Search Results

Search found 5845 results on 234 pages for 'commit protocol'.

Page 27/234 | < Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >

  • Transactional Messaging in the Windows Azure Service Bus

    - by Alan Smith
    Introduction I’m currently working on broadening the content in the Windows Azure Service Bus Developer Guide. One of the features I have been looking at over the past week is the support for transactional messaging. When using the direct programming model and the WCF interface some, but not all, messaging operations can participate in transactions. This allows developers to improve the reliability of messaging systems. There are some limitations in the transactional model, transactions can only include one top level messaging entity (such as a queue or topic, subscriptions are no top level entities), and transactions cannot include other systems, such as databases. As the transaction model is currently not well documented I have had to figure out how things work through experimentation, with some help from the development team to confirm any questions I had. Hopefully I’ve got the content mostly correct, I will update the content in the e-book if I find any errors or improvements that can be made (any feedback would be very welcome). I’ve not had a chance to look into the code for transactions and asynchronous operations, maybe that would make a nice challenge lab for my Windows Azure Service Bus course. Transactional Messaging Messaging entities in the Windows Azure Service Bus provide support for participation in transactions. This allows developers to perform several messaging operations within a transactional scope, and ensure that all the actions are committed or, if there is a failure, none of the actions are committed. There are a number of scenarios where the use of transactions can increase the reliability of messaging systems. Using TransactionScope In .NET the TransactionScope class can be used to perform a series of actions in a transaction. The using declaration is typically used de define the scope of the transaction. Any transactional operations that are contained within the scope can be committed by calling the Complete method. If the Complete method is not called, any transactional methods in the scope will not commit.   // Create a transactional scope. using (TransactionScope scope = new TransactionScope()) {     // Do something.       // Do something else.       // Commit the transaction.     scope.Complete(); }     In order for methods to participate in the transaction, they must provide support for transactional operations. Database and message queue operations typically provide support for transactions. Transactions in Brokered Messaging Transaction support in Service Bus Brokered Messaging allows message operations to be performed within a transactional scope; however there are some limitations around what operations can be performed within the transaction. In the current release, only one top level messaging entity, such as a queue or topic can participate in a transaction, and the transaction cannot include any other transaction resource managers, making transactions spanning a messaging entity and a database not possible. When sending messages, the send operations can participate in a transaction allowing multiple messages to be sent within a transactional scope. This allows for “all or nothing” delivery of a series of messages to a single queue or topic. When receiving messages, messages that are received in the peek-lock receive mode can be completed, deadlettered or deferred within a transactional scope. In the current release the Abandon method will not participate in a transaction. The same restrictions of only one top level messaging entity applies here, so the Complete method can be called transitionally on messages received from the same queue, or messages received from one or more subscriptions in the same topic. Sending Multiple Messages in a Transaction A transactional scope can be used to send multiple messages to a queue or topic. This will ensure that all the messages will be enqueued or, if the transaction fails to commit, no messages will be enqueued.     An example of the code used to send 10 messages to a queue as a single transaction from a console application is shown below.   QueueClient queueClient = messagingFactory.CreateQueueClient(Queue1);   Console.Write("Sending");   // Create a transaction scope. using (TransactionScope scope = new TransactionScope()) {     for (int i = 0; i < 10; i++)     {         // Send a message         BrokeredMessage msg = new BrokeredMessage("Message: " + i);         queueClient.Send(msg);         Console.Write(".");     }     Console.WriteLine("Done!");     Console.WriteLine();       // Should we commit the transaction?     Console.WriteLine("Commit send 10 messages? (yes or no)");     string reply = Console.ReadLine();     if (reply.ToLower().Equals("yes"))     {         // Commit the transaction.         scope.Complete();     } } Console.WriteLine(); messagingFactory.Close();     The transaction scope is used to wrap the sending of 10 messages. Once the messages have been sent the user has the option to either commit the transaction or abandon the transaction. If the user enters “yes”, the Complete method is called on the scope, which will commit the transaction and result in the messages being enqueued. If the user enters anything other than “yes”, the transaction will not commit, and the messages will not be enqueued. Receiving Multiple Messages in a Transaction The receiving of multiple messages is another scenario where the use of transactions can improve reliability. When receiving a group of messages that are related together, maybe in the same message session, it is possible to receive the messages in the peek-lock receive mode, and then complete, defer, or deadletter the messages in one transaction. (In the current version of Service Bus, abandon is not transactional.)   The following code shows how this can be achieved. using (TransactionScope scope = new TransactionScope()) {       while (true)     {         // Receive a message.         BrokeredMessage msg = q1Client.Receive(TimeSpan.FromSeconds(1));         if (msg != null)         {             // Wrote message body and complete message.             string text = msg.GetBody<string>();             Console.WriteLine("Received: " + text);             msg.Complete();         }         else         {             break;         }     }     Console.WriteLine();       // Should we commit?     Console.WriteLine("Commit receive? (yes or no)");     string reply = Console.ReadLine();     if (reply.ToLower().Equals("yes"))     {         // Commit the transaction.         scope.Complete();     }     Console.WriteLine(); }     Note that if there are a large number of messages to be received, there will be a chance that the transaction may time out before it can be committed. It is possible to specify a longer timeout when the transaction is created, but It may be better to receive and commit smaller amounts of messages within the transaction. It is also possible to complete, defer, or deadletter messages received from more than one subscription, as long as all the subscriptions are contained in the same topic. As subscriptions are not top level messaging entities this scenarios will work. The following code shows how this can be achieved. try {     using (TransactionScope scope = new TransactionScope())     {         // Receive one message from each subscription.         BrokeredMessage msg1 = subscriptionClient1.Receive();         BrokeredMessage msg2 = subscriptionClient2.Receive();           // Complete the message receives.         msg1.Complete();         msg2.Complete();           Console.WriteLine("Msg1: " + msg1.GetBody<string>());         Console.WriteLine("Msg2: " + msg2.GetBody<string>());           // Commit the transaction.         scope.Complete();     } } catch (Exception ex) {     Console.WriteLine(ex.Message); }     Unsupported Scenarios The restriction of only one top level messaging entity being able to participate in a transaction makes some useful scenarios unsupported. As the Windows Azure Service Bus is under continuous development and new releases are expected to be frequent it is possible that this restriction may not be present in future releases. The first is the scenario where messages are to be routed to two different systems. The following code attempts to do this.   try {     // Create a transaction scope.     using (TransactionScope scope = new TransactionScope())     {         BrokeredMessage msg1 = new BrokeredMessage("Message1");         BrokeredMessage msg2 = new BrokeredMessage("Message2");           // Send a message to Queue1         Console.WriteLine("Sending Message1");         queue1Client.Send(msg1);           // Send a message to Queue2         Console.WriteLine("Sending Message2");         queue2Client.Send(msg2);           // Commit the transaction.         Console.WriteLine("Committing transaction...");         scope.Complete();     } } catch (Exception ex) {     Console.WriteLine(ex.Message); }     The results of running the code are shown below. When attempting to send a message to the second queue the following exception is thrown: No active Transaction was found for ID '35ad2495-ee8a-4956-bbad-eb4fedf4a96e:1'. The Transaction may have timed out or attempted to span multiple top-level entities such as Queue or Topic. The server Transaction timeout is: 00:01:00..TrackingId:947b8c4b-7754-4044-b91b-4a959c3f9192_3_3,TimeStamp:3/29/2012 7:47:32 AM.   Another scenario where transactional support could be useful is when forwarding messages from one queue to another queue. This would also involve more than one top level messaging entity, and is therefore not supported.   Another scenario that developers may wish to implement is performing transactions across messaging entities and other transactional systems, such as an on-premise database. In the current release this is not supported.   Workarounds for Unsupported Scenarios There are some techniques that developers can use to work around the one top level entity limitation of transactions. When sending two messages to two systems, topics and subscriptions can be used. If the same message is to be sent to two destinations then the subscriptions would have the default subscriptions, and the client would only send one message. If two different messages are to be sent, then filters on the subscriptions can route the messages to the appropriate destination. The client can then send the two messages to the topic in the same transaction.   In scenarios where a message needs to be received and then forwarded to another system within the same transaction topics and subscriptions can also be used. A message can be received from a subscription, and then sent to a topic within the same transaction. As a topic is a top level messaging entity, and a subscription is not, this scenario will work.

