and rescan until it passes. But PCI §11.2.1b says this applies only to high-risk vulnerabilities. Adam says good recommendations come from NIST 800-40. Instead use sane patching and focus on what's really important. From NIST 800-40: Proactive: Use a proactive vulnerability management process: use change control, configuration management, monitor file integrity. Monitor: start with NVD and other vulnerability alerts, not scanner results. Evaluate: public-facing system? workstation? internal server? (risk rank) Decide:on action and timeline Test: pre-test patches (stability, functionality, rollback) for change control Install: notify, change control, tickets McAfee Secure & Trustmarks — a Hacker's Best Friend Jay James, Shane MacDougall, Tactical Intelligence Inc., Canada "McAfee Secure Trustmark" is a website seal marketed by McAfee. A website gets this badge if they pass their remote scanning. The problem is a removal of trustmarks act as flags that you're vulnerable. Easy to view status change by viewing McAfee list on website or on Google. "Secure TrustGuard" is similar to McAfee. Jay and Shane wrote Perl scripts to gather sites from McAfee and search engines. If their certification image changes to a 1x1 pixel image, then they are longer certified. Their scripts take deltas of scans to see what changed daily. The bottom line is change in TrustGuard status is a flag for hackers to attack your site. Entire idea of seals is silly—you're raising a flag saying if you're vulnerable.

    Read the article

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • Unable to boot Windows 7 after installing Ubuntu

    - by Devendra
    I have Windows 7 on my machine and then installed Ubuntu 12.04 using a live CD. I can see both Windows 7 and Ubuntu in the grub menu, but when I select Windows 7 it shows a black screen for about 2 seconds and the returns to the Grub menu. But if I select Ubuntu it's working fine. This is the contents of the boot-repair log: Boot Info Script 0.61.full + Boot-Repair extra info [Boot-Info November 20th 2012] ============================= Boot Info Summary: =============================== => Grub2 (v2.00) is installed in the MBR of /dev/sda and looks at sector 1 of the same hard drive for core.img. core.img is at this location and looks in partition 1 for (,msdos6)/boot/grub. sda1: __________________________________________________________________________ File system: ntfs Boot sector type: Grub2 (v1.99-2.00) Boot sector info: Grub2 (v2.00) is installed in the boot sector of sda1 and looks at sector 388911128 of the same hard drive for core.img. core.img is at this location and looks in partition 1 for (,msdos6)/boot/grub. No errors found in the Boot Parameter Block. Operating System: Windows 7 Boot files: /bootmgr /Boot/BCD /Windows/System32/winload.exe sda2: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: sda3: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: sda4: __________________________________________________________________________ File system: Extended Partition Boot sector type: - Boot sector info: sda5: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: According to the info in the boot sector, sda5 starts at sector 2048. Operating System: Boot files: sda6: __________________________________________________________________________ File system: ext4 Boot sector type: - Boot sector info: Operating System: Ubuntu 12.10 Boot files: /boot/grub/grub.cfg /etc/fstab /boot/grub/i386-pc/core.img sda7: __________________________________________________________________________ File system: swap Boot sector type: - Boot sector info: ============================ Drive/Partition Info: ============================= Drive: sda _____________________________________________________________________ Disk /dev/sda: 750.2 GB, 750156374016 bytes 255 heads, 63 sectors/track, 91201 cylinders, total 1465149168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sda1 * 206,848 146,802,687 146,595,840 7 NTFS / exFAT / HPFS /dev/sda2 147,007,488 293,623,807 146,616,320 7 NTFS / exFAT / HPFS /dev/sda3 293,623,808 332,820,613 39,196,806 7 NTFS / exFAT / HPFS /dev/sda4 332,822,526 1,465,145,343 1,132,322,818 f W95 Extended (LBA) /dev/sda5 461,342,720 1,465,145,343 1,003,802,624 7 NTFS / exFAT / HPFS /dev/sda6 332,822,528 453,171,199 120,348,672 83 Linux /dev/sda7 453,173,248 461,338,623 8,165,376 82 Linux swap / Solaris "blkid" output: ________________________________________________________________ Device UUID TYPE LABEL /dev/sda1 F6AE2C13AE2BCB47 ntfs /dev/sda2 DC2273012272DFC6 ntfs /dev/sda3 1E76E43376E40D79 ntfs New Volume /dev/sda5 5ED60ACDD60AA57D ntfs /dev/sda6 9e70fd16-b48b-4f88-adcf-e443aef83124 ext4 /dev/sda7 52f3dd94-6be7-4a7b-a3ae-f43eb8810483 swap ================================ Mount points: ================================= Device Mount_Point Type Options /dev/sda6 / ext4 (rw,errors=remount-ro) =========================== sda6/boot/grub/grub.cfg: =========================== -------------------------------------------------------------------------------- # # DO NOT EDIT THIS FILE # # It is automatically generated by grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s $prefix/grubenv ]; then set have_grubenv=true load_env fi set default="0" if [ x"${feature_menuentry_id}" = xy ]; then menuentry_id_option="--id" else menuentry_id_option="" fi export menuentry_id_option if [ "${prev_saved_entry}" ]; then set saved_entry="${prev_saved_entry}" save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z "${boot_once}" ]; then saved_entry="${chosen}" save_env saved_entry fi } function recordfail { set recordfail=1 if [ -n "${have_grubenv}" ]; then if [ -z "${boot_once}" ]; then save_env recordfail; fi; fi } function load_video { if [ x$feature_all_video_module = xy ]; then insmod all_video else insmod efi_gop insmod efi_uga insmod ieee1275_fb insmod vbe insmod vga insmod video_bochs insmod video_cirrus fi } if [ x$feature_default_font_path = xy ] ; then font=unicode else insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi font="/usr/share/grub/unicode.pf2" fi if loadfont $font ; then set gfxmode=auto load_video insmod gfxterm set locale_dir=$prefix/locale set lang=en_IN insmod gettext fi terminal_output gfxterm if [ "${recordfail}" = 1 ]; then set timeout=10 else set timeout=10 fi ### END /etc/grub.d/00_header ### ### BEGIN /etc/grub.d/05_debian_theme ### set menu_color_normal=white/black set menu_color_highlight=black/light-gray if background_color 44,0,30; then clear fi ### END /etc/grub.d/05_debian_theme ### ### BEGIN /etc/grub.d/10_linux ### function gfxmode { set gfxpayload="${1}" if [ "${1}" = "keep" ]; then set vt_handoff=vt.handoff=7 else set vt_handoff= fi } if [ "${recordfail}" != 1 ]; then if [ -e ${prefix}/gfxblacklist.txt ]; then if hwmatch ${prefix}/gfxblacklist.txt 3; then if [ ${match} = 0 ]; then set linux_gfx_mode=keep else set linux_gfx_mode=text fi else set linux_gfx_mode=text fi else set linux_gfx_mode=keep fi else set linux_gfx_mode=text fi export linux_gfx_mode if [ "${linux_gfx_mode}" != "text" ]; then load_video; fi menuentry 'Ubuntu' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-simple-9e70fd16-b48b-4f88-adcf-e443aef83124' { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi linux /boot/vmlinuz-3.5.0-17-generic root=UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 ro quiet splash $vt_handoff initrd /boot/initrd.img-3.5.0-17-generic } submenu 'Advanced options for Ubuntu' $menuentry_id_option 'gnulinux-advanced-9e70fd16-b48b-4f88-adcf-e443aef83124' { menuentry 'Ubuntu, with Linux 3.5.0-17-generic' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-17-generic-advanced-9e70fd16-b48b-4f88-adcf-e443aef83124' { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi echo 'Loading Linux 3.5.0-17-generic ...' linux /boot/vmlinuz-3.5.0-17-generic root=UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 ro quiet splash $vt_handoff echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-17-generic } menuentry 'Ubuntu, with Linux 3.5.0-17-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-17-generic-recovery-9e70fd16-b48b-4f88-adcf-e443aef83124' { recordfail insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi echo 'Loading Linux 3.5.0-17-generic ...' linux /boot/vmlinuz-3.5.0-17-generic root=UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 ro recovery nomodeset echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-17-generic } } ### END /etc/grub.d/10_linux ### ### BEGIN /etc/grub.d/20_linux_xen ### ### END /etc/grub.d/20_linux_xen ### ### BEGIN /etc/grub.d/20_memtest86+ ### menuentry "Memory test (memtest86+)" { insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi linux16 /boot/memtest86+.bin } menuentry "Memory test (memtest86+, serial console 115200)" { insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi linux16 /boot/memtest86+.bin console=ttyS0,115200n8 } ### END /etc/grub.d/20_memtest86+ ### ### BEGIN /etc/grub.d/30_os-prober ### menuentry 'Windows 7 (loader) (on /dev/sda1)' --class windows --class os $menuentry_id_option 'osprober-chain-F6AE2C13AE2BCB47' { insmod part_msdos insmod ntfs set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 F6AE2C13AE2BCB47 else search --no-floppy --fs-uuid --set=root F6AE2C13AE2BCB47 fi chainloader +1 } ### END /etc/grub.d/30_os-prober ### ### BEGIN /etc/grub.d/30_uefi-firmware ### ### END /etc/grub.d/30_uefi-firmware ### ### BEGIN /etc/grub.d/40_custom ### # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. ### END /etc/grub.d/40_custom ### ### BEGIN /etc/grub.d/41_custom ### if [ -f ${config_directory}/custom.cfg ]; then source ${config_directory}/custom.cfg elif [ -z "${config_directory}" -a -f $prefix/custom.cfg ]; then source $prefix/custom.cfg; fi ### END /etc/grub.d/41_custom ### -------------------------------------------------------------------------------- =============================== sda6/etc/fstab: ================================ -------------------------------------------------------------------------------- # /etc/fstab: static file system information. # # Use 'blkid' to print the universally unique identifier for a # device; this may be used with UUID= as a more robust way to name devices # that works even if disks are added and removed. See fstab(5). # # <file system> <mount point> <type> <options> <dump> <pass> # / was on /dev/sda6 during installation UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 / ext4 errors=remount-ro 0 1 # swap was on /dev/sda7 during installation UUID=52f3dd94-6be7-4a7b-a3ae-f43eb8810483 none swap sw 0 0 -------------------------------------------------------------------------------- =================== sda6: Location of files loaded by Grub: ==================== GiB - GB File Fragment(s) 162.831275940 = 174.838751232 boot/grub/grub.cfg 1 163.036647797 = 175.059267584 boot/initrd.img-3.5.0-17-generic 1 206.871749878 = 222.126850048 boot/vmlinuz-3.5.0-17-generic 1 163.036647797 = 175.059267584 initrd.img 1 163.036647797 = 175.059267584 initrd.img.old 1 206.871749878 = 222.126850048 vmlinuz 1 =============================== StdErr Messages: =============================== cat: write error: Broken pipe cat: write error: Broken pipe ADDITIONAL INFORMATION : =================== log of boot-repair 2012-12-11__00h59 =================== boot-repair version : 3.195~ppa28~quantal boot-sav version : 3.195~ppa28~quantal glade2script version : 3.2.2~ppa45~quantal boot-sav-extra version : 3.195~ppa28~quantal boot-repair is executed in installed-session (Ubuntu 12.10, quantal, Ubuntu, x86_64) CPU op-mode(s): 32-bit, 64-bit BOOT_IMAGE=/boot/vmlinuz-3.5.0-17-generic root=UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 ro quiet splash vt.handoff=7 =================== os-prober: /dev/sda6:The OS now in use - Ubuntu 12.10 CurrentSession:linux /dev/sda1:Windows 7 (loader):Windows:chain =================== blkid: /dev/sda1: UUID="F6AE2C13AE2BCB47" TYPE="ntfs" /dev/sda2: UUID="DC2273012272DFC6" TYPE="ntfs" /dev/sda3: LABEL="New Volume" UUID="1E76E43376E40D79" TYPE="ntfs" /dev/sda5: UUID="5ED60ACDD60AA57D" TYPE="ntfs" /dev/sda6: UUID="9e70fd16-b48b-4f88-adcf-e443aef83124" TYPE="ext4" /dev/sda7: UUID="52f3dd94-6be7-4a7b-a3ae-f43eb8810483" TYPE="swap" 1 disks with OS, 2 OS : 1 Linux, 0 MacOS, 1 Windows, 0 unknown type OS. Warning: extended partition does not start at a cylinder boundary. DOS and Linux will interpret the contents differently. =================== /etc/default/grub : # If you change this file, run 'update-grub' afterwards to update # /boot/grub/grub.cfg. # For full documentation of the options in this file, see: # info -f grub -n 'Simple configuration' GRUB_DEFAULT=0 #GRUB_HIDDEN_TIMEOUT=0 GRUB_HIDDEN_TIMEOUT_QUIET=true GRUB_TIMEOUT=10 GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian` GRUB_CMDLINE_LINUX_DEFAULT="quiet splash" GRUB_CMDLINE_LINUX="" # Uncomment to enable BadRAM filtering, modify to suit your needs # This works with Linux (no patch required) and with any kernel that obtains # the memory map information from GRUB (GNU Mach, kernel of FreeBSD ...) #GRUB_BADRAM="0x01234567,0xfefefefe,0x89abcdef,0xefefefef" # Uncomment to disable graphical terminal (grub-pc only) #GRUB_TERMINAL=console # The resolution used on graphical terminal # note that you can use only modes which your graphic card supports via VBE # you can see them in real GRUB with the command `vbeinfo' #GRUB_GFXMODE=640x480 # Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux #GRUB_DISABLE_LINUX_UUID=true # Uncomment to disable generation of recovery mode menu entries #GRUB_DISABLE_RECOVERY="true" # Uncomment to get a beep at grub start #GRUB_INIT_TUNE="480 440 1" =================== /etc/grub.d/ : drwxr-xr-x 2 root root 4096 Oct 17 20:29 grub.d total 72 -rwxr-xr-x 1 root root 7541 Oct 14 23:06 00_header -rwxr-xr-x 1 root root 5488 Oct 4 15:00 05_debian_theme -rwxr-xr-x 1 root root 10891 Oct 14 23:06 10_linux -rwxr-xr-x 1 root root 10258 Oct 14 23:06 20_linux_xen -rwxr-xr-x 1 root root 1688 Oct 11 19:40 20_memtest86+ -rwxr-xr-x 1 root root 10976 Oct 14 23:06 30_os-prober -rwxr-xr-x 1 root root 1426 Oct 14 23:06 30_uefi-firmware -rwxr-xr-x 1 root root 214 Oct 14 23:06 40_custom -rwxr-xr-x 1 root root 216 Oct 14 23:06 41_custom -rw-r--r-- 1 root root 483 Oct 14 23:06 README =================== UEFI/Legacy mode: This installed-session is not in EFI-mode. EFI in dmesg. Please report this message to [email protected] [ 0.000000] ACPI: UEFI 00000000bafe7000 0003E (v01 DELL QA09 00000002 PTL 00000002) [ 0.000000] ACPI: UEFI 00000000bafe6000 00042 (v01 PTL COMBUF 00000001 PTL 00000001) [ 0.000000] ACPI: UEFI 00000000bafe3000 00256 (v01 DELL QA09 00000002 PTL 00000002) SecureBoot disabled. =================== PARTITIONS & DISKS: sda6 : sda, not-sepboot, grubenv-ok grub2, grub-pc , update-grub, 64, with-boot, is-os, not--efi--part, fstab-without-boot, fstab-without-efi, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, apt-get, grub-install, with--usr, fstab-without-usr, not-sep-usr, standard, farbios, . sda1 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, is-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, haswinload, no-recov-nor-hid, bootmgr, is-winboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, not-far, /mnt/boot-sav/sda1. sda2 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, farbios, /mnt/boot-sav/sda2. sda3 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, farbios, /mnt/boot-sav/sda3. sda5 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, farbios, /mnt/boot-sav/sda5. sda : not-GPT, BIOSboot-not-needed, has-no-EFIpart, not-usb, has-os, 2048 sectors * 512 bytes =================== parted -l: Model: ATA WDC WD7500BPKT-7 (scsi) Disk /dev/sda: 750GB Sector size (logical/physical): 512B/4096B Partition Table: msdos Number Start End Size Type File system Flags 1 106MB 75.2GB 75.1GB primary ntfs boot 2 75.3GB 150GB 75.1GB primary ntfs 3 150GB 170GB 20.1GB primary ntfs 4 170GB 750GB 580GB extended lba 6 170GB 232GB 61.6GB logical ext4 7 232GB 236GB 4181MB logical linux-swap(v1) 5 236GB 750GB 514GB logical ntfs =================== parted -lm: BYT; /dev/sda:750GB:scsi:512:4096:msdos:ATA WDC WD7500BPKT-7; 1:106MB:75.2GB:75.1GB:ntfs::boot; 2:75.3GB:150GB:75.1GB:ntfs::; 3:150GB:170GB:20.1GB:ntfs::; 4:170GB:750GB:580GB:::lba; 6:170GB:232GB:61.6GB:ext4::; 7:232GB:236GB:4181MB:linux-swap(v1)::; 5:236GB:750GB:514GB:ntfs::; =================== mount: /dev/sda6 on / type ext4 (rw,errors=remount-ro) proc on /proc type proc (rw,noexec,nosuid,nodev) sysfs on /sys type sysfs (rw,noexec,nosuid,nodev) none on /sys/fs/fuse/connections type fusectl (rw) none on /sys/kernel/debug type debugfs (rw) none on /sys/kernel/security type securityfs (rw) udev on /dev type devtmpfs (rw,mode=0755) devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620) tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755) none on /run/lock type tmpfs (rw,noexec,nosuid,nodev,size=5242880) none on /run/shm type tmpfs (rw,nosuid,nodev) none on /run/user type tmpfs (rw,noexec,nosuid,nodev,size=104857600,mode=0755) gvfsd-fuse on /run/user/dev/gvfs type fuse.gvfsd-fuse (rw,nosuid,nodev,user=dev) /dev/sda1 on /mnt/boot-sav/sda1 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sda2 on /mnt/boot-sav/sda2 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sda3 on /mnt/boot-sav/sda3 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sda5 on /mnt/boot-sav/sda5 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) =================== ls: /sys/block/sda (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro sda1 sda2 sda3 sda4 sda5 sda6 sda7 size slaves stat subsystem trace uevent /sys/block/sr0 (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro size slaves stat subsystem trace uevent /dev (filtered): alarm ashmem autofs binder block bsg btrfs-control bus cdrom cdrw char console core cpu cpu_dma_latency disk dri dvd dvdrw ecryptfs fb0 fb1 fd full fuse hpet input kmsg kvm log mapper mcelog mei mem net network_latency network_throughput null oldmem port ppp psaux ptmx pts random rfkill rtc rtc0 sda sda1 sda2 sda3 sda4 sda5 sda6 sda7 sg0 sg1 shm snapshot snd sr0 stderr stdin stdout uinput urandom v4l vga_arbiter vhost-net video0 zero ls /dev/mapper: control =================== df -Th: Filesystem Type Size Used Avail Use% Mounted on /dev/sda6 ext4 57G 2.7G 51G 6% / udev devtmpfs 1.9G 12K 1.9G 1% /dev tmpfs tmpfs 770M 892K 769M 1% /run none tmpfs 5.0M 0 5.0M 0% /run/lock none tmpfs 1.9G 260K 1.9G 1% /run/shm none tmpfs 100M 44K 100M 1% /run/user /dev/sda1 fuseblk 70G 36G 35G 51% /mnt/boot-sav/sda1 /dev/sda2 fuseblk 70G 66G 4.8G 94% /mnt/boot-sav/sda2 /dev/sda3 fuseblk 19G 87M 19G 1% /mnt/boot-sav/sda3 /dev/sda5 fuseblk 479G 436G 44G 92% /mnt/boot-sav/sda5 =================== fdisk -l: Disk /dev/sda: 750.2 GB, 750156374016 bytes 255 heads, 63 sectors/track, 91201 cylinders, total 1465149168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes Disk identifier: 0x1dc69d0b Device Boot Start End Blocks Id System /dev/sda1 * 206848 146802687 73297920 7 HPFS/NTFS/exFAT /dev/sda2 147007488 293623807 73308160 7 HPFS/NTFS/exFAT /dev/sda3 293623808 332820613 19598403 7 HPFS/NTFS/exFAT /dev/sda4 332822526 1465145343 566161409 f W95 Ext'd (LBA) Partition 4 does not start on physical sector boundary. /dev/sda5 461342720 1465145343 501901312 7 HPFS/NTFS/exFAT /dev/sda6 332822528 453171199 60174336 83 Linux /dev/sda7 453173248 461338623 4082688 82 Linux swap / Solaris Partition table entries are not in disk order =================== Recommended repair Recommended-Repair This setting will reinstall the grub2 of sda6 into the MBR of sda. Additional repair will be performed: unhide-bootmenu-10s grub-install (GRUB) 2.00-7ubuntu11,grub-install (GRUB) 2. Reinstall the GRUB of sda6 into the MBR of sda Installation finished. No error reported. grub-install /dev/sda: exit code of grub-install /dev/sda:0 update-grub Generating grub.cfg ... Found linux image: /boot/vmlinuz-3.5.0-17-generic Found initrd image: /boot/initrd.img-3.5.0-17-generic Found memtest86+ image: /boot/memtest86+.bin Found Windows 7 (loader) on /dev/sda1 Unhide GRUB boot menu in sda6/boot/grub/grub.cfg Boot successfully repaired. You can now reboot your computer. The boot files of [The OS now in use - Ubuntu 12.10] are far from the start of the disk. Your BIOS may not detect them. You may want to retry after creating a /boot partition (EXT4, >200MB, start of the disk). This can be performed via tools such as gParted. Then select this partition via the [Separate /boot partition:] option of [Boot Repair]. (https://help.ubuntu.com/community/BootPartition)

