Search Results

Search found 60903 results on 2437 pages for 'data mapping'.

Page 27/2437 | < Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >

  • How do I map to a parent or child in the same table with NHibernate?

    - by adolfojp
    Lets suppose that I have a Category table with a column that holds the id of a parent or child category from the same table. This design would allow me to have unlimited levels of Categories, or unlimited levels in a thread, for example. How can I map this relationship with NHibernate? Are there any disadvantages or warnings that I should take into consideration when doing this?

    Read the article

  • Used HDD/ran DiskSmartView/40,000 Power-on-hours?? should i trust it w/ my data, or take it back and bitch?

    - by David Lindsay
    I just bought a used hard drive from a University Surplus Store. Decided to run DiskSmartView to make sure it wasn't ready to fail. 40,000 power-on-hours I don't know if I feel like trusting my data to something that used. I really dont know if thats unreasonably old, but when i compare it to the POH reading i get when testing my other hdds its more than 3x older (my others have 2110 hours, 6150 hours, etc.. It's a Western Digital, so that gives me a little bit of hope(WDC WD4000KD-00NAB0). I could sure use someone else's opinion here. Thanks, DAVE

    Read the article

  • Windows Azure Recipe: Big Data

    - by Clint Edmonson
    As the name implies, what we’re talking about here is the explosion of electronic data that comes from huge volumes of transactions, devices, and sensors being captured by businesses today. This data often comes in unstructured formats and/or too fast for us to effectively process in real time. Collectively, we call these the 4 big data V’s: Volume, Velocity, Variety, and Variability. These qualities make this type of data best managed by NoSQL systems like Hadoop, rather than by conventional Relational Database Management System (RDBMS). We know that there are patterns hidden inside this data that might provide competitive insight into market trends.  The key is knowing when and how to leverage these “No SQL” tools combined with traditional business such as SQL-based relational databases and warehouses and other business intelligence tools. Drivers Petabyte scale data collection and storage Business intelligence and insight Solution The sketch below shows one of many big data solutions using Hadoop’s unique highly scalable storage and parallel processing capabilities combined with Microsoft Office’s Business Intelligence Components to access the data in the cluster. Ingredients Hadoop – this big data industry heavyweight provides both large scale data storage infrastructure and a highly parallelized map-reduce processing engine to crunch through the data efficiently. Here are the key pieces of the environment: Pig - a platform for analyzing large data sets that consists of a high-level language for expressing data analysis programs, coupled with infrastructure for evaluating these programs. Mahout - a machine learning library with algorithms for clustering, classification and batch based collaborative filtering that are implemented on top of Apache Hadoop using the map/reduce paradigm. Hive - data warehouse software built on top of Apache Hadoop that facilitates querying and managing large datasets residing in distributed storage. Directly accessible to Microsoft Office and other consumers via add-ins and the Hive ODBC data driver. Pegasus - a Peta-scale graph mining system that runs in parallel, distributed manner on top of Hadoop and that provides algorithms for important graph mining tasks such as Degree, PageRank, Random Walk with Restart (RWR), Radius, and Connected Components. Sqoop - a tool designed for efficiently transferring bulk data between Apache Hadoop and structured data stores such as relational databases. Flume - a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large log data amounts to HDFS. Database – directly accessible to Hadoop via the Sqoop based Microsoft SQL Server Connector for Apache Hadoop, data can be efficiently transferred to traditional relational data stores for replication, reporting, or other needs. Reporting – provides easily consumable reporting when combined with a database being fed from the Hadoop environment. Training These links point to online Windows Azure training labs where you can learn more about the individual ingredients described above. Hadoop Learning Resources (20+ tutorials and labs) Huge collection of resources for learning about all aspects of Apache Hadoop-based development on Windows Azure and the Hadoop and Windows Azure Ecosystems SQL Azure (7 labs) Microsoft SQL Azure delivers on the Microsoft Data Platform vision of extending the SQL Server capabilities to the cloud as web-based services, enabling you to store structured, semi-structured, and unstructured data. See my Windows Azure Resource Guide for more guidance on how to get started, including links web portals, training kits, samples, and blogs related to Windows Azure.

    Read the article

  • Master Data Management

    - by Logicalj
    I am looking for a very flexible, easy to integrate and dynamic application with as many features as possible for Master Data Management. As Master Data Management is used to Manage Operational Data, Analytical Data and Master Data so, I want guidance about "What is exactly expected from Master Data Management and What are the Basic and Challenging Scenarios to be covered or resolved in Master Data Management". Please guide me with all the possible aspects of Master Data Management like Data Cleansing, Data Management and Start Data Analyzing, etc.

    Read the article

  • What is the architectural name for the set of data that enables UI choices?

    - by Richard Collette
    I have separate service methods that fetch business object data and the data for UI selection input such as radio buttons, check-boxes, combo-boxes, etc. I want to name my service methods that fetch the selection data appropriately. I am assuming that Model and ViewModel would not be part of the name because the selection data is but a portion of the Model or ViewModel. What might this set of data be named such that I can name my service method?

    Read the article

  • Are there mapping utilities out there that will let me import geo position data (lat/long) and plot the points on a map?

    - by GregH
    I have a data file with a bunch of lat/long positions. Is there any mapping software out there (google maps, etc) that will allow me to import the positions from the file and plot them on a map? I would be this can be done through google maps but I'm not sure how to do it. I just want something that I can use quickly with a minimal amount of programming to do. I don't need to annotate anything. Just view where the points are on the map. I'm just wondering if there is something already available out there to import into google maps.

    Read the article

  • www-data can upload a file but cant move it after the upload action

    - by user70058
    I am currently running Apache and PHP on Ubuntu. I have a page where a user is supposed to upload a profile image. The action on the backend is supposed to work like this: Upload file to user directory -- WORKS! Refer to the uploaded file and create a thumbnail in directory thumbs -- DOES NOT WORK www-data has write access to directory thumbs. My guess is that www-data for some reason does not have proper access to the file that was uploaded. UPLOADED FILE PERMISSIONS -rw-r--r-- 1 www-data www-data 47057 Feb 8 23:24 0181c6e0973eb19cb0d98521a6fe1d9e71cd6daa.jpg THUMBS DIRECTORY PERMISSIONS drwxr-sr-x 2 www-data www-data 4096 Feb 8 23:23 thumbs Im at lost here. I'm new to Ubuntu as well. Any help would be greatly appreciated!