    Read the article

  • Fixing a bug while working on a different part of the code base

    - by imgx64
    This happened at least once to me. I'm working on some part of the code base and find a small bug in a different part, and the bug stops me from completing what I'm currently trying to do. Fixing the bug could be as simple as changing a single statement. What do you do in that situation? Fix the bug and commit it together with your current work Save your current work elsewhere, fix the bug in a separate commit, then continue your work [1] Continue what you're supposed to do, commit the code (even if it breaks the build fails some tests), then fix the bug (and the build make tests pass) in a separate commit [1] In practice, this would mean: clone the original repository elsewhere, fix the bug, commit/push the changes, pull the commit to the repository you're working on, merge the changes, and continue your work. Edit: I changed number three to reflect what I really meant.

    Read the article

  • How do you get Eclipse/Mylyn to fill out your commit messages for you?

    - by Sam Hasler
    I've setup the following: Installed Mylyn in Eclipse Installed the Bugzilla connector Installed Subversive SVN Integration for the Mylyn Project I've gone to Windows - Preferences - Tasks - Team and clicked Change Set Management and left it with the default Commit Comment Template: ${task.status} - ${connector.task.prefix} ${task.key}: ${task.description} ${task.url} However, if I activate a bugzilla bug in the Task List, and then edit a file, when I commit the changes the commit message isn't filled in. Also, in the Synchronisation perspective there isn't a change set for the task I'm working on. I've tried following the instructions on the Eclipse wiki's Mylyn FAQ for Why does task change set not appear when I modify files? but the bullet point: * Verify that the configured Synchronize View is configured for change sets. points to a section that is no longer in the document. I have a Show Change Sets button, but clicking it only shows me incoming change sets, there aren't any outgoing change sets. What am I missing?

    Read the article

  • git hooks - regenerate a file and add it to each commit ?

    - by egarcia
    I'd like to automatically generate a file and add it to a commit if it has changed. Is it possible, if so, what hooks should I use? Context: I'm programming a CSS library. It has several CSS files, and at the end I want to produce a compacted and minimized version. Right now my workflow is: Modify the css files x.css and y.css git add x.css y.css Execute minimize.sh which parses all the css files on my lib, minimizes them and produces a min.css file git add min.css git commit -m 'modified x and y doing foo and bar' I would like to have steps 3 and 4 done automatically via a git hook. Is that possible? I've never used git hooks before. After reading the man page, I think I need to use the @pre-commit@ hook. But can I invoke git add min.css, or will I break the internet?

    Read the article

  • What exactly does "adopt a protocol" mean in the Objective-C / Cocoa documentation ?

    - by driis
    I am a C# developer getting started on Objective-C / Cocoa Touch programming. I think I might have gotten some terms wrong because I keep thinking about them "the C# way". Specifically, I have come around the term "protocol" in various documentation and tutorials. In Objective-C, what exactly is a protocol ? Can it be compared to a C# interface ? Is the following declaration the same as saying "The class is implementing the protocol UITextFieldDelegate" ? Or is UITextFieldDelegate to be compared with a generic type parameter in C# ? @interface MyViewController : UIViewController <UITextFieldDelegate> { }

    Read the article

  • How can I use git to stage only one line in a file for commit, all from a script?

    - by Sandy
    I'm writing a simple pre-commit git hook that updates the year in copyright headers for files that are staged for commit. After modifying the line with the copyright, I would like the hook to stage that line so that it is part of the commit. It can't just git add the whole file, because there may be other pre-existing changes in there that shouldn't be staged. I don't see any options in the git add manual the let you stage specific lines. I figure I could git stash save --keep-index, apply my change, git add the file, and then git stash pop, but that seems rather crude. Any better approaches?

    Read the article

  • Cisco Pix how to add an additional block of static ip addresses for nat?

    - by Scott Szretter
    I have a pix 501 with 5 static ip addresses. My isp just gave me 5 more. I am trying to figure out how to add the new block and then how to nat/open at least one of them to an inside machine. So far, I named a new interface "intf2", ip range is 71.11.11.58 - 62 (gateway should 71.11.11.57) imgsvr is the machine I want to nat to one of the (71.11.11.59) new ip addresses. mail (.123) is an example of a machine that is mapped to the current existing 5 ip block (96.11.11.121 gate / 96.11.11.122-127) and working fine. Building configuration... : Saved : PIX Version 6.3(4) interface ethernet0 auto interface ethernet0 vlan1 logical interface ethernet1 auto nameif ethernet0 outside security0 nameif ethernet1 inside security100 nameif vlan1 intf2 security1 enable password xxxxxxxxx encrypted passwd xxxxxxxxx encrypted hostname xxxxxxxPIX domain-name xxxxxxxxxxx no fixup protocol dns fixup protocol ftp 21 fixup protocol h323 h225 1720 fixup protocol h323 ras 1718-1719 fixup protocol http 80 fixup protocol rsh 514 fixup protocol rtsp 554 fixup protocol sip 5060 fixup protocol sip udp 5060 fixup protocol skinny 2000 no fixup protocol smtp 25 fixup protocol sqlnet 1521 fixup protocol tftp 69 names ...snip... name 192.168.10.13 mail name 192.168.10.29 imgsvr object-group network vpn1 network-object mail 255.255.255.255 access-list outside_access_in permit tcp any host 96.11.11.124 eq www access-list outside_access_in permit tcp any host 96.11.11.124 eq https access-list outside_access_in permit tcp any host 96.11.11.124 eq 3389 access-list outside_access_in permit tcp any host 96.11.11.123 eq https access-list outside_access_in permit tcp any host 96.11.11.123 eq www access-list outside_access_in permit tcp any host 96.11.11.125 eq smtp access-list outside_access_in permit tcp any host 96.11.11.125 eq https access-list outside_access_in permit tcp any host 96.11.11.125 eq 10443 access-list outside_access_in permit tcp any host 96.11.11.126 eq smtp access-list outside_access_in permit tcp any host 96.11.11.126 eq https access-list outside_access_in permit tcp any host 96.11.11.126 eq 10443 access-list outside_access_in deny ip any any access-list inside_nat0_outbound permit ip 192.168.0.0 255.255.0.0 IPPool2 255.255.255.0 access-list inside_nat0_outbound permit ip 172.17.0.0 255.255.0.0 IPPool2 255.255.255.0 access-list inside_nat0_outbound permit ip 172.16.0.0 255.255.0.0 IPPool2 255.255.255.0 ...snip... access-list inside_access_in deny tcp any any eq smtp access-list inside_access_in permit ip any any pager lines 24 logging on logging buffered notifications mtu outside 1500 mtu inside 1500 ip address outside 96.11.11.122 255.255.255.248 ip address inside 192.168.10.15 255.255.255.0 ip address intf2 71.11.11.58 255.255.255.248 ip audit info action alarm ip audit attack action alarm pdm location exchange 255.255.255.255 inside pdm location mail 255.255.255.255 inside pdm location IPPool2 255.255.255.0 outside pdm location 96.11.11.122 255.255.255.255 inside pdm location 192.168.10.1 255.255.255.255 inside pdm location 192.168.10.6 255.255.255.255 inside pdm location mail-gate1 255.255.255.255 inside pdm location mail-gate2 255.255.255.255 inside pdm location imgsvr 255.255.255.255 inside pdm location 71.11.11.59 255.255.255.255 intf2 pdm logging informational 100 pdm history enable arp timeout 14400 global (outside) 1 interface global (outside) 2 96.11.11.123 global (intf2) 3 interface global (intf2) 4 71.11.11.59 nat (inside) 0 access-list inside_nat0_outbound nat (inside) 2 mail 255.255.255.255 0 0 nat (inside) 1 0.0.0.0 0.0.0.0 0 0 static (inside,outside) tcp 96.11.11.123 smtp mail smtp netmask 255.255.255.255 0 0 static (inside,outside) tcp 96.11.11.123 https mail https netmask 255.255.255.255 0 0 static (inside,outside) tcp 96.11.11.123 www mail www netmask 255.255.255.255 0 0 static (inside,outside) 96.11.11.124 ts netmask 255.255.255.255 0 0 static (inside,outside) 96.11.11.126 mail-gate2 netmask 255.255.255.255 0 0 static (inside,outside) 96.11.11.125 mail-gate1 netmask 255.255.255.255 0 0 access-group outside_access_in in interface outside access-group inside_access_in in interface inside route outside 0.0.0.0 0.0.0.0 96.11.11.121 1 route intf2 0.0.0.0 0.0.0.0 71.11.11.57 2 timeout xlate 0:05:00 timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 rpc 0:10:00 h225 1:00:00 timeout h323 0:05:00 mgcp 0:05:00 sip 0:30:00 sip_media 0:02:00 timeout uauth 0:05:00 absolute floodguard enable ...snip... : end [OK] Thanks!

    Read the article

  • Configuring a PIX 506e for Asterisk

    - by orthogonal3
    Hi all! I'm having problems configuring a old Cisco PIX running 6.3 and wondered if anyone can lend a hand? Simply put I have a PIX 506e that I want to put in my VoIP data path. I can't update it and getting a compat version of Java for that version of PIX is tough so I can't log onto the web interface. The PIX straddles two networks..... 192.168.5.0 on the inside, ...50.0 on the outside both net masks are 255.255.255.0 I have a local Asterisk server cluster with a single service IP (<local asterisk>) SIP is on UDP 5060 and RTP (for the voip data) is on UDP 18000-18999 I know thats a big range but hey may as well. I need the 192.168.5.0 net to have web and ftp access for updates and the like. DHCP, DNS and NTP is already provided on that network so I don't need external DNS access. So I think I want the following rules: SIP or RTP from <my itsp> arriving at <outside voip ip> NATed to <local asterisk> SIP or RTP able to do the reverse route (should be covered by high sec - low sec??) HTTP and FTP access outbound for software update for the servers etc I have the following config at the minute - and I think I'm almost there (I hope)... interface ethernet0 auto interface ethernet1 auto nameif ethernet0 outside security0 nameif ethernet1 inside security100 enable password wouldyouliketobeapeppertoo encrypted passwd wouldyouliketobeapeppertoo encrypted hostname afirewall domain-name adomain fixup protocol dns maximum-length 512 fixup protocol ftp 21 fixup protocol h323 h225 1720 fixup protocol h323 ras 1718-1719 fixup protocol http 80 fixup protocol rsh 514 fixup protocol rtsp 554 fixup protocol sip 5060 fixup protocol sip udp 5060 fixup protocol skinny 2000 fixup protocol smtp 25 fixup protocol sqlnet 1521 fixup protocol tftp 69 access-list acl_ping permit icmp any any access-list voip permit ip host <my itsp> host <local asterisk> mtu outside 1500 mtu inside 1500 ip address outside <outside pix ip> 255.255.255.0 ip address inside <inside pix ip> 255.255.255.0 arp timeout 14400 global (outside) 1 <outside generic ip> nat (inside) 1 192.168.5.0 255.255.255.0 0 0 static (inside,outside) <outside voip ip> <local asterisk> netmask 255.255.255.255 0 0 static (outside,inside) <local asterisk> <outside voip ip> netmask 255.255.255.255 0 0 access-group acl_ping in interface outside access-group acl_ping in interface inside route outside 0.0.0.0 0.0.0.0 <my next hop router> 1 route outside <my itsp> 255.255.255.255 <my next hop router> 1 I think I just need a hand with the access-lists and NAT/static rules. Would anyone be able to help as I've RTFM'd the Cisco docs a few times and they're heavy. Wishing I'd completed my CCNA now! Thanks all for any help, Phil

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Network communications mechanisms for SQL Server

    - by Akshay Deep Lamba
    Problem I am trying to understand how SQL Server communicates on the network, because I'm having to tell my networking team what ports to open up on the firewall for an edge web server to communicate back to the SQL Server on the inside. What do I need to know? Solution In order to understand what needs to be opened where, let's first talk briefly about the two main protocols that are in common use today: TCP - Transmission Control Protocol UDP - User Datagram Protocol Both are part of the TCP/IP suite of protocols. We'll start with TCP. TCP TCP is the main protocol by which clients communicate with SQL Server. Actually, it is more correct to say that clients and SQL Server use Tabular Data Stream (TDS), but TDS actually sits on top of TCP and when we're talking about Windows and firewalls and other networking devices, that's the protocol that rules and controls are built around. So we'll just speak in terms of TCP. TCP is a connection-oriented protocol. What that means is that the two systems negotiate the connection and both agree to it. Think of it like a phone call. While one person initiates the phone call, the other person has to agree to take it and both people can end the phone call at any time. TCP is the same way. Both systems have to agree to the communications, but either side can end it at any time. In addition, there is functionality built into TCP to ensure that all communications can be disassembled and reassembled as necessary so it can pass over various network devices and be put together again properly in the right order. It also has mechanisms to handle and retransmit lost communications. Because of this functionality, TCP is the protocol used by many different network applications. The way the applications all can share is through the use of ports. When a service, like SQL Server, comes up on a system, it must listen on a port. For a default SQL Server instance, the default port is 1433. Clients connect to the port via the TCP protocol, the connection is negotiated and agreed to, and then the two sides can transfer information as needed until either side decides to end the communication. In actuality, both sides will have a port to use for the communications, but since the client's port is typically determined semi-randomly, when we're talking about firewalls and the like, typically we're interested in the port the server or service is using. UDP UDP, unlike TCP, is not connection oriented. A "client" can send a UDP communications to anyone it wants. There's nothing in place to negotiate a communications connection, there's nothing in the protocol itself to coordinate order of communications or anything like that. If that's needed, it's got to be handled by the application or by a protocol built on top of UDP being used by the application. If you think of TCP as a phone call, think of UDP as a postcard. I can put a postcard in the mail to anyone I want, and so long as it is addressed properly and has a stamp on it, the postal service will pick it up. Now, what happens it afterwards is not guaranteed. There's no mechanism for retransmission of lost communications. It's great for short communications that doesn't necessarily need an acknowledgement. Because multiple network applications could be communicating via UDP, it uses ports, just like TCP. The SQL Browser or the SQL Server Listener Service uses UDP. Network Communications - Talking to SQL Server When an instance of SQL Server is set up, what TCP port it listens on depends. A default instance will be set up to listen on port 1433. A named instance will be set to a random port chosen during installation. In addition, a named instance will be configured to allow it to change that port dynamically. What this means is that when a named instance starts up, if it finds something already using the port it normally uses, it'll pick a new port. If you have a named instance, and you have connections coming across a firewall, you're going to want to use SQL Server Configuration Manager to set a static port. This will allow the networking and security folks to configure their devices for maximum protection. While you can change the network port for a default instance of SQL Server, most people don't. Network Communications - Finding a SQL Server When just the name is specified for a client to connect to SQL Server, for instance, MySQLServer, this is an attempt to connect to the default instance. In this case the client will automatically attempt to communicate to port 1433 on MySQLServer. If you've switched the port for the default instance, you'll need to tell the client the proper port, usually by specifying the following syntax in the connection string: <server>,<port>. For instance, if you moved SQL Server to listen on 14330, you'd use MySQLServer,14330 instead of just MySQLServer. However, because a named instance sets up its port dynamically by default, the client never knows at the outset what the port is it should talk to. That's what the SQL Browser or the SQL Server Listener Service (SQL Server 2000) is for. In this case, the client sends a communication via the UDP protocol to port 1434. It asks, "Where is the named instance?" So if I was running a named instance called SQL2008R2, it would be asking the SQL Browser, "Hey, how do I talk to MySQLServer\SQL2008R2?" The SQL Browser would then send back a communications from UDP port 1434 back to the client telling the client how to talk to the named instance. Of course, you can skip all of this of you set that named instance's port statically. Then you can use the <server>,<port> mechanism to connect and the client won't try to talk to the SQL Browser service. It'll simply try to make the connection. So, for instance, is the SQL2008R2 instance was listening on port 20080, specifying MySQLServer,20080 would attempt a connection to the named instance. Network Communications - Named Pipes Named pipes is an older network library communications mechanism and it's generally not used any longer. It shouldn't be used across a firewall. However, if for some reason you need to connect to SQL Server with it, this protocol also sits on top of TCP. Named Pipes is actually used by the operating system and it has its own mechanism within the protocol to determine where to route communications. As far as network communications is concerned, it listens on TCP port 445. This is true whether we're talking about a default or named instance of SQL Server. The Summary Table To put all this together, here is what you need to know: Type of Communication Protocol Used Default Port Finding a SQL Server or SQL Server Named Instance UDP 1434 Communicating with a default instance of SQL Server TCP 1433 Communicating with a named instance of SQL Server TCP * Determined dynamically at start up Communicating with SQL Server via Named Pipes TCP 445

    Read the article

  • How can I get all the methods in a Protocol?

    - by jdinuncio
    Hello, How can I get a collection of all the (class) methods in a given protocol in smalltalk/squeak/pharo? I'm trying to collect the values returned by a group of methods. I don't want to have to store the methods in an instance or class variable. So I though I could add them to a protocol and in this way to "mark" them. Thanks.

    Read the article

  • Given a pickle dump in python how to I determine the used protocol?

    - by SmCaterpillar
    Assume that I have a pickle dump - either as a file or just as a string - how can I determine the protocol that was used to create the pickle dump automatically? And if so, do I need to read the entire dump to figure out the protocol or can this be achieved in O(1)? By O(1) I think about some header information at the beginning of the pickle string or file whose read out does not require processing the whole dump. Thanks a lot!

    Read the article

  • Useful SVN and Git commands – Cheatsheet

    - by Madhan ayyasamy
    The following snippets will helpful one who user version control systems like Git and SVN.svn checkout/co checkout-url – used to pull an SVN tree from the server.svn update/up – Used to update the local copy with the changes made in the repository.svn commit/ci – m “message” filename – Used to commit the changes in a file to repository with a message.svn diff filename – shows up the differences between your current file and what’s there now in the repository.svn revert filename – To overwrite local file with the one in the repository.svn add filename – For adding a file into repository, you should commit your changes then only it will reflect in repository.svn delete filename – For deleting a file from repository, you should commit your changes then only it will reflect in repository.svn move source destination – moves a file from one directory to another or renames a file. It will effect your local copy immediately as well as on the repository after committing.git config – Sets configuration values for your user name, email, file formats and more.git init – Initializes a git repository – creates the initial ‘.git’ directory in a new or in an existing project.git clone – Makes a Git repository copy from a remote source. Also adds the original location as a remote so you can fetch from it again and push to it if you have permissions.git add – Adds files changes in your working directory to your index.git rm – Removes files from your index and your working directory so they will not be tracked.git commit – Takes all of the changes written in the index, creates a new commit object pointing to it and sets the branch to point to that new commit.git status – Shows you the status of files in the index versus the working directory.git branch – Lists existing branches, including remote branches if ‘-a’ is provided. Creates a new branch if a branch name is provided.git checkout – Checks out a different branch – switches branches by updating the index, working tree, and HEAD to reflect the chosen branch.git merge – Merges one or more branches into your current branch and automatically creates a new commit if there are no conflicts.git reset – Resets your index and working directory to the state of your last commit.git tag – Tags a specific commit with a simple, human readable handle that never moves.git pull – Fetches the files from the remote repository and merges it with your local one.git push – Pushes all the modified local objects to the remote repository and advances its branches.git remote – Shows all the remote versions of your repository.git log – Shows a listing of commits on a branch including the corresponding details.git show – Shows information about a git object.git diff – Generates patch files or statistics of differences between paths or files in your git repository, or your index or your working directory.gitk – Graphical Tcl/Tk based interface to a local Git repository.

    Read the article

  • Faster, secure, protocol/code required for long-distance transfer.

    - by Chopper3
    I've ran into a problem and I'm looking for a new secure protocol/client/server that's faster over a 1Gb/s fibre link - let me tell you the story... I have a pair of redundant, diversely-routed, 1Gb/s links over a distance of around 250 miles or so (not dark fibre but a dedicated point to point link, not a mesh). At the 'client' end I have a HP DL380 G5 (2 x dual-core 2.66Ghz Xeon's, 4GB, Windows 2003EE 32-bit), at the 'server' end I have a HP BL460c G6 (2 x quad-core 2.53Ghz Xeons, 48GB, Oracle Linux 5.3 64-bit). I need to transfer around 500 x 2GB files per week from the client to the server machines per week - but the transfer NEEDS to be secure. Using both iPerf or regular FTP I can get ~80MB/s of transfer pretty consistently, which is great. Using WinSCP or Windows SFTP I can't seem to get more that ~3-4MB/s, at this point the server's CPU is 3% busy while CPU0 of the client goes to ~30% utilised. We've tried editing various TCP window sizes with little success. Both ends are connected to quite low-usage Cisco Cat6509's with Sup720's. I can replace the client machine with a newer machine and/or move it to Linux - but this will take time. Clearly these single-threaded secure Windows clients are introducing too much latency doing their encryption. So a few questions/thoughts; Are there any higher performing secure protocols or client software for Windows that I could try? I'm pretty protocol-gnostic so long as it'll work between Windows and Linux. Should I be using hardware to do the encryption, either in the client or the network parts? If so what would you recommend? I'm not convinced that just swapping the server would be that much faster, the CPU was only at 30% but then again that's higher than I'd have expected given the load - moving to Linux at the client end may be a better idea but would be quite disruptive. Am I missing a trick? Thanks in advance.

    Read the article

  • SSL authentication error: RemoteCertificateChainErrors on ASP.NET on Ubuntu

    - by Frank Krueger
    I am trying to access Gmail's SMTP service from an ASP.NET MVC site running under Mono 2.4.2.3. But I keep getting this error: System.InvalidOperationException: SSL authentication error: RemoteCertificateChainErrors at System.Net.Mail.SmtpClient.m__3 (System.Object sender, System.Security.Cryptography.X509Certificates.X509Certificate certificate, System.Security.Cryptography.X509Certificates.X509Chain chain, SslPolicyErrors sslPolicyErrors) [0x00000] at System.Net.Security.SslStream+c__AnonStorey9.m__9 (System.Security.Cryptography.X509Certificates.X509Certificate cert, System.Int32[] certErrors) [0x00000] at Mono.Security.Protocol.Tls.SslClientStream.OnRemoteCertificateValidation (System.Security.Cryptography.X509Certificates.X509Certificate certificate, System.Int32[] errors) [0x00000] at Mono.Security.Protocol.Tls.SslStreamBase.RaiseRemoteCertificateValidation (System.Security.Cryptography.X509Certificates.X509Certificate certificate, System.Int32[] errors) [0x00000] at Mono.Security.Protocol.Tls.SslClientStream.RaiseServerCertificateValidation (System.Security.Cryptography.X509Certificates.X509Certificate certificate, System.Int32[] certificateErrors) [0x00000] at Mono.Security.Protocol.Tls.Handshake.Client.TlsServerCertificate.validateCertificates (Mono.Security.X509.X509CertificateCollection certificates) [0x00000] at Mono.Security.Protocol.Tls.Handshake.Client.TlsServerCertificate.ProcessAsTls1 () [0x00000] at Mono.Security.Protocol.Tls.Handshake.HandshakeMessage.Process () [0x00000] at (wrapper remoting-invoke-with-check) Mono.Security.Protocol.Tls.Handshake.HandshakeMessage:Process () at Mono.Security.Protocol.Tls.ClientRecordProtocol.ProcessHandshakeMessage (Mono.Security.Protocol.Tls.TlsStream handMsg) [0x00000] at Mono.Security.Protocol.Tls.RecordProtocol.InternalReceiveRecordCallback (IAsyncResult asyncResult) [0x00000] I have installed certificates using: certmgr -ssl -m smtps://smtp.gmail.com:465 with this output: Mono Certificate Manager - version 2.4.2.3 Manage X.509 certificates and CRL from stores. Copyright 2002, 2003 Motus Technologies. Copyright 2004-2008 Novell. BSD licensed. X.509 Certificate v3 Issued from: C=US, O=Equifax, OU=Equifax Secure Certificate Authority Issued to: C=US, O=Google Inc, CN=Google Internet Authority Valid from: 06/08/2009 20:43:27 Valid until: 06/07/2013 19:43:27 *** WARNING: Certificate signature is INVALID *** Import this certificate into the CA store ?yes X.509 Certificate v3 Issued from: C=US, O=Google Inc, CN=Google Internet Authority Issued to: C=US, S=California, L=Mountain View, O=Google Inc, CN=smtp.gmail.com Valid from: 04/22/2010 20:02:45 Valid until: 04/22/2011 20:12:45 Import this certificate into the AddressBook store ?yes 2 certificates added to the stores. In fact, this worked for a month but mysteriously stopped working on May 5. I installed these new certs today, but I am still getting these errors.

    Read the article

  • Use Glassfish JMS from remote client

    - by James
    Hi, I have glassfish installed on a server with a JMS ConnectionFactory set up jms/MyConnectionFactory with a resource type or javax.jms.ConnectionFactory. I now want to access this from a client application on my local machine for this I have the following: public static void main(String[] args) { try{ Properties env = new Properties(); env.setProperty("java.naming.factory.initial", "com.sun.enterprise.naming.SerialInitContextFactory"); env.setProperty("java.naming.factory.url.pkgs", "com.sun.enterprise.naming"); env.setProperty("java.naming.factory.state", "com.sun.corba.ee.impl.presentation.rmi.JNDIStateFactoryImpl"); env.setProperty("org.omg.CORBA.ORBInitialHost", "10.97.3.74"); env.setProperty("org.omg.CORBA.ORBInitialPort", "3700"); InitialContext initialContext = new InitialContext(env); ConnectionFactory connectionFactory = null; try { connectionFactory = (ConnectionFactory) initialContext.lookup("jms/MyConnectionFactory"); } catch (Exception e) { System.out.println("JNDI API lookup failed: " + e.toString()); e.printStackTrace(); System.exit(1); } }catch(Exception e){ e.printStackTrace(System.err); } } When I run my client I get the following output: INFO: Using com.sun.enterprise.transaction.jts.JavaEETransactionManagerJTSDelegate as the delegate {org.omg.CORBA.ORBInitialPort=3700, java.naming.factory.initial=com.sun.enterprise.naming.SerialInitContextFactory, org.omg.CORBA.ORBInitialHost=10.97.3.74, java.naming.factory.state=com.sun.corba.ee.impl.presentation.rmi.JNDIStateFactoryImpl, java.naming.factory.url.pkgs=com.sun.enterprise.naming} 19-Mar-2010 16:09:13 org.hibernate.validator.util.Version <clinit> INFO: Hibernate Validator bean-validator-3.0-JBoss-4.0.2 19-Mar-2010 16:09:13 org.hibernate.validator.engine.resolver.DefaultTraversableResolver detectJPA INFO: Instantiated an instance of org.hibernate.validator.engine.resolver.JPATraversableResolver. 19-Mar-2010 16:09:13 com.sun.messaging.jms.ra.ResourceAdapter start INFO: MQJMSRA_RA1101: SJSMQ JMS Resource Adapter starting: REMOTE 19-Mar-2010 16:09:13 com.sun.messaging.jms.ra.ResourceAdapter start INFO: MQJMSRA_RA1101: SJSMQ JMSRA Started:REMOTE 19-Mar-2010 16:09:13 com.sun.enterprise.naming.impl.SerialContext lookup SEVERE: enterprise_naming.serialctx_communication_exception 19-Mar-2010 16:09:13 com.sun.enterprise.naming.impl.SerialContext lookup SEVERE: java.lang.RuntimeException: com.sun.appserv.connectors.internal.api.ConnectorRuntimeException: This pool is not bound in JNDI : jms/MyConnectionFactory at com.sun.enterprise.resource.naming.ConnectorObjectFactory.getObjectInstance(ConnectorObjectFactory.java:159) at javax.naming.spi.NamingManager.getObjectInstance(NamingManager.java:304) at com.sun.enterprise.naming.impl.SerialContext.getObjectInstance(SerialContext.java:472) at com.sun.enterprise.naming.impl.SerialContext.lookup(SerialContext.java:437) at javax.naming.InitialContext.lookup(InitialContext.java:392) at simpleproducerclient.Main.main(Main.java:89) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.glassfish.appclient.client.acc.AppClientContainer.launch(AppClientContainer.java:424) at org.glassfish.appclient.client.AppClientFacade.main(AppClientFacade.java:134) Caused by: com.sun.appserv.connectors.internal.api.ConnectorRuntimeException: This pool is not bound in JNDI : jms/MyConnectionFactory at com.sun.enterprise.connectors.service.ConnectorConnectionPoolAdminServiceImpl.obtainManagedConnectionFactory(ConnectorConnectionPoolAdminServiceImpl.java:1017) at com.sun.enterprise.connectors.ConnectorRuntime.obtainManagedConnectionFactory(ConnectorRuntime.java:375) at com.sun.enterprise.resource.naming.ConnectorObjectFactory.getObjectInstance(ConnectorObjectFactory.java:124) ... 11 more Caused by: javax.naming.NamingException: Lookup failed for '__SYSTEM/pools/jms/MyConnectionFactory' in SerialContext targetHost=localhost,targetPort=3700,orb'sInitialHost=ithfdv01,orb'sInitialPort=3700 [Root exception is javax.naming.NameNotFoundException: pools] at com.sun.enterprise.naming.impl.SerialContext.lookup(SerialContext.java:442) at javax.naming.InitialContext.lookup(InitialContext.java:392) at com.sun.enterprise.connectors.service.ConnectorConnectionPoolAdminServiceImpl.getConnectorConnectionPool(ConnectorConnectionPoolAdminServiceImpl.java:804) at com.sun.enterprise.connectors.service.ConnectorConnectionPoolAdminServiceImpl.obtainManagedConnectionFactory(ConnectorConnectionPoolAdminServiceImpl.java:932) ... 13 more Caused by: javax.naming.NameNotFoundException: pools at com.sun.enterprise.naming.impl.TransientContext.resolveContext(TransientContext.java:252) at com.sun.enterprise.naming.impl.TransientContext.lookup(TransientContext.java:171) at com.sun.enterprise.naming.impl.TransientContext.lookup(TransientContext.java:172) at com.sun.enterprise.naming.impl.SerialContextProviderImpl.lookup(SerialContextProviderImpl.java:58) at com.sun.enterprise.naming.impl.RemoteSerialContextProviderImpl.lookup(RemoteSerialContextProviderImpl.java:89) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at com.sun.corba.ee.impl.presentation.rmi.ReflectiveTie.dispatchToMethod(ReflectiveTie.java:146) at com.sun.corba.ee.impl.presentation.rmi.ReflectiveTie._invoke(ReflectiveTie.java:176) at com.sun.corba.ee.impl.protocol.CorbaServerRequestDispatcherImpl.dispatchToServant(CorbaServerRequestDispatcherImpl.java:682) at com.sun.corba.ee.impl.protocol.CorbaServerRequestDispatcherImpl.dispatch(CorbaServerRequestDispatcherImpl.java:216) at com.sun.corba.ee.impl.protocol.CorbaMessageMediatorImpl.handleRequestRequest(CorbaMessageMediatorImpl.java:1841) at com.sun.corba.ee.impl.protocol.CorbaMessageMediatorImpl.handleRequest(CorbaMessageMediatorImpl.java:1695) at com.sun.corba.ee.impl.protocol.CorbaMessageMediatorImpl.handleInput(CorbaMessageMediatorImpl.java:1078) at com.sun.corba.ee.impl.protocol.giopmsgheaders.RequestMessage_1_2.callback(RequestMessage_1_2.java:221) at com.sun.corba.ee.impl.protocol.CorbaMessageMediatorImpl.handleRequest(CorbaMessageMediatorImpl.java:797) at com.sun.corba.ee.impl.protocol.CorbaMessageMediatorImpl.dispatch(CorbaMessageMediatorImpl.java:561) JNDI API lookup failed: javax.naming.CommunicationException: Communication exception for SerialContext targetHost=10.97.3.74,targetPort=3700,orb'sInitialHost=ithfdv01,orb'sInitialPort=3700 [Root exception is java.lang.RuntimeException: com.sun.appserv.connectors.internal.api.ConnectorRuntimeException: This pool is not bound in JNDI : jms/MyConnectionFactory] at com.sun.corba.ee.impl.protocol.CorbaMessageMediatorImpl.doWork(CorbaMessageMediatorImpl.java:2558) at