    Read the article

  • Rounded Corners and Shadows &ndash; Dialogs with CSS

    - by Rick Strahl
    Well, it looks like we’ve finally arrived at a place where at least all of the latest versions of main stream browsers support rounded corners and box shadows. The two CSS properties that make this possible are box-shadow and box-radius. Both of these CSS Properties now supported in all the major browsers as shown in this chart from QuirksMode: In it’s simplest form you can use box-shadow and border radius like this: .boxshadow { -moz-box-shadow: 3px 3px 5px #535353; -webkit-box-shadow: 3px 3px 5px #535353; box-shadow: 3px 3px 5px #535353; } .roundbox { -moz-border-radius: 6px 6px 6px 6px; -webkit-border-radius: 6px; border-radius: 6px 6px 6px 6px; } box-shadow: horizontal-shadow-pixels vertical-shadow-pixels blur-distance shadow-color box-shadow attributes specify the the horizontal and vertical offset of the shadow, the blur distance (to give the shadow a smooth soft look) and a shadow color. The spec also supports multiple shadows separated by commas using the attributes above but we’re not using that functionality here. box-radius: top-left-radius top-right-radius bottom-right-radius bottom-left-radius border-radius takes a pixel size for the radius for each corner going clockwise. CSS 3 also specifies each of the individual corner elements such as border-top-left-radius, but support for these is much less prevalent so I would recommend not using them for now until support improves. Instead use the single box-radius to specify all corners. Browser specific Support in older Browsers Notice that there are two variations: The actual CSS 3 properties (box-shadow and box-radius) and the browser specific ones (-moz, –webkit prefixes for FireFox and Chrome/Safari respectively) which work in slightly older versions of modern browsers before official CSS 3 support was added. The goal is to spread support as widely as possible and the prefix versions extend the range slightly more to those browsers that provided early support for these features. Notice that box-shadow and border-radius are used after the browser specific versions to ensure that the latter versions get precedence if the browser supports both (last assignment wins). Use the .boxshadow and .roundbox Styles in HTML To use these two styles create a simple rounded box with a shadow you can use HTML like this: <!-- Simple Box with rounded corners and shadow --> <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="boxcontenttext"> Simple Rounded Corner Box. </div> </div> which looks like this in the browser: This works across browsers and it’s pretty sweet and simple. Watch out for nested Elements! There are a couple of things to be aware of however when using rounded corners. Specifically, you need to be careful when you nest other non-transparent content into the rounded box. For example check out what happens when I change the inside <div> to have a colored background: <!-- Simple Box with rounded corners and shadow --> <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="boxcontenttext" style="background: khaki;"> Simple Rounded Corner Box. </div> </div> which renders like this:   If you look closely you’ll find that the inside <div>’s corners are not rounded and so ‘poke out’ slightly over the rounded corners. It looks like the rounded corners are ‘broken’ up instead of a solid rounded line around the corner, which his pretty ugly. The bigger the radius the more drastic this effect becomes . To fix this issue the inner <div> also has have rounded corners at the same or slightly smaller radius than the outer <div>. The simple fix for this is to simply also apply the roundbox style to the inner <div> in addition to the boxcontenttext style already applied: <div class="boxcontenttext roundbox" style="background: khaki;"> The fixed display now looks proper: Separate Top and Bottom Elements This gets even a little more tricky if you have an element at the top or bottom only of the rounded box. What if you need to add something like a header or footer <div> that have non-transparent backgrounds which is a pretty common scenario? In those cases you want only the top or bottom corners rounded and not both. To make this work a couple of additional styles to round only the top and bottom corners can be created: .roundbox-top { -moz-border-radius: 4px 4px 0 0; -webkit-border-radius: 4px 4px 0 0; border-radius: 4px 4px 0 0; } .roundbox-bottom { -moz-border-radius: 0 0 4px 4px; -webkit-border-radius: 0 0 4px 4px; border-radius: 0 0 4px 4px; } Notice that radius used for the ‘inside’ rounding is smaller (4px) than the outside radius (6px). This is so the inner radius fills into the outer border – if you use the same size you may have some white space showing between inner and out rounded corners. Experiment with values to see what works – in my experimenting the behavior across browsers here is consistent (thankfully). These styles can be applied in addition to other styles to make only the top or bottom portions of an element rounded. For example imagine I have styles like this: .gridheader, .gridheaderbig, .gridheaderleft, .gridheaderright { padding: 4px 4px 4px 4px; background: #003399 url(images/vertgradient.png) repeat-x; text-align: center; font-weight: bold; text-decoration: none; color: khaki; } .gridheaderleft { text-align: left; } .gridheaderright { text-align: right; } .gridheaderbig { font-size: 135%; } If I just apply say gridheader by itself in HTML like this: <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="gridheaderleft">Box with a Header</div> <div class="boxcontenttext" style="background: khaki;"> Simple Rounded Corner Box. </div> </div> This results in a pretty funky display – again due to the fact that the inner elements render square rather than rounded corners: If you look close again you can see that both the header and the main content have square edges which jumps out at the eye. To fix this you can now apply the roundbox-top and roundbox-bottom to the header and content respectively: <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="gridheaderleft roundbox-top">Box with a Header</div> <div class="boxcontenttext roundbox-bottom" style="background: khaki;"> Simple Rounded Corner Box. </div> </div> Which now gives the proper display with rounded corners both on the top and bottom: All of this is sweet to be supported – at least by the newest browser – without having to resort to images and nasty JavaScripts solutions. While this is still not a mainstream feature yet for the majority of actually installed browsers, the majority of browser users are very likely to have this support as most browsers other than IE are actively pushing users to upgrade to newer versions. Since this is a ‘visual display only feature it degrades reasonably well in non-supporting browsers: You get an uninteresting square and non-shadowed browser box, but the display is still overall functional. The main sticking point – as always is Internet Explorer versions 8.0 and down as well as older versions of other browsers. With those browsers you get a functional view that is a little less interesting to look at obviously: but at least it’s still functional. Maybe that’s just one more incentive for people using older browsers to upgrade to a  more modern browser :-) Creating Dialog Related Styles In a lot of my AJAX based applications I use pop up windows which effectively work like dialogs. Using the simple CSS behaviors above, it’s really easy to create some fairly nice looking overlaid windows with nothing but CSS. Here’s what a typical ‘dialog’ I use looks like: The beauty of this is that it’s plain CSS – no plug-ins or images (other than the gradients which are optional) required. Add jQuery-ui draggable (or ww.jquery.js as shown below) and you have a nice simple inline implementation of a dialog represented by a simple <div> tag. Here’s the HTML for this dialog: <div id="divDialog" class="dialog boxshadow" style="width: 450px;"> <div class="dialog-header"> <div class="closebox"></div> User Sign-in </div> <div class="dialog-content"> <label>Username:</label> <input type="text" name="txtUsername" value=" " /> <label>Password</label> <input type="text" name="txtPassword" value=" " /> <hr /> <input type="button" id="btnLogin" value="Login" /> </div> <div class="dialog-statusbar">Ready</div> </div> Most of this behavior is driven by the ‘dialog’ styles which are fairly basic and easy to understand. They do use a few support images for the gradients which are provided in the sample I’ve provided. Here’s what the CSS looks like: .dialog { background: White; overflow: hidden; border: solid 1px steelblue; -moz-border-radius: 6px 6px 4px 4px; -webkit-border-radius: 6px 6px 4px 4px; border-radius: 6px 6px 3px 3px; } .dialog-header { background-image: url(images/dialogheader.png); background-repeat: repeat-x; text-align: left; color: cornsilk; padding: 5px; padding-left: 10px; font-size: 1.02em; font-weight: bold; position: relative; -moz-border-radius: 4px 4px 0px 0px; -webkit-border-radius: 4px 4px 0px 0px; border-radius: 4px 4px 0px 0px; } .dialog-top { -moz-border-radius: 4px 4px 0px 0px; -webkit-border-radius: 4px 4px 0px 0px; border-radius: 4px 4px 0px 0px; } .dialog-bottom { -moz-border-radius: 0 0 3px 3px; -webkit-border-radius: 0 0 3px 3px; border-radius: 0 0 3px 3px; } .dialog-content { padding: 15px; } .dialog-statusbar, .dialog-toolbar { background: #eeeeee; background-image: url(images/dialogstrip.png); background-repeat: repeat-x; padding: 5px; padding-left: 10px; border-top: solid 1px silver; border-bottom: solid 1px silver; font-size: 0.8em; } .dialog-statusbar { -moz-border-radius: 0 0 3px 3px; -webkit-border-radius: 0 0 3px 3px; border-radius: 0 0 3px 3px; padding-right: 10px; } .closebox { position: absolute; right: 2px; top: 2px; background-image: url(images/close.gif); background-repeat: no-repeat; width: 14px; height: 14px; cursor: pointer; opacity: 0.60; filter: alpha(opacity="80"); } .closebox:hover { opacity: 1; filter: alpha(opacity="100"); } The main style is the dialog class which is the outer box. It has the rounded border that serves as the outline. Note that I didn’t add the box-shadow to this style because in some situations I just want the rounded box in an inline display that doesn’t have a shadow so it’s still applied separately. dialog-header, then has the rounded top corners and displays a typical dialog heading format. dialog-bottom and dialog-top then provide the same functionality as roundbox-top and roundbox-bottom described earlier but are provided mainly in the stylesheet for consistency to match the dialog’s round edges and making it easier to  remember and find in Intellisense as it shows up in the same dialog- group. dialog-statusbar and dialog-toolbar are two elements I use a lot for floating windows – the toolbar serves for buttons and options and filters typically, while the status bar provides information specific to the floating window. Since the the status bar is always on the bottom of the dialog it automatically handles the rounding of the bottom corners. Finally there’s  closebox style which is to be applied to an empty <div> tag in the header typically. What this does is render a close image that is by default low-lighted with a low opacity value, and then highlights when hovered over. All you’d have to do handle the close operation is handle the onclick of the <div>. Note that the <div> right aligns so typically you should specify it before any other content in the header. Speaking of closable – some time ago I created a closable jQuery plug-in that basically automates this process and can be applied against ANY element in a page, automatically removing or closing the element with some simple script code. Using this you can leave out the <div> tag for closable and just do the following: To make the above dialog closable (and draggable) which makes it effectively and overlay window, you’d add jQuery.js and ww.jquery.js to the page: <script type="text/javascript" src="../../scripts/jquery.min.js"></script> <script type="text/javascript" src="../../scripts/ww.jquery.min.js"></script> and then simply call: <script type="text/javascript"> $(document).ready(function () { $("#divDialog") .draggable({ handle: ".dialog-header" }) .closable({ handle: ".dialog-header", closeHandler: function () { alert("Window about to be closed."); return true; // true closes - false leaves open } }); }); </script> * ww.jquery.js emulates base features in jQuery-ui’s draggable. If jQuery-ui is loaded its draggable version will be used instead and voila you have now have a draggable and closable window – here in mid-drag:   The dragging and closable behaviors are of course optional, but it’s the final touch that provides dialog like window behavior. Relief for older Internet Explorer Versions with CSS Pie If you want to get these features to work with older versions of Internet Explorer all the way back to version 6 you can check out CSS Pie. CSS Pie provides an Internet Explorer behavior file that attaches to specific CSS rules and simulates these behavior using script code in IE (mostly by implementing filters). You can simply add the behavior to each CSS style that uses box-shadow and border-radius like this: .boxshadow {     -moz-box-shadow: 3px 3px 5px #535353;     -webkit-box-shadow: 3px 3px 5px #535353;           box-shadow: 3px 3px 5px #535353;     behavior: url(scripts/PIE.htc);           } .roundbox {      -moz-border-radius: 6px 6px 6px 6px;     -webkit-border-radius: 6px;      border-radius: 6px 6px 6px 6px;     behavior: url(scripts/PIE.htc); } CSS Pie requires the PIE.htc on your server and referenced from each CSS style that needs it. Note that the url() for IE behaviors is NOT CSS file relative as other CSS resources, but rather PAGE relative , so if you have more than one folder you probably need to reference the HTC file with a fixed path like this: behavior: url(/MyApp/scripts/PIE.htc); in the style. Small price to pay, but a royal pain if you have a common CSS file you use in many applications. Once the PIE.htc file has been copied and you have applied the behavior to each style that uses these new features Internet Explorer will render rounded corners and box shadows! Yay! Hurray for box-shadow and border-radius All of this functionality is very welcome natively in the browser. If you think this is all frivolous visual candy, you might be right :-), but if you take a look on the Web and search for rounded corner solutions that predate these CSS attributes you’ll find a boatload of stuff from image files, to custom drawn content to Javascript solutions that play tricks with a few images. It’s sooooo much easier to have this functionality built in and I for one am glad to see that’s it’s finally becoming standard in the box. Still remember that when you use these new CSS features, they are not universal, and are not going to be really soon. Legacy browsers, especially old versions of Internet Explorer that can’t be updated will continue to be around and won’t work with this shiny new stuff. I say screw ‘em: Let them get a decent recent browser or see a degraded and ugly UI. We have the luxury with this functionality in that it doesn’t typically affect usability – it just doesn’t look as nice. Resources Download the Sample The sample includes the styles and images and sample page as well as ww.jquery.js for the draggable/closable example. Online Sample Check out the sample described in this post online. Closable and Draggable Documentation Documentation for the closeable and draggable plug-ins in ww.jquery.js. You can also check out the full documentation for all the plug-ins contained in ww.jquery.js here. © Rick Strahl, West Wind Technologies, 2005-2011Posted in HTML  CSS  

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Developing Spring Portlet for use inside Weblogic Portal / Webcenter Portal

    - by Murali Veligeti
    We need to understand the main difference between portlet workflow and servlet workflow.The main difference between portlet workflow and servlet workflow is that, the request to the portlet can have two distinct phases: 1) Action phase 2) Render phase. The Action phase is executed only once and is where any 'backend' changes or actions occur, such as making changes in a database. The Render phase then produces what is displayed to the user each time the display is refreshed. The critical point here is that for a single overall request, the action phase is executed only once, but the render phase may be executed multiple times. This provides a clean separation between the activities that modify the persistent state of your system and the activities that generate what is displayed to the user.The dual phases of portlet requests are one of the real strengths of the JSR-168 specification. For example, dynamic search results can be updated routinely on the display without the user explicitly re-running the search. Most other portlet MVC frameworks attempt to completely hide the two phases from the developer and make it look as much like traditional servlet development as possible - we think this approach removes one of the main benefits of using portlets. So, the separation of the two phases is preserved throughout the Spring Portlet MVC framework. The primary manifestation of this approach is that where the servlet version of the MVC classes will have one method that deals with the request, the portlet version of the MVC classes will have two methods that deal with the request: one for the action phase and one for the render phase. For example, where the servlet version of AbstractController has the handleRequestInternal(..) method, the portlet version of AbstractController has handleActionRequestInternal(..) and handleRenderRequestInternal(..) methods.The Spring Portlet Framework is designed around a DispatcherPortlet that dispatches requests to handlers, with configurable handler mappings and view resolution, just as the DispatcherServlet in the Spring Web Framework does.  Developing portlet.xml Let's start the sample development by creating the portlet.xml file in the /WebContent/WEB-INF/ folder as shown below: <?xml version="1.0" encoding="UTF-8"?> <portlet-app version="2.0" xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <portlet> <portlet-name>SpringPortletName</portlet-name> <portlet-class>org.springframework.web.portlet.DispatcherPortlet</portlet-class> <supports> <mime-type>text/html</mime-type> <portlet-mode>view</portlet-mode> </supports> <portlet-info> <title>SpringPortlet</title> </portlet-info> </portlet> </portlet-app> DispatcherPortlet is responsible for handling every client request. When it receives a request, it finds out which Controller class should be used for handling this request, and then it calls its handleActionRequest() or handleRenderRequest() method based on the request processing phase. The Controller class executes business logic and returns a View name that should be used for rendering markup to the user. The DispatcherPortlet then forwards control to that View for actual markup generation. As you can see, DispatcherPortlet is the central dispatcher for use within Spring Portlet MVC Framework. Note that your portlet application can define more than one DispatcherPortlet. If it does so, then each of these portlets operates its own namespace, loading its application context and handler mapping. The DispatcherPortlet is also responsible for loading application context (Spring configuration file) for this portlet. First, it tries to check the value of the configLocation portlet initialization parameter. If that parameter is not specified, it takes the portlet name (that is, the value of the <portlet-name> element), appends "-portlet.xml" to it, and tries to load that file from the /WEB-INF folder. In the portlet.xml file, we did not specify the configLocation initialization parameter, so let's create SpringPortletName-portlet.xml file in the next section. Developing SpringPortletName-portlet.xml Create the SpringPortletName-portlet.xml file in the /WebContent/WEB-INF folder of your application as shown below: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.0.xsd"> <bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver"> <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/> <property name="prefix" value="/jsp/"/> <property name="suffix" value=".jsp"/> </bean> <bean id="pointManager" class="com.wlp.spring.bo.internal.PointManagerImpl"> <property name="users"> <list> <ref bean="point1"/> <ref bean="point2"/> <ref bean="point3"/> <ref bean="point4"/> </list> </property> </bean> <bean id="point1" class="com.wlp.spring.bean.User"> <property name="name" value="Murali"/> <property name="points" value="6"/> </bean> <bean id="point2" class="com.wlp.spring.bean.User"> <property name="name" value="Sai"/> <property name="points" value="13"/> </bean> <bean id="point3" class="com.wlp.spring.bean.User"> <property name="name" value="Rama"/> <property name="points" value="43"/> </bean> <bean id="point4" class="com.wlp.spring.bean.User"> <property name="name" value="Krishna"/> <property name="points" value="23"/> </bean> <bean id="messageSource" class="org.springframework.context.support.ResourceBundleMessageSource"> <property name="basename" value="messages"/> </bean> <bean name="/users.htm" id="userController" class="com.wlp.spring.controller.UserController"> <property name="pointManager" ref="pointManager"/> </bean> <bean name="/pointincrease.htm" id="pointIncreaseController" class="com.wlp.spring.controller.IncreasePointsFormController"> <property name="sessionForm" value="true"/> <property name="pointManager" ref="pointManager"/> <property name="commandName" value="pointIncrease"/> <property name="commandClass" value="com.wlp.spring.bean.PointIncrease"/> <property name="formView" value="pointincrease"/> <property name="successView" value="users"/> </bean> <bean id="parameterMappingInterceptor" class="org.springframework.web.portlet.handler.ParameterMappingInterceptor" /> <bean id="portletModeParameterHandlerMapping" class="org.springframework.web.portlet.handler.PortletModeParameterHandlerMapping"> <property name="order" value="1" /> <property name="interceptors"> <list> <ref bean="parameterMappingInterceptor" /> </list> </property> <property name="portletModeParameterMap"> <map> <entry key="view"> <map> <entry key="pointincrease"> <ref bean="pointIncreaseController" /> </entry> <entry key="users"> <ref bean="userController" /> </entry> </map> </entry> </map> </property> </bean> <bean id="portletModeHandlerMapping" class="org.springframework.web.portlet.handler.PortletModeHandlerMapping"> <property name="order" value="2" /> <property name="portletModeMap"> <map> <entry key="view"> <ref bean="userController" /> </entry> </map> </property> </bean> </beans> The SpringPortletName-portlet.xml file is an application context file for your MVC portlet. It has a couple of bean definitions: viewController. At this point, remember that the viewController bean definition points to the com.ibm.developerworks.springmvc.ViewController.java class. portletModeHandlerMapping. As we discussed in the last section, whenever DispatcherPortlet gets a client request, it tries to find a suitable Controller class for handling that request. That is where PortletModeHandlerMapping comes into the picture. The PortletModeHandlerMapping class is a simple implementation of the HandlerMapping interface and is used by DispatcherPortlet to find a suitable Controller for every request. The PortletModeHandlerMapping class uses Portlet mode for the current request to find a suitable Controller class to use for handling the request. The portletModeMap property of portletModeHandlerMapping bean is the place where we map the Portlet mode name against the Controller class. In the sample code, we show that viewController is responsible for handling View mode requests. Developing UserController.java In the preceding section, you learned that the viewController bean is responsible for handling all the View mode requests. Your next step is to create the UserController.java class as shown below: public class UserController extends AbstractController { private PointManager pointManager; public void handleActionRequest(ActionRequest request, ActionResponse response) throws Exception { } public ModelAndView handleRenderRequest(RenderRequest request, RenderResponse response) throws ServletException, IOException { String now = (new java.util.Date()).toString(); Map<String, Object> myModel = new HashMap<String, Object>(); myModel.put("now", now); myModel.put("users", this.pointManager.getUsers()); return new ModelAndView("users", "model", myModel); } public void setPointManager(PointManager pointManager) { this.pointManager = pointManager; } } Every controller class in Spring Portlet MVC Framework must implement the org.springframework.web. portlet.mvc.Controller interface directly or indirectly. To make things easier, Spring Framework provides AbstractController class, which is the default implementation of the Controller interface. As a developer, you should always extend your controller from either AbstractController or one of its more specific subclasses. Any implementation of the Controller class should be reusable, thread-safe, and capable of handling multiple requests throughout the lifecycle of the portlet. In the sample code, we create the ViewController class by extending it from AbstractController. Because we don't want to do any action processing in the HelloSpringPortletMVC portlet, we override only the handleRenderRequest() method of AbstractController. Now, the only thing that HelloWorldPortletMVC should do is render the markup of View.jsp to the user when it receives a user request to do so. To do that, return the object of ModelAndView with a value of view equal to View. Developing web.xml According to Portlet Specification 1.0, every portlet application is also a Servlet Specification 2.3-compliant Web application, and it needs a Web application deployment descriptor (that is, web.xml). Let’s create the web.xml file in the /WEB-INF/ folder as shown in listing 4. Follow these steps: Open the existing web.xml file located at /WebContent/WEB-INF/web.xml. Replace the contents of this file with the code as shown below: <servlet> <servlet-name>ViewRendererServlet</servlet-name> <servlet-class>org.springframework.web.servlet.ViewRendererServlet</servlet-class> </servlet> <servlet-mapping> <servlet-name>ViewRendererServlet</servlet-name> <url-pattern>/WEB-INF/servlet/view</url-pattern> </servlet-mapping> <context-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/applicationContext.xml</param-value> </context-param> <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener> The web.xml file for the sample portlet declares two things: ViewRendererServlet. The ViewRendererServlet is the bridge servlet for portlet support. During the render phase, DispatcherPortlet wraps PortletRequest into ServletRequest and forwards control to ViewRendererServlet for actual rendering. This process allows Spring Portlet MVC Framework to use the same View infrastructure as that of its servlet version, that is, Spring Web MVC Framework. ContextLoaderListener. The ContextLoaderListener class takes care of loading Web application context at the time of the Web application startup. The Web application context is shared by all the portlets in the portlet application. In case of duplicate bean definition, the bean definition in the portlet application context takes precedence over the Web application context. The ContextLoader class tries to read the value of the contextConfigLocation Web context parameter to find out the location of the context file. If the contextConfigLocation parameter is not set, then it uses the default value, which is /WEB-INF/applicationContext.xml, to load the context file. The Portlet Controller interface requires two methods that handle the two phases of a portlet request: the action request and the render request. The action phase should be capable of handling an action request and the render phase should be capable of handling a render request and returning an appropriate model and view. While the Controller interface is quite abstract, Spring Portlet MVC offers a lot of controllers that already contain a lot of the functionality you might need – most of these are very similar to controllers from Spring Web MVC. The Controller interface just defines the most common functionality required of every controller - handling an action request, handling a render request, and returning a model and a view. How rendering works As you know, when the user tries to access a page with PointSystemPortletMVC portlet on it or when the user performs some action on any other portlet on that page or tries to refresh that page, a render request is sent to the PointSystemPortletMVC portlet. In the sample code, because DispatcherPortlet is the main portlet class, Weblogic Portal / Webcenter Portal calls its render() method and then the following sequence of events occurs: The render() method of DispatcherPortlet calls the doDispatch() method, which in turn calls the doRender() method. After the doRenderService() method gets control, first it tries to find out the locale of the request by calling the PortletRequest.getLocale() method. This locale is used while making all the locale-related decisions for choices such as which resource bundle should be loaded or which JSP should be displayed to the user based on the locale. After that, the doRenderService() method starts iterating through all the HandlerMapping classes configured for this portlet, calling their getHandler() method to identify the appropriate Controller for handling this request. In the sample code, we have configured only PortletModeHandlerMapping as a HandlerMapping class. The PortletModeHandlerMapping class reads the value of the current portlet mode, and based on that, it finds out, the Controller class that should be used to handle this request. In the sample code, ViewController is configured to handle the View mode request so that the PortletModeHandlerMapping class returns the object of ViewController. After the object of ViewController is returned, the doRenderService() method calls its handleRenderRequestInternal() method. Implementation of the handleRenderRequestInternal() method in ViewController.java is very simple. It logs a message saying that it got control, and then it creates an instance of ModelAndView with a value equal to View and returns it to DispatcherPortlet. After control returns to doRenderService(), the next task is to figure out how to render View. For that, DispatcherPortlet starts iterating through all the ViewResolvers configured in your portlet application, calling their resolveViewName() method. In the sample code we have configured only one ViewResolver, InternalResourceViewResolver. When its resolveViewName() method is called with viewName, it tries to add /WEB-INF/jsp as a prefix to the view name and to add JSP as a suffix. And it checks if /WEB-INF/jsp/View.jsp exists. If it does exist, it returns the object of JstlView wrapping View.jsp. After control is returned to the doRenderService() method, it creates the object PortletRequestDispatcher, which points to /WEB-INF/servlet/view – that is, ViewRendererServlet. Then it sets the object of JstlView in the request and dispatches the request to ViewRendererServlet. After ViewRendererServlet gets control, it reads the JstlView object from the request attribute and creates another RequestDispatcher pointing to the /WEB-INF/jsp/View.jsp URL and passes control to it for actual markup generation. The markup generated by View.jsp is returned to user. At this point, you may question the need for ViewRendererServlet. Why can't DispatcherPortlet directly forward control to View.jsp? Adding ViewRendererServlet in between allows Spring Portlet MVC Framework to reuse the existing View infrastructure. You may appreciate this more when we discuss how easy it is to integrate Apache Tiles Framework with your Spring Portlet MVC Framework. The attached project SpringPortlet.zip should be used to import the project in to your OEPE Workspace. SpringPortlet_Jars.zip contains jar files required for the application. Project is written on Spring 2.5.  The same JSR 168 portlet should work on Webcenter Portal as well.  Downloads: Download WeblogicPotal Project which consists of Spring Portlet. Download Spring Jars In-addition to above you need to download Spring.jar (Spring2.5)

    Read the article

  • Configuring Oracle iPlanet WebServer / Oracle Traffic Director to use crypto accelerators on T4-1 servers

    - by mv
    Configuring Oracle iPlanet Web Server / Oracle Traffic Director to use crypto accelerators on T4-1 servers Jyri had written a technical article on Configuring Solaris Cryptographic Framework and Sun Java System Web Server 7 on Systems With UltraSPARC T1 Processors. I tried to find out what has changed since then in T4. I have used a T4-1 SPARC system with Solaris 10. Results slightly vary for Solaris 11.  For Solaris 11, the T4 optimization was implemented in libsoftcrypto.so while it was in pkcs11_softtoken_extra.so for Solaris 10. Overview of T4 processors is here in this blog. Many thanx to Chi-Chang Lin and Julien for their help. 1. Install Oracle iPlanet Web Server / Oracle Traffic Director.  Go to instance/config directory.  # cd /opt/oracle/webserver7/https-hostname.fqdn/config 2. List default PKCS#11 Modules # ../../bin/modutil -dbdir . -listListing of PKCS #11 Modules-----------------------------------------------------------1. NSS Internal PKCS #11 Moduleslots: 2 slots attachedstatus: loadedslot: NSS Internal Cryptographic Servicestoken: NSS Generic Crypto Servicesslot: NSS User Private Key and Certificate Servicestoken: NSS Certificate DB2. Root Certslibrary name: libnssckbi.soslots: 1 slot attachedstatus: loadedslot: NSS Builtin Objectstoken: Builtin Object Token----------------------------------------------------------- 3. Initialize the soft token data store in the $HOME/.sunw/pkcs11_softtoken/ directory # pktool setpin keystore=pkcs11Enter token passphrase: olderpasswordCreate new passphrase: passwordRe-enter new passphrase: passwordPassphrase changed. 4. Offload crypto operations to Solaris Crypto Framework on T4 $ ../../bin/modutil -dbdir . -nocertdb -add SCF -libfile /usr/lib/libpkcs11.so -mechanisms RSA:AES:SHA1:MD5 Module "SCF" added to database. Note that -nocertdb means modutil won't try to open the NSS softoken key database. It doesn't even have to be present. PKCS#11 library used is /usr/lib/libpkcs11.so. If the server is running in 64 bit mode, we have to use /usr/lib/64/libpkcs11.so Unlike T1 and T2, in T4 we do not have to disable mechanisms in softtoken provider using cryptoadm. 5. List again to check that a new module SCF is added # ../../bin/modutil -dbdir . -list Listing of PKCS #11 Modules-----------------------------------------------------------1. NSS Internal PKCS #11 Moduleslots: 2 slots attachedstatus: loadedslot: NSS Internal Cryptographic Servicestoken: NSS Generic Crypto Servicesslot: NSS User Private Key and Certificate Servicestoken: NSS Certificate DB2. SCFlibrary name: /usr/lib/libpkcs11.soslots: 2 slots attachedstatus: loadedslot: Sun Metaslottoken: Sun Metaslotslot: n2rng/0 SUNW_N2_Random_Number_Generator token: n2rng/0 SUNW_N2_RNG 3. Root Certs library name: libnssckbi.so slots: 1 slot attached status: loaded slot: NSS Builtin Objects token: Builtin Object Token----------------------------------------------------------- 6.  Create certificate in “Sun Metaslot” : I have used certutil, but you must use Admin Server CLI / GUI # ../../bin/certutil -S -x -n "Server-Cert" -t "CT,CT,CT" -s "CN=*.fqdn" -d . -h "Sun Metaslot"Enter Password or Pin for "Sun Metaslot": password 7. Verify that the certificate is created properly in “Sun Metslaot” # ../../bin/certutil -L -d . -h "Sun Metaslot"Certificate Nickname Trust AttributesSSL,S/MIME,JAR/XPIEnter Password or Pin for "Sun Metaslot": passwordSun Metaslot:Server-Cert CTu,Cu,Cu# 8. Associate this newly created certificate to http listener using Admin CLI/GUI. After that server.xml should have <http-listener> ...    <ssl>        <server-cert-nickname>Sun Metaslot:Server-Cert</server-cert-nicknamer>    </ssl> Note the prefix "Sun Metaslot" 9. Disable PKCS#11 bypass To use the accelerated AES algorithm, turn off PKCS#11 bypass, and configure modutil to have the AES mechanism go to the Metaslot. After you disable PKCS#11 bypasss using Admin GUI/CLI,  check that server.xml should have <server> ....    <pkcs11>         <enabled>1</enabled>         <allow-bypass>0</allow-bypass>     </pkcs11> With PKCS#11 bypass enabled, Oracle iPlanet Web Server will only use the RSA capability of the T4, provided certificate and key are stored in the T4 slot (Metaslot). Actually, the RSA op is never bypassed in NSS, it's always done with PKCS#11 calls. So the bypass settings won't affect the behavior of the probes for RSA at all. The only thing that matters if where the RSA key and certificate live, ie. which PKCS#11 token, and thus which PKCS#11 module gets called to do the work. If your certificate/key are in the NSS certificate/key db, you will see libsoftokn3/libfreebl libraries doing the RSA work. If they are in the Sun Metaslot, it should be the Solaris code. 10. Start the server instance # ../bin/startserv Oracle iPlanet Web Server 7.0.16 B09/14/2012 03:33Please enter the PIN for the "Sun Metaslot" token: password...info: HTTP3072: http-listener-1: https://hostname.fqdn:80 ready to accept requestsinfo: CORE3274: successful server startup 11. Figure out which process to run this DTrace script on # ps -eaf | grep webservd | grep -v dogwebservd 18224 18223 0 13:17:25 ? 0:07 webservd -d /opt/oracle/webserver7/https-hostname.fqdn/config -r /opt/root 18225 18224 0 13:17:25 ? 0:00 webservd -d /opt/oracle/webserver7/https-hostname.fqdn/config -r /opt/ (For Oracle Traffic Director look for process named "trafficd") We see that the child process id is “18225” 12. Clients for testing : You can use any browser. I used NSS tool tstclnt for testing $cat > req.txtGET /index.html HTTP/1.0 For checking both RSA and AES, I used cipher “:0035” which is TLS_RSA_WITH_AES_256_CBC_SHA $./tstclnt -h hostname -p 80 -d . -T -f -o -v -c “:0035” < req.txt 13. How do I make sure that crypto accelerator is being used 13.1 Create DTrace script The following D script should be able to uncover whether T4-specific crypto routine are being called or not. It also displays stats per second. # cat > t4crypto.d#!/usr/sbin/dtrace -spid$target::*rsa*:entry,pid$target::*yf*:entry{    @ops[probemod, probefunc] = count();}tick-1sec{    printa(@ops);    trunc(@ops);} Invoke with './t4crypto.d -p <pid> ' 13.2 EXPECTED PROBES FOR Solaris 10 : If offloading to T4 HW are correctly set up, the expected DTrace output would have these probes and libraries library Operations PROBES pkcs11_softtoken_extra.so RSA soft_decrypt_rsa_pkcs_decode, soft_encrypt_rsa_pkcs_encode soft_rsa_crypt_init_common soft_rsa_decrypt, soft_rsa_encrypt soft_rsa_decrypt_common, soft_rsa_encrypt_common AES yf_aes_instructions_present yf_aes_expand256, yf_aes256_cbc_decrypt, yf_aes256_cbc_encrypt, yf_aes256_load_keys_for_decrypt, yf_aes256_load_keys_for_encrypt, Note that these are for 256, same for 128, 192... these are for cbc, same for ecb, ctr, cfb128... DES yf_des_expand, yf_des_instructions_present yf_des_encrypt libmd_psr.so MD5 yf_md5_multiblock, yf_md5_instruction_present SHA1 yf_sha1_instruction_present, yf_sha1_multibloc 13.3 SAMPLE OUTPUT FOR CIPHER TLS_RSA_WITH_AES_256_CBC_SHA (0x0035) ON T4 SPARC SOLARIS 10 WITHOUT PKCS#11 BYPASS # ./t4crypto.d -p 18225 pkcs11_softtoken_extra.so.1   soft_decrypt_rsa_pkcs_decode    1 pkcs11_softtoken_extra.so.1   soft_rsa_crypt_init_common      1 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt                1 pkcs11_softtoken_extra.so.1   big_mp_mul_yf                   2 pkcs11_softtoken_extra.so.1   mpm_yf_mpmul                    2 pkcs11_softtoken_extra.so.1   mpmul_arr_yf                    2 pkcs11_softtoken_extra.so.1   rijndael_key_setup_enc_yf       2 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt_common         2 pkcs11_softtoken_extra.so.1   yf_aes_expand256                2 pkcs11_softtoken_extra.so.1   yf_aes256_cbc_decrypt           3 pkcs11_softtoken_extra.so.1   yf_aes256_load_keys_for_decrypt 3 pkcs11_softtoken_extra.so.1   big_mont_mul_yf                 6 pkcs11_softtoken_extra.so.1   mm_yf_montmul                   6 pkcs11_softtoken_extra.so.1   yf_des_instructions_present     6 pkcs11_softtoken_extra.so.1   yf_aes256_cbc_encrypt           8 pkcs11_softtoken_extra.so.1   yf_aes256_load_keys_for_encrypt 8 pkcs11_softtoken_extra.so.1   yf_mpmul_present                8 pkcs11_softtoken_extra.so.1   yf_aes_instructions_present    13 pkcs11_softtoken_extra.so.1   yf_des_encrypt                 18 libmd_psr.so.1                yf_md5_multiblock              41 libmd_psr.so.1                yf_md5_instruction_present     72 libmd_psr.so.1                yf_sha1_instruction_present    82 libmd_psr.so.1                yf_sha1_multiblock             82 This indicates that both RSA and AES ops are done in Solaris Crypto Framework. 13.4 SAMPLE OUTPUT FOR CIPHER TLS_RSA_WITH_AES_256_CBC_SHA (0x0035) ON T4 SPARC SOLARIS 10 WITH PKCS#11 BYPASS # ./t4crypto.d -p 18225 pkcs11_softtoken_extra.so.1   soft_decrypt_rsa_pkcs_decode 1 pkcs11_softtoken_extra.so.1   soft_rsa_crypt_init_common   1 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt             1 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt_common      1 pkcs11_softtoken_extra.so.1   big_mp_mul_yf                2 pkcs11_softtoken_extra.so.1   mpm_yf_mpmul                 2 pkcs11_softtoken_extra.so.1   mpmul_arr_yf                 2 pkcs11_softtoken_extra.so.1   big_mont_mul_yf              6 pkcs11_softtoken_extra.so.1   mm_yf_montmul                6 pkcs11_softtoken_extra.so.1   yf_mpmul_present             8 For this cipher, when I enable PKCS#11 bypass, Only RSA probes are being hit AES probes are not being hit. 13.5 ustack() for RSA operations / probefunc == "soft_rsa_decrypt" / Shows that libnss3.so is calling C_* functions of libpkcs11.so which is calling functions of pkcs11_softtoken_extra.so for both cases with and without bypass. When PKCS#11 bypass is disabled (allow-bypass is 0) pkcs11_softtoken_extra.so.1`soft_rsa_decrypt pkcs11_softtoken_extra.so.1`soft_rsa_decrypt_common+0x94 pkcs11_softtoken_extra.so.1`soft_unwrapkey+0x258 pkcs11_softtoken_extra.so.1`C_UnwrapKey+0x1ec libpkcs11.so.1`meta_unwrap_key+0x17c libpkcs11.so.1`meta_UnwrapKey+0xc4 libpkcs11.so.1`C_UnwrapKey+0xfc libnss3.so`pk11_AnyUnwrapKey+0x6b8 libnss3.so`PK11_PubUnwrapSymKey+0x8c libssl3.so`ssl3_HandleRSAClientKeyExchange+0x1a0 libssl3.so`ssl3_HandleClientKeyExchange+0x154 libssl3.so`ssl3_HandleHandshakeMessage+0x440 libssl3.so`ssl3_HandleHandshake+0x11c libssl3.so`ssl3_HandleRecord+0x5e8 libssl3.so`ssl3_GatherCompleteHandshake+0x5c libssl3.so`ssl_GatherRecord1stHandshake+0x30 libssl3.so`ssl_Do1stHandshake+0xec libssl3.so`ssl_SecureRecv+0x1c8 libssl3.so`ssl_Recv+0x9c libns-httpd40.so`__1cNDaemonSessionDrun6M_v_+0x2dc When PKCS#11 bypass is enabled (allow-bypass is 1) pkcs11_softtoken_extra.so.1`soft_rsa_decrypt pkcs11_softtoken_extra.so.1`soft_rsa_decrypt_common+0x94 pkcs11_softtoken_extra.so.1`C_Decrypt+0x164 libpkcs11.so.1`meta_do_operation+0x27c libpkcs11.so.1`meta_Decrypt+0x4c libpkcs11.so.1`C_Decrypt+0xcc libnss3.so`PK11_PrivDecryptPKCS1+0x1ac libssl3.so`ssl3_HandleRSAClientKeyExchange+0xe4 libssl3.so`ssl3_HandleClientKeyExchange+0x154 libssl3.so`ssl3_HandleHandshakeMessage+0x440 libssl3.so`ssl3_HandleHandshake+0x11c libssl3.so`ssl3_HandleRecord+0x5e8 libssl3.so`ssl3_GatherCompleteHandshake+0x5c libssl3.so`ssl_GatherRecord1stHandshake+0x30 libssl3.so`ssl_Do1stHandshake+0xec libssl3.so`ssl_SecureRecv+0x1c8 libssl3.so`ssl_Recv+0x9c libns-httpd40.so`__1cNDaemonSessionDrun6M_v_+0x2dc libnsprwrap.so`ThreadMain+0x1c libnspr4.so`_pt_root+0xe8 13.6 ustack() FOR AES operations / probefunc == "yf_aes256_cbc_encrypt" / When PKCS#11 bypass is disabled (allow-bypass is 0) pkcs11_softtoken_extra.so.1`yf_aes256_cbc_encrypt pkcs11_softtoken_extra.so.1`aes_block_process_contiguous_whole_blocks+0xb4 pkcs11_softtoken_extra.so.1`aes_crypt_contiguous_blocks+0x1cc pkcs11_softtoken_extra.so.1`soft_aes_encrypt_common+0x22c pkcs11_softtoken_extra.so.1`C_EncryptUpdate+0x10c libpkcs11.so.1`meta_do_operation+0x1fc libpkcs11.so.1`meta_EncryptUpdate+0x4c libpkcs11.so.1`C_EncryptUpdate+0xcc libnss3.so`PK11_CipherOp+0x1a0 libssl3.so`ssl3_CompressMACEncryptRecord+0x264 libssl3.so`ssl3_SendRecord+0x300 libssl3.so`ssl3_FlushHandshake+0x54 libssl3.so`ssl3_SendFinished+0x1fc libssl3.so`ssl3_HandleFinished+0x314 libssl3.so`ssl3_HandleHandshakeMessage+0x4ac libssl3.so`ssl3_HandleHandshake+0x11c libssl3.so`ssl3_HandleRecord+0x5e8 libssl3.so`ssl3_GatherCompleteHandshake+0x5c libssl3.so`ssl_GatherRecord1stHandshake+0x30 libssl3.so`ssl_Do1stHandshake+0xec Shows that libnss3.so is calling C_* functions of libpkcs11.so which is calling functions of pkcs11_softtoken_extra.so However when PKCS#11 bypass is disabled (allow-bypass is 1) this stack isn't getting called. 14. LIST OF ALL THE PROBES MATCHED BY D SCRIPT FOR REFERENCE # ./t4crypto.d -p 18225 -l ID PROVIDER MODULE FUNCTION NAME ... 55720 pid18225 libmd_psr.so.1 yf_md5_instruction_present entry 55721 pid18225 libmd_psr.so.1 yf_sha256_instruction_present entry 55722 pid18225 libmd_psr.so.1 yf_sha512_instruction_present entry 55723 pid18225 libmd_psr.so.1 yf_sha1_instruction_present entry 55724 pid18225 libmd_psr.so.1 yf_sha256 entry 55725 pid18225 libmd_psr.so.1 yf_sha256_multiblock entry 55726 pid18225 libmd_psr.so.1 yf_sha512 entry 55727 pid18225 libmd_psr.so.1 yf_sha512_multiblock entry 55728 pid18225 libmd_psr.so.1 yf_sha1 entry 55729 pid18225 libmd_psr.so.1 yf_sha1_multiblock entry 55730 pid18225 libmd_psr.so.1 yf_md5 entry 55731 pid18225 libmd_psr.so.1 yf_md5_multiblock entry 55732 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_instructions_present entry 55733 pid18225 pkcs11_softtoken_extra.so.1 rijndael_key_setup_enc_yf entry 55734 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_expand128 entry 55735 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_encrypt128 entry 55736 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_decrypt128 entry 55737 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_expand192 entry 55738 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_encrypt192 entry 55739 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_decrypt192 entry 55740 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_expand256 entry 55741 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_encrypt256 entry 55742 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_decrypt256 entry 55743 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_load_keys_for_encrypt entry 55744 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_load_keys_for_encrypt entry 55745 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_load_keys_for_encrypt entry 55746 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_ecb_encrypt entry 55747 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_ecb_encrypt entry 55748 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_ecb_encrypt entry 55749 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cbc_encrypt entry 55750 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cbc_encrypt entry 55751 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cbc_encrypt entry 55752 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_ctr_crypt entry 55753 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_ctr_crypt entry 55754 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_ctr_crypt entry 55755 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cfb128_encrypt entry 55756 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cfb128_encrypt entry 55757 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cfb128_encrypt entry 55758 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_load_keys_for_decrypt entry 55759 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_load_keys_for_decrypt entry 55760 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_load_keys_for_decrypt entry 55761 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_ecb_decrypt entry 55762 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_ecb_decrypt entry 55763 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_ecb_decrypt entry 55764 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cbc_decrypt entry 55765 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cbc_decrypt entry 55766 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cbc_decrypt entry 55767 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cfb128_decrypt entry 55768 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cfb128_decrypt entry 55769 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cfb128_decrypt entry 55771 pid18225 pkcs11_softtoken_extra.so.1 yf_des_instructions_present entry 55772 pid18225 pkcs11_softtoken_extra.so.1 yf_des_expand entry 55773 pid18225 pkcs11_softtoken_extra.so.1 yf_des_encrypt entry 55774 pid18225 pkcs11_softtoken_extra.so.1 yf_mpmul_present entry 55775 pid18225 pkcs11_softtoken_extra.so.1 yf_montmul_present entry 55776 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_montmul entry 55777 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_montsqr entry 55778 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_restore_func entry 55779 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_ret_from_mont_func entry 55780 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_execute_slp entry 55781 pid18225 pkcs11_softtoken_extra.so.1 big_modexp_ncp_yf entry 55782 pid18225 pkcs11_softtoken_extra.so.1 big_mont_mul_yf entry 55783 pid18225 pkcs11_softtoken_extra.so.1 mpmul_arr_yf entry 55784 pid18225 pkcs11_softtoken_extra.so.1 big_mp_mul_yf entry 55785 pid18225 pkcs11_softtoken_extra.so.1 mpm_yf_mpmul entry 55786 pid18225 libns-httpd40.so nsapi_rsa_set_priv_fn entry ... 55795 pid18225 libnss3.so prepare_rsa_priv_key_export_for_asn1 entry 55796 pid18225 libresolv.so.2 sunw_dst_rsaref_init entry 55797 pid18225 libnssutil3.so NSS_Get_SEC_UniversalStringTemplate entry ... 55813 pid18225 libsoftokn3.so prepare_low_rsa_priv_key_for_asn1 entry 55814 pid18225 libsoftokn3.so rsa_FormatOneBlock entry 55815 pid18225 libsoftokn3.so rsa_FormatBlock entry 55816 pid18225 libnssdbm3.so lg_prepare_low_rsa_priv_key_for_asn1 entry 55817 pid18225 libfreebl_32fpu_3.so rsa_build_from_primes entry 55818 pid18225 libfreebl_32fpu_3.so rsa_is_prime entry 55819 pid18225 libfreebl_32fpu_3.so rsa_get_primes_from_exponents entry 55820 pid18225 libfreebl_32fpu_3.so rsa_PrivateKeyOpNoCRT entry 55821 pid18225 libfreebl_32fpu_3.so rsa_PrivateKeyOpCRTNoCheck entry 55822 pid18225 libfreebl_32fpu_3.so rsa_PrivateKeyOpCRTCheckedPubKey entry 55823 pid18225 pkcs11_kernel.so.1 key_gen_rsa_by_value entry 55824 pid18225 pkcs11_kernel.so.1 get_rsa_private_key entry 55825 pid18225 pkcs11_kernel.so.1 get_rsa_public_key entry 55826 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_encrypt entry 55827 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_decrypt entry 55828 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_crypt_init_common entry 55829 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_encrypt_common entry 55830 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_decrypt_common entry 55831 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_sign_verify_init_common entry 55832 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_sign_common entry 55833 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_verify_common entry 55834 pid18225 pkcs11_softtoken_extra.so.1 generate_rsa_key entry 55835 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_genkey_pair entry 55836 pid18225 pkcs11_softtoken_extra.so.1 get_rsa_sha1_prefix entry 55837 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_digest_sign_common entry 55838 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_digest_verify_common entry 55839 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_verify_recover entry 55840 pid18225 pkcs11_softtoken_extra.so.1 rsa_pri_to_asn1 entry 55841 pid18225 pkcs11_softtoken_extra.so.1 asn1_to_rsa_pri entry 55842 pid18225 pkcs11_softtoken_extra.so.1 soft_encrypt_rsa_pkcs_encode entry 55843 pid18225 pkcs11_softtoken_extra.so.1 soft_decrypt_rsa_pkcs_decode entry 55844 pid18225 pkcs11_softtoken_extra.so.1 soft_sign_rsa_pkcs_encode entry 55845 pid18225 pkcs11_softtoken_extra.so.1 soft_verify_rsa_pkcs_decode entry 55770 profile tick-1sec

    Read the article

  • Virtual host is not working in Ubuntu 14 VPS using XAMPP 1.8.3

    - by viral4ever
    I am using XAMPP as server in ubuntu 14.04 VPS of digitalocean. I tried to setup virtual hosts. But it is not working and I am getting 403 error of access denied. I changed files too. My files with changes are /opt/lampp/etc/httpd.conf # # This is the main Apache HTTP server configuration file. It contains the # configuration directives that give the server its instructions. # See <URL:http://httpd.apache.org/docs/trunk/> for detailed information. # In particular, see # <URL:http://httpd.apache.org/docs/trunk/mod/directives.html> # for a discussion of each configuration directive. # # Do NOT simply read the instructions in here without understanding # what they do. They're here only as hints or reminders. If you are unsure # consult the online docs. You have been warned. # # Configuration and logfile names: If the filenames you specify for many # of the server's control files begin with "/" (or "drive:/" for Win32), the # server will use that explicit path. If the filenames do *not* begin # with "/", the value of ServerRoot is prepended -- so 'log/access_log' # with ServerRoot set to '/www' will be interpreted by the # server as '/www/log/access_log', where as '/log/access_log' will be # interpreted as '/log/access_log'. # # ServerRoot: The top of the directory tree under which the server's # configuration, error, and log files are kept. # # Do not add a slash at the end of the directory path. If you point # ServerRoot at a non-local disk, be sure to specify a local disk on the # Mutex directive, if file-based mutexes are used. If you wish to share the # same ServerRoot for multiple httpd daemons, you will need to change at # least PidFile. # ServerRoot "/opt/lampp" # # Mutex: Allows you to set the mutex mechanism and mutex file directory # for individual mutexes, or change the global defaults # # Uncomment and change the directory if mutexes are file-based and the default # mutex file directory is not on a local disk or is not appropriate for some # other reason. # # Mutex default:logs # # Listen: Allows you to bind Apache to specific IP addresses and/or # ports, instead of the default. See also the <VirtualHost> # directive. # # Change this to Listen on specific IP addresses as shown below to # prevent Apache from glomming onto all bound IP addresses. # #Listen 12.34.56.78:80 Listen 80 # # Dynamic Shared Object (DSO) Support # # To be able to use the functionality of a module which was built as a DSO you # have to place corresponding `LoadModule' lines at this location so the # directives contained in it are actually available _before_ they are used. # Statically compiled modules (those listed by `httpd -l') do not need # to be loaded here. # # Example: # LoadModule foo_module modules/mod_foo.so # LoadModule authn_file_module modules/mod_authn_file.so LoadModule authn_dbm_module modules/mod_authn_dbm.so LoadModule authn_anon_module modules/mod_authn_anon.so LoadModule authn_dbd_module modules/mod_authn_dbd.so LoadModule authn_socache_module modules/mod_authn_socache.so LoadModule authn_core_module modules/mod_authn_core.so LoadModule authz_host_module modules/mod_authz_host.so LoadModule authz_groupfile_module modules/mod_authz_groupfile.so LoadModule authz_user_module modules/mod_authz_user.so LoadModule authz_dbm_module modules/mod_authz_dbm.so LoadModule authz_owner_module modules/mod_authz_owner.so LoadModule authz_dbd_module modules/mod_authz_dbd.so LoadModule authz_core_module modules/mod_authz_core.so LoadModule authnz_ldap_module modules/mod_authnz_ldap.so LoadModule access_compat_module modules/mod_access_compat.so LoadModule auth_basic_module modules/mod_auth_basic.so LoadModule auth_form_module modules/mod_auth_form.so LoadModule auth_digest_module modules/mod_auth_digest.so LoadModule allowmethods_module modules/mod_allowmethods.so LoadModule file_cache_module modules/mod_file_cache.so LoadModule cache_module modules/mod_cache.so LoadModule cache_disk_module modules/mod_cache_disk.so LoadModule socache_shmcb_module modules/mod_socache_shmcb.so LoadModule socache_dbm_module modules/mod_socache_dbm.so LoadModule socache_memcache_module modules/mod_socache_memcache.so LoadModule dbd_module modules/mod_dbd.so LoadModule bucketeer_module modules/mod_bucketeer.so LoadModule dumpio_module modules/mod_dumpio.so LoadModule echo_module modules/mod_echo.so LoadModule case_filter_module modules/mod_case_filter.so LoadModule case_filter_in_module modules/mod_case_filter_in.so LoadModule buffer_module modules/mod_buffer.so LoadModule ratelimit_module modules/mod_ratelimit.so LoadModule reqtimeout_module modules/mod_reqtimeout.so LoadModule ext_filter_module modules/mod_ext_filter.so LoadModule request_module modules/mod_request.so LoadModule include_module modules/mod_include.so LoadModule filter_module modules/mod_filter.so LoadModule substitute_module modules/mod_substitute.so LoadModule sed_module modules/mod_sed.so LoadModule charset_lite_module modules/mod_charset_lite.so LoadModule deflate_module modules/mod_deflate.so LoadModule mime_module modules/mod_mime.so LoadModule ldap_module modules/mod_ldap.so LoadModule log_config_module modules/mod_log_config.so LoadModule log_debug_module modules/mod_log_debug.so LoadModule logio_module modules/mod_logio.so LoadModule env_module modules/mod_env.so LoadModule mime_magic_module modules/mod_mime_magic.so LoadModule cern_meta_module modules/mod_cern_meta.so LoadModule expires_module modules/mod_expires.so LoadModule headers_module modules/mod_headers.so LoadModule usertrack_module modules/mod_usertrack.so LoadModule unique_id_module modules/mod_unique_id.so LoadModule setenvif_module modules/mod_setenvif.so LoadModule version_module modules/mod_version.so LoadModule remoteip_module modules/mod_remoteip.so LoadModule proxy_module modules/mod_proxy.so LoadModule proxy_connect_module modules/mod_proxy_connect.so LoadModule proxy_ftp_module modules/mod_proxy_ftp.so LoadModule proxy_http_module modules/mod_proxy_http.so LoadModule proxy_fcgi_module modules/mod_proxy_fcgi.so LoadModule proxy_scgi_module modules/mod_proxy_scgi.so LoadModule proxy_ajp_module modules/mod_proxy_ajp.so LoadModule proxy_balancer_module modules/mod_proxy_balancer.so LoadModule proxy_express_module modules/mod_proxy_express.so LoadModule session_module modules/mod_session.so LoadModule session_cookie_module modules/mod_session_cookie.so LoadModule session_dbd_module modules/mod_session_dbd.so LoadModule slotmem_shm_module modules/mod_slotmem_shm.so LoadModule ssl_module modules/mod_ssl.so LoadModule lbmethod_byrequests_module modules/mod_lbmethod_byrequests.so LoadModule lbmethod_bytraffic_module modules/mod_lbmethod_bytraffic.so LoadModule lbmethod_bybusyness_module modules/mod_lbmethod_bybusyness.so LoadModule lbmethod_heartbeat_module modules/mod_lbmethod_heartbeat.so LoadModule unixd_module modules/mod_unixd.so LoadModule dav_module modules/mod_dav.so LoadModule status_module modules/mod_status.so LoadModule autoindex_module modules/mod_autoindex.so LoadModule info_module modules/mod_info.so LoadModule suexec_module modules/mod_suexec.so LoadModule cgi_module modules/mod_cgi.so LoadModule cgid_module modules/mod_cgid.so LoadModule dav_fs_module modules/mod_dav_fs.so LoadModule vhost_alias_module modules/mod_vhost_alias.so LoadModule negotiation_module modules/mod_negotiation.so LoadModule dir_module modules/mod_dir.so LoadModule actions_module modules/mod_actions.so LoadModule speling_module modules/mod_speling.so LoadModule userdir_module modules/mod_userdir.so LoadModule alias_module modules/mod_alias.so LoadModule rewrite_module modules/mod_rewrite.so <IfDefine JUSTTOMAKEAPXSHAPPY> LoadModule php4_module modules/libphp4.so LoadModule php5_module modules/libphp5.so </IfDefine> <IfModule unixd_module> # # If you wish httpd to run as a different user or group, you must run # httpd as root initially and it will switch. # # User/Group: The name (or #number) of the user/group to run httpd as. # It is usually good practice to create a dedicated user and group for # running httpd, as with most system services. # User root Group www </IfModule> # 'Main' server configuration # # The directives in this section set up the values used by the 'main' # server, which responds to any requests that aren't handled by a # <VirtualHost> definition. These values also provide defaults for # any <VirtualHost> containers you may define later in the file. # # All of these directives may appear inside <VirtualHost> containers, # in which case these default settings will be overridden for the # virtual host being defined. # # # ServerAdmin: Your address, where problems with the server should be # e-mailed. This address appears on some server-generated pages, such # as error documents. e.g. [email protected] # ServerAdmin [email protected] # # ServerName gives the name and port that the server uses to identify itself. # This can often be determined automatically, but we recommend you specify # it explicitly to prevent problems during startup. # # If your host doesn't have a registered DNS name, enter its IP address here. # #ServerName www.example.com:@@Port@@ # XAMPP ServerName localhost # # Deny access to the entirety of your server's filesystem. You must # explicitly permit access to web content directories in other # <Directory> blocks below. # <Directory /> AllowOverride none Require all denied </Directory> # # Note that from this point forward you must specifically allow # particular features to be enabled - so if something's not working as # you might expect, make sure that you have specifically enabled it # below. # # # DocumentRoot: The directory out of which you will serve your # documents. By default, all requests are taken from this directory, but # symbolic links and aliases may be used to point to other locations. # DocumentRoot "/opt/lampp/htdocs" <Directory "/opt/lampp/htdocs"> # # Possible values for the Options directive are "None", "All", # or any combination of: # Indexes Includes FollowSymLinks SymLinksifOwnerMatch ExecCGI MultiViews # # Note that "MultiViews" must be named *explicitly* --- "Options All" # doesn't give it to you. # # The Options directive is both complicated and important. Please see # http://httpd.apache.org/docs/trunk/mod/core.html#options # for more information. # #Options Indexes FollowSymLinks # XAMPP Options Indexes FollowSymLinks ExecCGI Includes # # AllowOverride controls what directives may be placed in .htaccess files. # It can be "All", "None", or any combination of the keywords: # Options FileInfo AuthConfig Limit # #AllowOverride None # since XAMPP 1.4: AllowOverride All # # Controls who can get stuff from this server. # Require all granted </Directory> # # DirectoryIndex: sets the file that Apache will serve if a directory # is requested. # <IfModule dir_module> #DirectoryIndex index.html # XAMPP DirectoryIndex index.html index.html.var index.php index.php3 index.php4 </IfModule> # # The following lines prevent .htaccess and .htpasswd files from being # viewed by Web clients. # <Files ".ht*"> Require all denied </Files> # # ErrorLog: The location of the error log file. # If you do not specify an ErrorLog directive within a <VirtualHost> # container, error messages relating to that virtual host will be # logged here. If you *do* define an error logfile for a <VirtualHost> # container, that host's errors will be logged there and not here. # ErrorLog "logs/error_log" # # LogLevel: Control the number of messages logged to the error_log. # Possible values include: debug, info, notice, warn, error, crit, # alert, emerg. # LogLevel warn <IfModule log_config_module> # # The following directives define some format nicknames for use with # a CustomLog directive (see below). # LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined LogFormat "%h %l %u %t \"%r\" %>s %b" common <IfModule logio_module> # You need to enable mod_logio.c to use %I and %O LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\" %I %O" combinedio </IfModule> # # The location and format of the access logfile (Common Logfile Format). # If you do not define any access logfiles within a <VirtualHost> # container, they will be logged here. Contrariwise, if you *do* # define per-<VirtualHost> access logfiles, transactions will be # logged therein and *not* in this file. # CustomLog "logs/access_log" common # # If you prefer a logfile with access, agent, and referer information # (Combined Logfile Format) you can use the following directive. # #CustomLog "logs/access_log" combined </IfModule> <IfModule alias_module> # # Redirect: Allows you to tell clients about documents that used to # exist in your server's namespace, but do not anymore. The client # will make a new request for the document at its new location. # Example: # Redirect permanent /foo http://www.example.com/bar # # Alias: Maps web paths into filesystem paths and is used to # access content that does not live under the DocumentRoot. # Example: # Alias /webpath /full/filesystem/path # # If you include a trailing / on /webpath then the server will # require it to be present in the URL. You will also likely # need to provide a <Directory> section to allow access to # the filesystem path. # # ScriptAlias: This controls which directories contain server scripts. # ScriptAliases are essentially the same as Aliases, except that # documents in the target directory are treated as applications and # run by the server when requested rather than as documents sent to the # client. The same rules about trailing "/" apply to ScriptAlias # directives as to Alias. # ScriptAlias /cgi-bin/ "/opt/lampp/cgi-bin/" </IfModule> <IfModule cgid_module> # # ScriptSock: On threaded servers, designate the path to the UNIX # socket used to communicate with the CGI daemon of mod_cgid. # #Scriptsock logs/cgisock </IfModule> # # "/opt/lampp/cgi-bin" should be changed to whatever your ScriptAliased # CGI directory exists, if you have that configured. # <Directory "/opt/lampp/cgi-bin"> AllowOverride None Options None Require all granted </Directory> <IfModule mime_module> # # TypesConfig points to the file containing the list of mappings from # filename extension to MIME-type. # TypesConfig etc/mime.types # # AddType allows you to add to or override the MIME configuration # file specified in TypesConfig for specific file types. # #AddType application/x-gzip .tgz # # AddEncoding allows you to have certain browsers uncompress # information on the fly. Note: Not all browsers support this. # #AddEncoding x-compress .Z #AddEncoding x-gzip .gz .tgz # # If the AddEncoding directives above are commented-out, then you # probably should define those extensions to indicate media types: # AddType application/x-compress .Z AddType application/x-gzip .gz .tgz # # AddHandler allows you to map certain file extensions to "handlers": # actions unrelated to filetype. These can be either built into the server # or added with the Action directive (see below) # # To use CGI scripts outside of ScriptAliased directories: # (You will also need to add "ExecCGI" to the "Options" directive.) # #AddHandler cgi-script .cgi # XAMPP, since LAMPP 0.9.8: AddHandler cgi-script .cgi .pl # For type maps (negotiated resources): #AddHandler type-map var # # Filters allow you to process content before it is sent to the client. # # To parse .shtml files for server-side includes (SSI): # (You will also need to add "Includes" to the "Options" directive.) # # XAMPP AddType text/html .shtml AddOutputFilter INCLUDES .shtml </IfModule> # # The mod_mime_magic module allows the server to use various hints from the # contents of the file itself to determine its type. The MIMEMagicFile # directive tells the module where the hint definitions are located. # #MIMEMagicFile etc/magic # # Customizable error responses come in three flavors: # 1) plain text 2) local redirects 3) external redirects # # Some examples: #ErrorDocument 500 "The server made a boo boo." #ErrorDocument 404 /missing.html #ErrorDocument 404 "/cgi-bin/missing_handler.pl" #ErrorDocument 402 http://www.example.com/subscription_info.html # # # MaxRanges: Maximum number of Ranges in a request before # returning the entire resource, or one of the special # values 'default', 'none' or 'unlimited'. # Default setting is to accept 200 Ranges. #MaxRanges unlimited # # EnableMMAP and EnableSendfile: On systems that support it, # memory-mapping or the sendfile syscall may be used to deliver # files. This usually improves server performance, but must # be turned off when serving from networked-mounted # filesystems or if support for these functions is otherwise # broken on your system. # Defaults: EnableMMAP On, EnableSendfile Off # EnableMMAP off EnableSendfile off # Supplemental configuration # # The configuration files in the etc/extra/ directory can be # included to add extra features or to modify the default configuration of # the server, or you may simply copy their contents here and change as # necessary. # Server-pool management (MPM specific) #Include etc/extra/httpd-mpm.conf # Multi-language error messages Include etc/extra/httpd-multilang-errordoc.conf # Fancy directory listings Include etc/extra/httpd-autoindex.conf # Language settings #Include etc/extra/httpd-languages.conf # User home directories #Include etc/extra/httpd-userdir.conf # Real-time info on requests and configuration #Include etc/extra/httpd-info.conf # Virtual hosts Include etc/extra/httpd-vhosts.conf # Local access to the Apache HTTP Server Manual #Include etc/extra/httpd-manual.conf # Distributed authoring and versioning (WebDAV) #Include etc/extra/httpd-dav.conf # Various default settings Include etc/extra/httpd-default.conf # Configure mod_proxy_html to understand HTML4/XHTML1 <IfModule proxy_html_module> Include etc/extra/proxy-html.conf </IfModule> # Secure (SSL/TLS) connections <IfModule ssl_module> # XAMPP <IfDefine SSL> Include etc/extra/httpd-ssl.conf </IfDefine> </IfModule> # # Note: The following must must be present to support # starting without SSL on platforms with no /dev/random equivalent # but a statically compiled-in mod_ssl. # <IfModule ssl_module> SSLRandomSeed startup builtin SSLRandomSeed connect builtin </IfModule> # XAMPP Include etc/extra/httpd-xampp.conf Include "/opt/lampp/apache2/conf/httpd.conf" I used command shown in this example. I used below lines to change and add group Add group "groupadd www" Add user to group "usermod -aG www root" Change htdocs group "chgrp -R www /opt/lampp/htdocs" Change sitedir group "chgrp -R www /opt/lampp/htdocs/mysite" Change htdocs chmod "chmod 2775 /opt/lampp/htdocs" Change sitedir chmod "chmod 2775 /opt/lampp/htdocs/mysite" And then I changed my vhosts.conf file # Virtual Hosts # # Required modules: mod_log_config # If you want to maintain multiple domains/hostnames on your # machine you can setup VirtualHost containers for them. Most configurations # use only name-based virtual hosts so the server doesn't need to worry about # IP addresses. This is indicated by the asterisks in the directives below. # # Please see the documentation at # <URL:http://httpd.apache.org/docs/2.4/vhosts/> # for further details before you try to setup virtual hosts. # # You may use the command line option '-S' to verify your virtual host # configuration. # # VirtualHost example: # Almost any Apache directive may go into a VirtualHost container. # The first VirtualHost section is used for all requests that do not # match a ServerName or ServerAlias in any <VirtualHost> block. # <VirtualHost *:80> ServerAdmin [email protected] DocumentRoot "/opt/lampp/docs/dummy-host.example.com" ServerName dummy-host.example.com ServerAlias www.dummy-host.example.com ErrorLog "logs/dummy-host.example.com-error_log" CustomLog "logs/dummy-host.example.com-access_log" common </VirtualHost> <VirtualHost *:80> ServerAdmin [email protected] DocumentRoot "/opt/lampp/docs/dummy-host2.example.com" ServerName dummy-host2.example.com ErrorLog "logs/dummy-host2.example.com-error_log" CustomLog "logs/dummy-host2.example.com-access_log" common </VirtualHost> NameVirtualHost * <VirtualHost *> ServerAdmin [email protected] DocumentRoot "/opt/lampp/htdocs/mysite" ServerName mysite.com ServerAlias mysite.com ErrorLog "/opt/lampp/htdocs/mysite/errorlogs" CustomLog "/opt/lampp/htdocs/mysite/customlog" common <Directory "/opt/lampp/htdocs/mysite"> Options Indexes FollowSymLinks Includes ExecCGI AllowOverride All Order Allow,Deny Allow from all Require all granted </Directory> </VirtualHost> but still its not working and I am getting 403 error on my ip and domain however I can access phpmyadmin. If anyone can help me, please help me.

    Read the article

  • Can't install graphic drivers in 12.04

    - by yinon
    The driver is ATI/AMD proprietary FGLRX graphics driver. After clicking Activate, it asks for my password and starts downloading. Then it shows an error message: 2012-10-03 16:16:04,227 DEBUG: updating <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> 2012-10-03 16:16:06,172 DEBUG: reading modalias file /lib/modules/3.2.0-29-generic-pae/modules.alias 2012-10-03 16:16:06,383 DEBUG: reading modalias file /usr/share/jockey/modaliases/b43 2012-10-03 16:16:06,386 DEBUG: reading modalias file /usr/share/jockey/modaliases/disable-upstream-nvidia 2012-10-03 16:16:06,456 DEBUG: loading custom handler /usr/share/jockey/handlers/pvr-omap4.py 2012-10-03 16:16:06,506 WARNING: modinfo for module omapdrm_pvr failed: ERROR: modinfo: could not find module omapdrm_pvr 2012-10-03 16:16:06,509 DEBUG: Instantiated Handler subclass __builtin__.PVROmap4Driver from name PVROmap4Driver 2012-10-03 16:16:06,682 DEBUG: PowerVR SGX proprietary graphics driver for OMAP 4 not available 2012-10-03 16:16:06,682 DEBUG: loading custom handler /usr/share/jockey/handlers/cdv.py 2012-10-03 16:16:06,727 WARNING: modinfo for module cedarview_gfx failed: ERROR: modinfo: could not find module cedarview_gfx 2012-10-03 16:16:06,728 DEBUG: Instantiated Handler subclass __builtin__.CdvDriver from name CdvDriver 2012-10-03 16:16:06,728 DEBUG: cdv.available: falling back to default 2012-10-03 16:16:06,772 DEBUG: Intel Cedarview graphics driver availability undetermined, adding to pool 2012-10-03 16:16:06,772 DEBUG: loading custom handler /usr/share/jockey/handlers/vmware-client.py 2012-10-03 16:16:06,781 WARNING: modinfo for module vmxnet failed: ERROR: modinfo: could not find module vmxnet 2012-10-03 16:16:06,781 DEBUG: Instantiated Handler subclass __builtin__.VmwareClientHandler from name VmwareClientHandler 2012-10-03 16:16:06,795 DEBUG: VMWare Client Tools availability undetermined, adding to pool 2012-10-03 16:16:06,796 DEBUG: loading custom handler /usr/share/jockey/handlers/fglrx.py 2012-10-03 16:16:06,801 WARNING: modinfo for module fglrx_updates failed: ERROR: modinfo: could not find module fglrx_updates 2012-10-03 16:16:06,805 DEBUG: Instantiated Handler subclass __builtin__.FglrxDriverUpdate from name FglrxDriverUpdate 2012-10-03 16:16:06,805 DEBUG: fglrx.available: falling back to default 2012-10-03 16:16:06,833 DEBUG: ATI/AMD proprietary FGLRX graphics driver (post-release updates) availability undetermined, adding to pool 2012-10-03 16:16:06,836 WARNING: modinfo for module fglrx failed: ERROR: modinfo: could not find module fglrx 2012-10-03 16:16:06,840 DEBUG: Instantiated Handler subclass __builtin__.FglrxDriver from name FglrxDriver 2012-10-03 16:16:06,840 DEBUG: fglrx.available: falling back to default 2012-10-03 16:16:06,873 DEBUG: ATI/AMD proprietary FGLRX graphics driver availability undetermined, adding to pool 2012-10-03 16:16:06,873 DEBUG: loading custom handler /usr/share/jockey/handlers/dvb_usb_firmware.py 2012-10-03 16:16:06,925 DEBUG: Instantiated Handler subclass __builtin__.DvbUsbFirmwareHandler from name DvbUsbFirmwareHandler 2012-10-03 16:16:06,926 DEBUG: Firmware for DVB cards not available 2012-10-03 16:16:06,926 DEBUG: loading custom handler /usr/share/jockey/handlers/nvidia.py 2012-10-03 16:16:06,961 WARNING: modinfo for module nvidia_96 failed: ERROR: modinfo: could not find module nvidia_96 2012-10-03 16:16:06,967 DEBUG: Instantiated Handler subclass __builtin__.NvidiaDriver96 from name NvidiaDriver96 2012-10-03 16:16:06,968 DEBUG: nvidia.available: falling back to default 2012-10-03 16:16:06,980 DEBUG: XorgDriverHandler(nvidia_96, nvidia-96, None): Disabling as package video ABI xorg-video-abi-10 does not match X.org video ABI xorg-video-abi-11 2012-10-03 16:16:06,980 DEBUG: NVIDIA accelerated graphics driver not available 2012-10-03 16:16:06,983 WARNING: modinfo for module nvidia_current failed: ERROR: modinfo: could not find module nvidia_current 2012-10-03 16:16:06,987 DEBUG: Instantiated Handler subclass __builtin__.NvidiaDriverCurrent from name NvidiaDriverCurrent 2012-10-03 16:16:06,987 DEBUG: nvidia.available: falling back to default 2012-10-03 16:16:07,015 DEBUG: NVIDIA accelerated graphics driver availability undetermined, adding to pool 2012-10-03 16:16:07,018 WARNING: modinfo for module nvidia_current_updates failed: ERROR: modinfo: could not find module nvidia_current_updates 2012-10-03 16:16:07,021 DEBUG: Instantiated Handler subclass __builtin__.NvidiaDriverCurrentUpdates from name NvidiaDriverCurrentUpdates 2012-10-03 16:16:07,022 DEBUG: nvidia.available: falling back to default 2012-10-03 16:16:07,066 DEBUG: NVIDIA accelerated graphics driver (post-release updates) availability undetermined, adding to pool 2012-10-03 16:16:07,069 WARNING: modinfo for module nvidia_173_updates failed: ERROR: modinfo: could not find module nvidia_173_updates 2012-10-03 16:16:07,072 DEBUG: Instantiated Handler subclass __builtin__.NvidiaDriver173Updates from name NvidiaDriver173Updates 2012-10-03 16:16:07,073 DEBUG: nvidia.available: falling back to default 2012-10-03 16:16:07,105 DEBUG: NVIDIA accelerated graphics driver (post-release updates) availability undetermined, adding to pool 2012-10-03 16:16:07,112 WARNING: modinfo for module nvidia_173 failed: ERROR: modinfo: could not find module nvidia_173 2012-10-03 16:16:07,118 DEBUG: Instantiated Handler subclass __builtin__.NvidiaDriver173 from name NvidiaDriver173 2012-10-03 16:16:07,119 DEBUG: nvidia.available: falling back to default 2012-10-03 16:16:07,159 DEBUG: NVIDIA accelerated graphics driver availability undetermined, adding to pool 2012-10-03 16:16:07,166 WARNING: modinfo for module nvidia_96_updates failed: ERROR: modinfo: could not find module nvidia_96_updates 2012-10-03 16:16:07,171 DEBUG: Instantiated Handler subclass __builtin__.NvidiaDriver96Updates from name NvidiaDriver96Updates 2012-10-03 16:16:07,171 DEBUG: nvidia.available: falling back to default 2012-10-03 16:16:07,188 DEBUG: XorgDriverHandler(nvidia_96_updates, nvidia-96-updates, None): Disabling as package video ABI xorg-video-abi-10 does not match X.org video ABI xorg-video-abi-11 2012-10-03 16:16:07,188 DEBUG: NVIDIA accelerated graphics driver (post-release updates) not available 2012-10-03 16:16:07,188 DEBUG: loading custom handler /usr/share/jockey/handlers/madwifi.py 2012-10-03 16:16:07,195 WARNING: modinfo for module ath_pci failed: ERROR: modinfo: could not find module ath_pci 2012-10-03 16:16:07,195 DEBUG: Instantiated Handler subclass __builtin__.MadwifiHandler from name MadwifiHandler 2012-10-03 16:16:07,196 DEBUG: Alternate Atheros "madwifi" driver availability undetermined, adding to pool 2012-10-03 16:16:07,196 DEBUG: loading custom handler /usr/share/jockey/handlers/sl_modem.py 2012-10-03 16:16:07,213 DEBUG: Instantiated Handler subclass __builtin__.SlModem from name SlModem 2012-10-03 16:16:07,234 DEBUG: Software modem not available 2012-10-03 16:16:07,234 DEBUG: loading custom handler /usr/share/jockey/handlers/broadcom_wl.py 2012-10-03 16:16:07,239 WARNING: modinfo for module wl failed: ERROR: modinfo: could not find module wl 2012-10-03 16:16:07,277 DEBUG: Instantiated Handler subclass __builtin__.BroadcomWLHandler from name BroadcomWLHandler 2012-10-03 16:16:07,277 DEBUG: Broadcom STA wireless driver availability undetermined, adding to pool 2012-10-03 16:16:07,278 DEBUG: all custom handlers loaded 2012-10-03 16:16:07,278 DEBUG: querying driver db <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> about HardwareID('modalias', 'pci:v00008086d000027D8sv00001043sd000082EAbc04sc03i00') 2012-10-03 16:16:07,568 DEBUG: searching handler for driver ID {'driver_type': 'kernel_module', 'kernel_module': 'snd_hda_intel'} 2012-10-03 16:16:07,699 DEBUG: no corresponding handler available for {'driver_type': 'kernel_module', 'kernel_module': 'snd_hda_intel', 'jockey_handler': 'KernelModuleHandler'} 2012-10-03 16:16:07,699 DEBUG: searching handler for driver ID {'driver_type': 'kernel_module', 'kernel_module': 'snd_hda_intel'} 2012-10-03 16:16:07,699 DEBUG: no corresponding handler available for {'driver_type': 'kernel_module', 'kernel_module': 'snd_hda_intel', 'jockey_handler': 'KernelModuleHandler'} 2012-10-03 16:16:07,699 DEBUG: querying driver db <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> about HardwareID('modalias', 'input:b0000v0000p0000e0000-e0,5,kramlsfw6,') 2012-10-03 16:16:07,704 DEBUG: searching handler for driver ID {'driver_type': 'kernel_module', 'kernel_module': 'evbug'} 2012-10-03 16:16:07,704 DEBUG: no corresponding handler available for {'driver_type': 'kernel_module', 'kernel_module': 'evbug', 'jockey_handler': 'KernelModuleHandler'} 2012-10-03 16:16:07,704 DEBUG: querying driver db <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> about HardwareID('modalias', 'pci:v00008086d000027DAsv00001043sd00008179bc0Csc05i00') 2012-10-03 16:16:07,707 DEBUG: searching handler for driver ID {'driver_type': 'kernel_module', 'kernel_module': 'i2c_i801'} 2012-10-03 16:16:07,707 DEBUG: no corresponding handler available for {'driver_type': 'kernel_module', 'kernel_module': 'i2c_i801', 'jockey_handler': 'KernelModuleHandler'} 2012-10-03 16:16:07,707 DEBUG: querying driver db <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> about HardwareID('modalias', 'acpi:PNP0C01:') 2012-10-03 16:16:07,707 DEBUG: querying driver db <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> about HardwareID('modalias', 'acpi:PNP0B00:') 2012-10-03 16:16:07,707 DEBUG: querying driver db <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> about HardwareID('modalias', 'pci:v00001969d00001026sv00001043sd00008304bc02sc00i00') 2012-10-03 16:16:07,710 DEBUG: searching handler for driver ID {'driver_type': 'kernel_module', 'kernel_module': 'atl1e'} 2012-10-03 16:16:07,710 DEBUG: no corresponding handler available for {'driver_type': 'kernel_module', 'kernel_module': 'atl1e', 'jockey_handler': 'KernelModuleHandler'} 2012-10-03 16:16:07,710 DEBUG: querying driver db <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> about HardwareID('modalias', 'input:b0003v04F2p0816e0111-e0,1,4,11,14,k71,72,73,74,75,77,79,7A,7B,7C,7D,7E,7F,80,81,82,83,84,85,86,87,88,89,8A,8C,8E,96,98,9E,9F,A1,A3,A4,A5,A6,AD,B0,B1,B2,B3,B4,B7,B8,B9,BA,BB,BC,BD,BE,BF,C0,C1,C2,F0,ram4,l0,1,2,sfw') 2012-10-03 16:16:07,711 DEBUG: searching handler for driver ID {'driver_type': 'kernel_module', 'kernel_module': 'evbug'} 2012-10-03 16:16:07,711 DEBUG: no corresponding handler available for {'driver_type': 'kernel_module', 'kernel_module': 'evbug', 'jockey_handler': 'KernelModuleHandler'} 2012-10-03 16:16:07,711 DEBUG: searching handler for driver ID {'driver_type': 'kernel_module', 'kernel_module': 'mac_hid'} 2012-10-03 16:16:07,711 DEBUG: no corresponding handler available for {'driver_type': 'kernel_module', 'kernel_module': 'mac_hid', 'jockey_handler': 'KernelModuleHandler'} 2012-10-03 16:16:07,711 DEBUG: querying driver db <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> about HardwareID('modalias', 'platform:pcspkr') 2012-10-03 16:16:07,711 DEBUG: searching handler for driver ID {'driver_type': 'kernel_module', 'kernel_module': 'pcspkr'} 2012-10-03 16:16:07,711 DEBUG: no corresponding handler available for {'driver_type': 'kernel_module', 'kernel_module': 'pcspkr', 'jockey_handler': 'KernelModuleHandler'} 2012-10-03 16:16:07,712 DEBUG: searching handler for driver ID {'driver_type': 'kernel_module', 'kernel_module': 'snd_pcsp'} 2012-10-03 16:16:07,712 DEBUG: no corresponding handler available for {'driver_type': 'kernel_module', 'kernel_module': 'snd_pcsp', 'jockey_handler': 'KernelModuleHandler'} 2012-10-03 16:16:07,712 DEBUG: querying driver db <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> about HardwareID('modalias', 'usb:v1D6Bp0001d0302dc09dsc00dp00ic09isc00ip00') 2012-10-03 16:16:07,724 DEBUG: querying driver db <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> about HardwareID('modalias', 'input:b0019v0000p0001e0000-e0,1,k74,ramlsfw') 2012-10-03 16:16:07,724 DEBUG: searching handler for driver ID {'driver_type': 'kernel_module', 'kernel_module': 'evbug'} 2012-10-03 16:16:07,724 DEBUG: no corresponding handler available for {'driver_type': 'kernel_module', 'kernel_module': 'evbug', 'jockey_handler': 'KernelModuleHandler'} 2012-10-03 16:16:07,724 DEBUG: searching handler for driver ID {'driver_type': 'kernel_module', 'kernel_module': 'mac_hid'} 2012-10-03 16:16:07,724 DEBUG: no corresponding handler available for {'driver_type': 'kernel_module', 'kernel_module': 'mac_hid', 'jockey_handler': 'KernelModuleHandler'} 2012-10-03 16:16:07,724 DEBUG: querying driver db <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> about HardwareID('modalias', 'acpi:PNP0C04:') 2012-10-03 16:16:07,724 DEBUG: querying driver db <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> about HardwareID('modalias', 'platform:eisa') 2012-10-03 16:16:07,725 DEBUG: querying driver db <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> about HardwareID('modalias', 'pci:v00008086d000027CCsv00001043sd00008179bc0Csc03i20') 2012-10-03 16:16:07,728 DEBUG: querying driver db <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> about HardwareID('modalias', 'platform:Fixed MDIO bus') 2012-10-03 16:16:07,728 DEBUG: querying driver db <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> about HardwareID('modalias', 'pci:v00008086d000029C0sv00001043sd000082B0bc06sc00i00') 2012-10-03 16:16:07,731 DEBUG: querying driver db <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> about HardwareID('modalias', 'usb:v045Ep0766d0101dcEFdsc02dp01ic01isc01ip00') 2012-10-03 16:16:07,777 DEBUG: searching handler for driver ID {'driver_type': 'kernel_module', 'kernel_module': 'snd_usb_audio'} 2012-10-03 16:16:07,777 DEBUG: no corresponding handler available for {'driver_type': 'kernel_module', 'kernel_module': 'snd_usb_audio', 'jockey_handler': 'KernelModuleHandler'} 2012-10-03 16:16:07,777 DEBUG: querying driver db <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> about HardwareID('modalias', 'acpi:PNP0F03:PNP0F13:') 2012-10-03 16:16:07,777 DEBUG: querying driver db <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> about HardwareID('modalias', 'acpi:PNP0000:') 2012-10-03 16:16:07,777 DEBUG: querying driver db <jockey.detection.LocalKernelModulesDriverDB instance at 0xb7231a0c> about HardwareID('modalias', 'pci:v00001002d000095C5sv0000174Bsd0000E400bc03sc00i00') 2012-10-03 16:16:08,072 DEBUG: searching handler for driver ID {'driver_type': 'kernel_module', 'kernel_module': 'fglrx_updates', 'package': 'fglrx-updates'} 2012-10-03 16:16:08,133 DEBUG: fglrx.enabled(fglrx_updates): target_alt None current_alt /usr/lib/i386-linux-gnu/mesa/ld.so.conf other target alt None other current alt None 2012-10-03 16:16:08,134 DEBUG: fglrx_updates is not the alternative in use 2012-10-03 16:16:08,072 DEBUG: found match in handler pool xorg:fglrx_updates([FglrxDriverUpdate, nonfree, disabled] ATI/AMD proprietary FGLRX graphics driver (post-release updates)) 2012-10-03 16:16:08,136 WARNING: modinfo for module fglrx_updates failed: ERROR: modinfo: could not find module fglrx_updates 2012-10-03 16:16:08,147 DEBUG: fglrx.available: falling back to default 2012-10-03 16:16:08,173 DEBUG: fglrx.enabled(fglrx_updates): target_alt None current_alt /usr/lib/i386-linux-gnu/mesa/ld.so.conf other target alt None other current alt None 2012-10-03 16:16:08,173 DEBUG: fglrx_updates is not the alternative in use 2012-10-03 16:16:08,162 DEBUG: got handler xorg:fglrx_updates([FglrxDriverUpdate, nonfree, disabled] ATI/AMD proprietary FGLRX graphics driver (post-release updates)) 2012-10-03 16:16:08,173 DEBUG: searching handler for driver ID {'driver_type': 'kernel_module', 'kernel_module': 'fglrx', 'package': 'fglrx'} 2012-10-03 16:16:08,184 DEBUG: fglrx.enabled(fglrx): target_alt None current_alt /usr/lib/i386-linux-gnu/mesa/ld.so.conf other target alt None other current alt None 2012-10-03 16:16:08,184 DEBUG: fglrx is not the alternative in use 2012-10-03 16:16:08,173 DEBUG: found match in handler pool xorg:fglrx([FglrxDriver, nonfree, disabled] ATI/AMD proprietary FGLRX graphics driver) 2012-10-03 16:16:08,187 WARNING: modinfo for module fglrx failed: ERROR: modinfo: could not find module fglrx 2012-10-03 16:16:08,190 DEBUG: fglrx.available: falling back to default 2012-10-03 16:16:08,216 DEBUG: fglrx.enabled(fglrx): target_alt None current_alt /usr/lib/i386-linux-gnu/mesa/ld.so.conf other target alt None other current alt None . . . 2012-10-03 16:18:10,552 DEBUG: install progress initramfs-tools 62.500000 2012-10-03 16:18:22,249 DEBUG: install progress libc-bin 62.500000 2012-10-03 16:18:23,251 DEBUG: Selecting previously unselected package dkms. (Reading database ... 142496 files and directories currently installed.) Unpacking dkms (from .../dkms_2.2.0.3-1ubuntu3_all.deb) ... Selecting previously unselected package fakeroot. Unpacking fakeroot (from .../fakeroot_1.18.2-1_i386.deb) ... Selecting previously unselected package fglrx-updates. Unpacking fglrx-updates (from .../fglrx-updates_2%3a8.960-0ubuntu1.1_i386.deb) ... Selecting previously unselected package fglrx-amdcccle-updates. Unpacking fglrx-amdcccle-updates (from .../fglrx-amdcccle-updates_2%3a8.960-0ubuntu1.1_i386.deb) ... Processing triggers for man-db ... Processing triggers for ureadahead ... ureadahead will be reprofiled on next reboot dpkg: error processing libxss1 (--configure): package libxss1 is already installed and configured dpkg: error processing chromium-codecs-ffmpeg (--configure): package chromium-codecs-ffmpeg is already installed and configured dpkg: error processing chromium-browser (--configure): package chromium-browser is already installed and configured dpkg: error processing chromium-browser-l10n (--configure): package chromium-browser-l10n is already installed and configured Setting up dkms (2.2.0.3-1ubuntu3) ... No apport report written because MaxReports is reached already No apport report written because MaxReports is reached already Setting up fakeroot (1.18.2-1) ... update-alternatives: using /usr/bin/fakeroot-sysv to provide /usr/bin/fakeroot (fakeroot) in auto mode. Setting up fglrx-updates (2:8.960-0ubuntu1.1) ... update-alternatives: using /usr/lib/fglrx/ld.so.conf to provide /etc/ld.so.conf.d/i386-linux-gnu_GL.conf (i386-linux-gnu_gl_conf) in auto mode. update-alternatives: warning: skip creation of /etc/OpenCL/vendors/amdocl64.icd because associated file /usr/lib/fglrx/etc/OpenCL/vendors/amdocl64.icd (of link group i386-linux-gnu_gl_conf) doesn't exist. update-alternatives: warning: skip creation of /usr/lib32/libaticalcl.so because associated file /usr/lib32/fglrx/libaticalcl.so (of link group i386-linux-gnu_gl_conf) doesn't exist. update-alternatives: warning: skip creation of /usr/lib32/libaticalrt.so because associated file /usr/lib32/fglrx/libaticalrt.so (of link group i386-linux-gnu_gl_conf) doesn't exist. update-alternatives: using /usr/lib/fglrx/alt_ld.so.conf to provide /etc/ld.so.conf.d/x86_64-linux-gnu_GL.conf (x86_64-linux-gnu_gl_conf) in auto mode. update-initramfs: deferring update (trigger activated) Loading new fglrx-updates-8.960 DKMS files... First Installation: checking all kernels... Building only for 3.2.0-29-generic-pae Building for architecture i686 Building initial module for 3.2.0-29-generic-pae Done. fglrx_updates: Running module version sanity check. - Original module - No original module exists within this kernel - Installation - Installing to /lib/modules/3.2.0-29-generic-pae/updates/dkms/ depmod...... DKMS: install completed. update-initramfs: deferring update (trigger activated) Processing triggers for bamfdaemon ... Rebuilding /usr/share/applications/bamf.index... Setting up fglrx-amdcccle-updates (2:8.960-0ubuntu1.1) ... Processing triggers for initramfs-tools ... update-initramfs: Generating /boot/initrd.img-3.2.0-29-generic-pae Processing triggers for libc-bin ... ldconfig deferred processing now taking place Errors were encountered while processing: libxss1 chromium-codecs-ffmpeg chromium-browser chromium-browser-l10n Error in function: SystemError: E:Sub-process /usr/bin/dpkg returned an error code (1) 2012-10-03 16:18:23,256 ERROR: Package failed to install: Selecting previously unselected package dkms. (Reading database ... 142496 files and directories currently installed.) Unpacking dkms (from .../dkms_2.2.0.3-1ubuntu3_all.deb) ... Selecting previously unselected package fakeroot. Unpacking fakeroot (from .../fakeroot_1.18.2-1_i386.deb) ... Selecting previously unselected package fglrx-updates. Unpacking fglrx-updates (from .../fglrx-updates_2%3a8.960-0ubuntu1.1_i386.deb) ... Selecting previously unselected package fglrx-amdcccle-updates. Unpacking fglrx-amdcccle-updates (from .../fglrx-amdcccle-updates_2%3a8.960-0ubuntu1.1_i386.deb) ... Processing triggers for man-db ... Processing triggers for ureadahead ... ureadahead will be reprofiled on next reboot dpkg: error processing libxss1 (--configure): package libxss1 is already installed and configured dpkg: error processing chromium-codecs-ffmpeg (--configure): package chromium-codecs-ffmpeg is already installed and configured dpkg: error processing chromium-browser (--configure): package chromium-browser is already installed and configured dpkg: error processing chromium-browser-l10n (--configure): package chromium-browser-l10n is already installed and configured Setting up dkms (2.2.0.3-1ubuntu3) ... No apport report written because MaxReports is reached already No apport report written because MaxReports is reached already Setting up fakeroot (1.18.2-1) ... update-alternatives: using /usr/bin/fakeroot-sysv to provide /usr/bin/fakeroot (fakeroot) in auto mode. Setting up fglrx-updates (2:8.960-0ubuntu1.1) ... update-alternatives: using /usr/lib/fglrx/ld.so.conf to provide /etc/ld.so.conf.d/i386-linux-gnu_GL.conf (i386-linux-gnu_gl_conf) in auto mode. update-alternatives: warning: skip creation of /etc/OpenCL/vendors/amdocl64.icd because associated file /usr/lib/fglrx/etc/OpenCL/vendors/amdocl64.icd (of link group i386-linux-gnu_gl_conf) doesn't exist. update-alternatives: warning: skip creation of /usr/lib32/libaticalcl.so because associated file /usr/lib32/fglrx/libaticalcl.so (of link group i386-linux-gnu_gl_conf) doesn't exist. update-alternatives: warning: skip creation of /usr/lib32/libaticalrt.so because associated file /usr/lib32/fglrx/libaticalrt.so (of link group i386-linux-gnu_gl_conf) doesn't exist. update-alternatives: using /usr/lib/fglrx/alt_ld.so.conf to provide /etc/ld.so.conf.d/x86_64-linux-gnu_GL.conf (x86_64-linux-gnu_gl_conf) in auto mode. update-initramfs: deferring update (trigger activated) Loading new fglrx-updates-8.960 DKMS files... First Installation: checking all kernels... Building only for 3.2.0-29-generic-pae Building for architecture i686 Building initial module for 3.2.0-29-generic-pae Done. fglrx_updates: Running module version sanity check. - Original module - No original module exists within this kernel - Installation - Installing to /lib/modules/3.2.0-29-generic-pae/updates/dkms/ depmod...... DKMS: install completed. update-initramfs: deferring update (trigger activated) Processing triggers for bamfdaemon ... Rebuilding /usr/share/applications/bamf.index... Setting up fglrx-amdcccle-updates (2:8.960-0ubuntu1.1) ... Processing triggers for initramfs-tools ... update-initramfs: Generating /boot/initrd.img-3.2.0-29-generic-pae Processing triggers for libc-bin ... ldconfig deferred processing now taking place Errors were encountered while processing: libxss1 chromium-codecs-ffmpeg chromium-browser chromium-browser-l10n Error in function: SystemError: E:Sub-process /usr/bin/dpkg returned an error code (1) 2012-10-03 16:18:23,590 WARNING: /sys/module/fglrx_updates/drivers does not exist, cannot rebind fglrx_updates driver 2012-10-03 16:18:43,601 DEBUG: fglrx.enabled(fglrx_updates): target_alt None current_alt /usr/lib/fglrx/ld.so.conf other target alt None other current alt /usr/lib/fglrx/alt_ld.so.conf 2012-10-03 16:18:43,601 DEBUG: fglrx_updates is not the alternative in use 2012-10-03 16:18:43,617 DEBUG: fglrx.enabled(fglrx_updates): target_alt None current_alt /usr/lib/fglrx/ld.so.conf other target alt None other current alt /usr/lib/fglrx/alt_ld.so.conf 2012-10-03 16:18:43,617 DEBUG: fglrx_updates is not the alternative in use 2012-10-03 16:18:54,143 DEBUG: fglrx.enabled(fglrx_updates): target_alt None current_alt /usr/lib/fglrx/ld.so.conf other target alt None other current alt /usr/lib/fglrx/alt_ld.so.conf 2012-10-03 16:18:54,144 DEBUG: fglrx_updates is not the alternative in use 2012-10-03 16:18:54,154 DEBUG: fglrx.enabled(fglrx_updates): target_alt None current_alt /usr/lib/fglrx/ld.so.conf other target alt None other current alt /usr/lib/fglrx/alt_ld.so.conf 2012-10-03 16:18:54,154 DEBUG: fglrx_updates is not the alternative in use 2012-10-03 16:18:54,182 DEBUG: fglrx.enabled(fglrx): target_alt /usr/lib/fglrx/ld.so.conf current_alt /usr/lib/fglrx/ld.so.conf other target alt /usr/lib/fglrx/alt_ld.so.conf other current alt /usr/lib/fglrx/alt_ld.so.conf 2012-10-03 16:18:54,182 DEBUG: XorgDriverHandler(%s, %s).enabled(): No X.org driver set, not checking 2012-10-03 16:18:54,215 DEBUG: fglrx.enabled(fglrx_updates): target_alt None current_alt /usr/lib/fglrx/ld.so.conf other target alt None other current alt /usr/lib/fglrx/alt_ld.so.conf 2012-10-03 16:18:54,215 DEBUG: fglrx_updates is not the alternative in use 2012-10-03 16:18:54,229 DEBUG: fglrx.enabled(fglrx_updates): target_alt None current_alt /usr/lib/fglrx/ld.so.conf other target alt None other current alt /usr/lib/fglrx/alt_ld.so.conf 2012-10-03 16:18:54,229 DEBUG: fglrx_updates is not the alternative in use 2012-10-03 16:18:54,268 DEBUG: fglrx.enabled(fglrx_updates): target_alt None current_alt /usr/lib/fglrx/ld.so.conf other target alt None other current alt /usr/lib/fglrx/alt_ld.so.conf 2012-10-03 16:18:54,268 DEBUG: fglrx_updates is not the alternative in use 2012-10-03 16:18:54,279 DEBUG: fglrx.enabled(fglrx_updates): target_alt None current_alt /usr/lib/fglrx/ld.so.conf other target alt None other current alt /usr/lib/fglrx/alt_ld.so.conf 2012-10-03 16:18:54,279 DEBUG: fglrx_updates is not the alternative in use 2012-10-03 16:18:54,298 DEBUG: fglrx.enabled(fglrx): target_alt /usr/lib/fglrx/ld.so.conf current_alt /usr/lib/fglrx/ld.so.conf other target alt /usr/lib/fglrx/alt_ld.so.conf other current alt /usr/lib/fglrx/alt_ld.so.conf 2012-10-03 16:18:54,298 DEBUG: XorgDriverHandler(%s, %s).enabled(): No X.org driver set, not checking 2012-10-03 16:18:57,828 DEBUG: Shutting down I don't know how to troubleshoot from looking at the log file, could somebody assist me with this please? You can download the log file at: https://www.dropbox.com/s/a59d2hyabo02q5z/jockey.log

    Read the article

  • iPhone SDK vs. Windows Phone 7 Series SDK Challenge, Part 2: MoveMe

    In this series, I will be taking sample applications from the iPhone SDK and implementing them on Windows Phone 7 Series.  My goal is to do as much of an apples-to-apples comparison as I can.  This series will be written to not only compare and contrast how easy or difficult it is to complete tasks on either platform, how many lines of code, etc., but Id also like it to be a way for iPhone developers to either get started on Windows Phone 7 Series development, or for developers in general to learn the platform. Heres my methodology: Run the iPhone SDK app in the iPhone Simulator to get a feel for what it does and how it works, without looking at the implementation Implement the equivalent functionality on Windows Phone 7 Series using Silverlight. Compare the two implementations based on complexity, functionality, lines of code, number of files, etc. Add some functionality to the Windows Phone 7 Series app that shows off a way to make the scenario more interesting or leverages an aspect of the platform, or uses a better design pattern to implement the functionality. You can download Microsoft Visual Studio 2010 Express for Windows Phone CTP here, and the Expression Blend 4 Beta here. If youre seeing this series for the first time, check out Part 1: Hello World. A note on methodologyin the prior post there was some feedback about lines of code not being a very good metric for this exercise.  I dont really disagree, theres a lot more to this than lines of code but I believe that is a relevant metric, even if its not the ultimate one.  And theres no perfect answer here.  So I am going to continue to report the number of lines of code that I, as a developer would need to write in these apps as a data point, and Ill leave it up to the reader to determine how that fits in with overall complexity, etc.  The first example was so basic that I think it was difficult to talk about in real terms.  I think that as these apps get more complex, the subjective differences in concept count and will be more important.  MoveMe The MoveMe app is the main end-to-end app writing example in the iPhone SDK, called Creating an iPhone Application.  This application demonstrates a few concepts, including handling touch input, how to do animations, and how to do some basic transforms. The behavior of the application is pretty simple.  User touches the button: The button does a throb type animation where it scales up and then back down briefly. User drags the button: After a touch begins, moving the touch point will drag the button around with the touch. User lets go of the button: The button animates back to its original position, but does a few small bounces as it reaches its original point, which makes the app fun and gives it an extra bit of interactivity. Now, how would I write an app that meets this spec for Windows Phone 7 Series, and how hard would it be?  Lets find out!     Implementing the UI Okay, lets build the UI for this application.  In the HelloWorld example, we did all the UI design in Visual Studio and/or by hand in XAML.  In this example, were going to use the Expression Blend 4 Beta. You might be wondering when to use Visual Studio, when to use Blend, and when to do XAML by hand.  Different people will have different takes on this, but heres mine: XAML by hand simple UI that doesnt contain animations, gradients, etc., and or UI that I want to really optimize and craft when I know exactly what I want to do. Visual Studio Basic UI layout, property setting, data binding, etc. Blend Any serious design work needs to be done in Blend, including animations, handling states and transitions, styling and templating, editing resources. As in Part 1, go ahead and fire up Visual Studio 2010 Express for Windows Phone (yes, soon it will take longer to say the name of our products than to start them up!), and create a new Windows Phone Application.  As in Part 1, clear out the XAML from the designer.  An easy way to do this is to just: Click on the design surface Hit Control+A Hit Delete Theres a little bit left over (the Grid.RowDefinitions element), just go ahead and delete that element so were starting with a clean state of only one outer Grid element. To use Blend, we need to save this project.  See, when you create a project with Visual Studio Express, it doesnt commit it to the disk (well, in a place where you can find it, at least) until you actually save the project.  This is handy if youre doing some fooling around, because it doesnt clutter your disk with WindowsPhoneApplication23-like directories.  But its also kind of dangerous, since when you close VS, if you dont save the projectits all gone.  Yes, this has bitten me since I was saving files and didnt remember that, so be careful to save the project/solution via Save All, at least once. So, save and note the location on disk.  Start Expression Blend 4 Beta, and chose File > Open Project/Solution, and load your project.  You should see just about the same thing you saw over in VS: a blank, black designer surface. Now, thinking about this application, we dont really need a button, even though it looks like one.  We never click it.  So were just going to create a visual and use that.  This is also true in the iPhone example above, where the visual is actually not a button either but a jpg image with a nice gradient and round edges.  Well do something simple here that looks pretty good. In Blend, look in the tool pane on the left for the icon that looks like the below (the highlighted one on the left), and hold it down to get the popout menu, and choose Border:    Okay, now draw out a box in the middle of the design surface of about 300x100.  The Properties Pane to the left should show the properties for this item. First, lets make it more visible by giving it a border brush.  Set the BorderBrush to white by clicking BorderBrush and dragging the color selector all the way to the upper right in the palette.  Then, down a bit farther, make the BorderThickness 4 all the way around, and the CornerRadius set to 6. In the Layout section, do the following to Width, Height, Horizontal and Vertical Alignment, and Margin (all 4 margin values): Youll see the outline now is in the middle of the design surface.  Now lets give it a background color.  Above BorderBrush select Background, and click the third tab over: Gradient Brush.  Youll see a gradient slider at the bottom, and if you click the markers, you can edit the gradient stops individually (or add more).  In this case, you can select something you like, but wheres what I chose: Left stop: #BFACCFE2 (I just picked a spot on the palette and set opacity to 75%, no magic here, feel free to fiddle these or just enter these numbers into the hex area and be done with it) Right stop: #FF3E738F Okay, looks pretty good.  Finally set the name of the element in the Name field at the top of the Properties pane to welcome. Now lets add some text.  Just hit T and itll select the TextBlock tool automatically: Now draw out some are inside our welcome visual and type Welcome!, then click on the design surface (to exit text entry mode) and hit V to go back into selection mode (or the top item in the tool pane that looks like a mouse pointer).  Click on the text again to select it in the tool pane.  Just like the border, we want to center this.  So set HorizontalAlignment and VerticalAlignment to Center, and clear the Margins: Thats it for the UI.  Heres how it looks, on the design surface: Not bad!  Okay, now the fun part Adding Animations Using Blend to build animations is a lot of fun, and its easy.  In XAML, I can not only declare elements and visuals, but also I can declare animations that will affect those visuals.  These are called Storyboards. To recap, well be doing two animations: The throb animation when the element is touched The center animation when the element is released after being dragged. The throb animation is just a scale transform, so well do that first.  In the Objects and Timeline Pane (left side, bottom half), click the little + icon to add a new Storyboard called touchStoryboard: The timeline view will appear.  In there, click a bit to the right of 0 to create a keyframe at .2 seconds: Now, click on our welcome element (the Border, not the TextBlock in it), and scroll to the bottom of the Properties Pane.  Open up Transform, click the third tab ("Scale), and set X and Y to 1.2: This all of this says that, at .2 seconds, I want the X and Y size of this element to scale to 1.2. In fact you can see this happen.  Push the Play arrow in the timeline view, and youll see the animation run! Lets make two tweaks.  First, we want the animation to automatically reverse so it scales up then back down nicely. Click in the dropdown that says touchStoryboard in Objects and Timeline, then in the Properties pane check Auto Reverse: Now run it again, and youll see it go both ways. Lets even make it nicer by adding an easing function. First, click on the Render Transform item in the Objects tree, then, in the Property Pane, youll see a bunch of easing functions to choose from.  Feel free to play with this, then seeing how each runs.  I chose Circle In, but some other ones are fun.  Try them out!  Elastic In is kind of fun, but well stick with Circle In.  Thats it for that animation. Now, we also want an animation to move the Border back to its original position when the user ends the touch gesture.  This is exactly the same process as above, but just targeting a different transform property. Create a new animation called releaseStoryboard Select a timeline point at 1.2 seconds. Click on the welcome Border element again Scroll to the Transforms panel at the bottom of the Properties Pane Choose the first tab (Translate), which may already be selected Set both X and Y values to 0.0 (we do this just to make the values stick, because the value is already 0 and we need Blend to know we want to save that value) Click on RenderTransform in the Objects tree In the properties pane, choose Bounce Out Set Bounces to 6, and Bounciness to 4 (feel free to play with these as well) Okay, were done. Note, if you want to test this Storyboard, you have to do something a little tricky because the final value is the same as the initial value, so playing it does nothing.  If you want to play with it, do the following: Next to the selection dropdown, hit the little "x (Close Storyboard) Go to the Translate Transform value for welcome Set X,Y to 50, 200, respectively (or whatever) Select releaseStoryboard again from the dropdown Hit play, see it run Go into the object tree and select RenderTransform to change the easing function. When youre done, hit the Close Storyboard x again and set the values in Transform/Translate back to 0 Wiring Up the Animations Okay, now go back to Visual Studio.  Youll get a prompt due to the modification of MainPage.xaml.  Hit Yes. In the designer, click on the welcome Border element.  In the Property Browser, hit the Events button, then double click each of ManipulationStarted, ManipulationDelta, ManipulationCompleted.  Youll need to flip back to the designer from code, after each double click. Its code time.  Here we go. Here, three event handlers have been created for us: welcome_ManipulationStarted: This will execute when a manipulation begins.  Think of it as MouseDown. welcome_ManipulationDelta: This executes each time a manipulation changes.  Think MouseMove. welcome_ManipulationCompleted: This will  execute when the manipulation ends. Think MouseUp. Now, in ManipuliationStarted, we want to kick off the throb animation that we called touchAnimation.  Thats easy: 1: private void welcome_ManipulationStarted(object sender, ManipulationStartedEventArgs e) 2: { 3: touchStoryboard.Begin(); 4: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Likewise, when the manipulation completes, we want to re-center the welcome visual with our bounce animation: 1: private void welcome_ManipulationCompleted(object sender, ManipulationCompletedEventArgs e) 2: { 3: releaseStoryboard.Begin(); 4: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Note there is actually a way to kick off these animations from Blend directly via something called Triggers, but I think its clearer to show whats going on like this.  A Trigger basically allows you to say When this event fires, trigger this Storyboard, so its the exact same logical process as above, but without the code. But how do we get the object to move?  Well, for that we really dont want an animation because we want it to respond immediately to user input. We do this by directly modifying the transform to match the offset for the manipulation, and then well let the animation bring it back to zero when the manipulation completes.  The manipulation events do a great job of keeping track of all the stuff that you usually had to do yourself when doing drags: where you started from, how far youve moved, etc. So we can easily modify the position as below: 1: private void welcome_ManipulationDelta(object sender, ManipulationDeltaEventArgs e) 2: { 3: CompositeTransform transform = (CompositeTransform)welcome.RenderTransform; 4:   5: transform.TranslateX = e.CumulativeManipulation.Translation.X; 6: transform.TranslateY = e.CumulativeManipulation.Translation.Y; 7: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Thats it! Go ahead and run the app in the emulator.  I suggest running without the debugger, its a little faster (CTRL+F5).  If youve got a machine that supports DirectX 10, youll see nice smooth GPU accelerated graphics, which also what it looks like on the phone, running at about 60 frames per second.  If your machine does not support DX10 (like the laptop Im writing this on!), it wont be quite a smooth so youll have to take my word for it! Comparing Against the iPhone This is an example where the flexibility and power of XAML meets the tooling of Visual Studio and Blend, and the whole experience really shines.  So, for several things that are declarative and 100% toolable with the Windows Phone 7 Series, this example does them with code on the iPhone.  In parens is the lines of code that I count to do these operations. PlacardView.m: 19 total LOC Creating the view that hosts the button-like image and the text Drawing the image that is the background of the button Drawing the Welcome text over the image (I think you could technically do this step and/or the prior one using Interface Builder) MoveMeView.m:  63 total LOC Constructing and running the scale (throb) animation (25) Constructing the path describing the animation back to center plus bounce effect (38) Beyond the code count, yy experience with doing this kind of thing in code is that its VERY time intensive.  When I was a developer back on Windows Forms, doing GDI+ drawing, we did this stuff a lot, and it took forever!  You write some code and even once you get it basically working, you see its not quite right, you go back, tweak the interval, or the math a bit, run it again, etc.  You can take a look at the iPhone code here to judge for yourself.  Scroll down to animatePlacardViewToCenter toward the bottom.  I dont think this code is terribly complicated, but its not what Id call simple and its not at all simple to get right. And then theres a few other lines of code running around for setting up the ViewController and the Views, about 15 lines between MoveMeAppDelegate, PlacardView, and MoveMeView, plus the assorted decls in the h files. Adding those up, I conservatively get something like 100 lines of code (19+63+15+decls) on iPhone that I have to write, by hand, to make this project work. The lines of code that I wrote in the examples above is 5 lines of code on Windows Phone 7 Series. In terms of incremental concept counts beyond the HelloWorld app, heres a shot at that: iPhone: Drawing Images Drawing Text Handling touch events Creating animations Scaling animations Building a path and animating along that Windows Phone 7 Series: Laying out UI in Blend Creating & testing basic animations in Blend Handling touch events Invoking animations from code This was actually the first example I tried converting, even before I did the HelloWorld, and I was pretty surprised.  Some of this is luck that this app happens to match up with the Windows Phone 7 Series platform just perfectly.  In terms of time, I wrote the above application, from scratch, in about 10 minutes.  I dont know how long it would take a very skilled iPhone developer to write MoveMe on that iPhone from scratch, but if I was to write it on Silverlight in the same way (e.g. all via code), I think it would likely take me at least an hour or two to get it all working right, maybe more if I ended up picking the wrong strategy or couldnt get the math right, etc. Making Some Tweaks Silverlight contains a feature called Projections to do a variety of 3D-like effects with a 2D surface. So lets play with that a bit. Go back to Blend and select the welcome Border in the object tree.  In its properties, scroll down to the bottom, open Transform, and see Projection at the bottom.  Set X,Y,Z to 90.  Youll see the element kind of disappear, replaced by a thin blue line. Now Create a new animation called startupStoryboard. Set its key time to .5 seconds in the timeline view Set the projection values above to 0 for X, Y, and Z. Save Go back to Visual Studio, and in the constructor, add the following bold code (lines 7-9 to the constructor: 1: public MainPage() 2: { 3: InitializeComponent(); 4:   5: SupportedOrientations = SupportedPageOrientation.Portrait; 6:   7: this.Loaded += (s, e) => 8: { 9: startupStoryboard.Begin(); 10: }; 11: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If the code above looks funny, its using something called a lambda in C#, which is an inline anonymous method.  Its just a handy shorthand for creating a handler like the manipulation ones above. So with this youll get a nice 3D looking fly in effect when the app starts up.  Here it is, in flight: Pretty cool!Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Ubuntu missing from the Grub menu

    - by varevarao
    Recently I've had some audio issues with Ubuntu (using precise), and in the process of trying to resolve that I ran a dist-upgrade. Everything went just fine, and the sound seemed good, until I rebooted my machine for the first time since the dist-upgrade. All I see now in the Grub menu at startup is memtest86+, another memtest variant, and Windows 7. It's not showing any of the linux kernels that Ubuntu is running on. I am attaching my bootinfoscript: Boot Info Script 0.61.full + Boot-Repair extra info [Boot-Info November 20th 2012] ============================= Boot Info Summary: =============================== => Grub2 (v1.99) is installed in the MBR of /dev/sda and looks at sector 1 of the same hard drive for core.img. core.img is at this location and looks for (,msdos6)/boot/grub on this drive. sda1: __________________________________________________________________________ File system: vfat Boot sector type: Dell Utility: FAT16 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: sda2: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: sda3: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Windows 7 Boot files: sda4: __________________________________________________________________________ File system: Extended Partition Boot sector type: Unknown Boot sector info: sda5: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: According to the info in the boot sector, sda5 starts at sector 2048. Operating System: Boot files: sda6: __________________________________________________________________________ File system: ext4 Boot sector type: Grub2 (v1.99-2.00) Boot sector info: Grub2 (v1.99) is installed in the boot sector of sda6 and looks at sector 220046240 of the same hard drive for core.img. core.img is at this location and looks for (,msdos6)/boot/grub on this drive. Operating System: Ubuntu 12.04.1 LTS Boot files: /boot/grub/grub.cfg /etc/fstab /boot/grub/core.img sda7: __________________________________________________________________________ File system: swap Boot sector type: - Boot sector info: ============================ Drive/Partition Info: ============================= Drive: sda _____________________________________________________________________ Disk /dev/sda: 320.1 GB, 320072933376 bytes 255 heads, 63 sectors/track, 38913 cylinders, total 625142448 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sda1 63 273,104 273,042 de Dell Utility /dev/sda2 * 274,432 19,406,847 19,132,416 7 NTFS / exFAT / HPFS /dev/sda3 19,406,848 218,274,364 198,867,517 7 NTFS / exFAT / HPFS /dev/sda4 218,275,838 625,139,711 406,863,874 f W95 Extended (LBA) /dev/sda5 328,630,272 625,139,711 296,509,440 7 NTFS / exFAT / HPFS /dev/sda6 218,275,840 324,030,463 105,754,624 83 Linux /dev/sda7 324,032,512 328,626,175 4,593,664 82 Linux swap / Solaris "blkid" output: ________________________________________________________________ Device UUID TYPE LABEL /dev/loop0 squashfs /dev/sda1 07DA-0512 vfat DellUtility /dev/sda2 8834146034145392 ntfs RECOVERY /dev/sda3 48E2189DE21890F4 ntfs OS /dev/sda5 BC2A44C02A447982 ntfs Varshneya /dev/sda6 34731459-4b0f-46ac-a9bf-cb360a2c947c ext4 /dev/sda7 dcb9ce9b-799a-4c65-b008-887b01775670 swap /dev/sr0 iso9660 Ubuntu 12.04.1 LTS i386 ================================ Mount points: ================================= Device Mount_Point Type Options /dev/loop0 /rofs squashfs (ro,noatime) /dev/sda6 /mnt ext4 (rw) /dev/sr0 /cdrom iso9660 (ro,noatime) =========================== sda6/boot/grub/grub.cfg: =========================== -------------------------------------------------------------------------------- # # DO NOT EDIT THIS FILE # # It is automatically generated by grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s $prefix/grubenv ]; then set have_grubenv=true load_env fi set default="0" if [ "${prev_saved_entry}" ]; then set saved_entry="${prev_saved_entry}" save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z "${boot_once}" ]; then saved_entry="${chosen}" save_env saved_entry fi } function recordfail { set recordfail=1 if [ -n "${have_grubenv}" ]; then if [ -z "${boot_once}" ]; then save_env recordfail; fi; fi } function load_video { insmod vbe insmod vga insmod video_bochs insmod video_cirrus } insmod part_msdos insmod ext2 set root='(hd0,msdos6)' search --no-floppy --fs-uuid --set=root 34731459-4b0f-46ac-a9bf-cb360a2c947c if loadfont /boot/grub/unicode.pf2 ; then set gfxmode=auto load_video insmod gfxterm insmod part_msdos insmod ext2 set root='(hd0,msdos6)' search --no-floppy --fs-uuid --set=root 34731459-4b0f-46ac-a9bf-cb360a2c947c set locale_dir=($root)/boot/grub/locale set lang=en_US insmod gettext fi terminal_output gfxterm if [ "${recordfail}" = 1 ]; then set timeout=-1 else set timeout=10 fi ### END /etc/grub.d/00_header ### ### BEGIN /etc/grub.d/05_debian_theme ### set menu_color_normal=white/black set menu_color_highlight=black/light-gray ### END /etc/grub.d/05_debian_theme ### ### BEGIN /etc/grub.d/10_linux ### function gfxmode { set gfxpayload="${1}" if [ "${1}" = "keep" ]; then set vt_handoff=vt.handoff=7 else set vt_handoff= fi } if [ "${recordfail}" != 1 ]; then if [ -e ${prefix}/gfxblacklist.txt ]; then if hwmatch ${prefix}/gfxblacklist.txt 3; then if [ ${match} = 0 ]; then set linux_gfx_mode=keep else set linux_gfx_mode=text fi else set linux_gfx_mode=text fi else set linux_gfx_mode=keep fi else set linux_gfx_mode=text fi export linux_gfx_mode if [ "${linux_gfx_mode}" != "text" ]; then load_video; fi ### END /etc/grub.d/10_linux ### ### BEGIN /etc/grub.d/20_linux_xen ### ### END /etc/grub.d/20_linux_xen ### ### BEGIN /etc/grub.d/20_memtest86+ ### menuentry "Memory test (memtest86+)" { insmod part_msdos insmod ext2 set root='(hd0,msdos6)' search --no-floppy --fs-uuid --set=root 34731459-4b0f-46ac-a9bf-cb360a2c947c linux16 /boot/memtest86+.bin } menuentry "Memory test (memtest86+, serial console 115200)" { insmod part_msdos insmod ext2 set root='(hd0,msdos6)' search --no-floppy --fs-uuid --set=root 34731459-4b0f-46ac-a9bf-cb360a2c947c linux16 /boot/memtest86+.bin console=ttyS0,115200n8 } ### END /etc/grub.d/20_memtest86+ ### ### BEGIN /etc/grub.d/30_os-prober ### menuentry "Windows 7 (loader) (on /dev/sda2)" --class windows --class os { insmod part_msdos insmod ntfs set root='(hd0,msdos2)' search --no-floppy --fs-uuid --set=root 8834146034145392 chainloader +1 } ### END /etc/grub.d/30_os-prober ### ### BEGIN /etc/grub.d/40_custom ### # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. ### END /etc/grub.d/40_custom ### ### BEGIN /etc/grub.d/41_custom ### if [ -f $prefix/custom.cfg ]; then source $prefix/custom.cfg; fi ### END /etc/grub.d/41_custom ### -------------------------------------------------------------------------------- =============================== sda6/etc/fstab: ================================ -------------------------------------------------------------------------------- # /etc/fstab: static file system information. # # Use 'blkid -o value -s UUID' to print the universally unique identifier # for a device; this may be used with UUID= as a more robust way to name # devices that works even if disks are added and removed. See fstab(5). # # <file system> <mount point> <type> <options> <dump> <pass> proc /proc proc nodev,noexec,nosuid 0 0 # / was on /dev/sda6 during installation UUID=34731459-4b0f-46ac-a9bf-cb360a2c947c / ext4 errors=remount-ro,user_xattr 0 1 # swap was on /dev/sda7 during installation UUID=dcb9ce9b-799a-4c65-b008-887b01775670 none swap sw 0 0 -------------------------------------------------------------------------------- =================== sda6: Location of files loaded by Grub: ==================== GiB - GB File Fragment(s) 104.851909637 = 112.583880704 boot/grub/core.img 1 121.191410065 = 130.128285696 boot/grub/grub.cfg 1 ======================== Unknown MBRs/Boot Sectors/etc: ======================== Unknown BootLoader on sda4 00000000 eb 0f 2a 5d f4 b7 75 f2 e9 56 12 b8 50 b4 79 ec |..*]..u..V..P.y.| 00000010 89 91 ca c3 16 40 31 d0 ae c4 53 3d c7 dd d7 98 |[email protected]=....| 00000020 bd a4 f2 a4 e8 ab fc ea 36 30 1b 34 cf 8a 28 30 |........60.4..(0| 00000030 43 95 6c 31 3e 76 93 58 84 37 99 c3 ae 3a 88 a3 |C.l1>v.X.7...:..| 00000040 c2 a6 36 2a f8 e0 e1 03 91 8d a1 50 cd ad b0 b5 |..6*.......P....| 00000050 ad 69 3a 49 63 1f 4a 33 97 6e 0c 71 bf 7d bd 35 |.i:Ic.J3.n.q.}.5| 00000060 86 c5 17 93 b4 9f e5 af e0 c4 6f f4 6f f9 4b dd |..........o.o.K.| 00000070 14 39 e2 9e b9 36 ca b1 56 5b d9 b1 66 2c 05 b2 |.9...6..V[..f,..| 00000080 5d 5b 99 c0 db e6 81 27 ab c2 e1 55 00 ac 0b 2c |][.....'...U...,| 00000090 24 d3 8e 54 b0 3d ab 58 e4 23 fc 3a 79 93 fb 5e |$..T.=.X.#.:y..^| 000000a0 94 5a 3a c2 16 4e 56 cb 1b 7f 7e b3 4c 38 ca 5b |.Z:..NV...~.L8.[| 000000b0 ca ab c1 2c 2a 64 e7 77 fe 2a ba ee 08 33 b5 9b |...,*d.w.*...3..| 000000c0 d0 c2 b4 a8 fc 73 4f 01 fd 03 61 75 eb 6d 1a 74 |.....sO...au.m.t| 000000d0 5f 79 31 7f ed e6 f5 99 21 36 16 ed 25 d9 6d 2b |_y1.....!6..%.m+| 000000e0 5f f4 42 b8 9d 01 89 10 fe df a4 98 e7 ab ab ea |_.B.............| 000000f0 1d 1c 44 e1 49 d9 19 c9 ab f5 41 eb 4a 32 c2 39 |..D.I.....A.J2.9| 00000100 87 57 f6 f6 f3 b5 4d 17 72 f2 b1 16 19 aa ec 24 |.W....M.r......$| 00000110 39 bd e3 b1 68 b3 b0 7f fa 2a 3a 2e 99 ed db 8a |9...h....*:.....| 00000120 f8 61 b4 ef 9d 7d 85 95 ed ad eb 9e 71 f4 27 d3 |.a...}......q.'.| 00000130 f3 04 8b 8a 69 98 02 72 df e1 f9 83 27 5b 01 4c |....i..r....'[.L| 00000140 d4 9a b9 3b db ca 1e 40 35 db 6f c1 52 c0 7f 27 |...;[email protected]..'| 00000150 8a 1d bc 34 89 24 b6 e3 fd ec a1 2a e5 9e d1 8f |...4.$.....*....| 00000160 77 e0 d5 52 c0 4c c4 38 38 3c 28 19 bf 20 f0 03 |w..R.L.88<(.. ..| 00000170 38 a4 b1 b5 ed 6a b8 f7 a9 7b 65 b1 7b 64 4a 33 |8....j...{e.{dJ3| 00000180 66 1a 60 29 38 1d 5b 52 40 31 de a5 0c 0f cc 6f |f.`)8.[[email protected]| 00000190 dd 31 6d 3d f0 2a 32 85 67 66 ca 4f 02 aa 0d 30 |.1m=.*2.gf.O...0| 000001a0 66 c9 b2 33 c2 4b 8a fa 3c 7b 52 02 00 88 8e cf |f..3.K..<{R.....| 000001b0 67 1e d4 20 49 1d 1a b8 71 ad c2 d4 37 9d 00 fe |g.. I...q...7...| 000001c0 ff ff 07 fe ff ff 02 e0 93 06 00 60 ac 11 00 fe |...........`....| 000001d0 ff ff 05 fe ff ff 01 00 00 00 01 b0 4d 06 00 00 |............M...| 000001e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 000001f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 aa |..............U.| 00000200 ADDITIONAL INFORMATION : =================== log of boot-repair 2012-11-24__09h45 =================== boot-repair version : 3.195~ppa2~precise boot-sav version : 3.195~ppa2~precise glade2script version : 3.2.2~ppa45~precise boot-sav-extra version : 3.195~ppa2~precise boot-repair is executed in live-session (Ubuntu 12.04.1 LTS, precise, Ubuntu, i686) CPU op-mode(s): 32-bit, 64-bit file=/cdrom/preseed/ubuntu.seed boot=casper initrd=/casper/initrd.lz quiet splash -- =================== os-prober: /dev/sda2:Windows 7 (loader):Windows:chain /dev/sda6:Ubuntu 12.04.1 LTS (12.04):Ubuntu:linux =================== blkid: /dev/sda1: SEC_TYPE="msdos" LABEL="DellUtility" UUID="07DA-0512" TYPE="vfat" /dev/sda2: LABEL="RECOVERY" UUID="8834146034145392" TYPE="ntfs" /dev/sda3: LABEL="OS" UUID="48E2189DE21890F4" TYPE="ntfs" /dev/sda5: LABEL="Varshneya" UUID="BC2A44C02A447982" TYPE="ntfs" /dev/loop0: TYPE="squashfs" /dev/sda6: UUID="34731459-4b0f-46ac-a9bf-cb360a2c947c" TYPE="ext4" /dev/sda7: UUID="dcb9ce9b-799a-4c65-b008-887b01775670" TYPE="swap" /dev/sr0: LABEL="Ubuntu 12.04.1 LTS i386" TYPE="iso9660" 1 disks with OS, 2 OS : 1 Linux, 0 MacOS, 1 Windows, 0 unknown type OS. Windows not detected by os-prober on sda3. Warning: extended partition does not start at a cylinder boundary. DOS and Linux will interpret the contents differently. =================== /mnt/etc/default/grub : # If you change this file, run 'update-grub' afterwards to update # /boot/grub/grub.cfg. # For full documentation of the options in this file, see: # info -f grub -n 'Simple configuration' GRUB_DEFAULT=0 GRUB_HIDDEN_TIMEOUT=0 GRUB_HIDDEN_TIMEOUT_QUIET=true GRUB_TIMEOUT=10 GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian` GRUB_CMDLINE_LINUX_DEFAULT="quiet splash" GRUB_CMDLINE_LINUX="" # Uncomment to enable BadRAM filtering, modify to suit your needs # This works with Linux (no patch required) and with any kernel that obtains # the memory map information from GRUB (GNU Mach, kernel of FreeBSD ...) #GRUB_BADRAM="0x01234567,0xfefefefe,0x89abcdef,0xefefefef" # Uncomment to disable graphical terminal (grub-pc only) #GRUB_TERMINAL=console # The resolution used on graphical terminal # note that you can use only modes which your graphic card supports via VBE # you can see them in real GRUB with the command `vbeinfo' #GRUB_GFXMODE=640x480 # Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux #GRUB_DISABLE_LINUX_UUID=true # Uncomment to disable generation of recovery mode menu entries #GRUB_DISABLE_RECOVERY="true" # Uncomment to get a beep at grub start #GRUB_INIT_TUNE="480 440 1" =================== /mnt/etc/grub.d/ : drwxr-xr-x 2 root root 4096 Nov 22 16:15 grub.d total 56 -rwxr-xr-x 1 root root 6743 Sep 12 20:19 00_header -rwxr-xr-x 1 root root 5522 Sep 12 20:05 05_debian_theme -rwxr-xr-x 1 root root 7407 Sep 12 20:19 10_linux -rwxr-xr-x 1 root root 6335 Sep 12 20:19 20_linux_xen -rwxr-xr-x 1 root root 1588 Sep 24 2010 20_memtest86+ -rwxr-xr-x 1 root root 7603 Sep 12 20:19 30_os-prober -rwxr-xr-x 1 root root 214 Sep 12 20:19 40_custom -rwxr-xr-x 1 root root 95 Sep 12 20:19 41_custom -rw-r--r-- 1 root root 483 Sep 12 20:19 README =================== No kernel in /mnt/boot: grub memtest86+.bin memtest86+_multiboot.bin =================== UEFI/Legacy mode: This live-session is not EFI-compatible. SecureBoot maybe enabled. =================== PARTITIONS & DISKS: sda1 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, not-far, /mnt/boot-sav/sda1. sda2 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, is-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, bootmgr, is-winboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, not-far, /mnt/boot-sav/sda2. sda3 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, is-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, haswinload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, farbios, /mnt/boot-sav/sda3. sda5 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, farbios, /mnt/boot-sav/sda5. sda6 : sda, not-sepboot, grubenv-ok grub2, grub-pc, update-grub, 64, no-kernel, is-os, not--efi--part, fstab-without-boot, fstab-without-efi, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, apt-get, grub-install, with--usr, fstab-without-usr, not-sep-usr, standard, farbios, /mnt. sda : not-GPT, BIOSboot-not-needed, has-no-EFIpart, not-usb, has-os, 63 sectors * 512 bytes =================== parted -l: Model: ATA ST9320423AS (scsi) Disk /dev/sda: 320GB Sector size (logical/physical): 512B/512B Partition Table: msdos Number Start End Size Type File system Flags 1 32.3kB 140MB 140MB primary fat16 diag 2 141MB 9936MB 9796MB primary ntfs boot 3 9936MB 112GB 102GB primary ntfs 4 112GB 320GB 208GB extended lba 6 112GB 166GB 54.1GB logical ext4 7 166GB 168GB 2352MB logical linux-swap(v1) 5 168GB 320GB 152GB logical ntfs Model: HL-DT-ST DVD+-RW GA31N (scsi) Disk /dev/sr0: 4700MB Sector size (logical/physical): 2048B/2048B Partition Table: msdos Number Start End Size Type File system Flags 1 131kB 2916MB 2916MB primary boot, hidden =================== parted -lm: BYT; /dev/sda:320GB:scsi:512:512:msdos:ATA ST9320423AS; 1:32.3kB:140MB:140MB:fat16::diag; 2:141MB:9936MB:9796MB:ntfs::boot; 3:9936MB:112GB:102GB:ntfs::; 4:112GB:320GB:208GB:::lba; 6:112GB:166GB:54.1GB:ext4::; 7:166GB:168GB:2352MB:linux-swap(v1)::; 5:168GB:320GB:152GB:ntfs::; BYT; /dev/sr0:4700MB:scsi:2048:2048:msdos:HL-DT-ST DVD+-RW GA31N; 1:131kB:2916MB:2916MB:::boot, hidden; =================== mount: /cow on / type overlayfs (rw) proc on /proc type proc (rw,noexec,nosuid,nodev) sysfs on /sys type sysfs (rw,noexec,nosuid,nodev) udev on /dev type devtmpfs (rw,mode=0755) devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620) tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755) /dev/sr0 on /cdrom type iso9660 (ro,noatime) /dev/loop0 on /rofs type squashfs (ro,noatime) none on /sys/fs/fuse/connections type fusectl (rw) none on /sys/kernel/debug type debugfs (rw) none on /sys/kernel/security type securityfs (rw) tmpfs on /tmp type tmpfs (rw,nosuid,nodev) none on /run/lock type tmpfs (rw,noexec,nosuid,nodev,size=5242880) none on /run/shm type tmpfs (rw,nosuid,nodev) gvfs-fuse-daemon on /home/ubuntu/.gvfs type fuse.gvfs-fuse-daemon (rw,nosuid,nodev,user=ubuntu) /dev/sda6 on /mnt type ext4 (rw) /dev on /mnt/dev type none (rw,bind) /proc on /mnt/proc type none (rw,bind) /sys on /mnt/sys type none (rw,bind) /usr on /mnt/usr type none (rw,bind) /dev/sda1 on /mnt/boot-sav/sda1 type vfat (rw) /dev/sda2 on /mnt/boot-sav/sda2 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sda3 on /mnt/boot-sav/sda3 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sda5 on /mnt/boot-sav/sda5 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) =================== ls: /sys/block/sda (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro sda1 sda2 sda3 sda4 sda5 sda6 sda7 size slaves stat subsystem trace uevent /sys/block/sr0 (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro size slaves stat subsystem trace uevent /dev (filtered): autofs block bsg btrfs-control bus cdrom cdrw char console core cpu cpu_dma_latency disk dri dvd dvdrw ecryptfs fb0 fd full fuse fw0 hidraw0 hpet input kmsg log mapper mcelog mei mem net network_latency network_throughput null oldmem port ppp psaux ptmx pts random rfkill rtc rtc0 sda sda1 sda2 sda3 sda4 sda5 sda6 sda7 sg0 sg1 shm snapshot snd sr0 stderr stdin stdout uinput urandom usbmon0 usbmon1 usbmon2 v4l vga_arbiter video0 zero ls /dev/mapper: control =================== df -Th: Filesystem Type Size Used Avail Use% Mounted on /cow overlayfs 1.9G 113M 1.8G 6% / udev devtmpfs 1.9G 12K 1.9G 1% /dev tmpfs tmpfs 777M 872K 776M 1% /run /dev/sr0 iso9660 696M 696M 0 100% /cdrom /dev/loop0 squashfs 667M 667M 0 100% /rofs tmpfs tmpfs 1.9G 20K 1.9G 1% /tmp none tmpfs 5.0M 0 5.0M 0% /run/lock none tmpfs 1.9G 176K 1.9G 1% /run/shm /dev/sda6 ext4 51G 27G 22G 56% /mnt /dev/sda1 vfat 134M 9.1M 125M 7% /mnt/boot-sav/sda1 /dev/sda2 fuseblk 9.2G 5.6G 3.6G 61% /mnt/boot-sav/sda2 /dev/sda3 fuseblk 95G 80G 16G 84% /mnt/boot-sav/sda3 /dev/sda5 fuseblk 142G 130G 12G 92% /mnt/boot-sav/sda5 =================== fdisk -l: Disk /dev/sda: 320.1 GB, 320072933376 bytes 255 heads, 63 sectors/track, 38913 cylinders, total 625142448 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0xb8000000 Device Boot Start End Blocks Id System /dev/sda1 63 273104 136521 de Dell Utility /dev/sda2 * 274432 19406847 9566208 7 HPFS/NTFS/exFAT /dev/sda3 19406848 218274364 99433758+ 7 HPFS/NTFS/exFAT /dev/sda4 218275838 625139711 203431937 f W95 Ext'd (LBA) /dev/sda5 328630272 625139711 148254720 7 HPFS/NTFS/exFAT /dev/sda6 218275840 324030463 52877312 83 Linux /dev/sda7 324032512 328626175 2296832 82 Linux swap / Solaris Partition table entries are not in disk order =================== Repair blockers 64bits detected. Please use this software in a 64bits session. (Please use Ubuntu-Secure-Remix-64bits (www.sourceforge.net/p/ubuntu-secured) which contains a 64bits-compatible version of this software.) This will enable this feature. =================== Final advice in case of recommended repair The boot files of [Ubuntu 12.04.1 LTS] are far from the start of the disk. Your BIOS may not detect them. You may want to retry after creating a /boot partition (EXT4, >200MB, start of the disk). This can be performed via tools such as gParted. Then select this partition via the [Separate /boot partition:] option of [Boot Repair]. (https://help.ubuntu.com/community/BootPartition) =================== Default settings Recommended-Repair This setting would reinstall the grub2 of sda6 into the MBR of sda, using the following options: kernel-purge Additional repair would be performed: unhide-bootmenu-10s fix-windows-boot =================== Settings chosen by the user Boot-Info This setting will not act on the MBR. No change has been performed on your computer. See you soon! pastebinit packages needed dpkg-preconfigure: unable to re-open stdin: No such file or directory pastebin.com ko (), using paste.ubuntu Please report this message to [email protected] Any help would be great, I'm really missing Ubuntu (hate being stuck in the Windows world).

    Read the article

  • Partner Blog Series: PwC Perspectives - The Gotchas, The Do's and Don'ts for IDM Implementations

    - by Tanu Sood
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:12.0pt; mso-para-margin-left:0in; line-height:12.0pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Arial","sans-serif"; mso-ascii-font-family:Arial; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Arial; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} table.MsoTableMediumList1Accent6 {mso-style-name:"Medium List 1 - Accent 6"; mso-tstyle-rowband-size:1; mso-tstyle-colband-size:1; mso-style-priority:65; mso-style-unhide:no; border-top:solid #E0301E 1.0pt; mso-border-top-themecolor:accent6; border-left:none; border-bottom:solid #E0301E 1.0pt; mso-border-bottom-themecolor:accent6; border-right:none; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Georgia","serif"; color:black; mso-themecolor:text1; mso-ansi-language:EN-GB;} table.MsoTableMediumList1Accent6FirstRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:first-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:cell-none; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; font-family:"Verdana","sans-serif"; mso-ascii-font-family:Georgia; mso-ascii-theme-font:major-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:major-fareast; mso-hansi-font-family:Georgia; mso-hansi-theme-font:major-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:major-bidi;} table.MsoTableMediumList1Accent6LastRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:last-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:1.0pt solid #E0301E; mso-tstyle-border-top-themecolor:accent6; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; color:#968C6D; mso-themecolor:text2; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6FirstCol {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:first-column; mso-style-priority:65; mso-style-unhide:no; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6LastCol {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:last-column; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:1.0pt solid #E0301E; mso-tstyle-border-top-themecolor:accent6; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6OddColumn {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:odd-column; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-shading:#F7CBC7; mso-tstyle-shading-themecolor:accent6; mso-tstyle-shading-themetint:63;} table.MsoTableMediumList1Accent6OddRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:odd-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-shading:#F7CBC7; mso-tstyle-shading-themecolor:accent6; mso-tstyle-shading-themetint:63;} Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:12.0pt; mso-para-margin-left:0in; line-height:12.0pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Arial","sans-serif"; mso-ascii-font-family:Arial; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Arial; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} table.MsoTableMediumList1Accent6 {mso-style-name:"Medium List 1 - Accent 6"; mso-tstyle-rowband-size:1; mso-tstyle-colband-size:1; mso-style-priority:65; mso-style-unhide:no; border-top:solid #E0301E 1.0pt; mso-border-top-themecolor:accent6; border-left:none; border-bottom:solid #E0301E 1.0pt; mso-border-bottom-themecolor:accent6; border-right:none; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Georgia","serif"; color:black; mso-themecolor:text1; mso-ansi-language:EN-GB;} table.MsoTableMediumList1Accent6FirstRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:first-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:cell-none; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; font-family:"Arial Narrow","sans-serif"; mso-ascii-font-family:Georgia; mso-ascii-theme-font:major-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:major-fareast; mso-hansi-font-family:Georgia; mso-hansi-theme-font:major-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:major-bidi;} table.MsoTableMediumList1Accent6LastRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:last-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:1.0pt solid #E0301E; mso-tstyle-border-top-themecolor:accent6; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; color:#968C6D; mso-themecolor:text2; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6FirstCol {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:first-column; mso-style-priority:65; mso-style-unhide:no; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6LastCol {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:last-column; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:1.0pt solid #E0301E; mso-tstyle-border-top-themecolor:accent6; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6OddColumn {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:odd-column; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-shading:#F7CBC7; mso-tstyle-shading-themecolor:accent6; mso-tstyle-shading-themetint:63;} table.MsoTableMediumList1Accent6OddRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:odd-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-shading:#F7CBC7; mso-tstyle-shading-themecolor:accent6; mso-tstyle-shading-themetint:63;} It is generally accepted among business communities that technology by itself is not a silver bullet to all problems, but when it is combined with leading practices, strategy, careful planning and execution, it can create a recipe for success. This post attempts to highlight some of the best practices along with dos & don’ts that our practice has accumulated over the years in the identity & access management space in general, and also in the context of R2, in particular. Best Practices The following section illustrates the leading practices in “How” to plan, implement and sustain a successful OIM deployment, based on our collective experience. Planning is critical, but often overlooked A common approach to planning an IAM program that we identify with our clients is the three step process involving a current state assessment, a future state roadmap and an executable strategy to get there. It is extremely beneficial for clients to assess their current IAM state, perform gap analysis, document the recommended controls to address the gaps, align future state roadmap to business initiatives and get buy in from all stakeholders involved to improve the chances of success. When designing an enterprise-wide solution, the scalability of the technology must accommodate the future growth of the enterprise and the projected identity transactions over several years. Aligning the implementation schedule of OIM to related information technology projects increases the chances of success. As a baseline, it is recommended to match hardware specifications to the sizing guide for R2 published by Oracle. Adherence to this will help ensure that the hardware used to support OIM will not become a bottleneck as the adoption of new services increases. If your Organization has numerous connected applications that rely on reconciliation to synchronize the access data into OIM, consider hosting dedicated instances to handle reconciliation. Finally, ensure the use of clustered environment for development and have at least three total environments to help facilitate a controlled migration to production. If your Organization is planning to implement role based access control, we recommend performing a role mining exercise and consolidate your enterprise roles to keep them manageable. In addition, many Organizations have multiple approval flows to control access to critical roles, applications and entitlements. If your Organization falls into this category, we highly recommend that you limit the number of approval workflows to a small set. Most Organizations have operations managed across data centers with backend database synchronization, if your Organization falls into this category, ensure that the overall latency between the datacenters when replicating the databases is less than ten milliseconds to ensure that there are no front office performance impacts. Ingredients for a successful implementation During the development phase of your project, there are a number of guidelines that can be followed to help increase the chances for success. Most implementations cannot be completed without the use of customizations. If your implementation requires this, it’s a good practice to perform code reviews to help ensure quality and reduce code bottlenecks related to performance. We have observed at our clients that the development process works best when team members adhere to coding leading practices. Plan for time to correct coding defects and ensure developers are empowered to report their own bugs for maximum transparency. Many organizations struggle with defining a consistent approach to managing logs. This is particularly important due to the amount of information that can be logged by OIM. We recommend Oracle Diagnostics Logging (ODL) as an alternative to be used for logging. ODL allows log files to be formatted in XML for easy parsing and does not require a server restart when the log levels are changed during troubleshooting. Testing is a vital part of any large project, and an OIM R2 implementation is no exception. We suggest that at least one lower environment should use production-like data and connectors. Configurations should match as closely as possible. For example, use secure channels between OIM and target platforms in pre-production environments to test the configurations, the migration processes of certificates, and the additional overhead that encryption could impose. Finally, we ask our clients to perform database backups regularly and before any major change event, such as a patch or migration between environments. In the lowest environments, we recommend to have at least a weekly backup in order to prevent significant loss of time and effort. Similarly, if your organization is using virtual machines for one or more of the environments, it is recommended to take frequent snapshots so that rollbacks can occur in the event of improper configuration. Operate & sustain the solution to derive maximum benefits When migrating OIM R2 to production, it is important to perform certain activities that will help achieve a smoother transition. At our clients, we have seen that splitting the OIM tables into their own tablespaces by categories (physical tables, indexes, etc.) can help manage database growth effectively. If we notice that a client hasn’t enabled the Oracle-recommended indexing in the applicable database, we strongly suggest doing so to improve performance. Additionally, we work with our clients to make sure that the audit level is set to fit the organization’s auditing needs and sometimes even allocate UPA tables and indexes into their own table-space for better maintenance. Finally, many of our clients have set up schedules for reconciliation tables to be archived at regular intervals in order to keep the size of the database(s) reasonable and result in optimal database performance. For our clients that anticipate availability issues with target applications, we strongly encourage the use of the offline provisioning capabilities of OIM R2. This reduces the provisioning process for a given target application dependency on target availability and help avoid broken workflows. To account for this and other abnormalities, we also advocate that OIM’s monitoring controls be configured to alert administrators on any abnormal situations. Within OIM R2, we have begun advising our clients to utilize the ‘profile’ feature to encapsulate multiple commonly requested accounts, roles, and/or entitlements into a single item. By setting up a number of profiles that can be searched for and used, users will spend less time performing the same exact steps for common tasks. We advise our clients to follow the Oracle recommended guides for database and application server tuning which provides a good baseline configuration. It offers guidance on database connection pools, connection timeouts, user interface threads and proper handling of adapters/plug-ins. All of these can be important configurations that will allow faster provisioning and web page response times. Many of our clients have begun to recognize the value of data mining and a remediation process during the initial phases of an implementation (to help ensure high quality data gets loaded) and beyond (to support ongoing maintenance and business-as-usual processes). A successful program always begins with identifying the data elements and assigning a classification level based on criticality, risk, and availability. It should finish by following through with a remediation process. Dos & Don’ts Here are the most common dos and don'ts that we socialize with our clients, derived from our experience implementing the solution. Dos Don’ts Scope the project into phases with realistic goals. Look for quick wins to show success and value to the stake holders. Avoid “boiling the ocean” and trying to integrate all enterprise applications in the first phase. Establish an enterprise ID (universal unique ID across the enterprise) earlier in the program. Avoid major UI customizations that require code changes. Have a plan in place to patch during the project, which helps alleviate any major issues or roadblocks (product and database). Avoid publishing all the target entitlements if you don't anticipate their usage during access request. Assess your current state and prepare a roadmap to address your operations, tactical and strategic goals, align it with your business priorities. Avoid integrating non-production environments with your production target systems. Defer complex integrations to the later phases and take advantage of lessons learned from previous phases Avoid creating multiple accounts for the same user on the same system, if there is an opportunity to do so. Have an identity and access data quality initiative built into your plan to identify and remediate data related issues early on. Avoid creating complex approval workflows that would negative impact productivity and SLAs. Identify the owner of the identity systems with fair IdM knowledge and empower them with authority to make product related decisions. This will help ensure overcome any design hurdles. Avoid creating complex designs that are not sustainable long term and would need major overhaul during upgrades. Shadow your internal or external consulting resources during the implementation to build the necessary product skills needed to operate and sustain the solution. Avoid treating IAM as a point solution and have appropriate level of communication and training plan for the IT and business users alike. Conclusion In our experience, Identity programs will struggle with scope, proper resourcing, and more. We suggest that companies consider the suggestions discussed in this post and leverage them to help enable their identity and access program. This concludes PwC blog series on R2 for the month and we sincerely hope that the information we have shared thus far has been beneficial. For more information or if you have questions, you can reach out to Rex Thexton, Senior Managing Director, PwC and or Dharma Padala, Director, PwC. We look forward to hearing from you. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:12.0pt; mso-para-margin-left:0in; line-height:12.0pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Arial","sans-serif"; mso-ascii-font-family:Arial; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Arial; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Meet the Writers: Dharma Padala is a Director in the Advisory Security practice within PwC.  He has been implementing medium to large scale Identity Management solutions across multiple industries including utility, health care, entertainment, retail and financial sectors.   Dharma has 14 years of experience in delivering IT solutions out of which he has been implementing Identity Management solutions for the past 8 years. Praveen Krishna is a Manager in the Advisory Security practice within PwC.  Over the last decade Praveen has helped clients plan, architect and implement Oracle identity solutions across diverse industries.  His experience includes delivering security across diverse topics like network, infrastructure, application and data where he brings a holistic point of view to problem solving. Scott MacDonald is a Director in the Advisory Security practice within PwC.  He has consulted for several clients across multiple industries including financial services, health care, automotive and retail.   Scott has 10 years of experience in delivering Identity Management solutions. John Misczak is a member of the Advisory Security practice within PwC.  He has experience implementing multiple Identity and Access Management solutions, specializing in Oracle Identity Manager and Business Process Engineering Language (BPEL).

    Read the article

  • Windows 7 intermittently drops wired internet/lan connection.

    - by CraigTP
    In a nutshell, my Windows 7 Ultimate PC intermittently drops it's internet connection. Why? Background: My PC is wired to my ADSL modem/router which is directly connected to the phone line. I also have wireless connectivity turned on within the router for a laptop to connect wirelessly. Every few hours or so, when using my PC, I find I cannot access the internet and pages will not load. Eventually, Windows7 will update the network icon in the task-tray to show the exclamation mark symbol on the network icon. Opening up the Network And Sharing Centre will show the red cross between the "Multiple Networks" and "The Internet". Here's a picture of the "Network And Sharing Centre" (grabbed when everything was working!) As you can see, I'm running Sun's VirtualBox on this machine and that creates a Network connection for itself. This doesn't seem to affect the intermittent dropping (i.e. the intermittent drops occur whether the VirtualBox connection is in use or not). When the connection does drop, I cannot access any internet pages, nor can I access the router's web admin page at http://192.168.1.1/, so I'm assuming I've lost all local LAN access too. It's definitely not the router (or the internet connection itself) as my laptop, using the wireless connection (and running Vista Home Premium) continues to be able to access the internet (and the router's web admin pages) just fine. Every time this happens, I can immediately restore all internet and LAN access by opening Network Adapter page, disabling the "Local Area Connection" and then re-enabling it. Give it a few seconds and everything is fine again. I assume this is because, beneath the GUI, it's effectively doing an "ipconfig /release" then "ipconfig /renew". Why does this happen in the first place, though? I've googled for this and seen quite a few other people (even on MSDN/Technet forums) experiencing the same or almost the same problem, but with no clear resolution. Suggestions of turning off IPv6 on the LAN adapter, and ensuring there's no power management "sleeping" the network adapter have been tried but do not cure the problem. There does not seem to be any particular sequence of events that cause it to happen either. I've had it go twice in 20 minutes when just randomly browsing the web with no other traffic, and I've also had it go once then not go again for 2-3 hours with the same sort of usage. Can anyone tell me why this is happening and how to make it stop? EDIT: Additional information based upon the answer provided so far: Firstly, I forgot the mention that this is Windows 7 64 bit if that makes any difference at all. I mentioned that I don't think the VirtualBox network adpater is causing this problem in any way, and I also have VirtualBox installed on two other machines, one running Vista Home Premium and the other running XP. Neither of these machine experience the same network connectivity issues as the Windows 7 machine. The IP assignment for the Windows 7 machine is the same both before and after the "drop". I have a DHCP server on the router issuing IP Addresses, however my Windows 7 machine uses a static address. Here's the output from "ipconfig": Ethernet adapter Local Area Connection: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : Realtek PCIe GBE Family Controller DHCP Enabled. . . . . . . . . . . : No Autoconfiguration Enabled . . . . : Yes IPv4 Address. . . . . . . . . . . : 192.168.1.2(Preferred) Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : 192.168.1.1 DNS Servers . . . . . . . . . . . : 192.168.1.1 NetBIOS over Tcpip. . . . . . . . : Enabled Within the system's event logs, the only event that relates to the connection dropping is a "DNS Client Event" and this is generated after the connection has dropped and is an event detailing that DNS information can't be found for whatever website I may be trying to access, just as the connection drops: Log Name: System Source: Microsoft-Windows-DNS-Client Event ID: 1014 Task Category: None Level: Warning Keywords: User: NETWORK SERVICE Description: Name resolution for the name weather.service.msn.com timed out after none of the configured DNS servers responded. The network adapter chipset is Realtek PCIe GBE Family Controller and I have confirmed that this is the correct chipset for the motherboard (Asus M4A77TD PRO), and in fact, Windows Update installed an updated driver for this on 12/Jan/2009. The details of the update say that it's a Realtek software update from December 2009. Incidentally, I was still having the same intermittent problems prior to this update. It seems to have made no difference at all. EDIT 2 (1 Feb 2010): In my quest to solve this problem, I have discovered some more interesting information. On another forum, someone suggested that I should try running Windows in "Safe Mode With Networking" and see if the problem continues to occur. This was a fantastic suggestion and I don't know why I didn't think of it sooner myself. So, I proceeded to run in Safe Mode with Networking for a number of hours, and amazingly, the "drops" didn't occur once. It was a positive discovery, however, due to the intermittent nature of the original problem, I wasn't completely convinced that the problem was cured. One thing I did note is that the fan on my GFX card was running alot louder than normal. This is due to the fact that I have an ASUS ENGTS250 graphics card (http://www.asus.com/product.aspx?P_ID=B6imcoax3MRY42f3) which had a known problem with a noisy fan until a BIOS update fixed the issue. (See the "Manufacturer Response" here: http://www.newegg.com/Product/Product.aspx?Item=N82E16814121334 for details). Well, running in safe mode had the fan running (incorrectly) at full speed (as it did before the BIOS update), but with an (apparently) stable network connection. Obviously some driver was not loaded for the GFX card when in Safe Mode so this got me thinking about the GFX card (since the very noisy fan was quite obvious when running in Safe Mode). I rebooted into normal mode, and found that Nvidia had a very up-to-date new driver for my GFX card (only about 1 week old), so I downloaded the appropriate driver and installed it. After installation and a reboot, I was able to use my PC for an entire day with NO NETWORK DROPS!!! This was on Saturday. However, on the Sunday, I also had my PC for pretty much the entire day and experienced 2 network drops. No other changes have been made to my PC in this time. So, the story seems to be that updating my graphics card drivers seems to have improved (if not completely fixed) the issue, however, I'm still searching for a proper fix for this problem. Hopefully, this information may help anyone who may have additional ideas as to why this problem is occuring in the first place. (And why does new GFX card drivers have anything to do with the network?) I appreciate everyone's feedback so far. However, I'll have to ask once more if anyone has any further ideas of how to fix this particular problem? Thanks in advance.

    Read the article

  • BSOD Before Windows Will Loads - Graphics Related

    - by Brian
    Alright deep breath here: (Windows 7 Home Premium 64 bit btw) Today I installed Star Craft 2 Beta. After trying to log in, it had some issues where it said my device stopped working (referring to my video device I have to imagine). After I force quit the game there were some random "hot" (various colors if i remember correctly) pixels on the screen. I decided to reboot and try again with similar results. I figured that maybe my display drivers could stand to be updated (I don't frequently update them as I don't often run into problems). I went out to nVidia's website and grabbed the latest drivers for Windows 7 64 bit GeForce 9 series. (I have SLi-ed 9800 GTs). Everything seemed to install fine and I performed the restart. This is when things went from bad (can't play SC2 beta ;) ) to worse (can't boot into windows!). Initially the very first splash screen - I think it's the bios splash screen - had lines of colored pixels covering it. It then displayed a screen that had lots of "(" on it. After that it showed the normal windows 7 splash screen as if it were going to load into Windows. Before getting much further, it BSODed on me. It was a 0x0000003B stop error. At nvlddmkm.sys. A little digging let verified that this was a problem with an nVidia graphics device, not a real shocker. Windows decided it would try to help me diagnose the problem, which it's only answer to was a System Restore, which did nothing to alleviate the problem. I was able to boot up fine in safe mode and was not able to roll back the driver, however I did uninstall the driver and reboot. I still had the graphical anomalies during the first two screens (same colored "."'s and weird "("'s), but there was NOT a stop error. Windows loaded up, found a default driver for the device and installed it and I restarted to let it load - and had yet another BSOD Stop error. Repeat driver uninstall, this time I reloaded the same version (I think it's possible that I was running a 32 bit version or a vista versus windows 7 version, but I don't have that information handy) of the nVidia driver from their website. Restart, same anomalies, same Stop Error. I am at a loss - At this point all I can think is that the firmware for the Video cards got fried or there's actual damage to the cards which I sincerely hope is not the case but the sooner I know the better. Any insight into what I might be able to do to troubleshoot/fix this problem would be most helpful. Attached below is a dump from DxDiag. Please let me know if there is more info that I could provide. ------------------ System Information ------------------ Time of this report: 3/18/2010, 23:22:48 Machine name: BRIAN-PC Operating System: Windows 7 Home Premium 64-bit (6.1, Build 7600) (7600.win7_rtm.090713-1255) Language: English (Regional Setting: English) System Manufacturer: Dell Inc System Model: XPS 630i BIOS: Phoenix - AwardBIOS v6.00PG Processor: Intel(R) Core(TM)2 Quad CPU Q8200 @ 2.33GHz (4 CPUs), ~2.3GHz Memory: 8192MB RAM Available OS Memory: 8190MB RAM Page File: 1855MB used, 14521MB available Windows Dir: C:\Windows DirectX Version: DirectX 11 DX Setup Parameters: Not found User DPI Setting: Using System DPI System DPI Setting: 96 DPI (100 percent) DWM DPI Scaling: Disabled DxDiag Version: 6.01.7600.16385 32bit Unicode DxDiag Previously: Crashed in DirectShow (stage 1). Re-running DxDiag with "dontskip" command line parameter or choosing not to bypass information gathering when prompted might result in DxDiag successfully obtaining this information ------------ DxDiag Notes ------------ Display Tab 1: No problems found. Sound Tab 1: No problems found. Sound Tab 2: No problems found. Sound Tab 3: No problems found. Input Tab: No problems found. -------------------- DirectX Debug Levels -------------------- Direct3D: 0/4 (retail) DirectDraw: 0/4 (retail) DirectInput: 0/5 (retail) DirectMusic: 0/5 (retail) DirectPlay: 0/9 (retail) DirectSound: 0/5 (retail) DirectShow: 0/6 (retail) --------------- Display Devices --------------- Card name: Manufacturer: Chip type: DAC type: Device Key: Enum\ Display Memory: n/a Dedicated Memory: n/a Shared Memory: n/a Current Mode: 1600 x 1200 (32 bit) (1Hz) Driver Name: Driver File Version: () Driver Version: DDI Version: unknown Driver Model: unknown Driver Attributes: Final Retail Driver Date/Size: , 0 bytes WHQL Logo'd: n/a WHQL Date Stamp: n/a Device Identifier: {D7B70EE0-4340-11CF-B123-B03DAEC2CB35} Vendor ID: 0x0000 Device ID: 0x0000 SubSys ID: 0x00000000 Revision ID: 0x0000 Driver Strong Name: Unknown Rank Of Driver: Unknown Video Accel: Deinterlace Caps: n/a D3D9 Overlay: n/a DXVA-HD: n/a DDraw Status: Not Available D3D Status: Not Available AGP Status: Not Available ------------- Sound Devices ------------- Description: Speakers (Realtek High Definition Audio) Default Sound Playback: Yes Default Voice Playback: Yes Hardware ID: HDAUDIO\FUNC_01&VEN_10EC&DEV_0888&SUBSYS_10280249&REV_1001 Manufacturer ID: 1 Product ID: 100 Type: WDM Driver Name: RTKVHD64.sys Driver Version: 6.00.0001.5667 (English) Driver Attributes: Final Retail WHQL Logo'd: n/a Date and Size: 8/18/2008 04:05:28, 1485592 bytes Other Files: Driver Provider: Realtek Semiconductor Corp. HW Accel Level: Basic Cap Flags: 0x0 Min/Max Sample Rate: 0, 0 Static/Strm HW Mix Bufs: 0, 0 Static/Strm HW 3D Bufs: 0, 0 HW Memory: 0 Voice Management: No EAX(tm) 2.0 Listen/Src: No, No I3DL2(tm) Listen/Src: No, No Sensaura(tm) ZoomFX(tm): No Description: Realtek Digital Output (Realtek High Definition Audio) Default Sound Playback: No Default Voice Playback: No Hardware ID: HDAUDIO\FUNC_01&VEN_10EC&DEV_0888&SUBSYS_10280249&REV_1001 Manufacturer ID: 1 Product ID: 100 Type: WDM Driver Name: RTKVHD64.sys Driver Version: 6.00.0001.5667 (English) Driver Attributes: Final Retail WHQL Logo'd: n/a Date and Size: 8/18/2008 04:05:28, 1485592 bytes Other Files: Driver Provider: Realtek Semiconductor Corp. HW Accel Level: Basic Cap Flags: 0x0 Min/Max Sample Rate: 0, 0 Static/Strm HW Mix Bufs: 0, 0 Static/Strm HW 3D Bufs: 0, 0 HW Memory: 0 Voice Management: No EAX(tm) 2.0 Listen/Src: No, No I3DL2(tm) Listen/Src: No, No Sensaura(tm) ZoomFX(tm): No Description: Realtek HDMI Output (Realtek High Definition Audio) Default Sound Playback: No Default Voice Playback: No Hardware ID: HDAUDIO\FUNC_01&VEN_10EC&DEV_0888&SUBSYS_10280249&REV_1001 Manufacturer ID: 1 Product ID: 100 Type: WDM Driver Name: RTKVHD64.sys Driver Version: 6.00.0001.5667 (English) Driver Attributes: Final Retail WHQL Logo'd: n/a Date and Size: 8/18/2008 04:05:28, 1485592 bytes Other Files: Driver Provider: Realtek Semiconductor Corp. HW Accel Level: Basic Cap Flags: 0x0 Min/Max Sample Rate: 0, 0 Static/Strm HW Mix Bufs: 0, 0 Static/Strm HW 3D Bufs: 0, 0 HW Memory: 0 Voice Management: No EAX(tm) 2.0 Listen/Src: No, No I3DL2(tm) Listen/Src: No, No Sensaura(tm) ZoomFX(tm): No --------------------- Sound Capture Devices --------------------- Description: Microphone (Realtek High Definition Audio) Default Sound Capture: Yes Default Voice Capture: Yes Driver Name: RTKVHD64.sys Driver Version: 6.00.0001.5667 (English) Driver Attributes: Final Retail Date and Size: 8/18/2008 04:05:28, 1485592 bytes Cap Flags: 0x0 Format Flags: 0x0 Description: Realtek Digital Input (Realtek High Definition Audio) Default Sound Capture: No Default Voice Capture: No Driver Name: RTKVHD64.sys Driver Version: 6.00.0001.5667 (English) Driver Attributes: Final Retail Date and Size: 8/18/2008 04:05:28, 1485592 bytes Cap Flags: 0x0 Format Flags: 0x0 ------------------- DirectInput Devices ------------------- Device Name: Mouse Attached: 1 Controller ID: n/a Vendor/Product ID: n/a FF Driver: n/a Device Name: Keyboard Attached: 1 Controller ID: n/a Vendor/Product ID: n/a FF Driver: n/a Device Name: ESA FW Update Attached: 1 Controller ID: 0x0 Vendor/Product ID: 0x0955, 0x000A FF Driver: n/a Poll w/ Interrupt: No ----------- USB Devices ----------- + USB Root Hub | Vendor/Product ID: 0x10DE, 0x026D | Matching Device ID: usb\root_hub | Service: usbhub | +-+ USB Input Device | | Vendor/Product ID: 0x0955, 0x000A | | Location: Port_#0002.Hub_#0001 | | Matching Device ID: generic_hid_device | | Service: HidUsb | | | +-+ HID-compliant device | | | Vendor/Product ID: 0x0955, 0x000A | | | Matching Device ID: hid_device | | +-+ USB Input Device | | Vendor/Product ID: 0x046D, 0xC01E | | Location: Port_#0003.Hub_#0001 | | Matching Device ID: generic_hid_device | | Service: HidUsb | | | +-+ HID-compliant mouse | | | Vendor/Product ID: 0x046D, 0xC01E | | | Matching Device ID: hid_device_system_mouse | | | Service: mouhid ---------------- Gameport Devices ---------------- ------------ PS/2 Devices ------------ + Standard PS/2 Keyboard | Matching Device ID: *pnp0303 | Service: i8042prt | + Terminal Server Keyboard Driver | Matching Device ID: root\rdp_kbd | Upper Filters: kbdclass | Service: TermDD | + Terminal Server Mouse Driver | Matching Device ID: root\rdp_mou | Upper Filters: mouclass | Service: TermDD ------------------------ Disk & DVD/CD-ROM Drives ------------------------ Drive: C: Free Space: 324.3 GB Total Space: 608.4 GB File System: NTFS Model: WDC WD64 00AAKS-75A7B SCSI Disk Device Drive: D: Free Space: 1.0 GB Total Space: 2.0 GB File System: NTFS Model: WDC WD64 00AAKS-75A7B SCSI Disk Device Drive: E: Model: TSSTcorp DVD+-RW TS-H653F SCSI CdRom Device Driver: c:\windows\system32\drivers\cdrom.sys, 6.01.7600.16385 (English), , 0 bytes -------------- System Devices -------------- Name: PCI standard PCI-to-PCI bridge Device ID: PCI\VEN_10DE&DEV_03B7&SUBSYS_000010DE&REV_A1\3&2411E6FE&1&18 Driver: n/a Name: PCI standard RAM Controller Device ID: PCI\VEN_10DE&DEV_03AF&SUBSYS_02491028&REV_A1\3&2411E6FE&1&0A Driver: n/a Name: PCI standard host CPU bridge Device ID: PCI\VEN_10DE&DEV_03A3&SUBSYS_02491028&REV_A2\3&2411E6FE&1&00 Driver: n/a Name: NVIDIA nForce Serial ATA Controller Device ID: PCI\VEN_10DE&DEV_0267&SUBSYS_02491028&REV_A1\3&2411E6FE&1&78 Driver: n/a Name: PCI standard RAM Controller Device ID: PCI\VEN_10DE&DEV_03B6&SUBSYS_02491028&REV_A1\3&2411E6FE&1&10 Driver: n/a Name: PCI standard RAM Controller Device ID: PCI\VEN_10DE&DEV_03AE&SUBSYS_02491028&REV_A1\3&2411E6FE&1&09 Driver: n/a Name: PCI standard RAM Controller Device ID: PCI\VEN_10DE&DEV_0272&SUBSYS_02491028&REV_A3\3&2411E6FE&1&52 Driver: n/a Name: NVIDIA nForce Serial ATA Controller Device ID: PCI\VEN_10DE&DEV_0266&SUBSYS_02491028&REV_A1\3&2411E6FE&1&70 Driver: n/a Name: LSI 1394 OHCI Compliant Host Controller Device ID: PCI\VEN_11C1&DEV_5811&SUBSYS_02491028&REV_70\4&14591D7E&0&2880 Driver: n/a Name: PCI standard RAM Controller Device ID: PCI\VEN_10DE&DEV_03B5&SUBSYS_02491028&REV_A1\3&2411E6FE&1&06 Driver: n/a Name: PCI standard RAM Controller Device ID: PCI\VEN_10DE&DEV_03AD&SUBSYS_02491028&REV_A1\3&2411E6FE&1&08 Driver: n/a Name: PCI standard RAM Controller Device ID: PCI\VEN_10DE&DEV_0270&SUBSYS_02491028&REV_A2\3&2411E6FE&1&48 Driver: n/a Name: Standard Dual Channel PCI IDE Controller Device ID: PCI\VEN_10DE&DEV_0265&SUBSYS_02491028&REV_A1\3&2411E6FE&1&68 Driver: n/a Name: NVIDIA GeForce 9800 GT Device ID: PCI\VEN_10DE&DEV_0605&SUBSYS_062D10DE&REV_A2\4&4BABE2A&0&0028 Driver: n/a Name: PCI standard RAM Controller Device ID: PCI\VEN_10DE&DEV_03B4&SUBSYS_02491028&REV_A1\3&2411E6FE&1&07 Driver: n/a Name: PCI standard RAM Controller Device ID: PCI\VEN_10DE&DEV_03AC&SUBSYS_02491028&REV_A1\3&2411E6FE&1&01 Driver: n/a Name: PCI standard PCI-to-PCI bridge Device ID: PCI\VEN_10DE&DEV_026F&SUBSYS_CB8410DE&REV_A2\3&2411E6FE&1&80 Driver: n/a Name: NVIDIA nForce PCI System Management Device ID: PCI\VEN_10DE&DEV_0264&SUBSYS_02491028&REV_A3\3&2411E6FE&1&51 Driver: n/a Name: NVIDIA GeForce 9800 GT Device ID: PCI\VEN_10DE&DEV_0605&SUBSYS_062D10DE&REV_A2\4&10BD3C89&0&0018 Driver: n/a Name: PCI standard RAM Controller Device ID: PCI\VEN_10DE&DEV_03B3&SUBSYS_02491028&REV_A1\3&2411E6FE&1&0E Driver: n/a Name: PCI standard RAM Controller Device ID: PCI\VEN_10DE&DEV_03AB&SUBSYS_02491028&REV_A1\3&2411E6FE&1&04 Driver: n/a Name: Standard Enhanced PCI to USB Host Controller Device ID: PCI\VEN_10DE&DEV_026E&SUBSYS_02491028&REV_A3\3&2411E6FE&1&59 Driver: n/a Name: PCI standard ISA bridge Device ID: PCI\VEN_10DE&DEV_0260&SUBSYS_02491028&REV_A3\3&2411E6FE&1&50 Driver: n/a Name: PCI standard RAM Controller Device ID: PCI\VEN_10DE&DEV_03BC&SUBSYS_02491028&REV_A1\3&2411E6FE&1&11 Driver: n/a Name: PCI standard RAM Controller Device ID: PCI\VEN_10DE&DEV_03B2&SUBSYS_02491028&REV_A1\3&2411E6FE&1&0D Driver: n/a Name: PCI standard RAM Controller Device ID: PCI\VEN_10DE&DEV_03AA&SUBSYS_02491028&REV_A1\3&2411E6FE&1&02 Driver: n/a Name: Standard OpenHCD USB Host Controller Device ID: PCI\VEN_10DE&DEV_026D&SUBSYS_02491028&REV_A3\3&2411E6FE&1&58 Driver: n/a Name: PCI standard RAM Controller Device ID: PCI\VEN_10DE&DEV_03BA&SUBSYS_02491028&REV_A1\3&2411E6FE&1&12 Driver: n/a Name: PCI standard RAM Controller Device ID: PCI\VEN_10DE&DEV_03B1&SUBSYS_02491028&REV_A1\3&2411E6FE&1&0C Driver: n/a Name: PCI standard RAM Controller Device ID: PCI\VEN_10DE&DEV_03A9&SUBSYS_02491028&REV_A1\3&2411E6FE&1&03 Driver: n/a Name: High Definition Audio Controller Device ID: PCI\VEN_10DE&DEV_026C&SUBSYS_02491028&REV_A2\3&2411E6FE&1&81 Driver: n/a Name: PCI standard PCI-to-PCI bridge Device ID: PCI\VEN_10DE&DEV_03B8&SUBSYS_000010DE&REV_A1\3&2411E6FE&1&28 Driver: n/a Name: PCI standard RAM Controller Device ID: PCI\VEN_10DE&DEV_03B0&SUBSYS_02491028&REV_A1\3&2411E6FE&1&0B Driver: n/a Name: PCI standard RAM Controller Device ID: PCI\VEN_10DE&DEV_03A8&SUBSYS_02491028&REV_A2\3&2411E6FE&1&05 Driver: n/a Name: NVIDIA nForce Networking Controller Device ID: PCI\VEN_10DE&DEV_0269&SUBSYS_02491028&REV_A3\3&2411E6FE&1&A0 Driver: n/a --------------- EVR Power Information --------------- Current Setting: {5C67A112-A4C9-483F-B4A7-1D473BECAFDC} (Quality) Quality Flags: 2576 Enabled: Force throttling Allow half deinterlace Allow scaling Decode Power Usage: 100 Balanced Flags: 1424 Enabled: Force throttling Allow batching Force half deinterlace Force scaling Decode Power Usage: 50 PowerFlags: 1424 Enabled: Force throttling Allow batching Force half deinterlace Force scaling Decode Power Usage: 0

    Read the article

  • GRUB doesn't recognize partitions on one harddisk

    - by knizz
    I have a dualboot computer with Windows Vista (on hd0) and Ubuntu 9.10. The bootloader is GRUB and the windows bootloader lets me decide between Vista and Ubuntu-Installation (broken WuBi). But now (i don't know why that changed) I can't use start the windows-bootloader anymore. I tried "ls" on the grub-prompt and it gave me a list like: (hd0) (hd1) (hd1,0) (hd1,1) (hd1,2) ... (fd0) It recognizes all partitions of hd1 (the ubuntu-harddisk) but not of hd0(the win-disk). .. WHY? Here is the result of the "boot info script" for the technical details: Boot Info Script 0.55 dated February 15th, 2010 ============================= Boot Info Summary: ============================== => Grub 2 is installed in the MBR of /dev/sda and looks for (UUID=a7c510e3-2399-437b-ab92-fa609e48d63f)/boot/grub. => No boot loader is installed in the MBR of /dev/sdb sda1: _________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Windows Vista Boot files/dirs: /bootmgr /Boot/BCD /Windows/System32/winload.exe /wubildr.mbr /wubildr sda2: _________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files/dirs: sdb1: _________________________________________________________________________ File system: Boot sector type: Unknown Boot sector info: Mounting failed: mount: unbekannter Dateisystemtyp „“ sdb2: _________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files/dirs: sdb3: _________________________________________________________________________ File system: Bios Boot Partition Boot sector type: - Boot sector info: sdb4: _________________________________________________________________________ File system: ext4 Boot sector type: - Boot sector info: Operating System: Ubuntu 9.10 Boot files/dirs: /boot/grub/grub.cfg /etc/fstab /boot/grub/core.img sdb5: _________________________________________________________________________ File system: swap Boot sector type: - Boot sector info: =========================== Drive/Partition Info: ============================= Drive: sda ___________________ _____________________________________________________ Platte /dev/sda: 640.1 GByte, 640135028736 Byte 255 Köpfe, 63 Sektoren/Spuren, 77825 Zylinder, zusammen 1250263728 Sektoren Einheiten = Sektoren von 1 × 512 = 512 Bytes Disk identifier: 0x52554d66 Partition Boot Start End Size Id System /dev/sda1 * 2,048 307,202,047 307,200,000 7 HPFS/NTFS /dev/sda2 307,202,048 1,250,258,943 943,056,896 7 HPFS/NTFS Drive: sdb ___________________ _____________________________________________________ Platte /dev/sdb: 640.1 GByte, 640135028736 Byte 255 Köpfe, 63 Sektoren/Spuren, 77825 Zylinder, zusammen 1250263728 Sektoren Einheiten = Sektoren von 1 × 512 = 512 Bytes Disk identifier: 0x00000000 Partition Boot Start End Size Id System /dev/sdb1 1 1,250,263,727 1,250,263,727 ee GPT GUID Partition Table detected. Partition Start End Size System /dev/sdb1 34 262,177 262,144 Microsoft Windows /dev/sdb2 262,178 1,131,253,933 1,130,991,756 Linux or Data /dev/sdb3 1,131,253,934 1,131,255,887 1,954 Bios Boot Partition /dev/sdb4 1,131,255,888 1,245,312,528 114,056,641 Linux or Data /dev/sdb5 1,245,312,529 1,250,263,694 4,951,166 Linux Swap blkid -c /dev/null: ____________________________________________________________ Device UUID TYPE LABEL /dev/sda1 AE1440441440122F ntfs /dev/sda2 3AE66E4DE66E0A09 ntfs data /dev/sdb2 5419D16119DAA4DE ntfs LaufwerkD /dev/sdb4 a7c510e3-2399-437b-ab92-fa609e48d63f ext4 /dev/sdb5 60a0143a-e01b-450a-bbd1-f22059e47b65 swap ============================ "mount | grep ^/dev output: =========================== Device Mount_Point Type Options /dev/sdb4 / ext4 (rw,errors=remount-ro) =========================== sdb4/boot/grub/grub.cfg: =========================== # # DO NOT EDIT THIS FILE # # It is automatically generated by /usr/sbin/grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s /boot/grub/grubenv ]; then have_grubenv=true load_env fi set default="0" if [ ${prev_saved_entry} ]; then saved_entry=${prev_saved_entry} save_env saved_entry prev_saved_entry= save_env prev_saved_entry fi insmod ext2 set root=(hd1,4) search --no-floppy --fs-uuid --set a7c510e3-2399-437b-ab92-fa609e48d63f if loadfont /usr/share/grub/unicode.pf2 ; then set gfxmode=640x480 insmod gfxterm insmod vbe if terminal_output gfxterm ; then true ; else # For backward compatibility with versions of terminal.mod that don't # understand terminal_output terminal gfxterm fi fi if [ ${recordfail} = 1 ]; then set timeout=-1 else set timeout=10 fi ### END /etc/grub.d/00_header ### ### BEGIN /etc/grub.d/05_debian_theme ### set menu_color_normal=white/black set menu_color_highlight=black/white ### END /etc/grub.d/05_debian_theme ### ### BEGIN /etc/grub.d/10_linux ### menuentry "Ubuntu, Linux 2.6.31-20-generic" { recordfail=1 if [ -n ${have_grubenv} ]; then save_env recordfail; fi set quiet=1 insmod ext2 set root=(hd1,4) search --no-floppy --fs-uuid --set a7c510e3-2399-437b-ab92-fa609e48d63f linux /boot/vmlinuz-2.6.31-20-generic root=UUID=a7c510e3-2399-437b-ab92-fa609e48d63f ro quiet splash initrd /boot/initrd.img-2.6.31-20-generic } menuentry "Ubuntu, Linux 2.6.31-20-generic (recovery mode)" { recordfail=1 if [ -n ${have_grubenv} ]; then save_env recordfail; fi insmod ext2 set root=(hd1,4) search --no-floppy --fs-uuid --set a7c510e3-2399-437b-ab92-fa609e48d63f linux /boot/vmlinuz-2.6.31-20-generic root=UUID=a7c510e3-2399-437b-ab92-fa609e48d63f ro single initrd /boot/initrd.img-2.6.31-20-generic } menuentry "Ubuntu, Linux 2.6.31-14-generic" { recordfail=1 if [ -n ${have_grubenv} ]; then save_env recordfail; fi set quiet=1 insmod ext2 set root=(hd1,4) search --no-floppy --fs-uuid --set a7c510e3-2399-437b-ab92-fa609e48d63f linux /boot/vmlinuz-2.6.31-14-generic root=UUID=a7c510e3-2399-437b-ab92-fa609e48d63f ro quiet splash initrd /boot/initrd.img-2.6.31-14-generic } menuentry "Ubuntu, Linux 2.6.31-14-generic (recovery mode)" { recordfail=1 if [ -n ${have_grubenv} ]; then save_env recordfail; fi insmod ext2 set root=(hd1,4) search --no-floppy --fs-uuid --set a7c510e3-2399-437b-ab92-fa609e48d63f linux /boot/vmlinuz-2.6.31-14-generic root=UUID=a7c510e3-2399-437b-ab92-fa609e48d63f ro single initrd /boot/initrd.img-2.6.31-14-generic } ### END /etc/grub.d/10_linux ### ### BEGIN /etc/grub.d/20_memtest86+ ### menuentry "Memory test (memtest86+)" { linux16 /boot/memtest86+.bin } menuentry "Memory test (memtest86+, serial console 115200)" { linux16 /boot/memtest86+.bin console=ttyS0,115200n8 } ### END /etc/grub.d/20_memtest86+ ### ### BEGIN /etc/grub.d/30_os-prober ### menuentry "Windows Vista (loader) (on /dev/sda1)" { insmod ntfs set root=(hd0,1) search --no-floppy --fs-uuid --set ae1440441440122f chainloader +1 } ### END /etc/grub.d/30_os-prober ### ### BEGIN /etc/grub.d/40_custom ### # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. ### END /etc/grub.d/40_custom ### =============================== sdb4/etc/fstab: =============================== # /etc/fstab: static file system information. # # Use 'blkid -o value -s UUID' to print the universally unique identifier # for a device; this may be used with UUID= as a more robust way to name # devices that works even if disks are added and removed. See fstab(5). # # <file system> <mount point> <type> <options> <dump> <pass> proc /proc proc defaults 0 0 # / was on /dev/sdb4 during installation UUID=a7c510e3-2399-437b-ab92-fa609e48d63f / ext4 errors=remount-ro 0 1 # swap was on /dev/sdb5 during installation UUID=60a0143a-e01b-450a-bbd1-f22059e47b65 none swap sw 0 0 /dev/scd0 /media/cdrom0 udf,iso9660 user,noauto,exec,utf8 0 0 /dev/fd0 /media/floppy0 auto rw,user,noauto,exec,utf8 0 0 =================== sdb4: Location of files loaded by Grub: =================== 583.8GB: boot/grub/core.img 583.8GB: boot/grub/grub.cfg 579.7GB: boot/initrd.img-2.6.31-14-generic 580.0GB: boot/initrd.img-2.6.31-20-generic 579.7GB: boot/vmlinuz-2.6.31-14-generic 579.8GB: boot/vmlinuz-2.6.31-20-generic 580.0GB: initrd.img 579.7GB: initrd.img.old 579.8GB: vmlinuz 579.7GB: vmlinuz.old =========================== Unknown MBRs/Boot Sectors/etc ======================= Unknown BootLoader on sdb1 00000000 54 34 dc 3b 8b ff 6c fa 3e 59 3d 24 25 af 5f 9b |T4.;..l.>Y=$%._.| 00000010 72 f8 36 3d 56 30 22 fd c6 08 5e 39 7f dc 29 48 |r.6=V0"...^9..)H| 00000020 48 e5 24 52 77 b0 fc 64 b6 ce 48 c3 07 ce b5 81 |H.$Rw..d..H.....| 00000030 06 68 60 4f 6e fb 83 92 df 3a 54 b9 df 21 2a cd |.h`On....:T..!*.| 00000040 1e 2f e2 49 fe cf 81 2d 52 17 1a 4e 66 b4 f3 f0 |./.I...-R..Nf...| 00000050 41 25 e3 96 26 28 fe 19 61 72 75 f8 40 a3 b7 ef |A%..&(..aru.@...| 00000060 5f 79 dc cb 28 44 44 7c 9b 9a 7b 6c 4b 4b 60 0f |_y..(DD|..{lKK`.| 00000070 a9 97 87 bc 85 9f db bb d2 1a 88 9f aa 49 18 d5 |.............I..| 00000080 92 2d db 7e fe f7 8d 7a 18 c0 33 c5 bd 7a 46 07 |.-.~...z..3..zF.| 00000090 c8 27 13 66 94 49 62 9f bc 99 56 55 25 fb 94 a9 |.'.f.Ib...VU%...| 000000a0 3f b2 a7 0a 87 d0 a4 4e 51 f1 09 02 c4 29 eb ff |?......NQ....)..| 000000b0 26 3b 51 3e 5a 0c db ee a6 57 a7 c3 ba a1 74 90 |&;Q>Z....W....t.| 000000c0 ee 70 08 18 cc b8 d0 22 ce 96 c7 cb 68 40 98 20 |.p....."....h@. | 000000d0 49 3d 07 ec df d1 8d cf 19 bc 42 90 70 24 01 b4 |I=........B.p$..| 000000e0 28 cf c6 50 d3 95 5a 1b 18 15 33 c7 b2 a8 95 92 |(..P..Z...3.....| 000000f0 bb 93 fe 18 2b 81 c1 6b 9c 30 f1 65 50 6a 80 3d |....+..k.0.ePj.=| 00000100 74 37 a8 59 a6 51 8a 63 b6 d8 16 9f a9 47 2a 7c |t7.Y.Q.c.....G*|| 00000110 04 a7 fe 69 47 02 bf e9 b7 1b 7a ea 60 5c 3c 53 |...iG.....z.`\<S| 00000120 5b 10 78 dc 4d d2 a8 22 30 45 37 fb 56 06 9f 06 |[.x.M.."0E7.V...| 00000130 aa df cf 87 3a 3e cf 72 f2 e5 a6 c6 aa e2 7c 1c |....:>.r......|.| 00000140 64 c2 fc 80 ce 02 fc 7f 0f c6 60 81 bf cd 3b 5a |d.........`...;Z| 00000150 37 a5 38 1b 0c 1b 39 2e d6 f6 3d a2 36 e5 87 c3 |7.8...9...=.6...| 00000160 17 b5 fd ee 33 c7 ce a3 d9 c2 57 dc ee 85 48 9d |....3.....W...H.| 00000170 33 60 02 cd c5 83 44 44 ea b6 07 25 0a 4b a6 6e |3`....DD...%.K.n| 00000180 fc 51 42 cd 84 0b 65 b6 19 a1 e5 b2 eb 14 0c fa |.QB...e.........| 00000190 24 77 f5 44 6e 5d 39 dd b6 8e cc f8 30 fe 21 46 |$w.Dn]9.....0.!F| 000001a0 9c ff 95 c6 c7 b5 0a df 54 ca d2 ac bc 64 d0 97 |........T....d..| 000001b0 94 54 d9 29 0f 91 60 20 c3 e4 53 c2 b0 e4 40 72 |.T.)..` ..S...@r| 000001c0 7e 25 bc 81 06 ad 05 46 14 a7 e6 71 6b 5c db 9c |~%.....F...qk\..| 000001d0 0a 5e 76 23 ae 06 01 36 98 21 65 2c 90 e7 4b 1a |.^v#...6.!e,..K.| 000001e0 2a 2d 80 a5 48 db 9e 14 e0 9f e9 aa 00 e3 77 32 |*-..H.........w2| 000001f0 0f fd 94 db 55 a6 64 46 be ae ca de da ee 89 68 |....U.dF.......h| 00000200 =======Devices which don't seem to have a corresponding hard drive============== sdc sdd sde

    Read the article

  • Apache + Codeigniter + New Server + Unexpected Errors

    - by ngl5000
    Alright here is the situation: I use to have my codeigniter site at bluehost were I did not have root access, I have since moved that site to rackspace. I have not changed any of the PHP code yet there has been some unexpected behavior. Unexpected Behavior: http://mysite.com/robots.txt Both old and new resolve to the robots file http://mysite.com/robots.txt/ The old bluehost setup resolves to my codeigniter 404 error page. The rackspace config resolves to: Not Found The requested URL /robots.txt/ was not found on this server. **This instance leads me to believe that there could be a problem with my mod rewrites or lack there of. The first one produces the error correctly through php while it seems the second senario lets the server handle this error. The next instance of this problem is even more troubling: 'http://mysite.com/search/term/9 x 1-1%2F2 white/' New site results in: Bad Request Your browser sent a request that this server could not understand. Old site results in: The actual page being loaded and the search term being unencoded. I have to assume that this has something to do with the fact that when I went to the new server I went from root level htaccess file to httpd.conf file and virtual server default and default-ssl. Here they are: Default file: <VirtualHost *:80> ServerAdmin webmaster@localhost ServerName mysite.com DocumentRoot /var/www <Directory /> Options +FollowSymLinks AllowOverride None </Directory> <Directory /var/www> Options -Indexes +FollowSymLinks -MultiViews AllowOverride None Order allow,deny allow from all RewriteEngine On RewriteBase / # force no www. (also does the IP thing) RewriteCond %{HTTPS} !=on RewriteCond %{HTTP_HOST} !^mysite\.com [NC] RewriteRule ^(.*)$ http://mysite.com/$1 [R=301,L] RewriteCond %{REQUEST_FILENAME} !-f RewriteCond %{REQUEST_FILENAME} !-d RewriteRule ^(.+)\.(\d+)\.(js|css|png|jpg|gif)$ $1.$3 [L] # index.php remove any index.php parts RewriteCond %{THE_REQUEST} /index\.(php|html) RewriteRule (.*)index\.(php|html)(.*)$ /$1$3 [r=301,L] # codeigniter direct RewriteCond $0 !^(index\.php|assets|robots\.txt|sitemap\.xml|favicon\.ico) RewriteRule ^.*$ index.php [L] </Directory> ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/ <Directory "/usr/lib/cgi-bin"> AllowOverride None Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch Order allow,deny Allow from all </Directory> ErrorLog ${APACHE_LOG_DIR}/error.log # Possible values include: debug, info, notice, warn, error, crit, # alert, emerg. LogLevel warn CustomLog ${APACHE_LOG_DIR}/access.log combined Alias /doc/ "/usr/share/doc/" <Directory "/usr/share/doc/"> Options Indexes MultiViews FollowSymLinks AllowOverride None Order deny,allow Deny from all Allow from 127.0.0.0/255.0.0.0 ::1/128 </Directory> </VirtualHost> Default-ssl File <IfModule mod_ssl.c> <VirtualHost _default_:443> ServerAdmin webmaster@localhost ServerName mysite.com DocumentRoot /var/www <Directory /> Options +FollowSymLinks AllowOverride None </Directory> <Directory /var/www> Options -Indexes +FollowSymLinks -MultiViews AllowOverride None Order allow,deny allow from all RewriteEngine On RewriteBase / RewriteCond %{SERVER_PORT} !^443 RewriteRule ^ https://mysite.com%{REQUEST_URI} [R=301,L] RewriteCond %{REQUEST_FILENAME} !-f RewriteCond %{REQUEST_FILENAME} !-d RewriteRule ^(.+)\.(\d+)\.(js|css|png|jpg|gif)$ $1.$3 [L] # index.php remove any index.php parts RewriteCond %{THE_REQUEST} /index\.(php|html) RewriteRule (.*)index\.(php|html)(.*)$ /$1$3 [r=301,L] # codeigniter direct RewriteCond $0 !^(index\.php|assets|robots\.txt|sitemap\.xml|favicon\.ico) RewriteRule ^.*$ index.php [L] </Directory> ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/ <Directory "/usr/lib/cgi-bin"> AllowOverride None Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch Order allow,deny Allow from all </Directory> ErrorLog ${APACHE_LOG_DIR}/error.log # Possible values include: debug, info, notice, warn, error, crit, # alert, emerg. LogLevel warn CustomLog ${APACHE_LOG_DIR}/ssl_access.log combined Alias /doc/ "/usr/share/doc/" <Directory "/usr/share/doc/"> Options Indexes MultiViews FollowSymLinks AllowOverride None Order deny,allow Deny from all Allow from 127.0.0.0/255.0.0.0 ::1/128 </Directory> # SSL Engine Switch: # Enable/Disable SSL for this virtual host. SSLEngine on # Use our self-signed certificate by default SSLCertificateFile /etc/apache2/ssl/certs/www.mysite.com.crt SSLCertificateKeyFile /etc/apache2/ssl/private/www.mysite.com.key # A self-signed (snakeoil) certificate can be created by installing # the ssl-cert package. See # /usr/share/doc/apache2.2-common/README.Debian.gz for more info. # If both key and certificate are stored in the same file, only the # SSLCertificateFile directive is needed. # SSLCertificateFile /etc/ssl/certs/ssl-cert-snakeoil.pem # SSLCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key # Server Certificate Chain: # Point SSLCertificateChainFile at a file containing the # concatenation of PEM encoded CA certificates which form the # certificate chain for the server certificate. Alternatively # the referenced file can be the same as SSLCertificateFile # when the CA certificates are directly appended to the server # certificate for convinience. #SSLCertificateChainFile /etc/apache2/ssl.crt/server-ca.crt # Certificate Authority (CA): # Set the CA certificate verification path where to find CA # certificates for client authentication or alternatively one # huge file containing all of them (file must be PEM encoded) # Note: Inside SSLCACertificatePath you need hash symlinks # to point to the certificate files. Use the provided # Makefile to update the hash symlinks after changes. #SSLCACertificatePath /etc/ssl/certs/ #SSLCACertificateFile /etc/apache2/ssl.crt/ca-bundle.crt # Certificate Revocation Lists (CRL): # Set the CA revocation path where to find CA CRLs for client # authentication or alternatively one huge file containing all # of them (file must be PEM encoded) # Note: Inside SSLCARevocationPath you need hash symlinks # to point to the certificate files. Use the provided # Makefile to update the hash symlinks after changes. #SSLCARevocationPath /etc/apache2/ssl.crl/ #SSLCARevocationFile /etc/apache2/ssl.crl/ca-bundle.crl # Client Authentication (Type): # Client certificate verification type and depth. Types are # none, optional, require and optional_no_ca. Depth is a # number which specifies how deeply to verify the certificate # issuer chain before deciding the certificate is not valid. #SSLVerifyClient require #SSLVerifyDepth 10 # Access Control: # With SSLRequire you can do per-directory access control based # on arbitrary complex boolean expressions containing server # variable checks and other lookup directives. The syntax is a # mixture between C and Perl. See the mod_ssl documentation # for more details. #<Location /> #SSLRequire ( %{SSL_CIPHER} !~ m/^(EXP|NULL)/ \ # and %{SSL_CLIENT_S_DN_O} eq "Snake Oil, Ltd." \ # and %{SSL_CLIENT_S_DN_OU} in {"Staff", "CA", "Dev"} \ # and %{TIME_WDAY} >= 1 and %{TIME_WDAY} <= 5 \ # and %{TIME_HOUR} >= 8 and %{TIME_HOUR} <= 20 ) \ # or %{REMOTE_ADDR} =~ m/^192\.76\.162\.[0-9]+$/ #</Location> # SSL Engine Options: # Set various options for the SSL engine. # o FakeBasicAuth: # Translate the client X.509 into a Basic Authorisation. This means that # the standard Auth/DBMAuth methods can be used for access control. The # user name is the `one line' version of the client's X.509 certificate. # Note that no password is obtained from the user. Every entry in the user # file needs this password: `xxj31ZMTZzkVA'. # o ExportCertData: # This exports two additional environment variables: SSL_CLIENT_CERT and # SSL_SERVER_CERT. These contain the PEM-encoded certificates of the # server (always existing) and the client (only existing when client # authentication is used). This can be used to import the certificates # into CGI scripts. # o StdEnvVars: # This exports the standard SSL/TLS related `SSL_*' environment variables. # Per default this exportation is switched off for performance reasons, # because the extraction step is an expensive operation and is usually # useless for serving static content. So one usually enables the # exportation for CGI and SSI requests only. # o StrictRequire: # This denies access when "SSLRequireSSL" or "SSLRequire" applied even # under a "Satisfy any" situation, i.e. when it applies access is denied # and no other module can change it. # o OptRenegotiate: # This enables optimized SSL connection renegotiation handling when SSL # directives are used in per-directory context. #SSLOptions +FakeBasicAuth +ExportCertData +StrictRequire <FilesMatch "\.(cgi|shtml|phtml|php)$"> SSLOptions +StdEnvVars </FilesMatch> <Directory /usr/lib/cgi-bin> SSLOptions +StdEnvVars </Directory> # SSL Protocol Adjustments: # The safe and default but still SSL/TLS standard compliant shutdown # approach is that mod_ssl sends the close notify alert but doesn't wait for # the close notify alert from client. When you need a different shutdown # approach you can use one of the following variables: # o ssl-unclean-shutdown: # This forces an unclean shutdown when the connection is closed, i.e. no # SSL close notify alert is send or allowed to received. This violates # the SSL/TLS standard but is needed for some brain-dead browsers. Use # this when you receive I/O errors because of the standard approach where # mod_ssl sends the close notify alert. # o ssl-accurate-shutdown: # This forces an accurate shutdown when the connection is closed, i.e. a # SSL close notify alert is send and mod_ssl waits for the close notify # alert of the client. This is 100% SSL/TLS standard compliant, but in # practice often causes hanging connections with brain-dead browsers. Use # this only for browsers where you know that their SSL implementation # works correctly. # Notice: Most problems of broken clients are also related to the HTTP # keep-alive facility, so you usually additionally want to disable # keep-alive for those clients, too. Use variable "nokeepalive" for this. # Similarly, one has to force some clients to use HTTP/1.0 to workaround # their broken HTTP/1.1 implementation. Use variables "downgrade-1.0" and # "force-response-1.0" for this. BrowserMatch "MSIE [2-6]" \ nokeepalive ssl-unclean-shutdown \ downgrade-1.0 force-response-1.0 # MSIE 7 and newer should be able to use keepalive BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown httpd.conf File Just a lot of stuff from html5 boiler plate, I will post it if need be Old htaccess file <IfModule mod_rewrite.c> # index.php remove any index.php parts RewriteCond %{THE_REQUEST} /index\.(php|html) RewriteRule (.*)index\.(php|html)(.*)$ /$1$3 [r=301,L] RewriteCond $1 !^(index\.php|assets|robots\.txt|sitemap\.xml|favicon\.ico) RewriteRule ^(.*)/$ /$1 [r=301,L] # codeigniter direct RewriteCond $1 !^(index\.php|assets|robots\.txt|sitemap\.xml|favicon\.ico) RewriteRule ^(.*)$ /index.php/$1 [L] </IfModule> Any Help would be hugely appreciated!!

    Read the article

< Previous Page | 262 263 264 265 266 267 268 269 270  | Next Page >