    Read the article

  • Hibernate many-to-many mapping not saved in pivot table

    - by vincent
    I having problems saving many to many relationships to a pivot table. The way the pojos are created is unfortunately a pretty long process which spans over a couple of different threads which work on the (to this point un-saved) object until it is finally persisted. I associate the related objects to one another right after they are created and when debugging I can see the List of related object populated with their respective objects. So basically all is fine to this point. When I persist the object everything get saved except the relations in the pivot table. mapping files: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN" "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd"> <hibernate-mapping package="com.thebeansgroup.jwinston.plugin.orm.hibernate.object"> <class name="ShowObject" table="show_object"> <id name="id"> <generator class="native" /> </id> <property name="name" /> <set cascade="all" inverse="true" name="venues" table="venue_show"> <key column="show_id"/> <many-to-many class="VenueObject"/> </set> </class> </hibernate-mapping> and the other <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN" "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd"> <hibernate-mapping package="com.thebeansgroup.jwinston.plugin.orm.hibernate.object"> <class name="VenueObject" table="venue_object"> <id name="id"> <generator class="native"/> </id> <property name="name"/> <property name="latitude" type="integer"/> <property name="longitude" type="integer"/> <set cascade="all" inverse="true" name="shows" table="venue_show"> <key column="venue_id"/> <many-to-many class="ShowObject"/> </set> </class> </hibernate-mapping> pojos: public class ShowObject extends OrmObject { private Long id; private String name; private Set venues; public ShowObject() { } public Long getId() { return id; } public void setId(Long id) { this.id = id; } public String getName() { return name; } public void setName(String name) { this.name = name; } public Set getVenues() { return venues; } public void setVenues(Set venues) { this.venues = venues; } } and the other: public class VenueObject extends OrmObject { private Long id; private String name; private int latitude; private int longitude; private Set shows = new HashSet(); public VenueObject() { } @Id @GeneratedValue(strategy = GenerationType.AUTO) public Long getId() { return id; } public void setId(Long id) { this.id = id; } public int getLatitude() { return latitude; } public void setLatitude(int latitude) { this.latitude = latitude; } public int getLongitude() { return longitude; } public void setLongitude(int longitude) { this.longitude = longitude; } public String getName() { return name; } public void setName(String name) { this.name = name; } public Set getShows() { return shows; } public void setShows(Set shows) { this.shows = shows; } } Might the problem be related to the lack of annotations?

    Read the article

  • Efficient mapping of game entity positions in Java

    - by byte
    In Java (Swing), say I've got a 2D game where I have various types of entities on the screen, such as a player, bad guys, powerups, etc. When the player moves across the screen, in order to do efficient checking of what is in the immediate vicinity of the player, I would think I'd want indexed access to the things that are near the character based on their position. For example, if player 'P' steps onto element 'E' in the following example... | | | | | | | | | |P| | | | |E| | | | | | | | | ... would be to do something like: if(player.getPosition().x == entity.getPosition().x && entity.getPosition.y == thing.getPosition().y) { //do something } And thats fine, but that implies that the entities hold their positions, and therefor if I had MANY entities on the screen I would have to loop through all possible entities available and check each ones position against the player position. This seems really inefficient especially if you start getting tons of entities. So, I would suspect I'd want some sort of map like Map<Point, Entity> map = new HashMap<Point, Entity>(); And store my point information there, so that I could access these entities in constant time. The only problem with that approach is that, if I want to move an entity to a different point on the screen, I'd have to search through the values of the HashMap for the entity I want to move (inefficient since I dont know its Point position ahead of time), and then once I've found it remove it from the HashMap, and re-insert it with the new position information. Any suggestions or advice on what sort of data structure / storage format I ought to be using here in order to have efficient access to Entities based on their position, as well as Position's based on the Entity?