com.sun.corba.ee.impl.orbutil.threadpool.ThreadPoolImpl$WorkerThread.performWork(ThreadPoolImpl.java:492) at com.sun.corba.ee.impl.orbutil.threadpool.ThreadPoolImpl$WorkerThread.run(ThreadPoolImpl.java:528) javax.naming.CommunicationException: Communication exception for SerialContext targetHost=10.97.3.74,targetPort=3700,orb'sInitialHost=ithfdv01,orb'sInitialPort=3700 [Root exception is java.lang.RuntimeException: com.sun.appserv.connectors.internal.api.ConnectorRuntimeException: This pool is not bound in JNDI : jms/MyConnectionFactory] at com.sun.enterprise.naming.impl.SerialContext.lookup(SerialContext.java:461) at javax.naming.InitialContext.lookup(InitialContext.java:392) at simpleproducerclient.Main.main(Main.java:89) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.glassfish.appclient.client.acc.AppClientContainer.launch(AppClientContainer.java:424) at org.glassfish.appclient.client.AppClientFacade.main(AppClientFacade.java:134) Caused by: java.lang.RuntimeException: com.sun.appserv.connectors.internal.api.ConnectorRuntimeException: This pool is not bound in JNDI : jms/MyConnectionFactory at com.sun.enterprise.resource.naming.ConnectorObjectFactory.getObjectInstance(ConnectorObjectFactory.java:159) at javax.naming.spi.NamingManager.getObjectInstance(NamingManager.java:304) at com.sun.enterprise.naming.impl.SerialContext.getObjectInstance(SerialContext.java:472) at com.sun.enterprise.naming.impl.SerialContext.lookup(SerialContext.java:437) ... 8 more Caused by: com.sun.appserv.connectors.internal.api.ConnectorRuntimeException: This pool is not bound in JNDI : jms/MyConnectionFactory at com.sun.enterprise.connectors.service.ConnectorConnectionPoolAdminServiceImpl.obtainManagedConnectionFactory(ConnectorConnectionPoolAdminServiceImpl.java:1017) at com.sun.enterprise.connectors.ConnectorRuntime.obtainManagedConnectionFactory(ConnectorRuntime.java:375) at com.sun.enterprise.resource.naming.ConnectorObjectFactory.getObjectInstance(ConnectorObjectFactory.java:124) ... 11 more Caused by: javax.naming.NamingException: Lookup failed for '__SYSTEM/pools/jms/MyConnectionFactory' in SerialContext targetHost=localhost,targetPort=3700,orb'sInitialHost=ithfdv01,orb'sInitialPort=3700 [Root exception is javax.naming.NameNotFoundException: pools] at com.sun.enterprise.naming.impl.SerialContext.lookup(SerialContext.java:442) at javax.naming.InitialContext.lookup(InitialContext.java:392) at com.sun.enterprise.connectors.service.ConnectorConnectionPoolAdminServiceImpl.getConnectorConnectionPool(ConnectorConnectionPoolAdminServiceImpl.java:804) at com.sun.enterprise.connectors.service.ConnectorConnectionPoolAdminServiceImpl.obtainManagedConnectionFactory(ConnectorConnectionPoolAdminServiceImpl.java:932) ... 13 more Caused by: javax.naming.NameNotFoundException: pools at com.sun.enterprise.naming.impl.TransientContext.resolveContext(TransientContext.java:252) at com.sun.enterprise.naming.impl.TransientContext.lookup(TransientContext.java:171) at com.sun.enterprise.naming.impl.TransientContext.lookup(TransientContext.java:172) at com.sun.enterprise.naming.impl.SerialContextProviderImpl.lookup(SerialContextProviderImpl.java:58) at com.sun.enterprise.naming.impl.RemoteSerialContextProviderImpl.lookup(RemoteSerialContextProviderImpl.java:89) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at com.sun.corba.ee.impl.presentation.rmi.ReflectiveTie.dispatchToMethod(ReflectiveTie.java:146) at com.sun.corba.ee.impl.presentation.rmi.ReflectiveTie._invoke(ReflectiveTie.java:176) at com.sun.corba.ee.impl.protocol.CorbaServerRequestDispatcherImpl.dispatchToServant(CorbaServerRequestDispatcherImpl.java:682) at com.sun.corba.ee.impl.protocol.CorbaServerRequestDispatcherImpl.dispatch(CorbaServerRequestDispatcherImpl.java:216) at com.sun.corba.ee.impl.protocol.CorbaMessageMediatorImpl.handleRequestRequest(CorbaMessageMediatorImpl.java:1841) at com.sun.corba.ee.impl.protocol.CorbaMessageMediatorImpl.handleRequest(CorbaMessageMediatorImpl.java:1695) at com.sun.corba.ee.impl.protocol.CorbaMessageMediatorImpl.handleInput(CorbaMessageMediatorImpl.java:1078) at com.sun.corba.ee.impl.protocol.giopmsgheaders.RequestMessage_1_2.callback(RequestMessage_1_2.java:221) at com.sun.corba.ee.impl.protocol.CorbaMessageMediatorImpl.handleRequest(CorbaMessageMediatorImpl.java:797) at com.sun.corba.ee.impl.protocol.CorbaMessageMediatorImpl.dispatch(CorbaMessageMediatorImpl.java:561) at com.sun.corba.ee.impl.protocol.CorbaMessageMediatorImpl.doWork(CorbaMessageMediatorImpl.java:2558) at com.sun.corba.ee.impl.orbutil.threadpool.ThreadPoolImpl$WorkerThread.performWork(ThreadPoolImpl.java:492) at com.sun.corba.ee.impl.orbutil.threadpool.ThreadPoolImpl$WorkerThread.run(ThreadPoolImpl.java:528) I have looked at a number of posts and have tried a number of things with no success. I can run the following commands on my server: ./asadmin list-jndi-entries UserTransaction: com.sun.enterprise.transaction.TransactionNamingProxy$UserTransactionProxy java:global: com.sun.enterprise.naming.impl.TransientContext jdbc: com.sun.enterprise.naming.impl.TransientContext ejb: com.sun.enterprise.naming.impl.TransientContext com.sun.enterprise.container.common.spi.util.InjectionManager: com.sun.enterprise.container.common.impl.util.InjectionManagerImpl jms: com.sun.enterprise.naming.impl.TransientContext Command list-jndi-entries executed successfully. ./asadmin list-jndi-entries --context jms MyTopic: org.glassfish.javaee.services.ResourceProxy MyConnectionFactory: org.glassfish.javaee.services.ResourceProxy MyQueue: org.glassfish.javaee.services.ResourceProxy Command list-jndi-entries executed successfully. Any help is greatly appreciated. Cheers, James

    Read the article

  • How can I mark a group of changes/changesets in SVN, Hg, or Git

    - by sylvanaar
    I would like to mark an arbitrary group of commits/changesets with a label. Commit 1 *Mark 1 Commit 2 *Mark 2 Commit 3 Commit 4 *Mark 1 Commit 5 *Mark 2 The goal is to easily locate all the changes for a specific mark, and to have that grouping persisted in the VCS directly, as opposed to some outside system like a bug tracking system. The location and ordering of the marks needs to be arbitrary, and should be able to work with both committed/uncommitted and pushed/unpushed changes. In SVN the best way I know is to just edit the commit notes and add some sort of special text that you can search for e.g. "**Mark 1". Or just to make a fake edit and commit it and use its commit note to list all the included revisions. Is there a better solution for SVN? Are there equivalent or better solutions for Hg or Git?

    Read the article

< Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >