Search Results

Search found 6772 results on 271 pages for 'rob effect'.

Page 269/271 | < Previous Page | 265 266 267 268 269 270 271  | Next Page >

  • nivo slider and drop down menu doesnt work in IE

    - by venom
    Does anyone has any idea why drop down menu in IE disappear under nivo slider? tried to play with z-index, didn't help, i also know that drop down menus dissappear under flash content, but this is not the case(wmode=transparent) as far as i know the nivo slider uses just jquery, no flash. here is the html: <table> <tr height="50"><td colspan="2" align="right" class="bottom_menu"> <ul id="nav" class="dropdown dropdown-horizontal" > <li><a href="/index.cfm?fuseaction=home.logout" class="dir" style="border:0 !important;" >Çikis</a></li> <li><a href="/index.cfm?fuseaction=objects2.list_basket" class="dir">Sepetim</a></li> <li><a href="/index.cfm?fuseaction=objects2.me" class="dir">Sirketim</a> <ul> <li><a href="/index.cfm?fuseaction=objects2.list_opportunities">Firsatlar</a></li> <li><a href="/index.cfm?fuseaction=objects2.form_add_partner">Sirkete Kullanici Ekle</a></li> <li><a href="/index.cfm?fuseaction=objects2.form_upd_my_company">Kullanici Yönetimi</a></li> <li><a href="/index.cfm?fuseaction=objects2.list_analyses">Analizler</a></li> <li><a href="/index.cfm?fuseaction=objects2.list_extre">Hesap Ekstresi</a></li> <li><a href="/index.cfm?fuseaction=objects2.popup_add_online_pos" target="_blank">Sanal Pos</a></li> </ul> </li> </ul> </td></tr> </table> <div id="banner"> <img src="/documents/templates/projedepo/l_top.gif" style="z-index:1;position:absolute; left:0; top:0;" width="24px" height="24px" border="0" /> <img src="/documents/templates/projedepo/r_top.gif" style="z-index:1;position:absolute; right:0; top:0;" width="24px" height="24px" border="0" /> <img src="/documents/templates/projedepo/l_bottom.gif" style="z-index:1;position:absolute; left:0; bottom:0;" width="24px" height="24px" border="0" /> <img src="/documents/templates/projedepo/r_bottom.gif" style="z-index:1;position:absolute; right:0; bottom:0;" width="24px" height="24px" border="0" /> <div class="banner_img"> <link rel="stylesheet" href="/documents/templates/projedepo/banner/nivo-slider.css" type="text/css" media="screen" /> <link rel="stylesheet" href="/documents/templates/projedepo/banner/style.css" type="text/css" media="screen" /> <div id="slider" class="nivoSlider"> <img title="#1" src="/documents/templates/projedepo/banner/canon.jpg" alt="" /> <img title="#2" src="/documents/templates/projedepo/banner/indigovision.jpg" alt="" /> </div> <div id="1" class="nivo-html-caption"> <a href="/index.cfm?fuseaction=objects2.detail_product&product_id=612&stock_id=612"><img src="/documents/templates/projedepo/banner/daha_fazlasi.jpg" border="0" /></a> </div> <div id="2" class="nivo-html-caption"> <a href="/index.cfm?fuseaction=objects2.detail_product&product_id=630&stock_id=630"><img src="/documents/templates/projedepo/banner/daha_fazlasi.jpg" border="0" /></a> </div> <script type="text/javascript" src="/JS/jquery.nivo.slider.pack.js"></script> <script type="text/javascript"> $(window).load(function() { $('#slider').nivoSlider({ effect:'random', //Specify sets like: 'fold,fade,sliceDown' slices:15, animSpeed:1000, //Slide transition speed pauseTime:10000, startSlide:0, //Set starting Slide (0 index) directionNav:true, //Next & Prev directionNavHide:true, //Only show on hover controlNav:true, //1,2,3... controlNavThumbs:false, //Use thumbnails for Control Nav controlNavThumbsFromRel:false, //Use image rel for thumbs controlNavThumbsSearch: '.jpg', //Replace this with... controlNavThumbsReplace: '_thumb.jpg', //...this in thumb Image src keyboardNav:true, //Use left & right arrows pauseOnHover:true, //Stop animation while hovering manualAdvance:false, //Force manual transitions captionOpacity:1.0, //Universal caption opacity beforeChange: function(){}, afterChange: function(){}, slideshowEnd: function(){}, //Triggers after all slides have been shown lastSlide: function(){}, //Triggers when last slide is shown afterLoad: function(){} //Triggers when slider has loaded }); }); </script> </div> </div> Here is css for dropdown menu: http://www.micae.com/documents/templates/projedepo/default.css http://www.micae.com/documents/templates/projedepo/default.advanced.css http://www.micae.com/documents/templates/projedepo/dropdown.css and for nivo slider: http://www.micae.com/documents/templates/projedepo/banner/style.css http://www.micae.com/documents/templates/projedepo/banner/nivo-slider.css and for banner divs: #banner { position:relative; width:980px; height:435px; background:#fff; margin-bottom:20px; margin-top:-1px; color:#000; z-index:60; } .banner_img { padding:8px;position:absolute;z-index:2; } and the javascript by default, jquery and nivo slider http://www.micae.com/JS/jquery.nivo.slider.pack.js

    Read the article

  • Table not Echoing out if another Table has a Zero value

    - by John
    Hello, The table below with mysql_query($sqlStr3) (the one with the word "Joined" in its row) does not echo if the result associated with mysql_query($sqlStr1) has a value of zero. This happens even if mysql_query($sqlStr3) returns a result. In other words, if a given loginid has an entry in the table "login", but not one in the table "submission", then the table associated with mysql_query($sqlStr3) does not echo. I don't understand why the "submission" table would have any effect on mysql_query($sqlStr3), since the $sqlStr3 only deals with another table, called "login", as seen below. Any ideas why this is happening? Thanks in advance, John W. <?php echo '<div class="profilename">User Profile for </div>'; echo '<div class="profilename2">'.$profile.'</div>'; $tzFrom = new DateTimeZone('America/New_York'); $tzTo = new DateTimeZone('America/Phoenix'); $profile = mysql_real_escape_string($_GET['profile']); $sqlStr = "SELECT l.username, l.loginid, s.loginid, s.submissionid, s.title, s.url, s.datesubmitted, s.displayurl FROM submission AS s INNER JOIN login AS l ON s.loginid = l.loginid WHERE l.username = '$profile' ORDER BY s.datesubmitted DESC"; $result = mysql_query($sqlStr); $arr = array(); echo "<table class=\"samplesrec1\">"; while ($row = mysql_fetch_array($result)) { $dt = new DateTime($row["datesubmitted"], $tzFrom); $dt->setTimezone($tzTo); echo '<tr>'; echo '<td class="sitename3">'.$dt->format('F j, Y &\nb\sp &\nb\sp g:i a').'</a></td>'; echo '<td class="sitename1"><a href="http://www.'.$row["url"].'">'.$row["title"].'</a></td>'; echo '</tr>'; } echo "</table>"; $sqlStr1 = "SELECT l.username, l.loginid, s.loginid, s.submissionid, s.title, s.url, s.datesubmitted, s.displayurl, l.created, count(s.submissionid) countSubmissions FROM submission AS s INNER JOIN login AS l ON s.loginid = l.loginid WHERE l.username = '$profile'"; $result1 = mysql_query($sqlStr1); $arr1 = array(); echo "<table class=\"samplesrec2\">"; while ($row1 = mysql_fetch_array($result1)) { echo '<tr>'; echo '<td class="sitename5">Submissions: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'.$row1["countSubmissions"].'</td>'; echo '</tr>'; } echo "</table>"; $sqlStr2 = "SELECT l.username, l.loginid, c.loginid, c.commentid, c.submissionid, c.comment, c.datecommented, l.created, count(c.commentid) countComments FROM comment AS c INNER JOIN login AS l ON c.loginid = l.loginid WHERE l.username = '$profile'"; $result2 = mysql_query($sqlStr2); $arr2 = array(); echo "<table class=\"samplesrec3\">"; while ($row2 = mysql_fetch_array($result2)) { echo '<tr>'; echo '<td class="sitename5">Comments: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'.$row2["countComments"].'</td>'; echo '</tr>'; } echo "</table>"; $tzFrom3 = new DateTimeZone('America/New_York'); $tzTo3 = new DateTimeZone('America/Phoenix'); $sqlStr3 = "SELECT created, username FROM login WHERE username = '$profile'"; $result3 = mysql_query($sqlStr3); $arr3 = array(); echo "<table class=\"samplesrec4\">"; while ($row3 = mysql_fetch_array($result3)) { $dt3 = new DateTime($row3["created"], $tzFrom3); $dt3->setTimezone($tzTo3); echo '<tr>'; echo '<td class="sitename5">Joined: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'.$dt->format('F j, Y').'</td>'; echo '</tr>'; } echo "</table>"; ?> </body> </html>

    Read the article

  • another question about OpenGL ES rendering to texture

    - by ensoreus
    Hello, pros and gurus! Here is another question about rendering to texture. The whole stuff is all about saving texture between passing image into different filters. Maybe all iPhone developers knows about Apple's sample code with OpenGL processing where they used GL filters(functions), but pass into them the same source image. I need to edit an image by passing it sequentelly with saving the state of the image to edit. I am very noob in OpenGL, so I spent increadibly a lot of to solve the issue. So, I desided to create 2 FBO's and attach source image and temporary image as a textures to render in. Here is my init routine: glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glEnable(GL_TEXTURE_2D); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glGetIntegerv(GL_FRAMEBUFFER_BINDING_OES, (GLint *)&SystemFBO); glImage = [self loadTexture:preparedImage]; //source image for (int i = 0; i < 4; i++) { fullquad[i].s *= glImage->s; fullquad[i].t *= glImage->t; flipquad[i].s *= glImage->s; flipquad[i].t *= glImage->t; } tmpImage = [self loadEmptyTexture]; //editing image glGenFramebuffersOES(1, &tmpImageFBO); glBindFramebufferOES(GL_FRAMEBUFFER_OES, tmpImageFBO); glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES, GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tmpImage->texID, 0); GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES); if(status != GL_FRAMEBUFFER_COMPLETE_OES) { NSLog(@"failed to make complete tmp framebuffer object %x", status); } glBindTexture(GL_TEXTURE_2D, 0); glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0); glGenRenderbuffersOES(1, &glImageFBO); glBindFramebufferOES(GL_FRAMEBUFFER_OES, glImageFBO); glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES, GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, glImage->texID, 0); status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES) ; if(status != GL_FRAMEBUFFER_COMPLETE_OES) { NSLog(@"failed to make complete cur framebuffer object %x", status); } glBindTexture(GL_TEXTURE_2D, 0); glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0); When user drag the slider, this routine invokes to apply changes -(void)setContrast:(CGFloat)value{ contrast = value; if(flag!=mfContrast){ NSLog(@"contrast: dumped"); flag = mfContrast; glBindFramebufferOES(GL_FRAMEBUFFER_OES, glImageFBO); glClearColor(1,1,1,1); glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrthof(0, 512, 0, 512, -1, 1); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glScalef(512, 512, 1); glBindTexture(GL_TEXTURE_2D, tmpImage->texID); glViewport(0, 0, 512, 512); glVertexPointer(2, GL_FLOAT, sizeof(V2fT2f), &fullquad[0].x); glTexCoordPointer(2, GL_FLOAT, sizeof(V2fT2f), &fullquad[0].s); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0); } glBindFramebufferOES(GL_FRAMEBUFFER_OES,tmpImageFBO); glClearColor(0,0,0,1); glClear(GL_COLOR_BUFFER_BIT); glEnable(GL_TEXTURE_2D); glActiveTexture(GL_TEXTURE0); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrthof(0, 512, 0, 512, -1, 1); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glScalef(512, 512, 1); glBindTexture(GL_TEXTURE_2D, glImage->texID); glViewport(0, 0, 512, 512); [self contrastProc:fullquad value:contrast]; glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0); [self redraw]; } Here are two cases: if it is the same filter(edit mode) to use, I bind tmpFBO to draw into tmpImage texture and edit glImage texture. contrastProc is a pure routine from Apples's sample. If it is another mode, than I save edited image by drawing tmpImage texture in source texture glImage, binded with glImageFBO. After that I call redraw: glBindFramebufferOES(GL_FRAMEBUFFER_OES, SystemFBO); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrthof(0, kTexWidth, 0, kTexHeight, -1, 1); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glScalef(kTexWidth, kTexHeight, 1); glBindTexture(GL_TEXTURE_2D, glImage->texID); glViewport(0, 0, kTexWidth, kTexHeight); glVertexPointer(2, GL_FLOAT, sizeof(V2fT2f), &flipquad[0].x); glTexCoordPointer(2, GL_FLOAT, sizeof(V2fT2f), &flipquad[0].s); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0); And here it binds visual framebuffer and dispose glImage texture. So, the result is VERY aggresive filtering. Increasing contrast volume by just 0.2 brings image to state that comparable with 0.9 contrast volume in Apple's sample code project. I miss something obvious, I guess. Interesting, if I disabple line glBindTexture(GL_TEXTURE_2D, glImage->texID); in setContrast routine it brings no effect. At all. If I replace tmpImageFBO with SystemFBO to draw glImage directly on display(and disabling redraw invoking line), all works fine. Please, HELP ME!!! :(

    Read the article

  • Can we add new attribute or change type of existing attribute to a "Referenced Element"?

    - by JSteve
    In my XML schema I have an element being referenced tens of times by other elements but with different enumerated values for one of its attribute. For now, instead of creating this element in global space and referencing it later, I am creating a new instance wherever it is needed. This approach has increased my schema size enormously because of repeated creation of almost same element many times. It also may have adverse effect on efficiency of the schema. The only way that I see is to create element once and then reference it many times but my problem is: one of the attribute of this referenced element is required to have a different set of enumerations for each referencing element. My question is: Is it possible to to add an attribute to a "Referenced Element" in XML Schema? Something like this: <?xml version="1.0" encoding="UTF-8"?> <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.myDomain.com" xmlns="http://www.myDomain.com" elementFormDefault="qualified"> <xs:simpleType name="myValues1"> <xs:restriction base="xs:string"> <xs:enumeration value="value1" /> <xs:enumeration value="value2" /> </xs:restriction> </xs:simpleType> <xs:element name="myElement"> <xs:complexType mixed="true"> <xs:attribute name="attr1" type="xs:string" /> <xs:attribute name="attr2" type="xs:string" /> </xs:complexType> </xs:element> <xs:element name="MainElement1"> <xs:complexType> <xs:sequence> <xs:element ref="myElement"> <xs:complexType> <xs:attribute name="myAtt" type="myValues1" /> </xs:complexType> </xs:element> </xs:sequence> <xs:attribute name="mainAtt1" /> </xs:complexType> </xs:element> </xs:schema> Or can we change type of an existing attribute of a "Referenced Element" in XML Schema? something like this: <?xml version="1.0" encoding="UTF-8"?> <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.myDomain.com" xmlns="http://www.myDomain.com" elementFormDefault="qualified"> <xs:simpleType name="myValues1"> <xs:restriction base="xs:string"> <xs:enumeration value="value1" /> <xs:enumeration value="value2" /> </xs:restriction> </xs:simpleType> <xs:simpleType name="myValues2"> <xs:restriction base="xs:string"> <xs:enumeration value="value3" /> <xs:enumeration value="value4" /> </xs:restriction> </xs:simpleType> <xs:element name="myElement"> <xs:complexType mixed="true"> <xs:attribute name="attr1" type="xs:string" /> <xs:attribute name="attr2" type="xs:string" /> <xs:attribute name="myAtt" type="myValues1" /> </xs:complexType> </xs:element> <xs:element name="MainElement1"> <xs:complexType> <xs:sequence> <xs:element ref="myElement"> <xs:complexType> <xs:attribute name="myAtt" type="myValues2" /> </xs:complexType> </xs:element> </xs:sequence> <xs:attribute name="mainAtt1" /> </xs:complexType> </xs:element> </xs:schema>

    Read the article

  • Application crashing when talking to oracle unless executable path contains spaces

    - by Lasse V. Karlsen
    We have an x-files problem with our .NET application. Or, rather, hybrid Win32 and .NET application. When it attempts to communicate with Oracle, it just dies. Vanishes. Goes to the big black void in the sky. No event log message, no exception, no nothing. If we simply ask the application to talk to a MS SQL Server instead, which has the effect of replacing the usage of OracleConnection and related classes with SqlConnection and related classes, it works as expected. Today we had a breakthrough. For some reason, a customer had figured out that by placing all the application files in a directory on his desktop, it worked as expected with Oracle as well. Moving the directory down to the root of the drive, or in C:\Temp or, well, around a bit, made the crash reappear. Basically it was 100% reproducable that the application worked if run from directory on desktop, and failed if run from directory in root. Today we figured out that the difference that counted was wether there was a space in the directory name or not. So, these directories would work: C:\Program Files\AppDir\Executable.exe C:\Temp Lemp\AppDir\Executable.exe C:\Documents and Settings\someuser\Desktop\AppDir\Executable.exe whereas these would not: C:\CompanyName\AppDir\Executable.exe C:\Programfiler\AppDir\Executable.exe <-- Program Files in norwegian C:\Temp\AppDir\Executable.exe I'm hoping someone reading this has seen similar behavior and have a "aha, you need to twiddle the frob on the oracle glitz driver configuration" or similar. Anyone? Followup #1: Ok, I've processed the procmon output now, both files from when I hit the button that attempts to open the window that triggers the cascade failure, and I've noticed that they keep track mostly, there's some smallish differences near the top of both files, and they they keep track a long way down. However, when one run fails, the other keeps going and the next few lines of the log output are these: ReadFile C:\oracle\product\10.2.0\db_1\BIN\orageneric10.dll SUCCESS Offset: 274 432, Length: 32 768, I/O Flags: Non-cached, Paging I/O, Synchronous Paging I/O ReadFile C:\oracle\product\10.2.0\db_1\BIN\orageneric10.dll SUCCESS Offset: 233 472, Length: 32 768, I/O Flags: Non-cached, Paging I/O, Synchronous Paging I/O After this, the working run continues to execute, and the other touches the mscorwks.dll files a few times before threads close down and the app closes. Thus, the failed run does not touch the above files. Followup #2: Figured I'd try to upgrade the oracle client drivers, but 10.2.0.1 is apparently the highest version available for Windows 2003 server and XP clients. Followup #3: Well, we've ended up with a black-box solution. Basically we found that the problem is somewhere related to XPO and Oracle. XPO has a system-table it manages, called XPObjectType, with three columns: Oid, TypeName and AssemblyName. Due to how Oracle is configured in the databases we talk to, the column names were OID, TYPENAME and ASSEMBLYNAME. This would ordinarily not be a problem, except that XPO talks to the schema information directly and checks if the table is there with the right column names, and XPO doesn't handle case differences so it sees a XPObjectType table with three unknown columns and none of those it expects. Exactly what XPO does now I don't really know, but if I dropped this table, and recreated it with the right case, using double quotes around all the column names to get the case right, the problem doesn't crop up. Exactly where the space in the folder name comes into this, I still have no idea, but this problem had two tiers: Stop the application from crashing at our customers, short-term solution Fix the bug, long-term solution Right now tier 1 is solved, tier 2 will be put back into the queue for now and prioritized. We're facing some bigger changes to our data tier anyway so this might not be a problem we need to solve, at least if all our Oracle-customers verify that the table-fix actually gets rid of the problem. I'll accept the answer by Dave Markle since though Process Monitor (the big brother of File Monitor) didn't actually pinpoint the problem, I was able to use it to determine that after my breakpoint in user-code where XPO had built up the query for this table, no I/O happened until all the entries for the application closing down was logged, which led me to believe it was this table that was the culprit, or at least influenced the problem somehow. If I manage to get to the real cause of this, I'll update the post.

    Read the article

  • How to manage maintenance/bug-fix branches in Subversion when third-party installers are involved?

    - by Mike Spross
    We have a suite of related products written in VB6, with some C# and VB.NET projects, and all the source is kept in a single Subversion repository. We haven't been using branches in Subversion (although we do tag releases now), and simply do all development in trunk, creating new releases when the trunk is stable enough. This causes no end of grief when we release a new version, issues are found with it, and we have already begun working on new features or major changes to the trunk. In the past, we would address this in one of two ways, depending on the severity of the issues and how stable we thought the trunk was: Hurry to stabilize the trunk, fix the issues, and then release a maintenance update based on the HEAD revision, but this had the side effect of releases that fixed the bugs but introduced new issues because of half-finished features or bugfixes that were in trunk. Make customers wait until the next official release, which is usually a few months. We want to change our policies to better deal with this situation. I was considering creating a "maintenance branch" in Subversion whenever I tag an official release. Then, new development would continue in trunk, and I can periodically merge specific fixes from trunk into the maintenance branch, and create a maintenance release when enough fixes are accumulated, while we continue to work on the next major update in parallel. I know we could also have a more stable trunk and create a branch for new updates instead, but keeping current development in trunk seems simpler to me. The major problem is that while we can easily branch the source code from a release tag and recompile it to get the binaries for that release, I'm not sure how to handle the setup and installer projects. We use QSetup to create all of our setup programs, and right now when we need to modify a setup project, we just edit the project file in-place (all the setup projects and any dependencies that we don't compile ourselves are stored on a separate server, and we make sure to always compile the setup projects on that machine only). However, since we may add or remove files to the setup as our code changes, there is no guarantee that today's setup projects will work with yesterday's source code. I was going to put all the QSetup projects in Subversion to deal with this, but I see some problems with this approach. I want the creation of setup programs to be as automated as possible, and at the very least, I want a separate build machine where I can build the release that I want (grabbing the code from Subversion first), grab the setup project for that release from Subversion, recompile the setup, and then copy the setup to another place on the network for QA testing and eventual release to customers. However, when someone needs to change a setup project (to add a new dependency that trunk now requires or to make other changes), there is a problem. If they treat it like a source file and check it out on their own machine to edit it, they won't be able to add files to the project unless they first copy the files they need to add to the build machine (so they are available to other developers), then copy all the other dependencies from the build machine to their machine, making sure to match the folder structure exactly. The issue here is that QSetup uses absolute paths for any files added to a setup project. However, this means installing a bunch of setup dependencies onto development machines, which seems messy (and which could destabilize the development environment if someone accidentally runs the setup project on their machine). Also, how do we manage third-party dependencies? For example, if the current maintenance branch used MSXML 3.0 and the trunk now requires MSXML 4.0, we can't go back and create a maintenance release if we have already replaced the MSXML library on the build machine with the latest version (assuming both versions have the same filename). The only solution I can think is to either put all the third-party dependencies in Subversion along with the source code, or to make sure we put different library versions in separate folders (i.e. C:\Setup\Dependencies\MSXML\v3.0 and C:\Setup\Dependencies\MSXML\v4.0). Is one way "better" or more common than the other? Are there any best practices for dealing with this situation? Basically, if we release v2.0 of our software, we want to be able to release v2.0.1, v2.0.2, and v.2.0.3 while we work on v2.1, but the whole setup/installation project and setup dependency issue is making this more complicated than the the typical "just create a branch in Subversion and recompile as needed" answer.

    Read the article

  • Adding animation to my images with JQuery

    - by slandau
    Here is my home page: <%@ Page Language="C#" MasterPageFile="~/Views/Home/Home.Master" Inherits="System.Web.Mvc.ViewPage" %> <asp:Content ID="Content2" ContentPlaceHolderID="IndicationContentPlaceHolder" runat="server"> <table id="home" style="margin-left: auto; margin-right:auto;"> <td id="homeLinks"> <div style="padding-left:35px;" id="homeListing" class="containerMid"> <div id="homeView"> <table style="margin-left: auto; margin-right:auto;"> <tr> <tr> <td id="btnIcOld" style="text-align:center;cursor:pointer;"> <img src="<%= VirtualPathUtility.ToAbsolute("~/img/chic/Load.png")%>" /> </td> <td id="btnIc" style="text-align:center;cursor:pointer;"> <img src="<%= VirtualPathUtility.ToAbsolute("~/img/chic/Bar_Chart.png")%>" /> </td> <td id="btnPricing" style="text-align:center;cursor:pointer;"> <img src="<%= VirtualPathUtility.ToAbsolute("~/img/chic/Pie_Chart_disabled.png")%>" /> </td> <td id="btnSheets" style="text-align:center;cursor:pointer;"> <img src="<%= VirtualPathUtility.ToAbsolute("~/img/chic/Line_Chart_disabled.png")%>" /> </td> <td id="btnPort" style="text-align:center;cursor:pointer;"> <img src="<%= VirtualPathUtility.ToAbsolute("~/img/chic/Modify_disabled.png")%>" /> </td> <td id="btnAdmin" style="text-align:center;cursor:pointer;"> <img src="<%= VirtualPathUtility.ToAbsolute("~/img/chic/Profile_disabled.png")%>" /> </td> </tr> <tr> <td id="Td1"> <b>Indications Calculator | </b> </td> <td id="lblIc"> <b>Indications Calculator - Beta | </b> </td> <td id="lblPricing"> <b>Managing Pricing Triggers | </b> </td> <td id="lblSheets"> <b>Creating Pricing Sheets | </b> </td> <td id="lblPort"> <b>Portfolio Analysis | </b> </td> <td id="lblAdmin"> <b>Administration</b> </td> </tr> </tr> </table> </div> </div> </td> </table> <div id="pageMessage"></div> <script> $(document).ready(function () { $('#btnIc').live('click', function () { window.location.href = "<%=Url.Action("Indications") %>"; }); $('#btnIcOld').live('click', function () { window.location.href = 'https://extranetint/swap'; }); $('#btnPricing').live('click', function () { //window.location.href = "<%=Url.Action("Triggers") %>"; }); $('#btnSheets').live('click', function () { //window.location.href = "<%=Url.Action("Sheets") %>"; }); $('#btnPort').live('click', function () { //window.location.href = "<%=Url.Action("Analysis") %>"; }); $('#btnAdmin').live('click', function () { //window.location.href = "<%=Url.Action("Admin") %>"; }); }); </script> </asp:Content> How can I, with JQuery (or really anything), achieve a mouse-over effect on my images where they will grow a little bit as you hover over them? I tried using JQuery animate but for some reason I couldn't get it to work. Thanks!

    Read the article

  • .NET 3.5SP1 64-bit memory model vs. 32-bit memory model

    - by James Dunne
    As I understand it, the .NET memory model on a 32-bit machine guarantees 32-bit word writes and reads to be atomic operations but does not provide this guarantee on 64-bit words. I have written a quick tool to demonstrate this effect on a Windows XP 32-bit OS and am getting results consistent with that memory model description. However, I have taken this same tool's executable and run it on a Windows 7 Enterprise 64-bit OS and am getting wildly different results. Both the machines are identical specs just with different OSes installed. I would have expected that the .NET memory model would guarantee writes and reads to BOTH 32-bit and 64-bit words to be atomic on a 64-bit OS. I find results completely contrary to BOTH assumptions. 32-bit reads and writes are not demonstrated to be atomic on this OS. Can someone explain to me why this fails on a 64-bit OS? Tool code: using System; using System.Threading; namespace ConsoleApplication1 { class Program { static void Main(string[] args) { var th = new Thread(new ThreadStart(RunThread)); var th2 = new Thread(new ThreadStart(RunThread)); int lastRecordedInt = 0; long lastRecordedLong = 0L; th.Start(); th2.Start(); while (!done) { int newIntValue = intValue; long newLongValue = longValue; if (lastRecordedInt > newIntValue) Console.WriteLine("BING(int)! {0} > {1}, {2}", lastRecordedInt, newIntValue, (lastRecordedInt - newIntValue)); if (lastRecordedLong > newLongValue) Console.WriteLine("BING(long)! {0} > {1}, {2}", lastRecordedLong, newLongValue, (lastRecordedLong - newLongValue)); lastRecordedInt = newIntValue; lastRecordedLong = newLongValue; } th.Join(); th2.Join(); Console.WriteLine("{0} =? {2}, {1} =? {3}", intValue, longValue, Int32.MaxValue / 2, (long)Int32.MaxValue + (Int32.MaxValue / 2)); } private static long longValue = Int32.MaxValue; private static int intValue; private static bool done = false; static void RunThread() { for (int i = 0; i < Int32.MaxValue / 4; ++i) { ++longValue; ++intValue; } done = true; } } } Results on Windows XP 32-bit: Windows XP 32-bit Intel Core2 Duo P8700 @ 2.53GHz BING(long)! 2161093208 > 2161092246, 962 BING(long)! 2162448397 > 2161273312, 1175085 BING(long)! 2270110050 > 2270109040, 1010 BING(long)! 2270115061 > 2270110059, 5002 BING(long)! 2558052223 > 2557528157, 524066 BING(long)! 2571660540 > 2571659563, 977 BING(long)! 2646433569 > 2646432557, 1012 BING(long)! 2660841714 > 2660840732, 982 BING(long)! 2661795522 > 2660841715, 953807 BING(long)! 2712855281 > 2712854239, 1042 BING(long)! 2737627472 > 2735210929, 2416543 1025780885 =? 1073741823, 3168207035 =? 3221225470 Notice how BING(int) is never written and demonstrates that 32-bit reads/writes are atomic on this 32-bit OS. Results on Windows 7 Enterprise 64-bit: Windows 7 Enterprise 64-bit Intel Core2 Duo P8700 @ 2.53GHz BING(long)! 2208482159 > 2208121217, 360942 BING(int)! 280292777 > 279704627, 588150 BING(int)! 308158865 > 308131694, 27171 BING(long)! 2549116628 > 2548884894, 231734 BING(int)! 534815527 > 534708027, 107500 BING(int)! 545113548 > 544270063, 843485 BING(long)! 2710030799 > 2709941968, 88831 BING(int)! 668662394 > 667539649, 1122745 1006355562 =? 1073741823, 3154727581 =? 3221225470 Notice that BING(long) AND BING(int) are both displayed! Why are the 32-bit operations failing, let alone the 64-bit ones?

    Read the article

  • Cannot determine ethernet address for proxy ARP on PPTP

    - by Linux Intel
    I installed pptp server on a centos 6 64bit server PPTP Server ip : 55.66.77.10 PPTP Local ip : 10.0.0.1 Client1 IP : 10.0.0.60 centos 5 64bit Client2 IP : 10.0.0.61 centos5 64bit PPTP Server can ping Client1 And client 1 can ping PPTP Server PPTP Server can ping Client2 And client 2 can ping PPTP Server The problem is client 1 can not ping Client 2 and i get this error also on PPTP server error log Cannot determine ethernet address for proxy ARP Ping from Client2 to Client1 PING 10.0.0.60 (10.0.0.60) 56(84) bytes of data. --- 10.0.0.60 ping statistics --- 6 packets transmitted, 0 received, 100% packet loss, time 5000ms route -n on PPTP Server Destination Gateway Genmask Flags Metric Ref Use Iface 10.0.0.60 0.0.0.0 255.255.255.255 UH 0 0 0 ppp0 10.0.0.61 0.0.0.0 255.255.255.255 UH 0 0 0 ppp1 55.66.77.10 0.0.0.0 255.255.255.248 U 0 0 0 eth0 10.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 eth0 0.0.0.0 55.66.77.19 0.0.0.0 UG 0 0 0 eth0 route -n On Client 1 Destination Gateway Genmask Flags Metric Ref Use Iface 10.0.0.1 0.0.0.0 255.255.255.255 UH 0 0 0 ppp0 55.66.77.10 70.14.13.19 255.255.255.255 UGH 0 0 0 eth0 10.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 eth1 0.0.0.0 70.14.13.19 0.0.0.0 UG 0 0 0 eth0 route -n On Client 2 Destination Gateway Genmask Flags Metric Ref Use Iface 10.0.0.1 0.0.0.0 255.255.255.255 UH 0 0 0 ppp0 55.66.77.10 84.56.120.60 255.255.255.255 UGH 0 0 0 eth1 10.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 eth0 0.0.0.0 84.56.120.60 0.0.0.0 UG 0 0 0 eth1 cat /etc/ppp/options.pptpd on PPTP server ############################################################################### # $Id: options.pptpd,v 1.11 2005/12/29 01:21:09 quozl Exp $ # # Sample Poptop PPP options file /etc/ppp/options.pptpd # Options used by PPP when a connection arrives from a client. # This file is pointed to by /etc/pptpd.conf option keyword. # Changes are effective on the next connection. See "man pppd". # # You are expected to change this file to suit your system. As # packaged, it requires PPP 2.4.2 and the kernel MPPE module. ############################################################################### # Authentication # Name of the local system for authentication purposes # (must match the second field in /etc/ppp/chap-secrets entries) name pptpd # Strip the domain prefix from the username before authentication. # (applies if you use pppd with chapms-strip-domain patch) #chapms-strip-domain # Encryption # (There have been multiple versions of PPP with encryption support, # choose with of the following sections you will use.) # BSD licensed ppp-2.4.2 upstream with MPPE only, kernel module ppp_mppe.o # {{{ refuse-pap refuse-chap refuse-mschap # Require the peer to authenticate itself using MS-CHAPv2 [Microsoft # Challenge Handshake Authentication Protocol, Version 2] authentication. require-mschap-v2 # Require MPPE 128-bit encryption # (note that MPPE requires the use of MSCHAP-V2 during authentication) require-mppe-128 # }}} # OpenSSL licensed ppp-2.4.1 fork with MPPE only, kernel module mppe.o # {{{ #-chap #-chapms # Require the peer to authenticate itself using MS-CHAPv2 [Microsoft # Challenge Handshake Authentication Protocol, Version 2] authentication. #+chapms-v2 # Require MPPE encryption # (note that MPPE requires the use of MSCHAP-V2 during authentication) #mppe-40 # enable either 40-bit or 128-bit, not both #mppe-128 #mppe-stateless # }}} # Network and Routing # If pppd is acting as a server for Microsoft Windows clients, this # option allows pppd to supply one or two DNS (Domain Name Server) # addresses to the clients. The first instance of this option # specifies the primary DNS address; the second instance (if given) # specifies the secondary DNS address. #ms-dns 10.0.0.1 #ms-dns 10.0.0.2 # If pppd is acting as a server for Microsoft Windows or "Samba" # clients, this option allows pppd to supply one or two WINS (Windows # Internet Name Services) server addresses to the clients. The first # instance of this option specifies the primary WINS address; the # second instance (if given) specifies the secondary WINS address. #ms-wins 10.0.0.3 #ms-wins 10.0.0.4 # Add an entry to this system's ARP [Address Resolution Protocol] # table with the IP address of the peer and the Ethernet address of this # system. This will have the effect of making the peer appear to other # systems to be on the local ethernet. # (you do not need this if your PPTP server is responsible for routing # packets to the clients -- James Cameron) proxyarp # Normally pptpd passes the IP address to pppd, but if pptpd has been # given the delegate option in pptpd.conf or the --delegate command line # option, then pppd will use chap-secrets or radius to allocate the # client IP address. The default local IP address used at the server # end is often the same as the address of the server. To override this, # specify the local IP address here. # (you must not use this unless you have used the delegate option) #10.8.0.100 # Logging # Enable connection debugging facilities. # (see your syslog configuration for where pppd sends to) debug # Print out all the option values which have been set. # (often requested by mailing list to verify options) #dump # Miscellaneous # Create a UUCP-style lock file for the pseudo-tty to ensure exclusive # access. lock # Disable BSD-Compress compression nobsdcomp # Disable Van Jacobson compression # (needed on some networks with Windows 9x/ME/XP clients, see posting to # poptop-server on 14th April 2005 by Pawel Pokrywka and followups, # http://marc.theaimsgroup.com/?t=111343175400006&r=1&w=2 ) novj novjccomp # turn off logging to stderr, since this may be redirected to pptpd, # which may trigger a loopback nologfd # put plugins here # (putting them higher up may cause them to sent messages to the pty) cat /etc/ppp/options.pptp on Client1 and Client2 ############################################################################### # $Id: options.pptp,v 1.3 2006/03/26 23:11:05 quozl Exp $ # # Sample PPTP PPP options file /etc/ppp/options.pptp # Options used by PPP when a connection is made by a PPTP client. # This file can be referred to by an /etc/ppp/peers file for the tunnel. # Changes are effective on the next connection. See "man pppd". # # You are expected to change this file to suit your system. As # packaged, it requires PPP 2.4.2 or later from http://ppp.samba.org/ # and the kernel MPPE module available from the CVS repository also on # http://ppp.samba.org/, which is packaged for DKMS as kernel_ppp_mppe. ############################################################################### # Lock the port lock # Authentication # We don't need the tunnel server to authenticate itself noauth # We won't do PAP, EAP, CHAP, or MSCHAP, but we will accept MSCHAP-V2 # (you may need to remove these refusals if the server is not using MPPE) refuse-pap refuse-eap refuse-chap refuse-mschap # Compression # Turn off compression protocols we know won't be used nobsdcomp nodeflate # Encryption # (There have been multiple versions of PPP with encryption support, # choose which of the following sections you will use. Note that MPPE # requires the use of MSCHAP-V2 during authentication) # # Note that using PPTP with MPPE and MSCHAP-V2 should be considered # insecure: # http://marc.info/?l=pptpclient-devel&m=134372640219039&w=2 # https://github.com/moxie0/chapcrack/blob/master/README.md # http://technet.microsoft.com/en-us/security/advisory/2743314 # http://ppp.samba.org/ the PPP project version of PPP by Paul Mackarras # ppp-2.4.2 or later with MPPE only, kernel module ppp_mppe.o # If the kernel is booted in FIPS mode (fips=1), the ppp_mppe.ko module # is not allowed and PPTP-MPPE is not available. # {{{ # Require MPPE 128-bit encryption #require-mppe-128 # }}} # http://mppe-mppc.alphacron.de/ fork from PPP project by Jan Dubiec # ppp-2.4.2 or later with MPPE and MPPC, kernel module ppp_mppe_mppc.o # {{{ # Require MPPE 128-bit encryption #mppe required,stateless # }}} IPtables is stopped on clients and server, Also net.ipv4.ip_forward = 1 is enabled on PPTP Server. How can i solve this problem .?

    Read the article

  • mysql: Bind on unix socket: Permission denied

    - by Alex
    Can't start mysql with: sudo /usr/bin/mysqld_safe --datadir=/srv/mysql/myDB --log-error=/srv/mysql/logs/mysqld-myDB.log --pid-file=/srv/mysql/pids/mysqld-myDB.pid --user=mysql --socket=/srv/mysql/sockets/mysql-myDB.sock --port=3700 120222 13:40:48 mysqld_safe Starting mysqld daemon with databases from /srv/mysql/myDB 120222 13:40:54 mysqld_safe mysqld from pid file /srv/mysql/pids/mysqld-myDB.pid ended /srv/mysql/logs/mysqld-myDB.log: 120222 13:43:53 mysqld_safe Starting mysqld daemon with databases from /srv/mysql/myDB 120222 13:43:53 [Note] Plugin 'FEDERATED' is disabled. /usr/sbin/mysqld: Table 'plugin' is read only 120222 13:43:53 [ERROR] Can't open the mysql.plugin table. Please run mysql_upgrade to create it. 120222 13:43:53 InnoDB: Completed initialization of buffer pool 120222 13:43:53 InnoDB: Started; log sequence number 32 4232720908 120222 13:43:53 [ERROR] Can't start server : Bind on unix socket: Permission denied 120222 13:43:53 [ERROR] Do you already have another mysqld server running on socket: /srv/mysql/sockets/mysql-myDB.sock ? 120222 13:43:53 [ERROR] Aborting 120222 13:43:53 InnoDB: Starting shutdown... One instance mysqld is running: $ ps aux | grep mysql mysql 1093 0.0 0.2 169972 18700 ? Ssl 11:50 0:02 /usr/sbin/mysqld $ Port 3700 is available: $ netstat -a | grep 3700 $ Directory with sockets is empty: $ ls /srv/mysql/sockets/ $ There are all permissions: $ ls -l /srv/mysql/ total 20 drwxrwxrwx 2 mysql mysql 4096 2012-02-22 13:28 logs drwxrwxrwx 13 mysql mysql 4096 2012-02-22 13:44 myDB drwxrwxrwx 2 mysql mysql 4096 2012-02-22 12:55 pids drwxrwxrwx 2 mysql mysql 4096 2012-02-22 12:55 sockets drwxrwxrwx 2 mysql mysql 4096 2012-02-22 13:25 version Apparmor config: $cat /etc/apparmor.d/usr.sbin.mysqld # vim:syntax=apparmor # Last Modified: Tue Jun 19 17:37:30 2007 #include <tunables/global> /usr/sbin/mysqld flags=(complain) { #include <abstractions/base> #include <abstractions/nameservice> #include <abstractions/user-tmp> #include <abstractions/mysql> #include <abstractions/winbind> capability dac_override, capability sys_resource, capability setgid, capability setuid, network tcp, /etc/hosts.allow r, /etc/hosts.deny r, /etc/mysql/*.pem r, /etc/mysql/conf.d/ r, /etc/mysql/conf.d/* r, /etc/mysql/*.cnf r, /usr/lib/mysql/plugin/ r, /usr/lib/mysql/plugin/*.so* mr, /usr/sbin/mysqld mr, /usr/share/mysql/** r, /var/log/mysql.log rw, /var/log/mysql.err rw, /var/lib/mysql/ r, /var/lib/mysql/** rwk, /var/log/mysql/ r, /var/log/mysql/* rw, /{,var/}run/mysqld/mysqld.pid w, /{,var/}run/mysqld/mysqld.sock w, /srv/mysql/ r, /srv/mysql/** rwk, /sys/devices/system/cpu/ r, # Site-specific additions and overrides. See local/README for details. #include <local/usr.sbin.mysqld> } Any suggestions? UPD1: $ touch /srv/mysql/sockets/mysql-myDB.sock $ sudo chown mysql:mysql /srv/mysql/sockets/mysql-myDB.sock $ ls -l /srv/mysql/sockets/mysql-myDB.sock -rw-rw-r-- 1 mysql mysql 0 2012-02-22 14:29 /srv/mysql/sockets/mysql-myDB.sock $ sudo /usr/bin/mysqld_safe --datadir=/srv/mysql/myDB --log-error=/srv/mysql/logs/mysqld-myDB.log --pid-file=/srv/mysql/pids/mysqld-myDB.pid --user=mysql --socket=/srv/mysql/sockets/mysql-myDB.sock --port=3700 120222 14:30:18 mysqld_safe Can't log to error log and syslog at the same time. Remove all --log-error configuration options for --syslog to take effect. 120222 14:30:18 mysqld_safe Logging to '/srv/mysql/logs/mysqld-myDB.log'. 120222 14:30:18 mysqld_safe Starting mysqld daemon with databases from /srv/mysqlmyDB 120222 14:30:24 mysqld_safe mysqld from pid file /srv/mysql/pids/mysqld-myDB.pid ended $ ls -l /srv/mysql/sockets/mysql-myDB.sock ls: cannot access /srv/mysql/sockets/mysql-myDB.sock: No such file or directory $ UPD2: $ sudo netstat -lnp | grep mysql tcp 0 0 0.0.0.0:3306 0.0.0.0:* LISTEN 1093/mysqld unix 2 [ ACC ] STREAM LISTENING 5912 1093/mysqld /var/run/mysqld/mysqld.sock $ sudo lsof | grep /srv/mysql/sockets/mysql-myDB.sock lsof: WARNING: can't stat() fuse.gvfs-fuse-daemon file system /home/sears/.gvfs Output information may be incomplete. UPD3: $ cat /etc/mysql/my.cnf # # The MySQL database server configuration file. # # You can copy this to one of: # - "/etc/mysql/my.cnf" to set global options, # - "~/.my.cnf" to set user-specific options. # # One can use all long options that the program supports. # Run program with --help to get a list of available options and with # --print-defaults to see which it would actually understand and use. # # For explanations see # http://dev.mysql.com/doc/mysql/en/server-system-variables.html # This will be passed to all mysql clients # It has been reported that passwords should be enclosed with ticks/quotes # escpecially if they contain "#" chars... # Remember to edit /etc/mysql/debian.cnf when changing the socket location. [client] port = 3306 socket = /var/run/mysqld/mysqld.sock # Here is entries for some specific programs # The following values assume you have at least 32M ram # This was formally known as [safe_mysqld]. Both versions are currently parsed. [mysqld_safe] socket = /var/run/mysqld/mysqld.sock nice = 0 [mysqld] # # * Basic Settings # # # * IMPORTANT # If you make changes to these settings and your system uses apparmor, you may # also need to also adjust /etc/apparmor.d/usr.sbin.mysqld. # user = mysql socket = /var/run/mysqld/mysqld.sock port = 3306 basedir = /usr datadir = /var/lib/mysql tmpdir = /tmp skip-external-locking # # Instead of skip-networking the default is now to listen only on # localhost which is more compatible and is not less secure. #bind-address = 127.0.0.1 # # * Fine Tuning # key_buffer = 16M max_allowed_packet = 16M thread_stack = 192K thread_cache_size = 8 # This replaces the startup script and checks MyISAM tables if needed # the first time they are touched myisam-recover = BACKUP #max_connections = 100 #table_cache = 64 #thread_concurrency = 10 # # * Query Cache Configuration # query_cache_limit = 1M query_cache_size = 16M # # * Logging and Replication # # Both location gets rotated by the cronjob. # Be aware that this log type is a performance killer. # As of 5.1 you can enable the log at runtime! #general_log_file = /var/log/mysql/mysql.log #general_log = 1 log_error = /var/log/mysql/error.log # Here you can see queries with especially long duration #log_slow_queries = /var/log/mysql/mysql-slow.log #long_query_time = 2 #log-queries-not-using-indexes # # The following can be used as easy to replay backup logs or for replication. # note: if you are setting up a replication slave, see README.Debian about # other settings you may need to change. #server-id = 1 #log_bin = /var/log/mysql/mysql-bin.log expire_logs_days = 10 max_binlog_size = 100M #binlog_do_db = include_database_name #binlog_ignore_db = include_database_name # # * InnoDB # # InnoDB is enabled by default with a 10MB datafile in /var/lib/mysql/. # Read the manual for more InnoDB related options. There are many! # # * Security Features # # Read the manual, too, if you want chroot! # chroot = /var/lib/mysql/ # # For generating SSL certificates I recommend the OpenSSL GUI "tinyca". # # ssl-ca=/etc/mysql/cacert.pem # ssl-cert=/etc/mysql/server-cert.pem # ssl-key=/etc/mysql/server-key.pem [mysqldump] quick quote-names max_allowed_packet = 16M [mysql] #no-auto-rehash # faster start of mysql but no tab completition [isamchk] key_buffer = 16M # # * IMPORTANT: Additional settings that can override those from this file! # The files must end with '.cnf', otherwise they'll be ignored. # !includedir /etc/mysql/conf.d/

    Read the article

  • Why doesn't pppd over ssh work here? Why can't I kill pppd?

    - by Peter V. Mørch
    I'm trying to setup a simple ppp tunnel over ssh. It works on several machines just fine. But on one machine, pppd gets "stuck": > pgrep pppd | xargs ps up USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root 4178 0.0 0.1 3020 1088 pts/1 Ds+ 05:28 0:00 /usr/sbin/pppd Any attempt to kill it (even sudo kill -9 4178) has no effect that I can see. strace -p 4178 also hangs similarly. After it has been started for a while, I start getting messages in dmesg like shown below. It is started like so from another machine: ssh -t root@server /usr/sbin/pppd passive noauth When I do this to one of the machines that work, the remote end's pppd spits out garbage/binary data to the console (as expected). When I do it to the one that fails, I get no output from pppd, but the ssh session eventually times out. If I instead ssh to the machine, and then run /usr/sbin/pppd passive noauth in a separate step I also get the expected binary output. I now have a couple of questions: What could be up with the one machine where pppd fails? I don't even know where to start looking... What could be the difference between ssh -t root@server /usr/sbin/pppd passive noauth in a single step and ssh root@server and /usr/sbin/pppd passive noauth in two steps? How can it be that I can't kill the process even with sudo kill -9? The only way I know is to reboot. (I've tried searching for something similar but didn't get anywhere so I'm sorry I don't have any more leads) Any ideas? The problem machine runs in debian on VMware "hardware" (as do the ones that work) and it exhibits the problem when cloned and on both debian lenny (original) and squeeze (after upgrade) dmesg entries: [ 1198.727248] INFO: task pppd:4178 blocked for more than 120 seconds. [ 1198.727507] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1198.727904] pppd D ece2dc9c 0 4178 4174 0x00000004 [ 1198.727908] 00000098 00000082 f2503520 ece2dc9c 0000b1e7 00000000 c148d1c0 c148d1c0 [ 1198.727913] f2a06100 f6e071c0 00000000 ece2dc18 f5cd07e0 00000000 ece2d400 ece2dc9d [ 1198.727918] 00c52300 ece2dcbc f67bfef8 ec98e480 f291cec0 00000000 c10cf5b0 c10dfd21 [ 1198.727923] Call Trace: [ 1198.727926] [<c10cf5b0>] ? nameidata_to_filp+0x37/0x41 [ 1198.727929] [<c10dfd21>] ? dput+0x21/0xb7 [ 1198.727932] [<c11cfecc>] ? tty_ldisc_ref_wait+0x5f/0x76 [ 1198.727935] [<c104de7a>] ? wake_up_bit+0x5c/0x5c [ 1198.727938] [<c11cb91b>] ? tty_ioctl+0x85f/0x8ba [ 1198.727941] [<c10fec18>] ? do_lock_file_wait+0x3d/0xd9 [ 1198.727944] [<c1162c97>] ? _copy_from_user+0x2b/0x102 [ 1198.727946] [<c11cb0bc>] ? tty_check_change+0xb9/0xb9 [ 1198.727949] [<c10dbeb7>] ? do_vfs_ioctl+0x485/0x4c7 [ 1198.727952] [<c10db59a>] ? do_fcntl+0x24f/0x3a2 [ 1198.727954] [<c10dbf3a>] ? sys_ioctl+0x41/0x58 [ 1198.727957] [<c12c6a1f>] ? sysenter_do_call+0x12/0x28 [ 1318.457225] INFO: task sshd:4174 blocked for more than 120 seconds. [ 1318.457500] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1318.457896] sshd D f25024cc 0 4174 2393 0x00000000 [ 1318.457901] 00000098 00000086 f2a06940 f25024cc 0000b246 00000000 c148d1c0 c148d1c0 [ 1318.457906] f2503520 f6e071c0 00000000 3f056585 0000000f ece2d4bc 3f056585 f2503520 [ 1318.457911] ec98bb38 ec98bbdc 00000000 00000000 00000000 c12c09b5 f2503520 c10327cb [ 1318.457916] Call Trace: [ 1318.457926] [<c12c09b5>] ? schedule_hrtimeout_range_clock+0x3c/0xd9 [ 1318.457931] [<c10327cb>] ? try_to_wake_up+0x13f/0x13f [ 1318.457935] [<c11cfecc>] ? tty_ldisc_ref_wait+0x5f/0x76 [ 1318.457940] [<c104de7a>] ? wake_up_bit+0x5c/0x5c [ 1318.457943] [<c11c9ad3>] ? tty_poll+0x32/0x5e [ 1318.457947] [<c10dd4d5>] ? do_select+0x2a1/0x42e [ 1318.457950] [<c10dcb83>] ? poll_freewait+0x69/0x69 [ 1318.457953] [<c10dcc25>] ? __pollwait+0xa2/0xa2 [ 1318.457955] [<c10dcc25>] ? __pollwait+0xa2/0xa2 [ 1318.457958] [<c10dcc25>] ? __pollwait+0xa2/0xa2 [ 1318.457960] [<c10dcc25>] ? __pollwait+0xa2/0xa2 [ 1318.457963] [<c10dcc25>] ? __pollwait+0xa2/0xa2 [ 1318.457965] [<c10dcc25>] ? __pollwait+0xa2/0xa2 [ 1318.457968] [<c10dcc25>] ? __pollwait+0xa2/0xa2 [ 1318.457971] [<c10429c2>] ? lock_timer_base+0x19/0x35 [ 1318.457974] [<c1042eb5>] ? __mod_timer+0x10c/0x116 [ 1318.457977] [<c1042f89>] ? mod_timer+0x69/0x6e [ 1318.457981] [<c121325d>] ? sk_reset_timer+0xc/0x16 [ 1318.457984] [<c1252f57>] ? tcp_event_new_data_sent+0x66/0x6b [ 1318.457987] [<c1255b85>] ? tcp_write_xmit+0x7a7/0x86a [ 1318.457990] [<c121760d>] ? __alloc_skb+0x50/0xfd [ 1318.457994] [<c12c12bc>] ? _raw_spin_lock_bh+0x8/0x1e [ 1318.457996] [<c1212e98>] ? release_sock+0x10/0xc4 [ 1318.457999] [<c124b543>] ? tcp_sendmsg+0x6dd/0x7b7 [ 1318.458003] [<c1162c97>] ? _copy_from_user+0x2b/0x102 [ 1318.458006] [<c10dd7a0>] ? core_sys_select+0x13e/0x1c3 [ 1318.458009] [<c12102a3>] ? sock_aio_write+0xc0/0xd4 [ 1318.458012] [<c10d0655>] ? do_sync_write+0xa0/0xe4 [ 1318.458016] [<c10b141c>] ? handle_mm_fault+0x222/0x238 [ 1318.458019] [<c10f6096>] ? fsnotify+0x1de/0x1f9 [ 1318.458022] [<c10dd9e8>] ? sys_select+0x6e/0x8f [ 1318.458024] [<c10d105e>] ? sys_write+0x3c/0x63 [ 1318.458028] [<c12c6a1f>] ? sysenter_do_call+0x12/0x28

    Read the article

  • Configuring OpenLDAP and SSL

    - by Stormshadow
    I am having trouble trying to connect to a secure OpenLDAP server which I have set up. On running my LDAP client code java -Djavax.net.debug=ssl LDAPConnector I get the following exception trace (java version 1.6.0_17) trigger seeding of SecureRandom done seeding SecureRandom %% No cached client session *** ClientHello, TLSv1 RandomCookie: GMT: 1256110124 bytes = { 224, 19, 193, 148, 45, 205, 108, 37, 101, 247, 112, 24, 157, 39, 111, 177, 43, 53, 206, 224, 68, 165, 55, 185, 54, 203, 43, 91 } Session ID: {} Cipher Suites: [SSL_RSA_WITH_RC4_128_MD5, SSL_RSA_WITH_RC4_128_SHA, TLS_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_DSS_WITH_AES_128_CBC_SHA, SSL_RSA_W ITH_3DES_EDE_CBC_SHA, SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA, SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA, SSL_RSA_WITH_DES_CBC_SHA, SSL_DHE_RSA_WITH_DES_CBC_SHA, SSL_DHE_DSS_WITH_DES_CBC_SH A, SSL_RSA_EXPORT_WITH_RC4_40_MD5, SSL_RSA_EXPORT_WITH_DES40_CBC_SHA, SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA, SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA] Compression Methods: { 0 } *** Thread-0, WRITE: TLSv1 Handshake, length = 73 Thread-0, WRITE: SSLv2 client hello message, length = 98 Thread-0, received EOFException: error Thread-0, handling exception: javax.net.ssl.SSLHandshakeException: Remote host closed connection during handshake Thread-0, SEND TLSv1 ALERT: fatal, description = handshake_failure Thread-0, WRITE: TLSv1 Alert, length = 2 Thread-0, called closeSocket() main, handling exception: javax.net.ssl.SSLHandshakeException: Remote host closed connection during handshake javax.naming.CommunicationException: simple bind failed: ldap.natraj.com:636 [Root exception is javax.net.ssl.SSLHandshakeException: Remote host closed connection during hands hake] at com.sun.jndi.ldap.LdapClient.authenticate(Unknown Source) at com.sun.jndi.ldap.LdapCtx.connect(Unknown Source) at com.sun.jndi.ldap.LdapCtx.<init>(Unknown Source) at com.sun.jndi.ldap.LdapCtxFactory.getUsingURL(Unknown Source) at com.sun.jndi.ldap.LdapCtxFactory.getUsingURLs(Unknown Source) at com.sun.jndi.ldap.LdapCtxFactory.getLdapCtxInstance(Unknown Source) at com.sun.jndi.ldap.LdapCtxFactory.getInitialContext(Unknown Source) at javax.naming.spi.NamingManager.getInitialContext(Unknown Source) at javax.naming.InitialContext.getDefaultInitCtx(Unknown Source) at javax.naming.InitialContext.init(Unknown Source) at javax.naming.InitialContext.<init>(Unknown Source) at javax.naming.directory.InitialDirContext.<init>(Unknown Source) at LDAPConnector.CallSecureLDAPServer(LDAPConnector.java:43) at LDAPConnector.main(LDAPConnector.java:237) Caused by: javax.net.ssl.SSLHandshakeException: Remote host closed connection during handshake at com.sun.net.ssl.internal.ssl.SSLSocketImpl.readRecord(Unknown Source) at com.sun.net.ssl.internal.ssl.SSLSocketImpl.performInitialHandshake(Unknown Source) at com.sun.net.ssl.internal.ssl.SSLSocketImpl.readDataRecord(Unknown Source) at com.sun.net.ssl.internal.ssl.AppInputStream.read(Unknown Source) at java.io.BufferedInputStream.fill(Unknown Source) at java.io.BufferedInputStream.read1(Unknown Source) at java.io.BufferedInputStream.read(Unknown Source) at com.sun.jndi.ldap.Connection.run(Unknown Source) at java.lang.Thread.run(Unknown Source) Caused by: java.io.EOFException: SSL peer shut down incorrectly at com.sun.net.ssl.internal.ssl.InputRecord.read(Unknown Source) ... 9 more I am able to connect to the same secure LDAP server however if I use another version of java (1.6.0_14) I have created and installed the server certificates in the cacerts of both the JRE's as mentioned in this guide -- OpenLDAP with SSL When I run ldapsearch -x on the server I get # extended LDIF # # LDAPv3 # base <dc=localdomain> (default) with scope subtree # filter: (objectclass=*) # requesting: ALL # # localdomain dn: dc=localdomain objectClass: top objectClass: dcObject objectClass: organization o: localdomain dc: localdomain # admin, localdomain dn: cn=admin,dc=localdomain objectClass: simpleSecurityObject objectClass: organizationalRole cn: admin description: LDAP administrator # search result search: 2 result: 0 Success # numResponses: 3 # numEntries: 2 On running openssl s_client -connect ldap.natraj.com:636 -showcerts , I obtain the self signed certificate. My slapd.conf file is as follows ####################################################################### # Global Directives: # Features to permit #allow bind_v2 # Schema and objectClass definitions include /etc/ldap/schema/core.schema include /etc/ldap/schema/cosine.schema include /etc/ldap/schema/nis.schema include /etc/ldap/schema/inetorgperson.schema # Where the pid file is put. The init.d script # will not stop the server if you change this. pidfile /var/run/slapd/slapd.pid # List of arguments that were passed to the server argsfile /var/run/slapd/slapd.args # Read slapd.conf(5) for possible values loglevel none # Where the dynamically loaded modules are stored modulepath /usr/lib/ldap moduleload back_hdb # The maximum number of entries that is returned for a search operation sizelimit 500 # The tool-threads parameter sets the actual amount of cpu's that is used # for indexing. tool-threads 1 ####################################################################### # Specific Backend Directives for hdb: # Backend specific directives apply to this backend until another # 'backend' directive occurs backend hdb ####################################################################### # Specific Backend Directives for 'other': # Backend specific directives apply to this backend until another # 'backend' directive occurs #backend <other> ####################################################################### # Specific Directives for database #1, of type hdb: # Database specific directives apply to this databasse until another # 'database' directive occurs database hdb # The base of your directory in database #1 suffix "dc=localdomain" # rootdn directive for specifying a superuser on the database. This is needed # for syncrepl. rootdn "cn=admin,dc=localdomain" # Where the database file are physically stored for database #1 directory "/var/lib/ldap" # The dbconfig settings are used to generate a DB_CONFIG file the first # time slapd starts. They do NOT override existing an existing DB_CONFIG # file. You should therefore change these settings in DB_CONFIG directly # or remove DB_CONFIG and restart slapd for changes to take effect. # For the Debian package we use 2MB as default but be sure to update this # value if you have plenty of RAM dbconfig set_cachesize 0 2097152 0 # Sven Hartge reported that he had to set this value incredibly high # to get slapd running at all. See http://bugs.debian.org/303057 for more # information. # Number of objects that can be locked at the same time. dbconfig set_lk_max_objects 1500 # Number of locks (both requested and granted) dbconfig set_lk_max_locks 1500 # Number of lockers dbconfig set_lk_max_lockers 1500 # Indexing options for database #1 index objectClass eq # Save the time that the entry gets modified, for database #1 lastmod on # Checkpoint the BerkeleyDB database periodically in case of system # failure and to speed slapd shutdown. checkpoint 512 30 # Where to store the replica logs for database #1 # replogfile /var/lib/ldap/replog # The userPassword by default can be changed # by the entry owning it if they are authenticated. # Others should not be able to see it, except the # admin entry below # These access lines apply to database #1 only access to attrs=userPassword,shadowLastChange by dn="cn=admin,dc=localdomain" write by anonymous auth by self write by * none # Ensure read access to the base for things like # supportedSASLMechanisms. Without this you may # have problems with SASL not knowing what # mechanisms are available and the like. # Note that this is covered by the 'access to *' # ACL below too but if you change that as people # are wont to do you'll still need this if you # want SASL (and possible other things) to work # happily. access to dn.base="" by * read # The admin dn has full write access, everyone else # can read everything. access to * by dn="cn=admin,dc=localdomain" write by * read # For Netscape Roaming support, each user gets a roaming # profile for which they have write access to #access to dn=".*,ou=Roaming,o=morsnet" # by dn="cn=admin,dc=localdomain" write # by dnattr=owner write ####################################################################### # Specific Directives for database #2, of type 'other' (can be hdb too): # Database specific directives apply to this databasse until another # 'database' directive occurs #database <other> # The base of your directory for database #2 #suffix "dc=debian,dc=org" ####################################################################### # SSL: # Uncomment the following lines to enable SSL and use the default # snakeoil certificates. #TLSCertificateFile /etc/ssl/certs/ssl-cert-snakeoil.pem #TLSCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key TLSCipherSuite TLS_RSA_AES_256_CBC_SHA TLSCACertificateFile /etc/ldap/ssl/server.pem TLSCertificateFile /etc/ldap/ssl/server.pem TLSCertificateKeyFile /etc/ldap/ssl/server.pem My ldap.conf file is # # LDAP Defaults # # See ldap.conf(5) for details # This file should be world readable but not world writable. HOST ldap.natraj.com PORT 636 BASE dc=localdomain URI ldaps://ldap.natraj.com TLS_CACERT /etc/ldap/ssl/server.pem TLS_REQCERT allow #SIZELIMIT 12 #TIMELIMIT 15 #DEREF never Why is it that I can connect to the same server using one version of JRE while I cannot with another ?

    Read the article

  • Trouble connecting to vsftpd on ubuntu server

    - by littleK
    I have installed Ubuntu Server 10.10 and I am using it to host a domain that I have. I am trying to set up FTP for the server, but I am running into some problems. I have successfully installed vsFTPd and I have opened up ports 20, 21 on my firewall. In my vsFTPd configuration, I have enabled SSL. Every time I try to connect to my server via FTP, I receive a "Connection Refused" error. I have had a little more success with SSL disabled, however the connection process will time out after the LIST command (but it does accept my authentication). Here is my vsFTPd configuration, the SSL stuff is at the bottom: # Example config file /etc/vsftpd.conf # # The default compiled in settings are fairly paranoid. This sample file # loosens things up a bit, to make the ftp daemon more usable. # Please see vsftpd.conf.5 for all compiled in defaults. # # READ THIS: This example file is NOT an exhaustive list of vsftpd options. # Please read the vsftpd.conf.5 manual page to get a full idea of vsftpd's # capabilities. # # # Run standalone? vsftpd can run either from an inetd or as a standalone # daemon started from an initscript. listen=YES # # Run standalone with IPv6? # Like the listen parameter, except vsftpd will listen on an IPv6 socket # instead of an IPv4 one. This parameter and the listen parameter are mutually # exclusive. #listen_ipv6=YES # # Allow anonymous FTP? (Disabled by default) anonymous_enable=NO # # Uncomment this to allow local users to log in. local_enable=YES # # Uncomment this to enable any form of FTP write command. write_enable=YES # # Default umask for local users is 077. You may wish to change this to 022, # if your users expect that (022 is used by most other ftpd's) #local_umask=022 # # Uncomment this to allow the anonymous FTP user to upload files. This only # has an effect if the above global write enable is activated. Also, you will # obviously need to create a directory writable by the FTP user. #anon_upload_enable=YES # # Uncomment this if you want the anonymous FTP user to be able to create # new directories. #anon_mkdir_write_enable=YES # # Activate directory messages - messages given to remote users when they # go into a certain directory. dirmessage_enable=YES # # If enabled, vsftpd will display directory listings with the time # in your local time zone. The default is to display GMT. The # times returned by the MDTM FTP command are also affected by this # option. use_localtime=YES # # Activate logging of uploads/downloads. xferlog_enable=YES # # Make sure PORT transfer connections originate from port 20 (ftp-data). connect_from_port_20=YES # # If you want, you can arrange for uploaded anonymous files to be owned by # a different user. Note! Using "root" for uploaded files is not # recommended! #chown_uploads=YES #chown_username=whoever # # You may override where the log file goes if you like. The default is shown # below. #xferlog_file=/var/log/vsftpd.log # # If you want, you can have your log file in standard ftpd xferlog format. # Note that the default log file location is /var/log/xferlog in this case. #xferlog_std_format=YES # # You may change the default value for timing out an idle session. #idle_session_timeout=600 # # You may change the default value for timing out a data connection. #data_connection_timeout=120 # # It is recommended that you define on your system a unique user which the # ftp server can use as a totally isolated and unprivileged user. #nopriv_user=ftpsecure # # Enable this and the server will recognise asynchronous ABOR requests. Not # recommended for security (the code is non-trivial). Not enabling it, # however, may confuse older FTP clients. #async_abor_enable=YES # # By default the server will pretend to allow ASCII mode but in fact ignore # the request. Turn on the below options to have the server actually do ASCII # mangling on files when in ASCII mode. # Beware that on some FTP servers, ASCII support allows a denial of service # attack (DoS) via the command "SIZE /big/file" in ASCII mode. vsftpd # predicted this attack and has always been safe, reporting the size of the # raw file. # ASCII mangling is a horrible feature of the protocol. #ascii_upload_enable=YES #ascii_download_enable=YES # # You may fully customise the login banner string: #ftpd_banner=Welcome to blah FTP service. # # You may specify a file of disallowed anonymous e-mail addresses. Apparently # useful for combatting certain DoS attacks. #deny_email_enable=YES # (default follows) #banned_email_file=/etc/vsftpd.banned_emails # # You may restrict local users to their home directories. See the FAQ for # the possible risks in this before using chroot_local_user or # chroot_list_enable below. #chroot_local_user=YES # # You may specify an explicit list of local users to chroot() to their home # directory. If chroot_local_user is YES, then this list becomes a list of # users to NOT chroot(). #chroot_local_user=YES #chroot_list_enable=YES # (default follows) #chroot_list_file=/etc/vsftpd.chroot_list # # You may activate the "-R" option to the builtin ls. This is disabled by # default to avoid remote users being able to cause excessive I/O on large # sites. However, some broken FTP clients such as "ncftp" and "mirror" assume # the presence of the "-R" option, so there is a strong case for enabling it. #ls_recurse_enable=YES # # Debian customization # # Some of vsftpd's settings don't fit the Debian filesystem layout by # default. These settings are more Debian-friendly. # # This option should be the name of a directory which is empty. Also, the # directory should not be writable by the ftp user. This directory is used # as a secure chroot() jail at times vsftpd does not require filesystem # access. secure_chroot_dir=/var/run/vsftpd/empty # # This string is the name of the PAM service vsftpd will use. pam_service_name=vsftpd # # This option specifies the location of the RSA certificate to use for SSL # encrypted connections. rsa_cert_file=/etc/ssl/private/vsftpd.pem # SSL ssl_enable=YES allow_anon_ssl=NO force_local_data_ssl=YES force_local_logins_ssl=YES ssl_tlsv1=YES ssl_sslv2=YES ssl_sslv3=YES Thanks!

    Read the article

  • Can't Get Virtual Users Setup in VSFTPD -Tried Everything

    - by N.T.
    Have Ubuntu 11.10 with vsftpd installed and working. Can not get virtual users setup at all? Vsftpd will allow main Ubuntu owner account to login, but nothing else? I've followed several tutorials on adding virtual users, but nothing works? I just need to add 2 virtual users and have them be able to upload files to vsftpd Ubuntu computer from other computers on my Lan network. Everywhere I've looked, people just point toward tutorials on adding virtual users, but that just is NOT working. I've been struggling with this for over a week now! PLEASE Help. Thanks. I'll even give a donation if someone can figure this out. here is the vsftpd.conf file I am using. I copied the original, and make a new one, every time I try a tutorial. So far, none have worked. Here is the vsftpd.conf file I'm using. (I hope this helps?) # Example config file /etc/vsftpd.conf # # The default compiled in settings are fairly paranoid. This sample file # loosens things up a bit, to make the ftp daemon more usable. # Please see vsftpd.conf.5 for all compiled in defaults. # # READ THIS: This example file is NOT an exhaustive list of vsftpd options. # Please read the vsftpd.conf.5 manual page to get a full idea of vsftpd's # capabilities. # # # Run standalone? vsftpd can run either from an inetd or as a standalone # daemon started from an initscript. listen=YES # # Run standalone with IPv6? # Like the listen parameter, except vsftpd will listen on an IPv6 socket # instead of an IPv4 one. This parameter and the listen parameter are mutually # exclusive. #listen_ipv6=YES # # Allow anonymous FTP? (Disabled by default) anonymous_enable=YES # # Uncomment this to allow local users to log in. local_enable=YES # # Uncomment this to enable any form of FTP write command. write_enable=YES # # Default umask for local users is 077. You may wish to change this to 022, # if your users expect that (022 is used by most other ftpd's) local_umask=022 # # Uncomment this to allow the anonymous FTP user to upload files. This only # has an effect if the above global write enable is activated. Also, you will # obviously need to create a directory writable by the FTP user. #anon_upload_enable=YES # # Uncomment this if you want the anonymous FTP user to be able to create # new directories. anon_mkdir_write_enable=YES # # Activate directory messages - messages given to remote users when they # go into a certain directory. dirmessage_enable=YES # # If enabled, vsftpd will display directory listings with the time # in your local time zone. The default is to display GMT. The # times returned by the MDTM FTP command are also affected by this # option. use_localtime=YES # # Activate logging of uploads/downloads. xferlog_enable=YES # # Make sure PORT transfer connections originate from port 20 (ftp-data). connect_from_port_20=YES # # If you want, you can arrange for uploaded anonymous files to be owned by # a different user. Note! Using "root" for uploaded files is not # recommended! #chown_uploads=YES #chown_username=whoever # # You may override where the log file goes if you like. The default is shown # below. #xferlog_file=/var/log/vsftpd.log # # If you want, you can have your log file in standard ftpd xferlog format. # Note that the default log file location is /var/log/xferlog in this case. xferlog_std_format=YES # # You may change the default value for timing out an idle session. #idle_session_timeout=600 # # You may change the default value for timing out a data connection. #data_connection_timeout=120 # # It is recommended that you define on your system a unique user which the # ftp server can use as a totally isolated and unprivileged user. #nopriv_user=ftpsecure # # Enable this and the server will recognise asynchronous ABOR requests. Not # recommended for security (the code is non-trivial). Not enabling it, # however, may confuse older FTP clients. #async_abor_enable=YES # # By default the server will pretend to allow ASCII mode but in fact ignore # the request. Turn on the below options to have the server actually do ASCII # mangling on files when in ASCII mode. # Beware that on some FTP servers, ASCII support allows a denial of service # attack (DoS) via the command "SIZE /big/file" in ASCII mode. vsftpd # predicted this attack and has always been safe, reporting the size of the # raw file. # ASCII mangling is a horrible feature of the protocol. #ascii_upload_enable=YES #ascii_download_enable=YES # # You may fully customise the login banner string: ftpd_banner=Welcome to Sage FTP service. # # You may specify a file of disallowed anonymous e-mail addresses. Apparently # useful for combatting certain DoS attacks. #deny_email_enable=YES # (default follows) #banned_email_file=/etc/vsftpd.banned_emails # # You may restrict local users to their home directories. See the FAQ for # the possible risks in this before using chroot_local_user or # chroot_list_enable below. chroot_local_user=YES # # You may specify an explicit list of local users to chroot() to their home # directory. If chroot_local_user is YES, then this list becomes a list of # users to NOT chroot(). #chroot_local_user=YES #chroot_list_enable=YES # (default follows) #chroot_list_file=/etc/vsftpd.chroot_list # # You may activate the "-R" option to the builtin ls. This is disabled by # default to avoid remote users being able to cause excessive I/O on large # sites. However, some broken FTP clients such as "ncftp" and "mirror" assume # the presence of the "-R" option, so there is a strong case for enabling it. #ls_recurse_enable=YES # # Debian customization # # Some of vsftpd's settings don't fit the Debian filesystem layout by # default. These settings are more Debian-friendly. # # This option should be the name of a directory which is empty. Also, the # directory should not be writable by the ftp user. This directory is used # as a secure chroot() jail at times vsftpd does not require filesystem # access. secure_chroot_dir=/var/run/vsftpd/empty # # This string is the name of the PAM service vsftpd will use. pam_service_name=vsftpd local_root=/media/FilesDrive # # This option specifies the location of the RSA certificate to use for SSL # encrypted connections. rsa_cert_file=/etc/ssl/private/vsftpd.pem

    Read the article

  • ProFTPd server on Ubuntu getting access denied message when successfully authenticated?

    - by exxoid
    I have a Ubuntu box with a ProFTPD 1.3.4a Server, when I try to log in via my FTP Client I cannot do anything as it does not allow me to list directories; I have tried logging in as root and as a regular user and tried accessing different paths within the FTP Server. The error I get in my FTP Client is: Status: Retrieving directory listing... Command: CDUP Response: 250 CDUP command successful Command: PWD Response: 257 "/var" is the current directory Command: PASV Response: 227 Entering Passive Mode (172,16,4,22,237,205). Command: MLSD Response: 550 Access is denied. Error: Failed to retrieve directory listing Any idea? Here is the config of my proftpd: # # /etc/proftpd/proftpd.conf -- This is a basic ProFTPD configuration file. # To really apply changes, reload proftpd after modifications, if # it runs in daemon mode. It is not required in inetd/xinetd mode. # # Includes DSO modules Include /etc/proftpd/modules.conf # Set off to disable IPv6 support which is annoying on IPv4 only boxes. UseIPv6 off # If set on you can experience a longer connection delay in many cases. IdentLookups off ServerName "Drupal Intranet" ServerType standalone ServerIdent on "FTP Server ready" DeferWelcome on # Set the user and group that the server runs as User nobody Group nogroup MultilineRFC2228 on DefaultServer on ShowSymlinks on TimeoutNoTransfer 600 TimeoutStalled 600 TimeoutIdle 1200 DisplayLogin welcome.msg DisplayChdir .message true ListOptions "-l" DenyFilter \*.*/ # Use this to jail all users in their homes # DefaultRoot ~ # Users require a valid shell listed in /etc/shells to login. # Use this directive to release that constrain. # RequireValidShell off # Port 21 is the standard FTP port. Port 21 # In some cases you have to specify passive ports range to by-pass # firewall limitations. Ephemeral ports can be used for that, but # feel free to use a more narrow range. # PassivePorts 49152 65534 # If your host was NATted, this option is useful in order to # allow passive tranfers to work. You have to use your public # address and opening the passive ports used on your firewall as well. # MasqueradeAddress 1.2.3.4 # This is useful for masquerading address with dynamic IPs: # refresh any configured MasqueradeAddress directives every 8 hours <IfModule mod_dynmasq.c> # DynMasqRefresh 28800 </IfModule> # To prevent DoS attacks, set the maximum number of child processes # to 30. If you need to allow more than 30 concurrent connections # at once, simply increase this value. Note that this ONLY works # in standalone mode, in inetd mode you should use an inetd server # that allows you to limit maximum number of processes per service # (such as xinetd) MaxInstances 30 # Set the user and group that the server normally runs at. # Umask 022 is a good standard umask to prevent new files and dirs # (second parm) from being group and world writable. Umask 022 022 # Normally, we want files to be overwriteable. AllowOverwrite on # Uncomment this if you are using NIS or LDAP via NSS to retrieve passwords: # PersistentPasswd off # This is required to use both PAM-based authentication and local passwords AuthPAMConfig proftpd AuthOrder mod_auth_pam.c* mod_auth_unix.c # Be warned: use of this directive impacts CPU average load! # Uncomment this if you like to see progress and transfer rate with ftpwho # in downloads. That is not needed for uploads rates. # UseSendFile off TransferLog /var/log/proftpd/xferlog SystemLog /var/log/proftpd/proftpd.log # Logging onto /var/log/lastlog is enabled but set to off by default #UseLastlog on # In order to keep log file dates consistent after chroot, use timezone info # from /etc/localtime. If this is not set, and proftpd is configured to # chroot (e.g. DefaultRoot or <Anonymous>), it will use the non-daylight # savings timezone regardless of whether DST is in effect. #SetEnv TZ :/etc/localtime <IfModule mod_quotatab.c> QuotaEngine off </IfModule> <IfModule mod_ratio.c> Ratios off </IfModule> # Delay engine reduces impact of the so-called Timing Attack described in # http://www.securityfocus.com/bid/11430/discuss # It is on by default. <IfModule mod_delay.c> DelayEngine on </IfModule> <IfModule mod_ctrls.c> ControlsEngine off ControlsMaxClients 2 ControlsLog /var/log/proftpd/controls.log ControlsInterval 5 ControlsSocket /var/run/proftpd/proftpd.sock </IfModule> <IfModule mod_ctrls_admin.c> AdminControlsEngine off </IfModule> # # Alternative authentication frameworks # #Include /etc/proftpd/ldap.conf #Include /etc/proftpd/sql.conf # # This is used for FTPS connections # #Include /etc/proftpd/tls.conf # # Useful to keep VirtualHost/VirtualRoot directives separated # #Include /etc/proftpd/virtuals.con # A basic anonymous configuration, no upload directories. # <Anonymous ~ftp> # User ftp # Group nogroup # # We want clients to be able to login with "anonymous" as well as "ftp" # UserAlias anonymous ftp # # Cosmetic changes, all files belongs to ftp user # DirFakeUser on ftp # DirFakeGroup on ftp # # RequireValidShell off # # # Limit the maximum number of anonymous logins # MaxClients 10 # # # We want 'welcome.msg' displayed at login, and '.message' displayed # # in each newly chdired directory. # DisplayLogin welcome.msg # DisplayChdir .message # # # Limit WRITE everywhere in the anonymous chroot # <Directory *> # <Limit WRITE> # DenyAll # </Limit> # </Directory> # # # Uncomment this if you're brave. # # <Directory incoming> # # # Umask 022 is a good standard umask to prevent new files and dirs # # # (second parm) from being group and world writable. # # Umask 022 022 # # <Limit READ WRITE> # # DenyAll # # </Limit> # # <Limit STOR> # # AllowAll # # </Limit> # # </Directory> # # </Anonymous> # Include other custom configuration files Include /etc/proftpd/conf.d/ UseReverseDNS off <Global> RootLogin on UseFtpUsers on ServerIdent on DefaultChdir /var/www DeleteAbortedStores on LoginPasswordPrompt on AccessGrantMsg "You have been authenticated successfully." </Global> Any idea what could be wrong? Thanks for your help!

    Read the article

  • PPTP ping client to client error

    - by Linux Intel
    I installed pptp server on a centos 6 64bit server PPTP Server ip : 55.66.77.10 PPTP Local ip : 10.0.0.1 Client1 IP : 10.0.0.60 centos 5 64bit Client2 IP : 10.0.0.61 centos5 64bit PPTP Server can ping Client1 And client 1 can ping PPTP Server PPTP Server can ping Client2 And client 2 can ping PPTP Server The problem is client 1 can not ping Client 2 route -n on PPTP Server Destination Gateway Genmask Flags Metric Ref Use Iface 10.0.0.60 0.0.0.0 255.255.255.255 UH 0 0 0 ppp0 10.0.0.61 0.0.0.0 255.255.255.255 UH 0 0 0 ppp1 55.66.77.10 0.0.0.0 255.255.255.248 U 0 0 0 eth0 10.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 eth0 0.0.0.0 55.66.77.19 0.0.0.0 UG 0 0 0 eth0 route -n On Client 1 Destination Gateway Genmask Flags Metric Ref Use Iface 10.0.0.1 0.0.0.0 255.255.255.255 UH 0 0 0 ppp0 55.66.77.10 70.14.13.19 255.255.255.255 UGH 0 0 0 eth0 10.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 eth1 0.0.0.0 70.14.13.19 0.0.0.0 UG 0 0 0 eth0 route -n On Client 2 Destination Gateway Genmask Flags Metric Ref Use Iface 10.0.0.1 0.0.0.0 255.255.255.255 UH 0 0 0 ppp0 55.66.77.10 84.56.120.60 255.255.255.255 UGH 0 0 0 eth1 10.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 eth0 0.0.0.0 84.56.120.60 0.0.0.0 UG 0 0 0 eth1 cat /etc/ppp/options.pptpd on PPTP server ############################################################################### # $Id: options.pptpd,v 1.11 2005/12/29 01:21:09 quozl Exp $ # # Sample Poptop PPP options file /etc/ppp/options.pptpd # Options used by PPP when a connection arrives from a client. # This file is pointed to by /etc/pptpd.conf option keyword. # Changes are effective on the next connection. See "man pppd". # # You are expected to change this file to suit your system. As # packaged, it requires PPP 2.4.2 and the kernel MPPE module. ############################################################################### # Authentication # Name of the local system for authentication purposes # (must match the second field in /etc/ppp/chap-secrets entries) name pptpd # Strip the domain prefix from the username before authentication. # (applies if you use pppd with chapms-strip-domain patch) #chapms-strip-domain # Encryption # (There have been multiple versions of PPP with encryption support, # choose with of the following sections you will use.) # BSD licensed ppp-2.4.2 upstream with MPPE only, kernel module ppp_mppe.o # {{{ refuse-pap refuse-chap refuse-mschap # Require the peer to authenticate itself using MS-CHAPv2 [Microsoft # Challenge Handshake Authentication Protocol, Version 2] authentication. require-mschap-v2 # Require MPPE 128-bit encryption # (note that MPPE requires the use of MSCHAP-V2 during authentication) require-mppe-128 # }}} # OpenSSL licensed ppp-2.4.1 fork with MPPE only, kernel module mppe.o # {{{ #-chap #-chapms # Require the peer to authenticate itself using MS-CHAPv2 [Microsoft # Challenge Handshake Authentication Protocol, Version 2] authentication. #+chapms-v2 # Require MPPE encryption # (note that MPPE requires the use of MSCHAP-V2 during authentication) #mppe-40 # enable either 40-bit or 128-bit, not both #mppe-128 #mppe-stateless # }}} # Network and Routing # If pppd is acting as a server for Microsoft Windows clients, this # option allows pppd to supply one or two DNS (Domain Name Server) # addresses to the clients. The first instance of this option # specifies the primary DNS address; the second instance (if given) # specifies the secondary DNS address. #ms-dns 10.0.0.1 #ms-dns 10.0.0.2 # If pppd is acting as a server for Microsoft Windows or "Samba" # clients, this option allows pppd to supply one or two WINS (Windows # Internet Name Services) server addresses to the clients. The first # instance of this option specifies the primary WINS address; the # second instance (if given) specifies the secondary WINS address. #ms-wins 10.0.0.3 #ms-wins 10.0.0.4 # Add an entry to this system's ARP [Address Resolution Protocol] # table with the IP address of the peer and the Ethernet address of this # system. This will have the effect of making the peer appear to other # systems to be on the local ethernet. # (you do not need this if your PPTP server is responsible for routing # packets to the clients -- James Cameron) proxyarp # Normally pptpd passes the IP address to pppd, but if pptpd has been # given the delegate option in pptpd.conf or the --delegate command line # option, then pppd will use chap-secrets or radius to allocate the # client IP address. The default local IP address used at the server # end is often the same as the address of the server. To override this, # specify the local IP address here. # (you must not use this unless you have used the delegate option) #10.8.0.100 # Logging # Enable connection debugging facilities. # (see your syslog configuration for where pppd sends to) debug # Print out all the option values which have been set. # (often requested by mailing list to verify options) #dump # Miscellaneous # Create a UUCP-style lock file for the pseudo-tty to ensure exclusive # access. lock # Disable BSD-Compress compression nobsdcomp # Disable Van Jacobson compression # (needed on some networks with Windows 9x/ME/XP clients, see posting to # poptop-server on 14th April 2005 by Pawel Pokrywka and followups, # http://marc.theaimsgroup.com/?t=111343175400006&r=1&w=2 ) novj novjccomp # turn off logging to stderr, since this may be redirected to pptpd, # which may trigger a loopback nologfd # put plugins here # (putting them higher up may cause them to sent messages to the pty) cat /etc/ppp/options.pptp on Client1 and Client2 ############################################################################### # $Id: options.pptp,v 1.3 2006/03/26 23:11:05 quozl Exp $ # # Sample PPTP PPP options file /etc/ppp/options.pptp # Options used by PPP when a connection is made by a PPTP client. # This file can be referred to by an /etc/ppp/peers file for the tunnel. # Changes are effective on the next connection. See "man pppd". # # You are expected to change this file to suit your system. As # packaged, it requires PPP 2.4.2 or later from http://ppp.samba.org/ # and the kernel MPPE module available from the CVS repository also on # http://ppp.samba.org/, which is packaged for DKMS as kernel_ppp_mppe. ############################################################################### # Lock the port lock # Authentication # We don't need the tunnel server to authenticate itself noauth # We won't do PAP, EAP, CHAP, or MSCHAP, but we will accept MSCHAP-V2 # (you may need to remove these refusals if the server is not using MPPE) refuse-pap refuse-eap refuse-chap refuse-mschap # Compression # Turn off compression protocols we know won't be used nobsdcomp nodeflate # Encryption # (There have been multiple versions of PPP with encryption support, # choose which of the following sections you will use. Note that MPPE # requires the use of MSCHAP-V2 during authentication) # # Note that using PPTP with MPPE and MSCHAP-V2 should be considered # insecure: # http://marc.info/?l=pptpclient-devel&m=134372640219039&w=2 # https://github.com/moxie0/chapcrack/blob/master/README.md # http://technet.microsoft.com/en-us/security/advisory/2743314 # http://ppp.samba.org/ the PPP project version of PPP by Paul Mackarras # ppp-2.4.2 or later with MPPE only, kernel module ppp_mppe.o # If the kernel is booted in FIPS mode (fips=1), the ppp_mppe.ko module # is not allowed and PPTP-MPPE is not available. # {{{ # Require MPPE 128-bit encryption #require-mppe-128 # }}} # http://mppe-mppc.alphacron.de/ fork from PPP project by Jan Dubiec # ppp-2.4.2 or later with MPPE and MPPC, kernel module ppp_mppe_mppc.o # {{{ # Require MPPE 128-bit encryption #mppe required,stateless # }}} IPtables are stopped on clients and server, Also net.ipv4.ip_forward = 1 is enabled on PPTP Server. How can i solve this problem .?

    Read the article

  • How can I avoid Windows 8.1 resetting my font size?

    - by Michael Tsang
    I am using Windows 8.1 on my laptop, which has a 15.6" screen with resolution 1366x768. I measured the screen with a ruler and calculated its DPI, which is 101. Therefore, I have set the scaling to 105%. However, when I change to an external monitor, which is a huge one with resolution 1920x1080 and DPI 93, I need to change the scaling to 97% but when I change the DPI back and forth, my font sizes have get resetted. I prefer using font sizes 14 on my title bars, message boxes and icons and font sizes 13 on my palette titles, menus and tooltips. However, as my laptop screen is too small, in order to make my apps fit on screen, I use font sizes 12 on my title bars, message boxes and icons and font sizes 11 on my palette titles, menus and tooltips. I don't know why I can't resize the window to make it larger than my screen in Windows (but it is possible in Kubuntu), therefore, some parts of my apps cannot be shown with my preferred font size. I have tried changing both the DPI and the font size by using .reg files. Before switching to my laptop screen, I apply the following: Windows Registry Editor Version 5.00 [HKEY_CURRENT_USER\Control Panel\Desktop] "LogPixels"=dword:00000065 [HKEY_CURRENT_USER\Control Panel\Desktop\WindowMetrics] "CaptionFont"=hex:ef,ff,ff,ff,00,00,00,00,00,00,00,00,00,00,00,00,bc,02,00,00,\ 00,00,00,01,00,00,05,00,53,00,65,00,67,00,6f,00,65,00,20,00,55,00,49,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00 "SmCaptionFont"=hex:f0,ff,ff,ff,00,00,00,00,00,00,00,00,00,00,00,00,bc,02,00,\ 00,00,00,00,01,00,00,05,00,53,00,65,00,67,00,6f,00,65,00,20,00,55,00,49,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00 "MenuFont"=hex:f0,ff,ff,ff,00,00,00,00,00,00,00,00,00,00,00,00,90,01,00,00,00,\ 00,00,01,00,00,05,00,53,00,65,00,67,00,6f,00,65,00,20,00,55,00,49,00,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00 "StatusFont"=hex:f0,ff,ff,ff,00,00,00,00,00,00,00,00,00,00,00,00,90,01,00,00,\ 00,00,00,01,00,00,05,00,53,00,65,00,67,00,6f,00,65,00,20,00,55,00,49,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00 "MessageFont"=hex:ef,ff,ff,ff,00,00,00,00,00,00,00,00,00,00,00,00,90,01,00,00,\ 00,00,00,01,00,00,05,00,53,00,65,00,67,00,6f,00,65,00,20,00,55,00,49,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00 "IconFont"=hex:ef,ff,ff,ff,00,00,00,00,00,00,00,00,00,00,00,00,90,01,00,00,00,\ 00,00,01,00,00,05,00,53,00,65,00,67,00,6f,00,65,00,20,00,55,00,49,00,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00 "AppliedDPI"=dword:00000065 Before switching to my external display, I apply this: Windows Registry Editor Version 5.00 [HKEY_CURRENT_USER\Control Panel\Desktop] "LogPixels"=dword:0000005d [HKEY_CURRENT_USER\Control Panel\Desktop\WindowMetrics] "CaptionFont"=hex:ed,ff,ff,ff,00,00,00,00,00,00,00,00,00,00,00,00,bc,02,00,00,\ 00,00,00,01,00,00,05,00,53,00,65,00,67,00,6f,00,65,00,20,00,55,00,49,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00 "SmCaptionFont"=hex:ee,ff,ff,ff,00,00,00,00,00,00,00,00,00,00,00,00,bc,02,00,\ 00,00,00,00,01,00,00,05,00,53,00,65,00,67,00,6f,00,65,00,20,00,55,00,49,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00 "MenuFont"=hex:ef,ff,ff,ff,00,00,00,00,00,00,00,00,00,00,00,00,90,01,00,00,00,\ 00,00,01,00,00,05,00,53,00,65,00,67,00,6f,00,65,00,20,00,55,00,49,00,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00 "StatusFont"=hex:ef,ff,ff,ff,00,00,00,00,00,00,00,00,00,00,00,00,90,01,00,00,\ 00,00,00,01,00,00,05,00,53,00,65,00,67,00,6f,00,65,00,20,00,55,00,49,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00 "MessageFont"=hex:ed,ff,ff,ff,00,00,00,00,00,00,00,00,00,00,00,00,90,01,00,00,\ 00,00,00,01,00,00,05,00,53,00,65,00,67,00,6f,00,65,00,20,00,55,00,49,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00 "IconFont"=hex:ed,ff,ff,ff,00,00,00,00,00,00,00,00,00,00,00,00,90,01,00,00,00,\ 00,00,01,00,00,05,00,53,00,65,00,67,00,6f,00,65,00,20,00,55,00,49,00,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,\ 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00 "AppliedDPI"=dword:0000005d I expect after applying the file, the DPI settings and the font sizes take effect at the next sign in. However, on my laptop screen, after I applied the file, signed out and in, the DPI setting changed, but the font sizes were resetted to tiny, and I had to apply the same file, signed out and in again to get the correct font size. The situation is even worse on my external monitor. After I applied the file, signed out and in, both the DPI setting and the font sizes were resetted to their default values, which were 96 DPI (the physical DPI as measured by dividing the resolution by the physical size is 93) and font size 9, which is totally unacceptable. How can I write the .reg files such that the settings can be correctly applied with a single sign in?

    Read the article

  • IIS SSL Certificate Renewal Pain

    - by Rick Strahl
    I’m in the middle of my annual certificate renewal for the West Wind site and I can honestly say that I hate IIS’s certificate system.  When it works it’s fine, but when it doesn’t man can it be a pain. Because I deal with public certificates on my site merely once a year, and you have to perform the certificate dance just the right way, I seem to run into some sort of trouble every year, thinking that Microsoft surely must have addressed the issues I ran into previously – HA! Not so. Don’t ever use the Renew Certificate Feature in IIS! The first rule that I should have never forgotten is that certificate renewals in IIS (7 is what I’m using but I think it’s no different in 7.5 and 8), simply don’t work if you’re submitting to get a public certificate from a certificate authority. I use DNSimple for my DNS domain management and SSL certificates because they provide ridiculously easy domain management and good prices for SSL certs – especially wildcard certificates, which is what I use on west-wind.com. Certificates in IIS can be found pegged to the machine root. If you go into the IIS Manager, go to the machine root the tree and then click on certificates and you then get various certificate options: Both of these options create a new Certificate request (CSR), which is just a text file. But if you’re silly enough like me to click on the Renew button on your old certificate, you’ll find that you end up generating a very long Certificate Request that looks nothing like the original certificate request and the format that’s used for this is not accepted by most certificate authorities. While I’m not sure exactly what the problem is, it simply looks like IIS is respecting none of your original certificate bit size choices and is generating a huge certificate request that is 3 times the size of a ‘normal’ certificate request. The end result is (and I’ve done this at least twice now) is that the certificate processor is likely to fail processing those renewals. Always create a new Certificate While it’s a little more work and you have to remember how to fill out the certificate request properly, this is the safe way to make sure your certificate generates properly. First comes the Distinguished Name Properties dialog: Ah yes you have to love the nomenclature of this stuff. Distinguished name, Common name – WTF is a common name? It doesn’t look common to me! Make sure this form gets filled out correctly. Common NameThis is the domain name of the Web site. In my case I’m creating a wildcard certificate so I’m using the * prefix. If you’re purchasing a certificate for a specific domain use www.west-wind.com or store.west-wind.com for example. Make sure this matches the EXACT domain you’re trying to use secure access on because that’s all the certificate is going to work on unless you get a wildcard certificate. Organization Is the name of your company or organization. Depending on the kind of certificate you purchase this name will show up on your certificate. Most low end SSL certificates (ie. those that cost under $100 for single domains) don’t list the organization, the higher signature certificates that also require extensive validation by the cert authority do. Regardless you should make sure this matches the right company/organization. Organizational Unit This can be anything. Not really sure what this is for, but traditionally I’ve always set this to Web because – well this is a Web thing after all right? I’ve never seen this used anywhere that I can tell other than to internally reference the cert. State and CountryPretty obvious. Should reflect the location of the business/organization/person or site.   Next you have to configure the bit size used for the certificate: The default on this dialog is 1024, but I’ve found that most providers these days request a minimum bit length of 2048, as did my DNSimple provider. Again check with the provider when you submit to make sure. Bit length mismatches can cause problems if you use a size that isn’t supported by the provider. I had that happen last year when I submitted my CSR and it got rejected quite a bit later, when the certs usually are issued within an hour or less. When you’re done here, the certificate is saved to disk as a .txt file and it should look something like this (this is a 2048 bit length CSR):-----BEGIN NEW CERTIFICATE REQUEST----- MIIEVGCCAz0CAQAwdjELMAkGA1UEBhMCVVMxDzANBgNVBAgMBkhhd2FpaTENMAsG A1UEBwwEUGFpYTEfMB0GA1UECgwWV2VzdCBXaW5kIFRlY2hub2xvZ2llczEMMAoG B1UECwwDV2ViMRgwFgYDVQQDDA8qLndlc3Qtd2luZC5jb20wggEiMA0GCSqGSIb3 DQEBAQUAA4IBDwAwggEKAoIBAQDIPWOFMkMVRp2Ftj9w/cCVV4OYYhoZYtl+8lTk oqDwKca0xWHLgioX/9v0rZLS6a82MHqKEBxVXu+cuCmSE4AQtB/1YH9lS4tpc/be OZDvnTotP6l4MCEzzAfROcw4CiIg6X0RMSnl8IATAvv2V5LQM9TDdt9oDdMpX2IY +vVC9RZ7PMHBmR9kwI2i/lrKitzhQKaHgpmKcRlM6iqpALUiX28w5HJaDKK1MDHN 607tyFJLHijuJKx7PdTqZYf50KkC3NupfZ2avVycf18Q13jHWj59tvwEOczoVzRL l4LQivAqbhyiqMpWnrZunIOUZta5aGm+jo7O1knGWJjxuraTAgMBAAGgggGYMBoG CisGAQQBgjcNAgMxDBYKNi4yLjkyMDAuMjA0BgkrBgEEAYI3FRQxJzAlAgEFDAZS QVNYUFMMC1JBU1hQU1xSaWNrDAtJbmV0TWdyLmV4ZTByBgorBgEEAYI3DQICMWQw YgIBAR5aAE0AaQBjAHIAbwBzAG8AZgB0ACAAUgBTAEEAIABTAEMAaABhAG4AbgBl AGwAIABDAHIAeQBwAHQAbwBnAHIAYQBwAGgAaQBjACAAUAByAG8AdgBpAGQAZQBy AwEAMIHPBgkqhkiG9w0BCQ4xgcEwgb4wDgYDVR0PAQH/BAQDAgTwMBMGA1UdJQQM MAoGCCsGAQUFBwMBMHgGCSqGSIb3DQEJDwRrMGkwDgYIKoZIhvcNAwICAgCAMA4G CCqGSIb3DQMEAgIAgDALBglghkgBZQMEASowCwYJYIZIAWUDBAEtMAsGCWCGSAFl AwQBAjALBglghkgBZQMEAQUwBwYFKw4DAgcwCgYIKoZIhvcNAwcwHQYDVR0OBBYE FD/yOsTbXE+GVFCFMmldzQvyloz9MA0GCSqGSIb3DQEBBQUAA4IBAQCK6LlsCuIM 1AU0niB6QZ9v0FTsGFxP1dYvVUnJyY6VEKNiGFiQjZac7UCs0p58yScdXWEFOE8V OsjAYD3xYNc05+ckyD67UHRGEUAVB9RBvbKW23KeR/8kBmEzc8PemD52YOgExxAJ 57xWmAwEHAvbgYzQvhO8AOzH3TGvvHbg5UKM1pYgNmuwZq5DkL/IDoeIJwfk/wrI wghNTuxxIFgbH4YrgLgv4PRvrS/LaTCRBdboaCgzATMczaOb1nd/DVNR+3fCtMhM W0psTAjzRbmXF3nJyAQa7jF/52gkY0RfFX2lG5tJnG+XDsVNvKNvh9Qa5Tlmkm06 ILKCm9ciWCKk -----END NEW CERTIFICATE REQUEST----- You can take that certificate request and submit that to your certificate provider. Since this is base64 encoded you can typically just paste it into a text box on the submission page, or some providers will ask you to upload the CSR as a file. What does a Renewal look like? Note the length of the CSR will vary somewhat with key strength, but compare this to a renewal request that IIS generated from my existing site:-----BEGIN NEW CERTIFICATE REQUEST----- MIIPpwYFKoZIhvcNAQcCoIIPmDCCD5QCAQExCzAJBgUrDgMCGgUAMIIIqAYJKoZI hvcNAQcBoIIImQSCCJUwggiRMIIH+gIBADBdMSEwHwYDVQQLDBhEb21haW4gQ29u dHJvbCBWYWxpFGF0ZWQxHjAcBgNVBAsMFUVzc2VudGlhbFNTTCBXaWxkY2FyZDEY MBYGA1UEAwwPKi53ZXN0LXdpbmQuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCB iQKBgQCK4OuIOR18Wb8tNMGRZiD1c9X57b332Lj7DhbckFqLs0ys8kVDHrTXSj+T Ye9nmAvfPpZmBtE5p9qRNN79rUYugAdl+qEtE4IJe1bRfxXzcKa1SXa8+TEs3zQa zYSmcR2dDuC8om1eAdeCtt0NnkvANgm1VLwGOor/UHMASaEhCQIDAQABoIIG8jAa BgorBgEEAYI3DQIDMQwWCjYuMi45MjAwLjIwNAYJKwYBBAGCNxUUMScwJQIBBQwG UkFTWFBTDAtSQVNYUFNcUmljawwLSW5ldE1nci5leGUwZgYKKwYBBAGCNw0CAjFY MFYCAQIeTgBNAGkAYwByAG8AcwBvAGYAdAAgAFMAdAByAG8AbgBnACAAQwByAHkA cAB0AG8AZwByAGEAcABoAGkAYwAgAFAAcgBvAHYAaQBkAGUAcgMBADCCAQAGCSqG SIb3DQEJDjGB8jCB7zAOBgNVHQ8BAf8EBAMCBaAwDAYDVR0TAQH/BAIwADA0BgNV HSUELTArBggrBgEFBQcDAQYIKwYBBQUHAwIGCisGAQQBgjcKAwMGCWCGSAGG+EIE ATBPBgNVHSAESDBGMDoGCysGAQQBsjEBAgIHMCswKQYIKwYBBQUHAgEWHWh0dHBz Oi8vc2VjdXJlLmNvbW9kby5jb20vQ1BTMAgGBmeBDAECATApBgNVHREEIjAggg8q Lndlc3Qtd2luZC5jb22CDXdlc3Qtd2luZC5jb20wHQYDVR0OBBYEFEVLAyO8gDiv lsfovKrx9mHPyrsiMIIFMAYJKwYBBAGCNw0BMYIFITCCBR0wggQFoAMCAQICEQDu 1E1T5Jvtkm5LOfSHabWlMA0GCSqGSIb3DQEBBQUAMHIxCzAJBgNVBAYTAkdCMRsw GQYDVQQIExJHcmVhdGVyIE1hbmNoZXN0ZXIxEDAOBgNVBAcTB1NhbGZvcmQxGjAY BgNVBAoTEUNPTU9ETyBDQSBMaW1pdGVkMRgwFgYDVQQDEw9Fc3NlbnRpYWxTU0wg Q0EwHhcNMTQwNTA3MDAwMDAwWhcNMTUwNjA2MjM1OTU5WjBdMSEwHwYDVQQLExhE b21haW4gQ29udHJvbCBWYWxpZGF0ZWQxHjAcBgNVBAsTFUVzc2VudGlhbFNTTCBX aWxkY2FyZDEYMBYGA1UEAxQPKi53ZXN0LXdpbmQuY29tMIIBIjANBgkqhkiG9w0B AQEFAAOCAQ8AMIIBCgKCAQEAiyKfL66XB51DlUfm6xXqJBcvMU2qorRHxC+WjEpB amvg8XoqNfCKzDAvLMbY4BLhbYCTagqtslnP3Gj4AKhXqRKU0n6iSbmS1gcWzCJM CHufZ5RDtuTuxhTdJxzP9YqZUfKV5abWQp/TK6V1ryaBJvdqM73q4tRjrQODtkiR PfZjxpybnBHFJS8jYAf8jcOjSDZcgN1d9Evc5MrEJCp/90cAkozyF/NMcFtD6Yj8 UM97z3MzDT2JPDoH3kAr3cCgpUNyQ2+wDNCnL9eWYFkOQi8FZMsZol7KlZ5NgNfO a7iZMVGbqDg6rkS//2uGe6tSQJTTs+mAZB+na+M8XT2UqwIDAQABo4IBwTCCAb0w HwYDVR0jBBgwFoAU2svqrVsIXcz//CZUzknlVcY49PgwHQYDVR0OBBYEFH0AmLiL RSEL9+sQD/n5O4N7/nnqMA4GA1UdDwEB/wQEAwIFoDAMBgNVHRMBAf8EAjAAMDQG A1UdJQQtMCsGCCsGAQUFBwMBBggrBgEFBQcDAgYKKwYBBAGCNwoDAwYJYIZIAYb4 QgQBME8GA1UdIARIMEYwOgYLKwYBBAGyMQECAgcwKzApBggrBgEFBQcCARYdaHR0 cHM6Ly9zZWN1cmUuY29tb2RvLmNvbS9DUFMwCAYGZ4EMAQIBMDsGA1UdHwQ0MDIw MKAuoCyGKmh0dHA6Ly9jcmwuY29tb2RvY2EuY29tL0Vzc2VudGlhbFNTTENBLmNy bDBuBggrBgEFBQcBAQRiMGAwOAYIKwYBBQUHMAKGLGh0dHA6Ly9jcnQuY29tb2Rv Y2EuY29tL0Vzc2VudGlhbFNTTENBXzIuY3J0MCQGCCsGAQUFBzABhhhodHRwOi8v b2NzcC5jb21vZG9jYS5jb20wKQYDVR0RBCIwIIIPKi53ZXN0LXdpbmQuY29tgg13 ZXN0LXdpbmQuY29tMA0GCSqGSIb3DQEBBQUAA4IBAQBqBfd6QHrxXsfgfKARG6np 8yszIPhHGPPmaE7xq7RpcZjY9H+8l6fe4jQbGFjbA5uHBklYI4m2snhPaW2p8iF8 YOkm2V2hEsSTnkf5/flw9mZtlCFEDFXSsBxBdNz8RYTthPMu1h09C0XuDB30sztg nR692FrxJN5/bXsk+MC9nEweTFW/t2HW+XZ8bhM7vsAS+pZionR4MyuQ0mYIt/lD csZVZ91KxTsIm8rNMkkYGFoSIXjQ0+0tCbxMF0i2qnpmNRpA6PU8l7lxxvPkplsk 9KB8QIPFrR5p/i/SUAd9vECWh5+/ktlcrfFP2PK7XcEwWizsvMrNqLyvQVNXSUPT MA0GCSqGSIb3DQEBBQUAA4GBABt/NitwMzc5t22p5+zy4HXbVYzLEjesLH8/v0ot uLQ3kkG8tIWNh5RplxIxtilXt09H4Oxpo3fKUN0yw+E6WsBfg0sAF8pHNBdOJi48 azrQbt4HvKktQkGpgYFjLsormjF44SRtToLHlYycDHBNvjaBClUwMCq8HnwY6vDq xikRoIIFITCCBR0wggQFoAMCAQICEQDu1E1T5Jvtkm5LOfSHabWlMA0GCSqGSIb3 DQEBBQUAMHIxCzAJBgNVBAYTAkdCMRswGQYDVQQIExJHcmVhdGVyIE1hbmNoZXN0 ZXIxEDAOBgNVBAcTB1NhbGZvcmQxGjAYBgNVBAoTEUNPTU9ETyBDQSBMaW1pdGVk MRgwFgYDVQQDEw9Fc3NlbnRpYWxTU0wgQ0EwHhcNMTQwNTA3MDAwMDAwWhcNMTUw NjA2MjM1OTU5WjBdMSEwHwYDVQQLExhEb21haW4gQ29udHJvbCBWYWxpZGF0ZWQx HjAcBgNVBAsTFUVzc2VudGlhbFNTTCBXaWxkY2FyZDEYMBYGA1UEAxQPKi53ZXN0 LXdpbmQuY29tMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAiyKfL66X B51DlUfm6xXqJBcvMU2qorRHxC+WjEpBamvg8XoqNfCKzDAvLMbY4BLhbYCTagqt slnP3Gj4AKhXqRKU0n6iSbmS1gcWzCJMCHufZ5RDtuTuxhTdJxzP9YqZUfKV5abW Qp/TK6V1ryaBJvdqM73q4tRjrQODtkiRPfZjxpybnBHFJS8jYAf8jcOjSDZcgN1d 9Evc5MrEJCp/90cAkozyF/NMcFtD6Yj8UM97z3MzDT2JPDoH3kAr3cCgpUNyQ2+w DNCnL9eWYFkOQi8FZMsZol7KlZ5NgNfOa7iZMVGbqDg6rkS//2uGe6tSQJTTs+mA ZB+na+M8XT2UqwIDAQABo4IBwTCCAb0wHwYDVR0jBBgwFoAU2svqrVsIXcz//CZU zknlVcY49PgwHQYDVR0OBBYEFH0AmLiLRSEL9+sQD/n5O4N7/nnqMA4GA1UdDwEB /wQEAwIFoDAMBgNVHRMBAf8EAjAAMDQGA1UdJQQtMCsGCCsGAQUFBwMBBggrBgEF BQcDAgYKKwYBBAGCNwoDAwYJYIZIAYb4QgQBME8GA1UdIARIMEYwOgYLKwYBBAGy MQECAgcwKzApBggrBgEFBQcCARYdaHR0cHM6Ly9zZWN1cmUuY29tb2RvLmNvbS9D UFMwCAYGZ4EMAQIBMDsGA1UdHwQ0MDIwMKAuoCyGKmh0dHA6Ly9jcmwuY29tb2Rv Y2EuY29tL0Vzc2VudGlhbFNTTENBLmNybDBuBggrBgEFBQcBAQRiMGAwOAYIKwYB BQUHMAKGLGh0dHA6Ly9jcnQuY29tb2RvY2EuY29tL0Vzc2VudGlhbFNTTENBXzIu Y3J0MCQGCCsGAQUFBzABhhhodHRwOi8vb2NzcC5jb21vZG9jYS5jb20wKQYDVR0R BCIwIIIPKi53ZXN0LXdpbmQuY29tgg13ZXN0LXdpbmQuY29tMA0GCSqGSIb3DQEB BQUAA4IBAQBqBfd6QHrxXsfgfKARG6np8yszIPhHGPPmaE7xq7RpcZjY9H+8l6fe 4jQbGFjbA5uHBklYI4m2snhPaW2p8iF8YOkm2V2hEsSTnkf5/flw9mZtlCFEDFXS sBxBdNz8RYTthPMu1h09C0XuDB30sztgnR692FrxJN5/bXsk+MC9nEweTFW/t2HW +XZ8bhM7vsAS+pZionR4MyuQ0mYIt/lDcsZVZ91KxTsIm8rNMkkYGFoSIXjQ0+0t CbxMF0i2qnpmNRpA6PU8l7lxxvPkplsk9KB8QIPFrR5p/i/SUAd9vECWh5+/ktlc rfFP2PK7XcEwWizsvMrNqLyvQVNXSUPTMYIBrzCCAasCAQEwgYcwcjELMAkGA1UE BhMCR0IxGzAZBgNVBAgTEkdyZWF0ZXIgTWFuY2hlc3RlcjEQMA4GA1UEBxMHU2Fs Zm9yZDEaMBgGA1UEChMRQ09NT0RPIENBIExpbWl0ZWQxGDAWBgNVBAMTD0Vzc2Vu dGlhbFNTTCBDQQIRAO7UTVPkm+2Sbks59IdptaUwCQYFKw4DAhoFADANBgkqhkiG 9w0BAQEFAASCAQB8PNQ6bYnQpWfkHyxnDuvNKw3wrqF2p7JMZm+SuN2qp3R2LpCR mW2LrGtQIm9Iob/QOYH+8houYNVdvsATGPXX2T8gzn+anof4tOG0vCTK1Bp9bwf9 MkRP+1c8RW/vkYmUW4X5/C+y3CZpMH5dDTaXBIpXFzjX/fxNpH/rvLzGiaYYL3Cn OLO+aOADr9qq5yoqwpiYCSfYNNYKTUNNGfYIidQwYtbHXEYhSukB2oR89xD2sZZ4 bOqFjUPgTa5SsERLDDeg3omMKiIXVYGxlqBEq51Kge6IQt4qQV9P9VgInW7cWmKe dTqNHI9ri3ttewdEnT++TKGKKfTjX9SR8Waj -----END NEW CERTIFICATE REQUEST----- Clearly there’s something very different between this an my original request! And it didn’t work. IIS creates a custom CSR that is encoded in a format that no certificate authority I’ve ever used uses. If you want the gory details of what’s in there look at this ServerFault question (thanks to Mika in the comments). In the end it doesn’t matter  though – no certificate authority knows what to do with this CSR. So create a new CSR and skip the renewal. Always! Use the same Server Keep in mind that on IIS at least you should always create your certificate on a single server and then when you receive the final certificate from your provider import it on that server. IIS tracks the CSR it created and requires it in order to import the final certificate properly. So if for some reason you try to install the certificate on another server, it won’t work. I’ve also run into trouble trying to install the same certificate twice – this time around I didn’t give my certificate the proper friendly name and IIS failed to allow me to assign the certificate to any of my Web sites. So I removed the certificate and tried to import again, only to find it failed the second time around. There are other ways to fix this, but in my case I had to have the certificate re-issued to work – not what you want to do. Regardless of what you do though, when you import make sure you do it right the first time by crossing all your t’s and dotting your i's– it’ll save you a lot of grief! You don’t actually have to use the server that the certificate gets installed on to generate the CSR and first install it, but it is generally a good idea to do so just so you can get the certificate installed into the right place right away. If you have access to the server where you need to install the certificate you might as well use it. But you can use another machine to generated the and install the certificate, then export the certificate and move it to another machine as needed. So you can use your Dev machine to create a certificate then export it and install it on a live server. More on installation and back up/export later. Installing the Certificate Once you’ve submitted a CSR request your provider will process the request and eventually issue you a new final certificate that contains another text file with the final key to import into your certificate store. IIS does this by combining the content in your certificate request with the original CSR. If all goes well your new certificate shows up in the certificate list and you’re ready to assign the certificate to your sites. Make sure you use a friendly name that matches domain name of your site. So use *.mysite.com or www.mysite.com or store.mysite.com to ensure IIS recognizes the certificate. I made the mistake of not naming my friendly name this way and found that IIS was unable to link my sites to my wildcard certificate. It needed to have the *. as part of the certificate otherwise the Hostname input field was blanked out. Changing the Friendly Name If you by accidentally used an invalid friendly name you can change it later in the Windows certificate store. Bring up a Run Box Type MMC File | Add/Remove Snap In Add Certificates | Computer Account | Local Computer Drill into Certificates | Personal | Certificates Find your Certificate | Right Click | Properties Edit the Friendly Name | Click OK Backing up your Certificate The first thing you should do once your certificate is successfully installed is to back it up! In case your server crashes or you otherwise lose your configuration this will ensure you have an easy way to recover and reinstall your certificate either on the same server or a different one. If you’re running a server farm or using a wildcard certificate you also need to get the certificate onto other machines and a PFX file import is the easiest way to do this. To back up your certificate select your certificate and choose Export from the context or sidebar menu: The Export Certificate option allows you to export a password protected binary file that you can import in a single step. You can copy the resulting binary PFX file to back up or copy to other machines to install on. Importing the certificate on another machine is as easy as pointing at the PFX file and specifying the password. IIS handles the rest. Assigning a new certificate to your Site Once you have the new certificate installed, all that’s left to do is assign it to your site. In IIS select your Web site and bring up the Site Bindings from the right sidebar. Add a new binding for https, bind it to port 443, specify your hostname and pick the certificate from the pick list. If you’re using a root site make sure to set up your certificate for www.yoursite.com and also for yoursite.com so that both work properly with SSL. Note that you need to explicitly configure each hostname for a certificate if you plan to use SSL. Luckily if you update your SSL certificate in the following year, IIS prompts you and asks whether you like to update all other sites that are using the existing cert to the newer cert. And you’re done. So what’s the Pain? So, all of this is old hat and it doesn’t look all that bad right? So what’s the pain here? Well if you follow the instructions and do everything right, then the process is about as straight forward as you would expect it to be. You create a cert request, you import it and assign it to your sites. That’s the basic steps and to be perfectly fair it works well – if nothing goes wrong. However, renewing tends to be the problem. The first unintuitive issue is that you simply shouldn’t renew but create a new CSR and generate your new certificate from that. Over the years I’ve fallen prey to the belief that Microsoft eventually will fix this so that the renewal creates the same type of CSR as the old cert, but apparently that will just never happen. Booo! The other problem I ran into is that I accidentally misnamed my imported certificate which in turn set off a chain of events that caused my originally issued certificate to become uninstallable. When I received my completed certificate I installed it and it installed just fine, but the friendly name was wrong. As a result IIS refused to assign the certificate to any of my host headered sites. That’s strike number one. Why the heck should the friendly name have any effect on the ability to attach the certificate??? Next I uninstalled the certificate because I figured that would be the easiest way to make sure I get it right. But I found that I could not reinstall my certificate. I kept getting these stop errors: "ASN1 bad tag value met" that would prevent the installation from completion. After searching around for this error and reading countless long messages on forums, I found that this error supposedly does not actually mean the install failed, but the list wouldn’t refresh. Commodo has this to say: Note: There is a known issue in IIS 7 giving the following error: "Cannot find the certificate request associated with this certificate file. A certificate request must be completed on the computer where it was created." You may also receive a message stating "ASN1 bad tag value met". If this is the same server that you generated the CSR on then, in most cases, the certificate is actually installed. Simply cancel the dialog and press "F5" to refresh the list of server certificates. If the new certificate is now in the list, you can continue with the next step. If it is not in the list, you will need to reissue your certificate using a new CSR (see our CSR creation instructions for IIS 7). After creating a new CSR, login to your Comodo account and click the 'replace' button for your certificate. Not sure if this issue is fixed in IIS 8 but that’s an insane bug to have crop up. As it turns out, in my case the refresh didn’t work and the certificate didn’t show up in the IIS list after the reinstall. In fact when looking at the certificate store I could see my certificate was installed in the right place, but the private key is missing which is most likely why IIS is not picking it up. It looks like IIS could not match the final cert to the original CSR generated. But again some sort of message to that affect might be helpful instead of ASN1 bad tag value met. Recovering the Private Key So it turns out my original problem was that I received the published key, but when I imported the private key was missing. There’s a relatively easy way to recover from this. If your certificate doesn’t show up in IIS check in the certificate store for the local machine (see steps above on how to bring this up). If you look at the certificate in Certificates/Personal/Certificates make sure you see the key as shown in the image below: if the key is missing it means that the certificate is missing the private key most likely. To fix a certificate you can do the following: Double click the certificate Go to the Details Tab Copy down the Serial number You can copy the serial number from the area blurred out above. The serial number will be in a format like ?00 a7 9b a1 a4 9d 91 63 57 d6 9f 26 b8 ee 79 b5 cb and you’ll need to strip out the spaces in order to use it in the next step. Next open up an Administrative command prompt and issue the following command: certutil -repairstore my 00a79ba1a49d916357d69f26b8ee79b5cb You should get a confirmation message that the repair worked. If you now go back to the certificate store you should now see the key icon show up on the certificate. Your certificate is fixed. Now go back into IIS Manager and refresh the list of certificates and if all goes well you should see all the certificates that showed in the cert store now: Remember – back up the key first then map to your site… Summary I deal with a lot of customers who run their own IIS servers, and I can’t tell you how often I hear about botched SSL installations. When I posted some of my issues on Twitter yesterday I got a hell storm of “me too” responses. I’m clearly not the only one, who’s run into this especially with renewals. I feel pretty comfortable with IIS configuration and I do a lot of it for support purposes, but the SSL configuration is one that never seems to go seamlessly. This blog post is meant as reminder to myself to read next time I do a renewal. So I can dot my i's and dash my t’s before I get caught in the mess I’m dealing with today. Hopefully some of you find this useful as well.© Rick Strahl, West Wind Technologies, 2005-2014Posted in IIS7  Security   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Creating STA COM compatible ASP.NET Applications

    - by Rick Strahl
    When building ASP.NET applications that interface with old school COM objects like those created with VB6 or Visual FoxPro (MTDLL), it's extremely important that the threads that are serving requests use Single Threaded Apartment Threading. STA is a COM built-in technology that allows essentially single threaded components to operate reliably in a multi-threaded environment. STA's guarantee that COM objects instantiated on a specific thread stay on that specific thread and any access to a COM object from another thread automatically marshals that thread to the STA thread. The end effect is that you can have multiple threads, but a COM object instance lives on a fixed never changing thread. ASP.NET by default uses MTA (multi-threaded apartment) threads which are truly free spinning threads that pay no heed to COM object marshaling. This is vastly more efficient than STA threading which has a bit of overhead in determining whether it's OK to run code on a given thread or whether some sort of thread/COM marshaling needs to occur. MTA COM components can be very efficient, but STA COM components in a multi-threaded environment always tend to have a fair amount of overhead. It's amazing how much COM Interop I still see today so while it seems really old school to be talking about this topic, it's actually quite apropos for me as I have many customers using legacy COM systems that need to interface with other .NET applications. In this post I'm consolidating some of the hacks I've used to integrate with various ASP.NET technologies when using STA COM Components. STA in ASP.NET Support for STA threading in the ASP.NET framework is fairly limited. Specifically only the original ASP.NET WebForms technology supports STA threading directly via its STA Page Handler implementation or what you might know as ASPCOMPAT mode. For WebForms running STA components is as easy as specifying the ASPCOMPAT attribute in the @Page tag:<%@ Page Language="C#" AspCompat="true" %> which runs the page in STA mode. Removing it runs in MTA mode. Simple. Unfortunately all other ASP.NET technologies built on top of the core ASP.NET engine do not support STA natively. So if you want to use STA COM components in MVC or with class ASMX Web Services, there's no automatic way like the ASPCOMPAT keyword available. So what happens when you run an STA COM component in an MTA application? In low volume environments - nothing much will happen. The COM objects will appear to work just fine as there are no simultaneous thread interactions and the COM component will happily run on a single thread or multiple single threads one at a time. So for testing running components in MTA environments may appear to work just fine. However as load increases and threads get re-used by ASP.NET COM objects will end up getting created on multiple different threads. This can result in crashes or hangs, or data corruption in the STA components which store their state in thread local storage on the STA thread. If threads overlap this global store can easily get corrupted which in turn causes problems. STA ensures that any COM object instance loaded always stays on the same thread it was instantiated on. What about COM+? COM+ is supposed to address the problem of STA in MTA applications by providing an abstraction with it's own thread pool manager for COM objects. It steps in to the COM instantiation pipeline and hands out COM instances from its own internally maintained STA Thread pool. This guarantees that the COM instantiation threads are STA threads if using STA components. COM+ works, but in my experience the technology is very, very slow for STA components. It adds a ton of overhead and reduces COM performance noticably in load tests in IIS. COM+ can make sense in some situations but for Web apps with STA components it falls short. In addition there's also the need to ensure that COM+ is set up and configured on the target machine and the fact that components have to be registered in COM+. COM+ also keeps components up at all times, so if a component needs to be replaced the COM+ package needs to be unloaded (same is true for IIS hosted components but it's more common to manage that). COM+ is an option for well established components, but native STA support tends to provide better performance and more consistent usability, IMHO. STA for non supporting ASP.NET Technologies As mentioned above only WebForms supports STA natively. However, by utilizing the WebForms ASP.NET Page handler internally it's actually possible to trick various other ASP.NET technologies and let them work with STA components. This is ugly but I've used each of these in various applications and I've had minimal problems making them work with FoxPro STA COM components which is about as dififcult as it gets for COM Interop in .NET. In this post I summarize several STA workarounds that enable you to use STA threading with these ASP.NET Technologies: ASMX Web Services ASP.NET MVC WCF Web Services ASP.NET Web API ASMX Web Services I start with classic ASP.NET ASMX Web Services because it's the easiest mechanism that allows for STA modification. It also clearly demonstrates how the WebForms STA Page Handler is the key technology to enable the various other solutions to create STA components. Essentially the way this works is to override the WebForms Page class and hijack it's init functionality for processing requests. Here's what this looks like for Web Services:namespace FoxProAspNet { public class WebServiceStaHandler : System.Web.UI.Page, IHttpAsyncHandler { protected override void OnInit(EventArgs e) { IHttpHandler handler = new WebServiceHandlerFactory().GetHandler( this.Context, this.Context.Request.HttpMethod, this.Context.Request.FilePath, this.Context.Request.PhysicalPath); handler.ProcessRequest(this.Context); this.Context.ApplicationInstance.CompleteRequest(); } public IAsyncResult BeginProcessRequest( HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } } public class AspCompatWebServiceStaHandlerWithSessionState : WebServiceStaHandler, IRequiresSessionState { } } This class overrides the ASP.NET WebForms Page class which has a little known AspCompatBeginProcessRequest() and AspCompatEndProcessRequest() method that is responsible for providing the WebForms ASPCOMPAT functionality. These methods handle routing requests to STA threads. Note there are two classes - one that includes session state and one that does not. If you plan on using ASP.NET Session state use the latter class, otherwise stick to the former. This maps to the EnableSessionState page setting in WebForms. This class simply hooks into this functionality by overriding the BeginProcessRequest and EndProcessRequest methods and always forcing it into the AspCompat methods. The way this works is that BeginProcessRequest() fires first to set up the threads and starts intializing the handler. As part of that process the OnInit() method is fired which is now already running on an STA thread. The code then creates an instance of the actual WebService handler factory and calls its ProcessRequest method to start executing which generates the Web Service result. Immediately after ProcessRequest the request is stopped with Application.CompletRequest() which ensures that the rest of the Page handler logic doesn't fire. This means that even though the fairly heavy Page class is overridden here, it doesn't end up executing any of its internal processing which makes this code fairly efficient. In a nutshell, we're highjacking the Page HttpHandler and forcing it to process the WebService process handler in the context of the AspCompat handler behavior. Hooking up the Handler Because the above is an HttpHandler implementation you need to hook up the custom handler and replace the standard ASMX handler. To do this you need to modify the web.config file (here for IIS 7 and IIS Express): <configuration> <system.webServer> <handlers> <remove name="WebServiceHandlerFactory-Integrated-4.0" /> <add name="Asmx STA Web Service Handler" path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" precondition="integrated"/> </handlers> </system.webServer> </configuration> (Note: The name for the WebServiceHandlerFactory-Integrated-4.0 might be slightly different depending on your server version. Check the IIS Handler configuration in the IIS Management Console for the exact name or simply remove the handler from the list there which will propagate to your web.config). For IIS 5 & 6 (Windows XP/2003) or the Visual Studio Web Server use:<configuration> <system.web> <httpHandlers> <remove path="*.asmx" verb="*" /> <add path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" /> </httpHandlers> </system.web></configuration> To test, create a new ASMX Web Service and create a method like this: [WebService(Namespace = "http://foxaspnet.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] public class FoxWebService : System.Web.Services.WebService { [WebMethod] public string HelloWorld() { return "Hello World. Threading mode is: " + System.Threading.Thread.CurrentThread.GetApartmentState(); } } Run this before you put in the web.config configuration changes and you should get: Hello World. Threading mode is: MTA Then put the handler mapping into Web.config and you should see: Hello World. Threading mode is: STA And you're on your way to using STA COM components. It's a hack but it works well! I've used this with several high volume Web Service installations with various customers and it's been fast and reliable. ASP.NET MVC ASP.NET MVC has quickly become the most popular ASP.NET technology, replacing WebForms for creating HTML output. MVC is more complex to get started with, but once you understand the basic structure of how requests flow through the MVC pipeline it's easy to use and amazingly flexible in manipulating HTML requests. In addition, MVC has great support for non-HTML output sources like JSON and XML, making it an excellent choice for AJAX requests without any additional tools. Unlike WebForms ASP.NET MVC doesn't support STA threads natively and so some trickery is needed to make it work with STA threads as well. MVC gets its handler implementation through custom route handlers using ASP.NET's built in routing semantics. To work in an STA handler requires working in the Page Handler as part of the Route Handler implementation. As with the Web Service handler the first step is to create a custom HttpHandler that can instantiate an MVC request pipeline properly:public class MvcStaThreadHttpAsyncHandler : Page, IHttpAsyncHandler, IRequiresSessionState { private RequestContext _requestContext; public MvcStaThreadHttpAsyncHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); _requestContext = requestContext; } public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } protected override void OnInit(EventArgs e) { var controllerName = _requestContext.RouteData.GetRequiredString("controller"); var controllerFactory = ControllerBuilder.Current.GetControllerFactory(); var controller = controllerFactory.CreateController(_requestContext, controllerName); if (controller == null) throw new InvalidOperationException("Could not find controller: " + controllerName); try { controller.Execute(_requestContext); } finally { controllerFactory.ReleaseController(controller); } this.Context.ApplicationInstance.CompleteRequest(); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } public override void ProcessRequest(HttpContext httpContext) { throw new NotSupportedException("STAThreadRouteHandler does not support ProcessRequest called (only BeginProcessRequest)"); } } This handler code figures out which controller to load and then executes the controller. MVC internally provides the information needed to route to the appropriate method and pass the right parameters. Like the Web Service handler the logic occurs in the OnInit() and performs all the processing in that part of the request. Next, we need a RouteHandler that can actually pick up this handler. Unlike the Web Service handler where we simply registered the handler, MVC requires a RouteHandler to pick up the handler. RouteHandlers look at the URL's path and based on that decide on what handler to invoke. The route handler is pretty simple - all it does is load our custom handler: public class MvcStaThreadRouteHandler : IRouteHandler { public IHttpHandler GetHttpHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); return new MvcStaThreadHttpAsyncHandler(requestContext); } } At this point you can instantiate this route handler and force STA requests to MVC by specifying a route. The following sets up the ASP.NET Default Route:Route mvcRoute = new Route("{controller}/{action}/{id}", new RouteValueDictionary( new { controller = "Home", action = "Index", id = UrlParameter.Optional }), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute);   To make this code a little easier to work with and mimic the behavior of the routes.MapRoute() functionality extension method that MVC provides, here is an extension method for MapMvcStaRoute(): public static class RouteCollectionExtensions { public static void MapMvcStaRoute(this RouteCollection routeTable, string name, string url, object defaults = null) { Route mvcRoute = new Route(url, new RouteValueDictionary(defaults), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute); } } With this the syntax to add  route becomes a little easier and matches the MapRoute() method:RouteTable.Routes.MapMvcStaRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } ); The nice thing about this route handler, STA Handler and extension method is that it's fully self contained. You can put all three into a single class file and stick it into your Web app, and then simply call MapMvcStaRoute() and it just works. Easy! To see whether this works create an MVC controller like this: public class ThreadTestController : Controller { public string ThreadingMode() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Try this test both with only the MapRoute() hookup in the RouteConfiguration in which case you should get MTA as the value. Then change the MapRoute() call to MapMvcStaRoute() leaving all the parameters the same and re-run the request. You now should see STA as the result. You're on your way using STA COM components reliably in ASP.NET MVC. WCF Web Services running through IIS WCF Web Services provide a more robust and wider range of services for Web Services. You can use WCF over HTTP, TCP, and Pipes, and WCF services support WS* secure services. There are many features in WCF that go way beyond what ASMX can do. But it's also a bit more complex than ASMX. As a basic rule if you need to serve straight SOAP Services over HTTP I 'd recommend sticking with the simpler ASMX services especially if COM is involved. If you need WS* support or want to serve data over non-HTTP protocols then WCF makes more sense. WCF is not my forte but I found a solution from Scott Seely on his blog that describes the progress and that seems to work well. I'm copying his code below so this STA information is all in one place and quickly explain. Scott's code basically works by creating a custom OperationBehavior which can be specified via an [STAOperation] attribute on every method. Using his attribute you end up with a class (or Interface if you separate the contract and class) that looks like this: [ServiceContract] public class WcfService { [OperationContract] public string HelloWorldMta() { return Thread.CurrentThread.GetApartmentState().ToString(); } // Make sure you use this custom STAOperationBehavior // attribute to force STA operation of service methods [STAOperationBehavior] [OperationContract] public string HelloWorldSta() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Pretty straight forward. The latter method returns STA while the former returns MTA. To make STA work every method needs to be marked up. The implementation consists of the attribute and OperationInvoker implementation. Here are the two classes required to make this work from Scott's post:public class STAOperationBehaviorAttribute : Attribute, IOperationBehavior { public void AddBindingParameters(OperationDescription operationDescription, System.ServiceModel.Channels.BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.ClientOperation clientOperation) { // If this is applied on the client, well, it just doesn’t make sense. // Don’t throw in case this attribute was applied on the contract // instead of the implementation. } public void ApplyDispatchBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.DispatchOperation dispatchOperation) { // Change the IOperationInvoker for this operation. dispatchOperation.Invoker = new STAOperationInvoker(dispatchOperation.Invoker); } public void Validate(OperationDescription operationDescription) { if (operationDescription.SyncMethod == null) { throw new InvalidOperationException("The STAOperationBehaviorAttribute " + "only works for synchronous method invocations."); } } } public class STAOperationInvoker : IOperationInvoker { IOperationInvoker _innerInvoker; public STAOperationInvoker(IOperationInvoker invoker) { _innerInvoker = invoker; } public object[] AllocateInputs() { return _innerInvoker.AllocateInputs(); } public object Invoke(object instance, object[] inputs, out object[] outputs) { // Create a new, STA thread object[] staOutputs = null; object retval = null; Thread thread = new Thread( delegate() { retval = _innerInvoker.Invoke(instance, inputs, out staOutputs); }); thread.SetApartmentState(ApartmentState.STA); thread.Start(); thread.Join(); outputs = staOutputs; return retval; } public IAsyncResult InvokeBegin(object instance, object[] inputs, AsyncCallback callback, object state) { // We don’t handle async… throw new NotImplementedException(); } public object InvokeEnd(object instance, out object[] outputs, IAsyncResult result) { // We don’t handle async… throw new NotImplementedException(); } public bool IsSynchronous { get { return true; } } } The key in this setup is the Invoker and the Invoke method which creates a new thread and then fires the request on this new thread. Because this approach creates a new thread for every request it's not super efficient. There's a bunch of overhead involved in creating the thread and throwing it away after each thread, but it'll work for low volume requests and insure each thread runs in STA mode. If better performance is required it would be useful to create a custom thread manager that can pool a number of STA threads and hand off threads as needed rather than creating new threads on every request. If your Web Service needs are simple and you need only to serve standard SOAP 1.x requests, I would recommend sticking with ASMX services. It's easier to set up and work with and for STA component use it'll be significantly better performing since ASP.NET manages the STA thread pool for you rather than firing new threads for each request. One nice thing about Scotts code is though that it works in any WCF environment including self hosting. It has no dependency on ASP.NET or WebForms for that matter. STA - If you must STA components are a  pain in the ass and thankfully there isn't too much stuff out there anymore that requires it. But when you need it and you need to access STA functionality from .NET at least there are a few options available to make it happen. Each of these solutions is a bit hacky, but they work - I've used all of them in production with good results with FoxPro components. I hope compiling all of these in one place here makes it STA consumption a little bit easier. I feel your pain :-) Resources Download STA Handler Code Examples Scott Seely's original STA WCF OperationBehavior Article© Rick Strahl, West Wind Technologies, 2005-2012Posted in FoxPro   ASP.NET  .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Rounded Corners and Shadows &ndash; Dialogs with CSS

    - by Rick Strahl
    Well, it looks like we’ve finally arrived at a place where at least all of the latest versions of main stream browsers support rounded corners and box shadows. The two CSS properties that make this possible are box-shadow and box-radius. Both of these CSS Properties now supported in all the major browsers as shown in this chart from QuirksMode: In it’s simplest form you can use box-shadow and border radius like this: .boxshadow { -moz-box-shadow: 3px 3px 5px #535353; -webkit-box-shadow: 3px 3px 5px #535353; box-shadow: 3px 3px 5px #535353; } .roundbox { -moz-border-radius: 6px 6px 6px 6px; -webkit-border-radius: 6px; border-radius: 6px 6px 6px 6px; } box-shadow: horizontal-shadow-pixels vertical-shadow-pixels blur-distance shadow-color box-shadow attributes specify the the horizontal and vertical offset of the shadow, the blur distance (to give the shadow a smooth soft look) and a shadow color. The spec also supports multiple shadows separated by commas using the attributes above but we’re not using that functionality here. box-radius: top-left-radius top-right-radius bottom-right-radius bottom-left-radius border-radius takes a pixel size for the radius for each corner going clockwise. CSS 3 also specifies each of the individual corner elements such as border-top-left-radius, but support for these is much less prevalent so I would recommend not using them for now until support improves. Instead use the single box-radius to specify all corners. Browser specific Support in older Browsers Notice that there are two variations: The actual CSS 3 properties (box-shadow and box-radius) and the browser specific ones (-moz, –webkit prefixes for FireFox and Chrome/Safari respectively) which work in slightly older versions of modern browsers before official CSS 3 support was added. The goal is to spread support as widely as possible and the prefix versions extend the range slightly more to those browsers that provided early support for these features. Notice that box-shadow and border-radius are used after the browser specific versions to ensure that the latter versions get precedence if the browser supports both (last assignment wins). Use the .boxshadow and .roundbox Styles in HTML To use these two styles create a simple rounded box with a shadow you can use HTML like this: <!-- Simple Box with rounded corners and shadow --> <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="boxcontenttext"> Simple Rounded Corner Box. </div> </div> which looks like this in the browser: This works across browsers and it’s pretty sweet and simple. Watch out for nested Elements! There are a couple of things to be aware of however when using rounded corners. Specifically, you need to be careful when you nest other non-transparent content into the rounded box. For example check out what happens when I change the inside <div> to have a colored background: <!-- Simple Box with rounded corners and shadow --> <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="boxcontenttext" style="background: khaki;"> Simple Rounded Corner Box. </div> </div> which renders like this:   If you look closely you’ll find that the inside <div>’s corners are not rounded and so ‘poke out’ slightly over the rounded corners. It looks like the rounded corners are ‘broken’ up instead of a solid rounded line around the corner, which his pretty ugly. The bigger the radius the more drastic this effect becomes . To fix this issue the inner <div> also has have rounded corners at the same or slightly smaller radius than the outer <div>. The simple fix for this is to simply also apply the roundbox style to the inner <div> in addition to the boxcontenttext style already applied: <div class="boxcontenttext roundbox" style="background: khaki;"> The fixed display now looks proper: Separate Top and Bottom Elements This gets even a little more tricky if you have an element at the top or bottom only of the rounded box. What if you need to add something like a header or footer <div> that have non-transparent backgrounds which is a pretty common scenario? In those cases you want only the top or bottom corners rounded and not both. To make this work a couple of additional styles to round only the top and bottom corners can be created: .roundbox-top { -moz-border-radius: 4px 4px 0 0; -webkit-border-radius: 4px 4px 0 0; border-radius: 4px 4px 0 0; } .roundbox-bottom { -moz-border-radius: 0 0 4px 4px; -webkit-border-radius: 0 0 4px 4px; border-radius: 0 0 4px 4px; } Notice that radius used for the ‘inside’ rounding is smaller (4px) than the outside radius (6px). This is so the inner radius fills into the outer border – if you use the same size you may have some white space showing between inner and out rounded corners. Experiment with values to see what works – in my experimenting the behavior across browsers here is consistent (thankfully). These styles can be applied in addition to other styles to make only the top or bottom portions of an element rounded. For example imagine I have styles like this: .gridheader, .gridheaderbig, .gridheaderleft, .gridheaderright { padding: 4px 4px 4px 4px; background: #003399 url(images/vertgradient.png) repeat-x; text-align: center; font-weight: bold; text-decoration: none; color: khaki; } .gridheaderleft { text-align: left; } .gridheaderright { text-align: right; } .gridheaderbig { font-size: 135%; } If I just apply say gridheader by itself in HTML like this: <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="gridheaderleft">Box with a Header</div> <div class="boxcontenttext" style="background: khaki;"> Simple Rounded Corner Box. </div> </div> This results in a pretty funky display – again due to the fact that the inner elements render square rather than rounded corners: If you look close again you can see that both the header and the main content have square edges which jumps out at the eye. To fix this you can now apply the roundbox-top and roundbox-bottom to the header and content respectively: <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="gridheaderleft roundbox-top">Box with a Header</div> <div class="boxcontenttext roundbox-bottom" style="background: khaki;"> Simple Rounded Corner Box. </div> </div> Which now gives the proper display with rounded corners both on the top and bottom: All of this is sweet to be supported – at least by the newest browser – without having to resort to images and nasty JavaScripts solutions. While this is still not a mainstream feature yet for the majority of actually installed browsers, the majority of browser users are very likely to have this support as most browsers other than IE are actively pushing users to upgrade to newer versions. Since this is a ‘visual display only feature it degrades reasonably well in non-supporting browsers: You get an uninteresting square and non-shadowed browser box, but the display is still overall functional. The main sticking point – as always is Internet Explorer versions 8.0 and down as well as older versions of other browsers. With those browsers you get a functional view that is a little less interesting to look at obviously: but at least it’s still functional. Maybe that’s just one more incentive for people using older browsers to upgrade to a  more modern browser :-) Creating Dialog Related Styles In a lot of my AJAX based applications I use pop up windows which effectively work like dialogs. Using the simple CSS behaviors above, it’s really easy to create some fairly nice looking overlaid windows with nothing but CSS. Here’s what a typical ‘dialog’ I use looks like: The beauty of this is that it’s plain CSS – no plug-ins or images (other than the gradients which are optional) required. Add jQuery-ui draggable (or ww.jquery.js as shown below) and you have a nice simple inline implementation of a dialog represented by a simple <div> tag. Here’s the HTML for this dialog: <div id="divDialog" class="dialog boxshadow" style="width: 450px;"> <div class="dialog-header"> <div class="closebox"></div> User Sign-in </div> <div class="dialog-content"> <label>Username:</label> <input type="text" name="txtUsername" value=" " /> <label>Password</label> <input type="text" name="txtPassword" value=" " /> <hr /> <input type="button" id="btnLogin" value="Login" /> </div> <div class="dialog-statusbar">Ready</div> </div> Most of this behavior is driven by the ‘dialog’ styles which are fairly basic and easy to understand. They do use a few support images for the gradients which are provided in the sample I’ve provided. Here’s what the CSS looks like: .dialog { background: White; overflow: hidden; border: solid 1px steelblue; -moz-border-radius: 6px 6px 4px 4px; -webkit-border-radius: 6px 6px 4px 4px; border-radius: 6px 6px 3px 3px; } .dialog-header { background-image: url(images/dialogheader.png); background-repeat: repeat-x; text-align: left; color: cornsilk; padding: 5px; padding-left: 10px; font-size: 1.02em; font-weight: bold; position: relative; -moz-border-radius: 4px 4px 0px 0px; -webkit-border-radius: 4px 4px 0px 0px; border-radius: 4px 4px 0px 0px; } .dialog-top { -moz-border-radius: 4px 4px 0px 0px; -webkit-border-radius: 4px 4px 0px 0px; border-radius: 4px 4px 0px 0px; } .dialog-bottom { -moz-border-radius: 0 0 3px 3px; -webkit-border-radius: 0 0 3px 3px; border-radius: 0 0 3px 3px; } .dialog-content { padding: 15px; } .dialog-statusbar, .dialog-toolbar { background: #eeeeee; background-image: url(images/dialogstrip.png); background-repeat: repeat-x; padding: 5px; padding-left: 10px; border-top: solid 1px silver; border-bottom: solid 1px silver; font-size: 0.8em; } .dialog-statusbar { -moz-border-radius: 0 0 3px 3px; -webkit-border-radius: 0 0 3px 3px; border-radius: 0 0 3px 3px; padding-right: 10px; } .closebox { position: absolute; right: 2px; top: 2px; background-image: url(images/close.gif); background-repeat: no-repeat; width: 14px; height: 14px; cursor: pointer; opacity: 0.60; filter: alpha(opacity="80"); } .closebox:hover { opacity: 1; filter: alpha(opacity="100"); } The main style is the dialog class which is the outer box. It has the rounded border that serves as the outline. Note that I didn’t add the box-shadow to this style because in some situations I just want the rounded box in an inline display that doesn’t have a shadow so it’s still applied separately. dialog-header, then has the rounded top corners and displays a typical dialog heading format. dialog-bottom and dialog-top then provide the same functionality as roundbox-top and roundbox-bottom described earlier but are provided mainly in the stylesheet for consistency to match the dialog’s round edges and making it easier to  remember and find in Intellisense as it shows up in the same dialog- group. dialog-statusbar and dialog-toolbar are two elements I use a lot for floating windows – the toolbar serves for buttons and options and filters typically, while the status bar provides information specific to the floating window. Since the the status bar is always on the bottom of the dialog it automatically handles the rounding of the bottom corners. Finally there’s  closebox style which is to be applied to an empty <div> tag in the header typically. What this does is render a close image that is by default low-lighted with a low opacity value, and then highlights when hovered over. All you’d have to do handle the close operation is handle the onclick of the <div>. Note that the <div> right aligns so typically you should specify it before any other content in the header. Speaking of closable – some time ago I created a closable jQuery plug-in that basically automates this process and can be applied against ANY element in a page, automatically removing or closing the element with some simple script code. Using this you can leave out the <div> tag for closable and just do the following: To make the above dialog closable (and draggable) which makes it effectively and overlay window, you’d add jQuery.js and ww.jquery.js to the page: <script type="text/javascript" src="../../scripts/jquery.min.js"></script> <script type="text/javascript" src="../../scripts/ww.jquery.min.js"></script> and then simply call: <script type="text/javascript"> $(document).ready(function () { $("#divDialog") .draggable({ handle: ".dialog-header" }) .closable({ handle: ".dialog-header", closeHandler: function () { alert("Window about to be closed."); return true; // true closes - false leaves open } }); }); </script> * ww.jquery.js emulates base features in jQuery-ui’s draggable. If jQuery-ui is loaded its draggable version will be used instead and voila you have now have a draggable and closable window – here in mid-drag:   The dragging and closable behaviors are of course optional, but it’s the final touch that provides dialog like window behavior. Relief for older Internet Explorer Versions with CSS Pie If you want to get these features to work with older versions of Internet Explorer all the way back to version 6 you can check out CSS Pie. CSS Pie provides an Internet Explorer behavior file that attaches to specific CSS rules and simulates these behavior using script code in IE (mostly by implementing filters). You can simply add the behavior to each CSS style that uses box-shadow and border-radius like this: .boxshadow {     -moz-box-shadow: 3px 3px 5px #535353;     -webkit-box-shadow: 3px 3px 5px #535353;           box-shadow: 3px 3px 5px #535353;     behavior: url(scripts/PIE.htc);           } .roundbox {      -moz-border-radius: 6px 6px 6px 6px;     -webkit-border-radius: 6px;      border-radius: 6px 6px 6px 6px;     behavior: url(scripts/PIE.htc); } CSS Pie requires the PIE.htc on your server and referenced from each CSS style that needs it. Note that the url() for IE behaviors is NOT CSS file relative as other CSS resources, but rather PAGE relative , so if you have more than one folder you probably need to reference the HTC file with a fixed path like this: behavior: url(/MyApp/scripts/PIE.htc); in the style. Small price to pay, but a royal pain if you have a common CSS file you use in many applications. Once the PIE.htc file has been copied and you have applied the behavior to each style that uses these new features Internet Explorer will render rounded corners and box shadows! Yay! Hurray for box-shadow and border-radius All of this functionality is very welcome natively in the browser. If you think this is all frivolous visual candy, you might be right :-), but if you take a look on the Web and search for rounded corner solutions that predate these CSS attributes you’ll find a boatload of stuff from image files, to custom drawn content to Javascript solutions that play tricks with a few images. It’s sooooo much easier to have this functionality built in and I for one am glad to see that’s it’s finally becoming standard in the box. Still remember that when you use these new CSS features, they are not universal, and are not going to be really soon. Legacy browsers, especially old versions of Internet Explorer that can’t be updated will continue to be around and won’t work with this shiny new stuff. I say screw ‘em: Let them get a decent recent browser or see a degraded and ugly UI. We have the luxury with this functionality in that it doesn’t typically affect usability – it just doesn’t look as nice. Resources Download the Sample The sample includes the styles and images and sample page as well as ww.jquery.js for the draggable/closable example. Online Sample Check out the sample described in this post online. Closable and Draggable Documentation Documentation for the closeable and draggable plug-ins in ww.jquery.js. You can also check out the full documentation for all the plug-ins contained in ww.jquery.js here. © Rick Strahl, West Wind Technologies, 2005-2011Posted in HTML  CSS  

    Read the article

  • What Every Developer Should Know About MSI Components

    - by Alois Kraus
    Hopefully nothing. But if you have to do more than simple XCopy deployment and you need to support updates, upgrades and perhaps side by side scenarios there is no way around MSI. You can create Msi files with a Visual Studio Setup project which is severely limited or you can use the Windows Installer Toolset. I cannot talk about WIX with my German colleagues because WIX has a very special meaning. It is funny to always use the long name when I talk about deployment possibilities. Alternatively you can buy commercial tools which help you to author Msi files but I am not sure how good they are. Given enough pain with existing solutions you can also learn the MSI Apis and create your own packaging solution. If I were you I would use either a commercial visual tool when you do easy deployments or use the free Windows Installer Toolset. Once you know the WIX schema you can create well formed wix xml files easily with any editor. Then you can “compile” from the wxs files your Msi package. Recently I had the “pleasure” to get my hands dirty with C++ (again) and the MSI technology. Installation is a complex topic but after several month of digging into arcane MSI issues I can safely say that there should exist an easier way to install and update files as today. I am not alone with this statement as John Robbins (creator of the cool tool Paraffin) states: “.. It's a brittle and scary API in Windows …”. To help other people struggling with installation issues I present you the advice I (and others) found useful and what will happen if you ignore this advice. What is a MSI file? A MSI file is basically a database with tables which reference each other to control how your un/installation should work. The basic idea is that you declare via these tables what you want to install and MSI controls the how to get your stuff onto or off your machine. Your “stuff” consists usually of files, registry keys, shortcuts and environment variables. Therefore the most important tables are File, Registry, Environment and Shortcut table which define what will be un/installed. The key to master MSI is that every resource (file, registry key ,…) is associated with a MSI component. The actual payload consists of compressed files in the CAB format which can either be embedded into the MSI file or reside beside the MSI file or in a subdirectory below it. To examine MSI files you need Orca a free MSI editor provided by MS. There is also another free editor called Super Orca which does support diffs between MSI and it does not lock the MSI files. But since Orca comes with a shell extension I tend to use only Orca because it is so easy to right click on a MSI file and open it with this tool. How Do I Install It? Double click it. This does work for fresh installations as well as major upgrades. Updates need to be installed via the command line via msiexec /i <msi> REINSTALL=ALL REINSTALLMODE=vomus   This tells the installer to reinstall all already installed features (new features will NOT be installed). The reinstallmode letters do force an overwrite of the old cached package in the %WINDIR%\Installer folder. All files, shortcuts and registry keys are redeployed if they are missing or need to be replaced with a newer version. When things did go really wrong and you want to overwrite everything unconditionally use REINSTALLMODE=vamus. How To Enable MSI Logs? You can download a MSI from Microsoft which installs some registry keys to enable full MSI logging. The log files can be found in your %TEMP% folder and are called MSIxxxx.log. Alternatively you can add to your msiexec command line the option msiexec …. /l*vx <LogFileName> Personally I find it rather strange that * does not mean full logging. To really get all logs I need to add v and x which is documented in the msiexec help but I still find this behavior unintuitive. What are MSI components? The whole MSI logic is bound to the concept of MSI components. Nearly every msi table has a Component column which binds an installable resource to a component. Below are the screenshots of the FeatureComponents and Component table of an example MSI. The Feature table defines basically the feature hierarchy.  To find out what belongs to a feature you need to look at the FeatureComponents table where for each feature the components are listed which will be installed when a feature is installed. The MSI components are defined in the  Component table. This table has as first column the component name and as second column the component id which is a GUID. All resources you want to install belong to a MSI component. Therefore nearly all MSI tables have a Component_ column which contains the component name. If you look e.g. a the File table you see that every file belongs to a component which is true for all other tables which install resources. The component table is the glue between all other tables which contain the resources you want to install. So far so easy. Why is MSI then so complex? Most MSI problems arise from the fact that you did violate a MSI component rule in one or the other way. When you install a feature the reference count for all components belonging to this feature will increase by one. If your component is installed by more than one feature it will get a higher refcount. When you uninstall a feature its refcount will drop by one. Interesting things happen if the component reference count reaches zero: Then all associated resources will be deleted. That looks like a reasonable thing and it is. What it makes complex are the strange component rules you have to follow. Below are some important component rules from the Tao of the Windows Installer … Rule 16: Follow Component Rules Components are a very important part of the Installer technology. They are the means whereby the Installer manages the resources that make up your application. The SDK provides the following guidelines for creating components in your package: Never create two components that install a resource under the same name and target location. If a resource must be duplicated in multiple components, change its name or target location in each component. This rule should be applied across applications, products, product versions, and companies. Two components must not have the same key path file. This is a consequence of the previous rule. The key path value points to a particular file or folder belonging to the component that the installer uses to detect the component. If two components had the same key path file, the installer would be unable to distinguish which component is installed. Two components however may share a key path folder. Do not create a version of a component that is incompatible with all previous versions of the component. This rule should be applied across applications, products, product versions, and companies. Do not create components containing resources that will need to be installed into more than one directory on the user’s system. The installer installs all of the resources in a component into the same directory. It is not possible to install some resources into subdirectories. Do not include more than one COM server per component. If a component contains a COM server, this must be the key path for the component. Do not specify more than one file per component as a target for the Start menu or a Desktop shortcut. … And these rules do not even talk about component ids, update packages and upgrades which you need to understand as well. Lets suppose you install two MSIs (MSI1 and MSI2) which have the same ComponentId but different component names. Both do install the same file. What will happen when you uninstall MSI2?   Hm the file should stay there. But the component names are different. Yes and yes. But MSI uses not use the component name as key for the refcount. Instead the ComponentId column of the Component table which contains a GUID is used as identifier under which the refcount is stored. The components Comp1 and Comp2 are identical from the MSI perspective. After the installation of both MSIs the Component with the Id {100000….} has a refcount of two. After uninstallation of one MSI there is still a refcount of one which drops to zero just as expected when we uninstall the last msi. Then the file which was the same for both MSIs is deleted. You should remember that MSI keeps a refcount across MSIs for components with the same component id. MSI does manage components not the resources you did install. The resources associated with a component are then and only then deleted when the refcount of the component reaches zero.   The dependencies between features, components and resources can be described as relations. m,k are numbers >= 1, n can be 0. Inside a MSI the following relations are valid Feature    1  –> n Components Component    1 –> m Features Component      1  –>  k Resources These relations express that one feature can install several components and features can share components between them. Every (meaningful) component will install at least one resource which means that its name (primary key to stay in database speak) does occur in some other table in the Component column as value which installs some resource. Lets make it clear with an example. We want to install with the feature MainFeature some files a registry key and a shortcut. We can then create components Comp1..3 which are referenced by the resources defined in the corresponding tables.   Feature Component Registry File Shortcuts MainFeature Comp1 RegistryKey1     MainFeature Comp2   File.txt   MainFeature Comp3   File2.txt Shortcut to File2.txt   It is illegal that the same resource is part of more than one component since this would break the refcount mechanism. Lets illustrate this:            Feature ComponentId Resource Reference Count Feature1 {1000-…} File1.txt 1 Feature2 {2000-….} File1.txt 1 The installation part works well but what happens when you uninstall Feature2? Component {20000…} gets a refcount of zero where MSI deletes all resources belonging to this component. In this case File1.txt will be deleted. But Feature1 still has another component {10000…} with a refcount of one which means that the file was deleted too early. You just have ruined your installation. To fix it you then need to click on the Repair button under Add/Remove Programs to let MSI reinstall any missing registry keys, files or shortcuts. The vigilant reader might has noticed that there is more in the Component table. Beside its name and GUID it has also an installation directory, attributes and a KeyPath. The KeyPath is a reference to a file or registry key which is used to detect if the component is already installed. This becomes important when you repair or uninstall a component. To find out if the component is already installed MSI checks if the registry key or file referenced by the KeyPath property does exist. When it does not exist it assumes that it was either already uninstalled (can lead to problems during uninstall) or that it is already installed and all is fine. Why is this detail so important? Lets put all files into one component. The KeyPath should be then one of the files of your component to check if it was installed or not. When your installation becomes corrupt because a file was deleted you cannot repair it with the Repair button under Add/Remove Programs because MSI checks the component integrity via the Resource referenced by its KeyPath. As long as you did not delete the KeyPath file MSI thinks all resources with your component are installed and never executes any repair action. You get even more trouble when you try to remove files during an upgrade (you cannot remove files during an update) from your super component which contains all files. The only way out and therefore best practice is to assign for every resource you want to install an extra component. This ensures painless updatability and repairs and you have much less effort to remove specific files during an upgrade. In effect you get this best practice relation Feature 1  –> n Components Component   1  –>  1 Resources MSI Component Rules Rule 1 – One component per resource Every resource you want to install (file, registry key, value, environment value, shortcut, directory, …) must get its own component which does never change between versions as long as the install location is the same. Penalty If you add more than one resources to a component you will break the repair capability of MSI because the KeyPath is used to check if the component needs repair. MSI ComponentId Files MSI 1.0 {1000} File1-5 MSI 2.0 {2000} File2-5 You want to remove File1 in version 2.0 of your MSI. Since you want to keep the other files you create a new component and add them there. MSI will delete all files if the component refcount of {1000} drops to zero. The files you want to keep are added to the new component {2000}. Ok that does work if your upgrade does uninstall the old MSI first. This will cause the refcount of all previously installed components to reach zero which means that all files present in version 1.0 are deleted. But there is a faster way to perform your upgrade by first installing your new MSI and then remove the old one.  If you choose this upgrade path then you will loose File1-5 after your upgrade and not only File1 as intended by your new component design.   Rule 2 – Only add, never remove resources from a component If you did follow rule 1 you will not need Rule 2. You can add in a patch more resources to one component. That is ok. But you can never remove anything from it. There are tricky ways around that but I do not want to encourage bad component design. Penalty Lets assume you have 2 MSI files which install under the same component one file   MSI1 MSI2 {1000} - ComponentId {1000} – ComponentId File1.txt File2.txt   When you install and uninstall both MSIs you will end up with an installation where either File1 or File2 will be left. Why? It seems that MSI does not store the resources associated with each component in its internal database. Instead Windows will simply query the MSI that is currently uninstalled for all resources belonging to this component. Since it will find only one file and not two it will only uninstall one file. That is the main reason why you never can remove resources from a component!   Rule 3 Never Remove A Component From an Update MSI. This is the same as if you change the GUID of a component by accident for your new update package. The resulting update package will not contain all components from the previously installed package. Penalty When you remove a component from a feature MSI will set the feature state during update to Advertised and log a warning message into its log file when you did enable MSI logging. SELMGR: ComponentId '{2DCEA1BA-3E27-E222-484C-D0D66AEA4F62}' is registered to feature 'xxxxxxx, but is not present in the Component table.  Removal of components from a feature is not supported! MSI (c) (24:44) [07:53:13:436]: SELMGR: Removal of a component from a feature is not supported Advertised means that MSI treats all components of this feature as not installed. As a consequence during uninstall nothing will be removed since it is not installed! This is not only bad because uninstall does no longer work but this feature will also not get the required patches. All other features which have followed component versioning rules for update packages will be updated but the one faulty feature will not. This results in very hard to find bugs why an update was only partially successful. Things got better with Windows Installer 4.5 but you cannot rely on that nobody will use an older installer. It is a good idea to add to your update msiexec call MSIENFORCEUPGRADECOMPONENTRULES=1 which will abort the installation if you did violate this rule.

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

  • Using Rich Text Editor (WYSIWYG) in ASP.NET MVC

    - by imran_ku07
       Introduction:          In ASP.NET MVC forum I found some question regarding a sample HTML Rich Text Box Editor(also known as wysiwyg).So i decided to create a sample ASP.NET MVC web application which will use a Rich Text Box Editor. There are are lot of Html Editors are available, but for creating a sample application, i decided to use cross-browser WYSIWYG editor from openwebware. In this article I will discuss what changes needed to work this editor with ASP.NET MVC. Also I had attached the sample application for download at http://www.speedfile.org/155076. Also note that I will only show the important features, not discuss every feature in detail.   Description:          So Let's start create a sample ASP.NET MVC application. You need to add the following script files,         jquery-1.3.2.min.js        jquery_form.js        wysiwyg.js        wysiwyg-settings.js        wysiwyg-popup.js          Just put these files inside Scripts folder. Also put wysiwyg.css in your Content Folder and add the following folders in your project        addons        popups          Also create a empty folder Uploads to store the uploaded images. Next open wysiwyg.js and set your configuration                  // Images Directory        this.ImagesDir = "/addons/imagelibrary/images/";                // Popups Directory        this.PopupsDir = "/popups/";                // CSS Directory File        this.CSSFile = "/Content/wysiwyg.css";              Next create a simple View TextEditor.aspx inside View / Home Folder and add the folllowing HTML.        <%@ Page Language="C#" Inherits="System.Web.Mvc.ViewPage" %>            <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">        <html >            <head runat="server">                <title>TextEditor</title>                <script src="../../Scripts/wysiwyg.js" type="text/javascript"></script>                <script src="../../Scripts/wysiwyg-settings.js" type="text/javascript"></script>                <script type="text/javascript">                            WYSIWYG.attach('text', full);                            </script>            </head>            <body>                <% using (Html.BeginForm()){ %>                    <textarea id="text" name="test2" style="width:850px;height:200px;">                    </textarea>                    <input type="submit" value="submit" />                <%} %>            </body>        </html>                  Here i have just added a text area control and a submit button inside a form. Note the id of text area and WYSIWYG.attach function's first parameter is same and next to watch is the HomeController.cs        using System;        using System.Collections.Generic;        using System.Linq;        using System.Web;        using System.Web.Mvc;        using System.IO;        namespace HtmlTextEditor.Controllers        {            [HandleError]            public class HomeController : Controller            {                public ActionResult Index()                {                    ViewData["Message"] = "Welcome to ASP.NET MVC!";                    return View();                }                    public ActionResult About()                {                                return View();                }                        public ActionResult TextEditor()                {                    return View();                }                [AcceptVerbs(HttpVerbs.Post)]                [ValidateInput(false)]                public ActionResult TextEditor(string test2)                {                    Session["html"] = test2;                            return RedirectToAction("Index");                }                        public ActionResult UploadImage()                {                    if (Request.Files[0].FileName != "")                    {                        Request.Files[0].SaveAs(Server.MapPath("~/Uploads/" + Path.GetFileName(Request.Files[0].FileName)));                        return Content(Url.Content("~/Uploads/" + Path.GetFileName(Request.Files[0].FileName)));                    }                    return Content("a");                }            }        }          So simple code, just save the posted Html into Session. Here the parameter of TextArea action is test2 which is same as textarea control name of TextArea.aspx View. Also note ValidateInputAttribute is false, so it's up to you to defends against XSS. Also there is an Action method which simply saves the file inside Upload Folder.          I am uploading the file using Jquery Form Plugin. Here is the code which is found in insert_image.html inside addons folder,        function ChangeImage() {            var myform=document.getElementById("formUpload");                    $(myform).ajaxSubmit({success: function(responseText){                insertImage(responseText);                        window.close();                }            });        }          and here is the Index View which simply renders the html of Editor which was saved in Session        <%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage" %>        <asp:Content ID="indexTitle" ContentPlaceHolderID="TitleContent" runat="server">            Home Page        </asp:Content>        <asp:Content ID="indexContent" ContentPlaceHolderID="MainContent" runat="server">            <h2><%= Html.Encode(ViewData["Message"]) %></h2>            <p>                To learn more about ASP.NET MVC visit <a href="http://asp.net/mvc" title="ASP.NET MVC Website">http://asp.net/mvc</a>.            </p>            <%if (Session["html"] != null){                  Response.Write(Session["html"].ToString());            } %>                    </asp:Content>   Summary:          Hopefully you will enjoy this article. Just download the code and see the effect. From security point, you must handle the XSS attack your self. I had uploaded the sample application in http://www.speedfile.org/155076

    Read the article

  • Syncing Data with a Server using Silverlight and HTTP Polling Duplex

    - by dwahlin
    Many applications have the need to stay in-sync with data provided by a service. Although web applications typically rely on standard polling techniques to check if data has changed, Silverlight provides several interesting options for keeping an application in-sync that rely on server “push” technologies. A few years back I wrote several blog posts covering different “push” technologies available in Silverlight that rely on sockets or HTTP Polling Duplex. We recently had a project that looked like it could benefit from pushing data from a server to one or more clients so I thought I’d revisit the subject and provide some updates to the original code posted. If you’ve worked with AJAX before in Web applications then you know that until browsers fully support web sockets or other duplex (bi-directional communication) technologies that it’s difficult to keep applications in-sync with a server without relying on polling. The problem with polling is that you have to check for changes on the server on a timed-basis which can often be wasteful and take up unnecessary resources. With server “push” technologies, data can be pushed from the server to the client as it changes. Once the data is received, the client can update the user interface as appropriate. Using “push” technologies allows the client to listen for changes from the data but stay 100% focused on client activities as opposed to worrying about polling and asking the server if anything has changed. Silverlight provides several options for pushing data from a server to a client including sockets, TCP bindings and HTTP Polling Duplex.  Each has its own strengths and weaknesses as far as performance and setup work with HTTP Polling Duplex arguably being the easiest to setup and get going.  In this article I’ll demonstrate how HTTP Polling Duplex can be used in Silverlight 4 applications to push data and show how you can create a WCF server that provides an HTTP Polling Duplex binding that a Silverlight client can consume.   What is HTTP Polling Duplex? Technologies that allow data to be pushed from a server to a client rely on duplex functionality. Duplex (or bi-directional) communication allows data to be passed in both directions.  A client can call a service and the server can call the client. HTTP Polling Duplex (as its name implies) allows a server to communicate with a client without forcing the client to constantly poll the server. It has the benefit of being able to run on port 80 making setup a breeze compared to the other options which require specific ports to be used and cross-domain policy files to be exposed on port 943 (as with sockets and TCP bindings). Having said that, if you’re looking for the best speed possible then sockets and TCP bindings are the way to go. But, they’re not the only game in town when it comes to duplex communication. The first time I heard about HTTP Polling Duplex (initially available in Silverlight 2) I wasn’t exactly sure how it was any better than standard polling used in AJAX applications. I read the Silverlight SDK, looked at various resources and generally found the following definition unhelpful as far as understanding the actual benefits that HTTP Polling Duplex provided: "The Silverlight client periodically polls the service on the network layer, and checks for any new messages that the service wants to send on the callback channel. The service queues all messages sent on the client callback channel and delivers them to the client when the client polls the service." Although the previous definition explained the overall process, it sounded as if standard polling was used. Fortunately, Microsoft’s Scott Guthrie provided me with a more clear definition several years back that explains the benefits provided by HTTP Polling Duplex quite well (used with his permission): "The [HTTP Polling Duplex] duplex support does use polling in the background to implement notifications – although the way it does it is different than manual polling. It initiates a network request, and then the request is effectively “put to sleep” waiting for the server to respond (it doesn’t come back immediately). The server then keeps the connection open but not active until it has something to send back (or the connection times out after 90 seconds – at which point the duplex client will connect again and wait). This way you are avoiding hitting the server repeatedly – but still get an immediate response when there is data to send." After hearing Scott’s definition the light bulb went on and it all made sense. A client makes a request to a server to check for changes, but instead of the request returning immediately, it parks itself on the server and waits for data. It’s kind of like waiting to pick up a pizza at the store. Instead of calling the store over and over to check the status, you sit in the store and wait until the pizza (the request data) is ready. Once it’s ready you take it back home (to the client). This technique provides a lot of efficiency gains over standard polling techniques even though it does use some polling of its own as a request is initially made from a client to a server. So how do you implement HTTP Polling Duplex in your Silverlight applications? Let’s take a look at the process by starting with the server. Creating an HTTP Polling Duplex WCF Service Creating a WCF service that exposes an HTTP Polling Duplex binding is straightforward as far as coding goes. Add some one way operations into an interface, create a client callback interface and you’re ready to go. The most challenging part comes into play when configuring the service to properly support the necessary binding and that’s more of a cut and paste operation once you know the configuration code to use. To create an HTTP Polling Duplex service you’ll need to expose server-side and client-side interfaces and reference the System.ServiceModel.PollingDuplex assembly (located at C:\Program Files (x86)\Microsoft SDKs\Silverlight\v4.0\Libraries\Server on my machine) in the server project. For the demo application I upgraded a basketball simulation service to support the latest polling duplex assemblies. The service simulates a simple basketball game using a Game class and pushes information about the game such as score, fouls, shots and more to the client as the game changes over time. Before jumping too far into the game push service, it’s important to discuss two interfaces used by the service to communicate in a bi-directional manner. The first is called IGameStreamService and defines the methods/operations that the client can call on the server (see Listing 1). The second is IGameStreamClient which defines the callback methods that a server can use to communicate with a client (see Listing 2).   [ServiceContract(Namespace = "Silverlight", CallbackContract = typeof(IGameStreamClient))] public interface IGameStreamService { [OperationContract(IsOneWay = true)] void GetTeamData(); } Listing 1. The IGameStreamService interface defines server operations that can be called on the server.   [ServiceContract] public interface IGameStreamClient { [OperationContract(IsOneWay = true)] void ReceiveTeamData(List<Team> teamData); [OperationContract(IsOneWay = true, AsyncPattern=true)] IAsyncResult BeginReceiveGameData(GameData gameData, AsyncCallback callback, object state); void EndReceiveGameData(IAsyncResult result); } Listing 2. The IGameStreamClient interfaces defines client operations that a server can call.   The IGameStreamService interface is decorated with the standard ServiceContract attribute but also contains a value for the CallbackContract property.  This property is used to define the interface that the client will expose (IGameStreamClient in this example) and use to receive data pushed from the service. Notice that each OperationContract attribute in both interfaces sets the IsOneWay property to true. This means that the operation can be called and passed data as appropriate, however, no data will be passed back. Instead, data will be pushed back to the client as it’s available.  Looking through the IGameStreamService interface you can see that the client can request team data whereas the IGameStreamClient interface allows team and game data to be received by the client. One interesting point about the IGameStreamClient interface is the inclusion of the AsyncPattern property on the BeginReceiveGameData operation. I initially created this operation as a standard one way operation and it worked most of the time. However, as I disconnected clients and reconnected new ones game data wasn’t being passed properly. After researching the problem more I realized that because the service could take up to 7 seconds to return game data, things were getting hung up. By setting the AsyncPattern property to true on the BeginReceivedGameData operation and providing a corresponding EndReceiveGameData operation I was able to get around this problem and get everything running properly. I’ll provide more details on the implementation of these two methods later in this post. Once the interfaces were created I moved on to the game service class. The first order of business was to create a class that implemented the IGameStreamService interface. Since the service can be used by multiple clients wanting game data I added the ServiceBehavior attribute to the class definition so that I could set its InstanceContextMode to InstanceContextMode.Single (in effect creating a Singleton service object). Listing 3 shows the game service class as well as its fields and constructor.   [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple, InstanceContextMode = InstanceContextMode.Single)] public class GameStreamService : IGameStreamService { object _Key = new object(); Game _Game = null; Timer _Timer = null; Random _Random = null; Dictionary<string, IGameStreamClient> _ClientCallbacks = new Dictionary<string, IGameStreamClient>(); static AsyncCallback _ReceiveGameDataCompleted = new AsyncCallback(ReceiveGameDataCompleted); public GameStreamService() { _Game = new Game(); _Timer = new Timer { Enabled = false, Interval = 2000, AutoReset = true }; _Timer.Elapsed += new ElapsedEventHandler(_Timer_Elapsed); _Timer.Start(); _Random = new Random(); }} Listing 3. The GameStreamService implements the IGameStreamService interface which defines a callback contract that allows the service class to push data back to the client. By implementing the IGameStreamService interface, GameStreamService must supply a GetTeamData() method which is responsible for supplying information about the teams that are playing as well as individual players.  GetTeamData() also acts as a client subscription method that tracks clients wanting to receive game data.  Listing 4 shows the GetTeamData() method. public void GetTeamData() { //Get client callback channel var context = OperationContext.Current; var sessionID = context.SessionId; var currClient = context.GetCallbackChannel<IGameStreamClient>(); context.Channel.Faulted += Disconnect; context.Channel.Closed += Disconnect; IGameStreamClient client; if (!_ClientCallbacks.TryGetValue(sessionID, out client)) { lock (_Key) { _ClientCallbacks[sessionID] = currClient; } } currClient.ReceiveTeamData(_Game.GetTeamData()); //Start timer which when fired sends updated score information to client if (!_Timer.Enabled) { _Timer.Enabled = true; } } Listing 4. The GetTeamData() method subscribes a given client to the game service and returns. The key the line of code in the GetTeamData() method is the call to GetCallbackChannel<IGameStreamClient>().  This method is responsible for accessing the calling client’s callback channel. The callback channel is defined by the IGameStreamClient interface shown earlier in Listing 2 and used by the server to communicate with the client. Before passing team data back to the client, GetTeamData() grabs the client’s session ID and checks if it already exists in the _ClientCallbacks dictionary object used to track clients wanting callbacks from the server. If the client doesn’t exist it adds it into the collection. It then pushes team data from the Game class back to the client by calling ReceiveTeamData().  Since the service simulates a basketball game, a timer is then started if it’s not already enabled which is then used to randomly send data to the client. When the timer fires, game data is pushed down to the client. Listing 5 shows the _Timer_Elapsed() method that is called when the timer fires as well as the SendGameData() method used to send data to the client. void _Timer_Elapsed(object sender, ElapsedEventArgs e) { int interval = _Random.Next(3000, 7000); lock (_Key) { _Timer.Interval = interval; _Timer.Enabled = false; } SendGameData(_Game.GetGameData()); } private void SendGameData(GameData gameData) { var cbs = _ClientCallbacks.Where(cb => ((IContextChannel)cb.Value).State == CommunicationState.Opened); for (int i = 0; i < cbs.Count(); i++) { var cb = cbs.ElementAt(i).Value; try { cb.BeginReceiveGameData(gameData, _ReceiveGameDataCompleted, cb); } catch (TimeoutException texp) { //Log timeout error } catch (CommunicationException cexp) { //Log communication error } } lock (_Key) _Timer.Enabled = true; } private static void ReceiveGameDataCompleted(IAsyncResult result) { try { ((IGameStreamClient)(result.AsyncState)).EndReceiveGameData(result); } catch (CommunicationException) { // empty } catch (TimeoutException) { // empty } } LIsting 5. _Timer_Elapsed is used to simulate time in a basketball game. When _Timer_Elapsed() fires the SendGameData() method is called which iterates through the clients wanting to be notified of changes. As each client is identified, their respective BeginReceiveGameData() method is called which ultimately pushes game data down to the client. Recall that this method was defined in the client callback interface named IGameStreamClient shown earlier in Listing 2. Notice that BeginReceiveGameData() accepts _ReceiveGameDataCompleted as its second parameter (an AsyncCallback delegate defined in the service class) and passes the client callback as the third parameter. The initial version of the sample application had a standard ReceiveGameData() method in the client callback interface. However, sometimes the client callbacks would work properly and sometimes they wouldn’t which was a little baffling at first glance. After some investigation I realized that I needed to implement an asynchronous pattern for client callbacks to work properly since 3 – 7 second delays are occurring as a result of the timer. Once I added the BeginReceiveGameData() and ReceiveGameDataCompleted() methods everything worked properly since each call was handled in an asynchronous manner. The final task that had to be completed to get the server working properly with HTTP Polling Duplex was adding configuration code into web.config. In the interest of brevity I won’t post all of the code here since the sample application includes everything you need. However, Listing 6 shows the key configuration code to handle creating a custom binding named pollingDuplexBinding and associate it with the service’s endpoint.   <bindings> <customBinding> <binding name="pollingDuplexBinding"> <binaryMessageEncoding /> <pollingDuplex maxPendingSessions="2147483647" maxPendingMessagesPerSession="2147483647" inactivityTimeout="02:00:00" serverPollTimeout="00:05:00"/> <httpTransport /> </binding> </customBinding> </bindings> <services> <service name="GameService.GameStreamService" behaviorConfiguration="GameStreamServiceBehavior"> <endpoint address="" binding="customBinding" bindingConfiguration="pollingDuplexBinding" contract="GameService.IGameStreamService"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>   Listing 6. Configuring an HTTP Polling Duplex binding in web.config and associating an endpoint with it. Calling the Service and Receiving “Pushed” Data Calling the service and handling data that is pushed from the server is a simple and straightforward process in Silverlight. Since the service is configured with a MEX endpoint and exposes a WSDL file, you can right-click on the Silverlight project and select the standard Add Service Reference item. After the web service proxy is created you may notice that the ServiceReferences.ClientConfig file only contains an empty configuration element instead of the normal configuration elements created when creating a standard WCF proxy. You can certainly update the file if you want to read from it at runtime but for the sample application I fed the service URI directly to the service proxy as shown next: var address = new EndpointAddress("http://localhost.:5661/GameStreamService.svc"); var binding = new PollingDuplexHttpBinding(); _Proxy = new GameStreamServiceClient(binding, address); _Proxy.ReceiveTeamDataReceived += _Proxy_ReceiveTeamDataReceived; _Proxy.ReceiveGameDataReceived += _Proxy_ReceiveGameDataReceived; _Proxy.GetTeamDataAsync(); This code creates the proxy and passes the endpoint address and binding to use to its constructor. It then wires the different receive events to callback methods and calls GetTeamDataAsync().  Calling GetTeamDataAsync() causes the server to store the client in the server-side dictionary collection mentioned earlier so that it can receive data that is pushed.  As the server-side timer fires and game data is pushed to the client, the user interface is updated as shown in Listing 7. Listing 8 shows the _Proxy_ReceiveGameDataReceived() method responsible for handling the data and calling UpdateGameData() to process it.   Listing 7. The Silverlight interface. Game data is pushed from the server to the client using HTTP Polling Duplex. void _Proxy_ReceiveGameDataReceived(object sender, ReceiveGameDataReceivedEventArgs e) { UpdateGameData(e.gameData); } private void UpdateGameData(GameData gameData) { //Update Score this.tbTeam1Score.Text = gameData.Team1Score.ToString(); this.tbTeam2Score.Text = gameData.Team2Score.ToString(); //Update ball visibility if (gameData.Action != ActionsEnum.Foul) { if (tbTeam1.Text == gameData.TeamOnOffense) { AnimateBall(this.BB1, this.BB2); } else //Team 2 { AnimateBall(this.BB2, this.BB1); } } if (this.lbActions.Items.Count > 9) this.lbActions.Items.Clear(); this.lbActions.Items.Add(gameData.LastAction); if (this.lbActions.Visibility == Visibility.Collapsed) this.lbActions.Visibility = Visibility.Visible; } private void AnimateBall(Image onBall, Image offBall) { this.FadeIn.Stop(); Storyboard.SetTarget(this.FadeInAnimation, onBall); Storyboard.SetTarget(this.FadeOutAnimation, offBall); this.FadeIn.Begin(); } Listing 8. As the server pushes game data, the client’s _Proxy_ReceiveGameDataReceived() method is called to process the data. In a real-life application I’d go with a ViewModel class to handle retrieving team data, setup data bindings and handle data that is pushed from the server. However, for the sample application I wanted to focus on HTTP Polling Duplex and keep things as simple as possible.   Summary Silverlight supports three options when duplex communication is required in an application including TCP bindins, sockets and HTTP Polling Duplex. In this post you’ve seen how HTTP Polling Duplex interfaces can be created and implemented on the server as well as how they can be consumed by a Silverlight client. HTTP Polling Duplex provides a nice way to “push” data from a server while still allowing the data to flow over port 80 or another port of your choice.   Sample Application Download

    Read the article

< Previous Page | 265 266 267 268 269 270 271  | Next Page >