    Read the article

  • Syncing Data with a Server using Silverlight and HTTP Polling Duplex

    - by dwahlin
    Many applications have the need to stay in-sync with data provided by a service. Although web applications typically rely on standard polling techniques to check if data has changed, Silverlight provides several interesting options for keeping an application in-sync that rely on server “push” technologies. A few years back I wrote several blog posts covering different “push” technologies available in Silverlight that rely on sockets or HTTP Polling Duplex. We recently had a project that looked like it could benefit from pushing data from a server to one or more clients so I thought I’d revisit the subject and provide some updates to the original code posted. If you’ve worked with AJAX before in Web applications then you know that until browsers fully support web sockets or other duplex (bi-directional communication) technologies that it’s difficult to keep applications in-sync with a server without relying on polling. The problem with polling is that you have to check for changes on the server on a timed-basis which can often be wasteful and take up unnecessary resources. With server “push” technologies, data can be pushed from the server to the client as it changes. Once the data is received, the client can update the user interface as appropriate. Using “push” technologies allows the client to listen for changes from the data but stay 100% focused on client activities as opposed to worrying about polling and asking the server if anything has changed. Silverlight provides several options for pushing data from a server to a client including sockets, TCP bindings and HTTP Polling Duplex.  Each has its own strengths and weaknesses as far as performance and setup work with HTTP Polling Duplex arguably being the easiest to setup and get going.  In this article I’ll demonstrate how HTTP Polling Duplex can be used in Silverlight 4 applications to push data and show how you can create a WCF server that provides an HTTP Polling Duplex binding that a Silverlight client can consume.   What is HTTP Polling Duplex? Technologies that allow data to be pushed from a server to a client rely on duplex functionality. Duplex (or bi-directional) communication allows data to be passed in both directions.  A client can call a service and the server can call the client. HTTP Polling Duplex (as its name implies) allows a server to communicate with a client without forcing the client to constantly poll the server. It has the benefit of being able to run on port 80 making setup a breeze compared to the other options which require specific ports to be used and cross-domain policy files to be exposed on port 943 (as with sockets and TCP bindings). Having said that, if you’re looking for the best speed possible then sockets and TCP bindings are the way to go. But, they’re not the only game in town when it comes to duplex communication. The first time I heard about HTTP Polling Duplex (initially available in Silverlight 2) I wasn’t exactly sure how it was any better than standard polling used in AJAX applications. I read the Silverlight SDK, looked at various resources and generally found the following definition unhelpful as far as understanding the actual benefits that HTTP Polling Duplex provided: "The Silverlight client periodically polls the service on the network layer, and checks for any new messages that the service wants to send on the callback channel. The service queues all messages sent on the client callback channel and delivers them to the client when the client polls the service." Although the previous definition explained the overall process, it sounded as if standard polling was used. Fortunately, Microsoft’s Scott Guthrie provided me with a more clear definition several years back that explains the benefits provided by HTTP Polling Duplex quite well (used with his permission): "The [HTTP Polling Duplex] duplex support does use polling in the background to implement notifications – although the way it does it is different than manual polling. It initiates a network request, and then the request is effectively “put to sleep” waiting for the server to respond (it doesn’t come back immediately). The server then keeps the connection open but not active until it has something to send back (or the connection times out after 90 seconds – at which point the duplex client will connect again and wait). This way you are avoiding hitting the server repeatedly – but still get an immediate response when there is data to send." After hearing Scott’s definition the light bulb went on and it all made sense. A client makes a request to a server to check for changes, but instead of the request returning immediately, it parks itself on the server and waits for data. It’s kind of like waiting to pick up a pizza at the store. Instead of calling the store over and over to check the status, you sit in the store and wait until the pizza (the request data) is ready. Once it’s ready you take it back home (to the client). This technique provides a lot of efficiency gains over standard polling techniques even though it does use some polling of its own as a request is initially made from a client to a server. So how do you implement HTTP Polling Duplex in your Silverlight applications? Let’s take a look at the process by starting with the server. Creating an HTTP Polling Duplex WCF Service Creating a WCF service that exposes an HTTP Polling Duplex binding is straightforward as far as coding goes. Add some one way operations into an interface, create a client callback interface and you’re ready to go. The most challenging part comes into play when configuring the service to properly support the necessary binding and that’s more of a cut and paste operation once you know the configuration code to use. To create an HTTP Polling Duplex service you’ll need to expose server-side and client-side interfaces and reference the System.ServiceModel.PollingDuplex assembly (located at C:\Program Files (x86)\Microsoft SDKs\Silverlight\v4.0\Libraries\Server on my machine) in the server project. For the demo application I upgraded a basketball simulation service to support the latest polling duplex assemblies. The service simulates a simple basketball game using a Game class and pushes information about the game such as score, fouls, shots and more to the client as the game changes over time. Before jumping too far into the game push service, it’s important to discuss two interfaces used by the service to communicate in a bi-directional manner. The first is called IGameStreamService and defines the methods/operations that the client can call on the server (see Listing 1). The second is IGameStreamClient which defines the callback methods that a server can use to communicate with a client (see Listing 2).   [ServiceContract(Namespace = "Silverlight", CallbackContract = typeof(IGameStreamClient))] public interface IGameStreamService { [OperationContract(IsOneWay = true)] void GetTeamData(); } Listing 1. The IGameStreamService interface defines server operations that can be called on the server.   [ServiceContract] public interface IGameStreamClient { [OperationContract(IsOneWay = true)] void ReceiveTeamData(List<Team> teamData); [OperationContract(IsOneWay = true, AsyncPattern=true)] IAsyncResult BeginReceiveGameData(GameData gameData, AsyncCallback callback, object state); void EndReceiveGameData(IAsyncResult result); } Listing 2. The IGameStreamClient interfaces defines client operations that a server can call.   The IGameStreamService interface is decorated with the standard ServiceContract attribute but also contains a value for the CallbackContract property.  This property is used to define the interface that the client will expose (IGameStreamClient in this example) and use to receive data pushed from the service. Notice that each OperationContract attribute in both interfaces sets the IsOneWay property to true. This means that the operation can be called and passed data as appropriate, however, no data will be passed back. Instead, data will be pushed back to the client as it’s available.  Looking through the IGameStreamService interface you can see that the client can request team data whereas the IGameStreamClient interface allows team and game data to be received by the client. One interesting point about the IGameStreamClient interface is the inclusion of the AsyncPattern property on the BeginReceiveGameData operation. I initially created this operation as a standard one way operation and it worked most of the time. However, as I disconnected clients and reconnected new ones game data wasn’t being passed properly. After researching the problem more I realized that because the service could take up to 7 seconds to return game data, things were getting hung up. By setting the AsyncPattern property to true on the BeginReceivedGameData operation and providing a corresponding EndReceiveGameData operation I was able to get around this problem and get everything running properly. I’ll provide more details on the implementation of these two methods later in this post. Once the interfaces were created I moved on to the game service class. The first order of business was to create a class that implemented the IGameStreamService interface. Since the service can be used by multiple clients wanting game data I added the ServiceBehavior attribute to the class definition so that I could set its InstanceContextMode to InstanceContextMode.Single (in effect creating a Singleton service object). Listing 3 shows the game service class as well as its fields and constructor.   [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple, InstanceContextMode = InstanceContextMode.Single)] public class GameStreamService : IGameStreamService { object _Key = new object(); Game _Game = null; Timer _Timer = null; Random _Random = null; Dictionary<string, IGameStreamClient> _ClientCallbacks = new Dictionary<string, IGameStreamClient>(); static AsyncCallback _ReceiveGameDataCompleted = new AsyncCallback(ReceiveGameDataCompleted); public GameStreamService() { _Game = new Game(); _Timer = new Timer { Enabled = false, Interval = 2000, AutoReset = true }; _Timer.Elapsed += new ElapsedEventHandler(_Timer_Elapsed); _Timer.Start(); _Random = new Random(); }} Listing 3. The GameStreamService implements the IGameStreamService interface which defines a callback contract that allows the service class to push data back to the client. By implementing the IGameStreamService interface, GameStreamService must supply a GetTeamData() method which is responsible for supplying information about the teams that are playing as well as individual players.  GetTeamData() also acts as a client subscription method that tracks clients wanting to receive game data.  Listing 4 shows the GetTeamData() method. public void GetTeamData() { //Get client callback channel var context = OperationContext.Current; var sessionID = context.SessionId; var currClient = context.GetCallbackChannel<IGameStreamClient>(); context.Channel.Faulted += Disconnect; context.Channel.Closed += Disconnect; IGameStreamClient client; if (!_ClientCallbacks.TryGetValue(sessionID, out client)) { lock (_Key) { _ClientCallbacks[sessionID] = currClient; } } currClient.ReceiveTeamData(_Game.GetTeamData()); //Start timer which when fired sends updated score information to client if (!_Timer.Enabled) { _Timer.Enabled = true; } } Listing 4. The GetTeamData() method subscribes a given client to the game service and returns. The key the line of code in the GetTeamData() method is the call to GetCallbackChannel<IGameStreamClient>().  This method is responsible for accessing the calling client’s callback channel. The callback channel is defined by the IGameStreamClient interface shown earlier in Listing 2 and used by the server to communicate with the client. Before passing team data back to the client, GetTeamData() grabs the client’s session ID and checks if it already exists in the _ClientCallbacks dictionary object used to track clients wanting callbacks from the server. If the client doesn’t exist it adds it into the collection. It then pushes team data from the Game class back to the client by calling ReceiveTeamData().  Since the service simulates a basketball game, a timer is then started if it’s not already enabled which is then used to randomly send data to the client. When the timer fires, game data is pushed down to the client. Listing 5 shows the _Timer_Elapsed() method that is called when the timer fires as well as the SendGameData() method used to send data to the client. void _Timer_Elapsed(object sender, ElapsedEventArgs e) { int interval = _Random.Next(3000, 7000); lock (_Key) { _Timer.Interval = interval; _Timer.Enabled = false; } SendGameData(_Game.GetGameData()); } private void SendGameData(GameData gameData) { var cbs = _ClientCallbacks.Where(cb => ((IContextChannel)cb.Value).State == CommunicationState.Opened); for (int i = 0; i < cbs.Count(); i++) { var cb = cbs.ElementAt(i).Value; try { cb.BeginReceiveGameData(gameData, _ReceiveGameDataCompleted, cb); } catch (TimeoutException texp) { //Log timeout error } catch (CommunicationException cexp) { //Log communication error } } lock (_Key) _Timer.Enabled = true; } private static void ReceiveGameDataCompleted(IAsyncResult result) { try { ((IGameStreamClient)(result.AsyncState)).EndReceiveGameData(result); } catch (CommunicationException) { // empty } catch (TimeoutException) { // empty } } LIsting 5. _Timer_Elapsed is used to simulate time in a basketball game. When _Timer_Elapsed() fires the SendGameData() method is called which iterates through the clients wanting to be notified of changes. As each client is identified, their respective BeginReceiveGameData() method is called which ultimately pushes game data down to the client. Recall that this method was defined in the client callback interface named IGameStreamClient shown earlier in Listing 2. Notice that BeginReceiveGameData() accepts _ReceiveGameDataCompleted as its second parameter (an AsyncCallback delegate defined in the service class) and passes the client callback as the third parameter. The initial version of the sample application had a standard ReceiveGameData() method in the client callback interface. However, sometimes the client callbacks would work properly and sometimes they wouldn’t which was a little baffling at first glance. After some investigation I realized that I needed to implement an asynchronous pattern for client callbacks to work properly since 3 – 7 second delays are occurring as a result of the timer. Once I added the BeginReceiveGameData() and ReceiveGameDataCompleted() methods everything worked properly since each call was handled in an asynchronous manner. The final task that had to be completed to get the server working properly with HTTP Polling Duplex was adding configuration code into web.config. In the interest of brevity I won’t post all of the code here since the sample application includes everything you need. However, Listing 6 shows the key configuration code to handle creating a custom binding named pollingDuplexBinding and associate it with the service’s endpoint.   <bindings> <customBinding> <binding name="pollingDuplexBinding"> <binaryMessageEncoding /> <pollingDuplex maxPendingSessions="2147483647" maxPendingMessagesPerSession="2147483647" inactivityTimeout="02:00:00" serverPollTimeout="00:05:00"/> <httpTransport /> </binding> </customBinding> </bindings> <services> <service name="GameService.GameStreamService" behaviorConfiguration="GameStreamServiceBehavior"> <endpoint address="" binding="customBinding" bindingConfiguration="pollingDuplexBinding" contract="GameService.IGameStreamService"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>   Listing 6. Configuring an HTTP Polling Duplex binding in web.config and associating an endpoint with it. Calling the Service and Receiving “Pushed” Data Calling the service and handling data that is pushed from the server is a simple and straightforward process in Silverlight. Since the service is configured with a MEX endpoint and exposes a WSDL file, you can right-click on the Silverlight project and select the standard Add Service Reference item. After the web service proxy is created you may notice that the ServiceReferences.ClientConfig file only contains an empty configuration element instead of the normal configuration elements created when creating a standard WCF proxy. You can certainly update the file if you want to read from it at runtime but for the sample application I fed the service URI directly to the service proxy as shown next: var address = new EndpointAddress("http://localhost.:5661/GameStreamService.svc"); var binding = new PollingDuplexHttpBinding(); _Proxy = new GameStreamServiceClient(binding, address); _Proxy.ReceiveTeamDataReceived += _Proxy_ReceiveTeamDataReceived; _Proxy.ReceiveGameDataReceived += _Proxy_ReceiveGameDataReceived; _Proxy.GetTeamDataAsync(); This code creates the proxy and passes the endpoint address and binding to use to its constructor. It then wires the different receive events to callback methods and calls GetTeamDataAsync().  Calling GetTeamDataAsync() causes the server to store the client in the server-side dictionary collection mentioned earlier so that it can receive data that is pushed.  As the server-side timer fires and game data is pushed to the client, the user interface is updated as shown in Listing 7. Listing 8 shows the _Proxy_ReceiveGameDataReceived() method responsible for handling the data and calling UpdateGameData() to process it.   Listing 7. The Silverlight interface. Game data is pushed from the server to the client using HTTP Polling Duplex. void _Proxy_ReceiveGameDataReceived(object sender, ReceiveGameDataReceivedEventArgs e) { UpdateGameData(e.gameData); } private void UpdateGameData(GameData gameData) { //Update Score this.tbTeam1Score.Text = gameData.Team1Score.ToString(); this.tbTeam2Score.Text = gameData.Team2Score.ToString(); //Update ball visibility if (gameData.Action != ActionsEnum.Foul) { if (tbTeam1.Text == gameData.TeamOnOffense) { AnimateBall(this.BB1, this.BB2); } else //Team 2 { AnimateBall(this.BB2, this.BB1); } } if (this.lbActions.Items.Count > 9) this.lbActions.Items.Clear(); this.lbActions.Items.Add(gameData.LastAction); if (this.lbActions.Visibility == Visibility.Collapsed) this.lbActions.Visibility = Visibility.Visible; } private void AnimateBall(Image onBall, Image offBall) { this.FadeIn.Stop(); Storyboard.SetTarget(this.FadeInAnimation, onBall); Storyboard.SetTarget(this.FadeOutAnimation, offBall); this.FadeIn.Begin(); } Listing 8. As the server pushes game data, the client’s _Proxy_ReceiveGameDataReceived() method is called to process the data. In a real-life application I’d go with a ViewModel class to handle retrieving team data, setup data bindings and handle data that is pushed from the server. However, for the sample application I wanted to focus on HTTP Polling Duplex and keep things as simple as possible.   Summary Silverlight supports three options when duplex communication is required in an application including TCP bindins, sockets and HTTP Polling Duplex. In this post you’ve seen how HTTP Polling Duplex interfaces can be created and implemented on the server as well as how they can be consumed by a Silverlight client. HTTP Polling Duplex provides a nice way to “push” data from a server while still allowing the data to flow over port 80 or another port of your choice.   Sample Application Download

    Read the article

  • Oracle Enterprise Data Quality Adds Global Address Verification Capabilities for Greater Accuracy and Broader Location Coverage

    - by Mala Narasimharajan
    Data quality – has many flavors to it.  Product, Customer – you name the data domain and there’s data quality associated with it.  Address verification and data quality are a little different.  in that there is a tremendous amount of variation as well as nuance attached to it.  Specifically, what makes address verification challenging is that more often than not, addresses are incomplete, riddled with misspellings, incorrect postal codes are assigned to locations or non-address items are present.  Almost all data has locations, and accurate locations power a wealth of business processes: Customer Relationship Management, data quality, delivery of materials, goods or services, fraud detection, insurance risk assessment, data analytics, store and territory planning, and much more. Oracle Address Verification Server provides location-based services as well as deeper parsing and analysis capabilities for Oracle Enterprise Data Quality.  Specifically, Pre-integrated with the EDQ platform, Oracle Address Verification Server provides robust parsing, validation, as well as specialized location information for over 240 countries – all populated countries on Earth.  Oracle Enterprise Data Quality (EDQ) is a data quality platform, dedicated to address the distinct challenges of customer and product data quality, and performs advanced data profiling to identify and measure poor quality data and identify rule requirements, as well as semantic and pattern-based recognition to accurately parse and standardize data that is poorly structured.   EDQ is integrated with Oracle Master Data Management, including Oracle Customer Hub and Oracle Product Hub, as well as Oracle Data Integrator Enterprise Edition and Oracle CRM.  Address Verification Server provides key address verification services for Oracle CRM and Oracle Customer Hub.  In addition, Address Verification Server provides greater accuracy when handling address data due to its expanded sources and extensible knowledge repository, solid parsing across locales and countries as well as  adept handling of extraneous data in address fields.  For more information on Oracle Address Verification Server visit:  http://bit.ly/GMUE4H and http://bit.ly/GWf7U6

    Read the article

  • How to create mapping for a List<SomeNativeType> in FluentNhibernate ?

    - by Mahesh Velaga
    Hi all, I am trying to create a mapping file for the following Model using Fluent NHibernate. But, I am not sure of how to do the mapping for the List in the mapping file. public class MyClass { public virtual Guid Id { get; set; } public virtual string Name { get; set; } public virtual List<string> MagicStrings { get; set; } } public class EnvironmentMapping : ClassMap<Models.Environment> { public EnvironmentMapping() { Id(x => x.Id); Map(x => x.Name); //HasMany(x => string) What should this be ? } } Help in this regard is much appreciated. Thanks!

    Read the article

  • How can I map "insert='false' update='false'" on a composite-id key-property which is also used in a one-to-many FK?

    - by Gweebz
    I am working on a legacy code base with an existing DB schema. The existing code uses SQL and PL/SQL to execute queries on the DB. We have been tasked with making a small part of the project database-engine agnostic (at first, change everything eventually). We have chosen to use Hibernate 3.3.2.GA and "*.hbm.xml" mapping files (as opposed to annotations). Unfortunately, it is not feasible to change the existing schema because we cannot regress any legacy features. The problem I am encountering is when I am trying to map a uni-directional, one-to-many relationship where the FK is also part of a composite PK. Here are the classes and mapping file... CompanyEntity.java public class CompanyEntity { private Integer id; private Set<CompanyNameEntity> names; ... } CompanyNameEntity.java public class CompanyNameEntity implements Serializable { private Integer id; private String languageId; private String name; ... } CompanyNameEntity.hbm.xml <?xml version="1.0"?> <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN" "http://www.jboss.org/dtd/hibernate/hibernate-mapping-3.0.dtd"> <hibernate-mapping package="com.example"> <class name="com.example.CompanyEntity" table="COMPANY"> <id name="id" column="COMPANY_ID"/> <set name="names" table="COMPANY_NAME" cascade="all-delete-orphan" fetch="join" batch-size="1" lazy="false"> <key column="COMPANY_ID"/> <one-to-many entity-name="vendorName"/> </set> </class> <class entity-name="companyName" name="com.example.CompanyNameEntity" table="COMPANY_NAME"> <composite-id> <key-property name="id" column="COMPANY_ID"/> <key-property name="languageId" column="LANGUAGE_ID"/> </composite-id> <property name="name" column="NAME" length="255"/> </class> </hibernate-mapping> This code works just fine for SELECT and INSERT of a Company with names. I encountered a problem when I tried to update and existing record. I received a BatchUpdateException and after looking through the SQL logs I saw Hibernate was trying to do something stupid... update COMPANY_NAME set COMPANY_ID=null where COMPANY_ID=? Hibernate was trying to dis-associate child records before updating them. The problem is that this field is part of the PK and not-nullable. I found the quick solution to make Hibernate not do this is to add "not-null='true'" to the "key" element in the parent mapping. SO now may mapping looks like this... CompanyNameEntity.hbm.xml <?xml version="1.0"?> <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN" "http://www.jboss.org/dtd/hibernate/hibernate-mapping-3.0.dtd"> <hibernate-mapping package="com.example"> <class name="com.example.CompanyEntity" table="COMPANY"> <id name="id" column="COMPANY_ID"/> <set name="names" table="COMPANY_NAME" cascade="all-delete-orphan" fetch="join" batch-size="1" lazy="false"> <key column="COMPANY_ID" not-null="true"/> <one-to-many entity-name="vendorName"/> </set> </class> <class entity-name="companyName" name="com.example.CompanyNameEntity" table="COMPANY_NAME"> <composite-id> <key-property name="id" column="COMPANY_ID"/> <key-property name="languageId" column="LANGUAGE_ID"/> </composite-id> <property name="name" column="NAME" length="255"/> </class> </hibernate-mapping> This mapping gives the exception... org.hibernate.MappingException: Repeated column in mapping for entity: companyName column: COMPANY_ID (should be mapped with insert="false" update="false") My problem now is that I have tryed to add these attributes to the key-property element but that is not supported by the DTD. I have also tryed changing it to a key-many-to-one element but that didn't work either. So... How can I map "insert='false' update='false'" on a composite-id key-property which is also used in a one-to-many FK?

    Read the article

  • Making Spring Data JPA work with DataNucleus (GAE) (Spring Boot)

    - by xybrek
    There are several hints that Spring Data works with Google App Engine like: http://tommysiu.blogspot.com/2014/01/spring-data-on-gae-part-1.html http://blog.eisele.net/2009/07/spring-300m3-on-google-appengine-with.html Much of the examples are not "Spring Boot" so I've been trying to retrofit things with it. However, I've been stuck with this error for days and days: [INFO] Caused by: java.lang.NullPointerException [INFO] at org.datanucleus.api.jpa.metamodel.SingularAttributeImpl.isVersion(SingularAttributeImpl.java:79) [INFO] at org.springframework.data.jpa.repository.support.JpaMetamodelEntityInformation.findVersionAttribute(JpaMetamodelEntityInformation.java:102) [INFO] at org.springframework.data.jpa.repository.support.JpaMetamodelEntityInformation.<init>(JpaMetamodelEntityInformation.java:79) [INFO] at org.springframework.data.jpa.repository.support.JpaEntityInformationSupport.getMetadata(JpaEntityInformationSupport.java:65) [INFO] at org.springframework.data.jpa.repository.support.JpaRepositoryFactory.getEntityInformation(JpaRepositoryFactory.java:149) [INFO] at org.springframework.data.jpa.repository.support.JpaRepositoryFactory.getTargetRepository(JpaRepositoryFactory.java:88) [INFO] at org.springframework.data.jpa.repository.support.JpaRepositoryFactory.getTargetRepository(JpaRepositoryFactory.java:68) [INFO] at org.springframework.data.repository.core.support.RepositoryFactorySupport.getRepository(RepositoryFactorySupport.java:158) [INFO] at org.springframework.data.repository.core.support.RepositoryFactoryBeanSupport.initAndReturn(RepositoryFactoryBeanSupport.java:224) [INFO] at org.springframework.data.repository.core.support.RepositoryFactoryBeanSupport.afterPropertiesSet(RepositoryFactoryBeanSupport.java:210) [INFO] at org.springframework.data.jpa.repository.support.JpaRepositoryFactoryBean.afterPropertiesSet(JpaRepositoryFactoryBean.java:92) [INFO] at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory$6.run(AbstractAutowireCapableBeanFactory.java:1602) [INFO] at java.security.AccessController.doPrivileged(Native Method) [INFO] at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeInitMethods(AbstractAutowireCapableBeanFactory.java:1599) [INFO] at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1549) [INFO] ... 40 more Where, I'm trying to use Spring Data JPA with DataNucleus/AppEngine: @Configuration @ComponentScan @EnableJpaRepositories @EnableTransactionManagement class JpaApplicationConfig { private static final Logger logger = Logger .getLogger(JpaApplicationConfig.class.getName()); @Bean public EntityManagerFactory entityManagerFactory() { logger.info("Loading Entity Manager..."); return Persistence .createEntityManagerFactory("transactions-optional"); } @Bean public PlatformTransactionManager transactionManager() { logger.info("Loading Transaction Manager..."); final JpaTransactionManager txManager = new JpaTransactionManager(); txManager.setEntityManagerFactory(entityManagerFactory()); return txManager; } } I've tested Persistence.createEntityManagerFactory("transactions-optional"); to see if the app can persist using this EMF, well, it does, so I am sure that this EMF works fine. The problem is the "wiring" up with the Spring Data JPA, can anybody help?

    Read the article

  • Parse and read data frame in C?

    - by user253656
    I am writing a program that reads the data from the serial port on Linux. The data are sent by another device with the following frame format: |start | Command | Data | CRC | End | |0x02 | 0x41 | (0-127 octets) | | 0x03| ---------------------------------------------------- The Data field contains 127 octets as shown and octet 1,2 contains one type of data; octet 3,4 contains another data. I need to get these data I know how to write and read data to and from a serial port in Linux, but it is just to write and read a simple string (like "ABD") My issue is that I do not know how to parse the data frame formatted as above so that I can: get the data in octet 1,2 in the Data field get the data in octet 3,4 in the Data field get the value in CRC field to check the consistency of the data Here the sample snip code that read and write a simple string from and to a serial port in Linux: int writeport(int fd, char *chars) { int len = strlen(chars); chars[len] = 0x0d; // stick a <CR> after the command chars[len+1] = 0x00; // terminate the string properly int n = write(fd, chars, strlen(chars)); if (n < 0) { fputs("write failed!\n", stderr); return 0; } return 1; } int readport(int fd, char *result) { int iIn = read(fd, result, 254); result[iIn-1] = 0x00; if (iIn < 0) { if (errno == EAGAIN) { printf("SERIAL EAGAIN ERROR\n"); return 0; } else { printf("SERIAL read error %d %s\n", errno, strerror(errno)); return 0; } } return 1; } Does anyone please have some ideas? Thanks all.

    Read the article

  • Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 1

    - by rajbk
    The Open Data Protocol, referred to as OData, is a new data-sharing standard that breaks down silos and fosters an interoperative ecosystem for data consumers (clients) and producers (services) that is far more powerful than currently possible. It enables more applications to make sense of a broader set of data, and helps every data service and client add value to the whole ecosystem. WCF Data Services (previously known as ADO.NET Data Services), then, was the first Microsoft technology to support the Open Data Protocol in Visual Studio 2008 SP1. It provides developers with client libraries for .NET, Silverlight, AJAX, PHP and Java. Microsoft now also supports OData in SQL Server 2008 R2, Windows Azure Storage, Excel 2010 (through PowerPivot), and SharePoint 2010. Many other other applications in the works. * This post walks you through how to create an OData feed, define a shape for the data and pre-filter the data using Visual Studio 2010, WCF Data Services and the Entity Framework. A sample project is attached at the bottom of Part 2 of this post. Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 2 Create the Web Application File –› New –› Project, Select “ASP.NET Empty Web Application” Add the Entity Data Model Right click on the Web Application in the Solution Explorer and select “Add New Item..” Select “ADO.NET Entity Data Model” under "Data”. Name the Model “Northwind” and click “Add”.   In the “Choose Model Contents”, select “Generate Model From Database” and click “Next”   Define a connection to your database containing the Northwind database in the next screen. We are going to expose the Products table through our OData feed. Select “Products” in the “Choose your Database Object” screen.   Click “Finish”. We are done creating our Entity Data Model. Save the Northwind.edmx file created. Add the WCF Data Service Right click on the Web Application in the Solution Explorer and select “Add New Item..” Select “WCF Data Service” from the list and call the service “DataService” (creative, huh?). Click “Add”.   Enable Access to the Data Service Open the DataService.svc.cs class. The class is well commented and instructs us on the next steps. public class DataService : DataService< /* TODO: put your data source class name here */ > { // This method is called only once to initialize service-wide policies. public static void InitializeService(DataServiceConfiguration config) { // TODO: set rules to indicate which entity sets and service operations are visible, updatable, etc. // Examples: // config.SetEntitySetAccessRule("MyEntityset", EntitySetRights.AllRead); // config.SetServiceOperationAccessRule("MyServiceOperation", ServiceOperationRights.All); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } } Replace the comment that starts with “/* TODO:” with “NorthwindEntities” (the entity container name of the Model we created earlier).  WCF Data Services is initially locked down by default, FTW! No data is exposed without you explicitly setting it. You have explicitly specify which Entity sets you wish to expose and what rights are allowed by using the SetEntitySetAccessRule. The SetServiceOperationAccessRule on the other hand sets rules for a specified operation. Let us define an access rule to expose the Products Entity we created earlier. We use the EnititySetRights.AllRead since we want to give read only access. Our modified code is shown below. public class DataService : DataService<NorthwindEntities> { public static void InitializeService(DataServiceConfiguration config) { config.SetEntitySetAccessRule("Products", EntitySetRights.AllRead); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } } We are done setting up our ODataFeed! Compile your project. Right click on DataService.svc and select “View in Browser” to see the OData feed. To view the feed in IE, you must make sure that "Feed Reading View" is turned off. You set this under Tools -› Internet Options -› Content tab.   If you navigate to “Products”, you should see the Products feed. Note also that URIs are case sensitive. ie. Products work but products doesn’t.   Filtering our data OData has a set of system query operations you can use to perform common operations against data exposed by the model. For example, to see only Products in CategoryID 2, we can use the following request: /DataService.svc/Products?$filter=CategoryID eq 2 At the time of this writing, supported operations are $orderby, $top, $skip, $filter, $expand, $format†, $select, $inlinecount. Pre-filtering our data using Query Interceptors The Product feed currently returns all Products. We want to change that so that it contains only Products that have not been discontinued. WCF introduces the concept of interceptors which allows us to inject custom validation/policy logic into the request/response pipeline of a WCF data service. We will use a QueryInterceptor to pre-filter the data so that it returns only Products that are not discontinued. To create a QueryInterceptor, write a method that returns an Expression<Func<T, bool>> and mark it with the QueryInterceptor attribute as shown below. [QueryInterceptor("Products")] public Expression<Func<Product, bool>> OnReadProducts() { return o => o.Discontinued == false; } Viewing the feed after compilation will only show products that have not been discontinued. We also confirm this by looking at the WHERE clause in the SQL generated by the entity framework. SELECT [Extent1].[ProductID] AS [ProductID], ... ... [Extent1].[Discontinued] AS [Discontinued] FROM [dbo].[Products] AS [Extent1] WHERE 0 = [Extent1].[Discontinued] Other examples of Query/Change interceptors can be seen here including an example to filter data based on the identity of the authenticated user. We are done pre-filtering our data. In the next part of this post, we will see how to shape our data. Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 2 Foot Notes * http://msdn.microsoft.com/en-us/data/aa937697.aspx † $format did not work for me. The way to get a Json response is to include the following in the  request header “Accept: application/json, text/javascript, */*” when making the request. This is easily done with most JavaScript libraries.

    Read the article

  • No mapping between account names and security IDs was done

    - by ybbest
    When I try to install SQL Server 2008 R2, I got the error “No mapping between account names and security IDs was done” when I try to set the SQL Server Database engine services identity to a domain user name. The reason I am getting the error is that I create a base VM forgot to run sysprep, before I copy the VM and used to install SQL servers. You need to run the sysprep as follows: References: How to Sysprep in Windows Server 2008 R2 and Windows 7

    Read the article

  • Introducción a ENUM (E.164 Number Mapping)

    - by raul.goycoolea
    E.164 Number Mapping (ENUM o Enum) se diseñó para resolver la cuestión de como se pueden encontrar servicios de internet mediante un número telefónico, es decir cómo se pueden usar los los teléfonos, que solamente tienen 12 teclas, para acceder a servicios de Internet. La parte más básica de ENUM es por tanto la convergencia de las redes del STDP y la IP; ENUM hace que pueda haber una correspondencia entre un número telefónico y un identificador de Internet. En síntesis, Enum es un conjunto de protocolos para convertir números E.164 en URIs, y viceversa, de modo que el sistema de numeración E.164 tenga una función de correspondencia con las direcciones URI en Internet. Esta función es necesaria porque un número telefónico no tiene sentido en el mundo IP, ni una dirección IP tiene sentido en las redes telefónicas. Así, mediante esta técnica, las comunicaciones cuyo destino se marque con un número E.164, puedan terminar en el identificador correcto (número E.164 si termina en el STDP, o URI si termina en redes IP). La solución técnica de mirar en una base de datos cual es el identificador de destino tiene consecuencias muy interesantes, como que la llamada se pueda terminar donde desee el abonado llamado. Esta es una de las características que ofrece ENUM : el destino concreto, el terminal o terminales de terminación, no lo decide quien inicia la llamada o envía el mensaje sino la persona que es llamada o recibe el mensaje, que ha escrito sus preferencias en una base de datos. En otras palabras, el destinatario de la llamada decide cómo quiere ser contactado, tanto si lo que se le comunica es un email, o un sms, o telefax, o una llamada de voz. Cuando alguien quiera llamarle a usted, lo que tiene que hacer el llamante es seleccionar su nombre (el del llamado) en la libreta de direcciones del terminal o marcar su número ENUM. Una aplicación informática obtendrá de una base de datos los datos de contacto y disponibilidad que usted decidió. Y el mensaje le será remitido tal como usted especificó en dicha base de datos. Esto es algo nuevo que permite que usted, como persona llamada, defina sus preferencias de terminación para cualquier tipo de contenido. Por ejemplo, usted puede querer que todos los emails le sean enviados como sms o que los mensajes de voz se le remitan como emails; las comunicaciones ya no dependen de donde esté usted o deque tipo de terminal utiliza (teléfono, pda, internet). Además, con ENUM usted puede gestionar la portabilidad de sus números fijos y móviles. ENUM emplea una técnica de búsqueda indirecta en una base de datos que tiene los registros NAPTR ("Naming Authority Pointer Resource Records" tal como lo define el RFC 2915), y que utiliza el número telefónico Enum como clave de búsqueda, para obtener qué URIs corresponden a cada número telefónico. La base de datos que almacena estos registros es del tipo DNS.Si bien en uno de sus diversos usos sirve para facilitar las llamadas de usuarios de VoIP entre redes tradicionales del STDP y redes IP, debe tenerse en cuenta que ENUM no es una función de VoIP sino que es un mecanismo de conversión entre números/identificadores. Por tanto no debe ser confundido con el uso normal de enrutar las llamadas de VoIP mediante los protocolos SIP y H.323. ENUM puede ser muy útil para aquellas organizaciones que quieran tener normalizada la manera en que las aplicaciones acceden a los datos de comunicación de cada usuario. FundamentosPara que la convergencia entre el Sistema Telefónico Disponible al Público (STDP) y la Telefonía por Internet o Voz sobre IP (VoIP) y que el desarrollo de nuevos servicios multimedia tengan menos obstáculos, es fundamental que los usuarios puedan realizar sus llamadas tal como están acostumbrados a hacerlo, marcando números. Para eso, es preciso que haya un sistema universal de correspondencia de número a direcciones IP (y viceversa) y que las diferentes redes se puedan interconectar. Hay varias fórmulas que permiten que un número telefónico sirva para establecer comunicación con múltiples servicios. Una de estas fórmulas es el Electronic Number Mapping System ENUM, normalizado por el grupo de tareas especiales de ingeniería en Internet (IETF, Internet engineering task force), del que trata este artículo, que emplea la numeración E.164, los protocolos y la infraestructura telefónica para acceder indirectamente a diferentes servicios. Por tanto, se accede a un servicio mediante un identificador numérico universal: un número telefónico tradicional. ENUM permite comunicar las direcciones del mundo IP con las del mundo telefónico, y viceversa, sin problemas. Antes de entrar en mayores profundidades, conviene dar una breve pincelada para aclarar cómo se organiza la correspondencia entre números o URI. Para ello imaginemos una llamada que se inicia desde el servicio telefónico tradicional con destino a un número Enum. En ENUM Público, el abonado o usuario Enum a quien va destinada lallamada, habrá decidido incluir en la base de datos Enum uno o varios URI o números E.164, que forman una lista con sus preferencias para terminar la llamada. Y el sistema como se explica más adelante, elegirá cual es el número o URI adecuado para dicha terminación. Por tanto como resultado de la consulta a la base dedatos Enum siempre se da una relación unívoca entre el número Enum marcado y el de terminación, conforme a los deseos de la persona llamada.Variedades de ENUMUna posible fuente de confusión cuando se trata sobre ENUM es la variedad de soluciones o sistemas que emplean este calificativo. Lo habitual es que cuando se haga una referencia a ENUM se trate de uno de los siguientes casos: ENUM Público: Es la visión original de ENUM, como base de datos pública, parecida a un directorio, donde el abonado "opta" a ser incluido en la base de datos, que está gestionada en el dominio e164.arpa, delegando a cada país la gestión de la base de datos y la numeración. También se conoce como ENUM de usuario. Carrier ENUM, o ENUM Infraestructura, o de Operador: Cuando grupos de operadores proveedores de servicios de comunicaciones electrónicas acuerdan compartir la información de los abonados por medio de ENUM mediante acuerdos privados. En este caso son los operadores quienes controlan la información del abonado en vez de hacerlo (optar) los propios abonados. Carrier ENUM o ENUM de Operador también se conoce como Infrastructure ENUM o ENUM Infraestructura, y está siendo normalizado por IETF para la interconexión de VoIP (mediante acuerdos de peering). Como se explicará en la correspondiente sección, también se puede utilizar para la portabilidad o conservación de número. ENUM Privado: Un operador de telefonía o de VoIP, o un ISP, o un gran usuario, puede utilizar las técnicas de ENUM en sus redes y en las de sus clientes sin emplear DNS públicos, con DNS privados o internos. Resulta fácil imaginar como puede utilizarse esta técnica para que compañías multinacionales, o bancos, o agencias de viajes, tengan planes de numeración muy coherentes y eficaces. Cómo funciona ENUMPara conocer cómo funciona Enum, le remitimos a la página correspondiente a ENUM Público, puesto que esa variedad de Enum es la típica, la que dió lugar a todos los procedimientos y normas de IETF .Más detalles sobre: @page { margin: 0.79in } P { margin-bottom: 0.08in } H4 { margin-bottom: 0.08in } H4.ctl { font-family: "Lohit Hindi" } A:link { so-language: zxx } -- ENUM Público. En esta página se explica con cierto detalle como funciona Enum Carrier ENUM o ENUM de Operador ENUM Privado Normas técnicas: RFC 2915: NAPTR RR. The Naming Authority Pointer (NAPTR) DNS Resource Record RFC 3761: ENUM Protocol. The E.164 to Uniform Resource Identifiers (URI) Dynamic Delegation Discovery System (DDDS) Application (ENUM). (obsoletes RFC 2916). RFC 3762: Usage of H323 addresses in ENUM Protocol RFC 3764: Usage of SIP addresses in ENUM Protocol RFC 3824: Using E.164 numbers with SIP RFC 4769: IANA Registration for an Enumservice Containing Public Switched Telephone Network (PSTN) Signaling Information RFC 3026: Berlin Liaison Statement RFC 3953: Telephone Number Mapping (ENUM) Service Registration for Presence Services RFC 2870: Root Name Server Operational Requirements RFC 3482: Number Portability in the Global Switched Telephone Network (GSTN): An Overview RFC 2168: Resolution of Uniform Resource Identifiers using the Domain Name System Organizaciones relacionadas con ENUM RIPE - Adimistrador del nivel 0 de ENUM e164.arpa. ITU-T TSB - Unión Internacional de Telecomunicaciones ETSI - European Telecommunications Standards Institute VisionNG - Administrador del rango ENUM 878-10 IETF ENUM Chapter

    Read the article

  • An XEvent a Day (20 of 31) – Mapping Extended Events to SQL Trace

    - by Jonathan Kehayias
    One of the biggest problems that I had with getting into Extended Events was mapping the Events available in Extended Events to the Events that I knew from SQL Trace. With so many Events to choose from in Extended Events, and a different organization of the Events, it is really easy to get lost when trying to find things. Add to this the fact that Event names don’t match up to Trace Event names in SQL Server 2008 and 2008 R2, and not all of the Events from Trace are implemented in SQL Server 2008...(read more)

    Read the article

  • What advantages do we have when creating a separate mapping table for two relational tables

    - by Pankaj Upadhyay
    In various open source CMS, I have noticed that there is a separate table for mapping two relational tables. Like for categories and products, there is a separate product_category_mapping table. This table just has a primary key and two foreign keys from the categories and product tables. My question is what are the benefits of this database design rather than just linking the tables directly by defining a foreign key in either table? Is it just matter of convenience?

    Read the article

  • Google Maps Developers Live: Mapping with Style

    Google Maps Developers Live: Mapping with Style Compelling and informative map visualizations require simple, yet useful, maps... and some beautiful data. For this episode of Google Maps Developers Live, Paul Saxman discusses how he designed a few of his favorite map styles, and shares a few of his tools and techniques for designing maps for visualizations. From: GoogleDevelopers Views: 0 0 ratings Time: 30:00 More in Education

    Read the article

  • JavaScript Data Binding Frameworks

    - by dwahlin
    Data binding is where it’s at now days when it comes to building client-centric Web applications. Developers experienced with desktop frameworks like WPF or web frameworks like ASP.NET, Silverlight, or others are used to being able to take model objects containing data and bind them to UI controls quickly and easily. When moving to client-side Web development the data binding story hasn’t been great since neither HTML nor JavaScript natively support data binding. This means that you have to write code to place data in a control and write code to extract it. Although it’s certainly feasible to do it from scratch (many of us have done it this way for years), it’s definitely tedious and not exactly the best solution when it comes to maintenance and re-use. Over the last few years several different script libraries have been released to simply the process of binding data to HTML controls. In fact, the subject of data binding is becoming so popular that it seems like a new script library is being released nearly every week. Many of the libraries provide MVC/MVVM pattern support in client-side JavaScript apps and some even integrate directly with server frameworks like Node.js. Here’s a quick list of a few of the available libraries that support data binding (if you like any others please add a comment and I’ll try to keep the list updated): AngularJS MVC framework for data binding (although closely follows the MVVM pattern). Backbone.js MVC framework with support for models, key/value binding, custom events, and more. Derby Provides a real-time environment that runs in the browser an in Node.js. The library supports data binding and templates. Ember Provides support for templates that automatically update as data changes. JsViews Data binding framework that provides “interactive data-driven views built on top of JsRender templates”. jQXB Expression Binder Lightweight jQuery plugin that supports bi-directional data binding support. KnockoutJS MVVM framework with robust support for data binding. For an excellent look at using KnockoutJS check out John Papa’s course on Pluralsight. Meteor End to end framework that uses Node.js on the server and provides support for data binding on  the client. Simpli5 JavaScript framework that provides support for two-way data binding. WinRT with HTML5/JavaScript If you’re building Windows 8 applications using HTML5 and JavaScript there’s built-in support for data binding in the WinJS library.   I won’t have time to write about each of these frameworks, but in the next post I’m going to talk about my (current) favorite when it comes to client-side JavaScript data binding libraries which is AngularJS. AngularJS provides an extremely clean way – in my opinion - to extend HTML syntax to support data binding while keeping model objects (the objects that hold the data) free from custom framework method calls or other weirdness. While I’m writing up the next post, feel free to visit the AngularJS developer guide if you’d like additional details about the API and want to get started using it.

    Read the article

  • Protect Data and Save Money? Learn How Best-in-Class Organizations do Both

    - by roxana.bradescu
    Databases contain nearly two-thirds of the sensitive information that must be protected as part of any organization's overall approach to security, risk management, and compliance. Solutions for protecting data housed in databases vary from encrypting data at the application level to defense-in-depth protection of the database itself. So is there a difference? Absolutely! According to new research from the Aberdeen Group, Best-in-Class organizations experience fewer data breaches and audit deficiencies - at lower cost -- by deploying database security solutions. And the results are dramatic: Aberdeen found that organizations encrypting data within their databases achieved 30% fewer data breaches and 15% greater audit efficiency with 34% less total cost when compared to organizations encrypting data within applications. Join us for a live webcast with Derek Brink, Vice President and Research Fellow at the Aberdeen Group, next week to learn how your organization can become Best-in-Class.

    Read the article

< Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >