Search Results

Search found 60903 results on 2437 pages for 'data mapping'.

Page 26/2437 | < Previous Page | 22 23 24 25 26 27 28 29 30 31 32 33  | Next Page >

  • Hibernate - H2 db -- Could not parse mapping document from resource

    - by user1849757
    * Each of below files are in same location * Error : SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. org.hibernate.InvalidMappingException: Could not parse mapping document from resource ./employee.hbm.xml at org.hibernate.cfg.Configuration.addResource(Configuration.java:616) at org.hibernate.cfg.Configuration.parseMappingElement(Configuration.java:1635) at org.hibernate.cfg.Configuration.parseSessionFactory(Configuration.java:1603) at org.hibernate.cfg.Configuration.doConfigure(Configuration.java:1582) at org.hibernate.cfg.Configuration.doConfigure(Configuration.java:1556) at org.hibernate.cfg.Configuration.configure(Configuration.java:1476) at org.hibernate.cfg.Configuration.configure(Configuration.java:1462) at com.yahoo.hibernatelearning.FirstExample.main(FirstExample.java:19) Caused by: org.hibernate.InvalidMappingException: Could not parse mapping document from input stream at org.hibernate.cfg.Configuration.addInputStream(Configuration.java:555) at org.hibernate.cfg.Configuration.addResource(Configuration.java:613) ... 7 more Caused by: org.dom4j.DocumentException: http://hibernate.sourceforge.net/%0Ahibernate-mapping-3.0.dtd Nested exception: http://hibernate.sourceforge.net/%0Ahibernate-mapping-3.0.dtd at org.dom4j.io.SAXReader.read(SAXReader.java:484) at org.hibernate.cfg.Configuration.addInputStream(Configuration.java:546) ... 8 more Exception in thread "main" java.lang.NullPointerException at com.yahoo.hibernatelearning.FirstExample.main(FirstExample.java:33) Hibernate Config: hibernate.cfg.xml <?xml version='1.0' encoding='utf-8'?> <!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate Configuration DTD//EN" "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd"> <hibernate-configuration> <session-factory> <property name="hibernate.connection.driver_class">org.h2.Driver</property> <property name="hibernate.connection.url">jdbc:h2:./db/repository</property> <property name="hibernate.connection.username">sa</property> <property name="hibernate.connection.password"></property> <property name="hibernate.default_schema">PUBLIC</property> <property name="hibernate.dialect">org.hibernate.dialect.H2Dialect</property> <property name="hibernate.show_sql">true</property> <property name="hibernate.hbm2ddl.auto">update</property> <!-- Mapping files --> <mapping resource="./employee.hbm.xml"/> </session-factory> </hibernate-configuration> Mapping Config: employee.hbm.xml <?xml version="1.0"?> <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN" "http://hibernate.sourceforge.net/ hibernate-mapping-3.0.dtd"> <hibernate-mapping> <class name="com.yahoo.hibernatelearning.Employee" table="employee"> <id name="empId" type="int" column="emp_id" > <generator class="native"/> </id> <property name="empName"> <column name="emp_name" /> </property> <property name="empSal"> <column name="emp_sal" /> </property> </class> </hibernate-mapping>

    Read the article

  • The Best Data Integration for Exadata Comes from Oracle

    - by maria costanzo
    Oracle Data Integrator and Oracle GoldenGate offer unique and optimized data integration solutions for Oracle Exadata. For example, customers that choose to feed their data warehouse or reporting database with near real-time throughout the day, can do so without decreasing  performance or availability of source and target systems. And if you ask why real-time, the short answer is: in today’s fast-paced, always-on world, business decisions need to use more relevant, timely data to be able to act fast and seize opportunities. A longer response to "why real-time" question can be found in a related blog post. If we look at the solution architecture, as shown on the diagram below,  Oracle Data Integrator and Oracle GoldenGate are both uniquely designed to take full advantage of the power of the database and to eliminate unnecessary middle-tier components. Oracle Data Integrator (ODI) is the best bulk data loading solution for Exadata. ODI is the only ETL platform that can leverage the full power of Exadata, integrate directly on the Exadata machine without any additional hardware, and by far provides the simplest setup and fastest overall performance on an Exadata system. We regularly see customers achieving a 5-10 times boost when they move their ETL to ODI on Exadata. For  some companies the performance gain is even much higher. For example a large insurance company did a proof of concept comparing ODI vs a traditional ETL tool (one of the market leaders) on Exadata. The same process that was taking 5hrs and 11 minutes to complete using the competing ETL product took 7 minutes and 20 seconds with ODI. Oracle Data Integrator was 42 times faster than the conventional ETL when running on Exadata.This shows that Oracle's own data integration offering helps you to gain the most out of your Exadata investment with a truly optimized solution. GoldenGate is the best solution for streaming data from heterogeneous sources into Exadata in real time. Oracle GoldenGate can also be used together with Data Integrator for hybrid use cases that also demand non-invasive capture, high-speed real time replication. Oracle GoldenGate enables real-time data feeds from heterogeneous sources non-invasively, and delivers to the staging area on the target Exadata system. ODI runs directly on Exadata to use the database engine power to perform in-database transformations. Enterprise Data Quality is integrated with Oracle Data integrator and enables ODI to load trusted data into the data warehouse tables. Only Oracle can offer all these technical benefits wrapped into a single intelligence data warehouse solution that runs on Exadata. Compared to traditional ETL with add-on CDC this solution offers: §  Non-invasive data capture from heterogeneous sources and avoids any performance impact on source §  No mid-tier; set based transformations use database power §  Mini-batches throughout the day –or- bulk processing nightly which means maximum availability for the DW §  Integrated solution with Enterprise Data Quality enables leveraging trusted data in the data warehouse In addition to Starwood Hotels and Resorts, Morrison Supermarkets, United Kingdom’s fourth-largest food retailer, has seen the power of this solution for their new BI platform and shared their story with us. Morrisons needed to analyze data across a large number of manufacturing, warehousing, retail, and financial applications with the goal to achieve single view into operations for improved customer service. The retailer deployed Oracle GoldenGate and Oracle Data Integrator to bring new data into Oracle Exadata in near real-time and replicate the data into reporting structures within the data warehouse—extending visibility into operations. Using Oracle's data integration offering for Exadata, Morrisons produced financial reports in seconds, rather than minutes, and improved staff productivity and agility. You can read more about Morrison’s success story here and hear from Starwood here. From an Irem Radzik article.

    Read the article

  • Data access pattern

    - by andlju
    I need some advice on what kind of pattern(s) I should use for pushing/pulling data into my application. I'm writing a rule-engine that needs to hold quite a large amount of data in-memory in order to be efficient enough. I have some rather conflicting requirements; It is not acceptable for the engine to always have to wait for a full pre-load of all data before it is functional. Only fetching and caching data on-demand will lead to the engine taking too long before it is running quickly enough. An external event can trigger the need for specific parts of the data to be reloaded. Basically, I think I need a combination of pushing and pulling data into the application. A simplified version of my current "pattern" looks like this (in psuedo-C# written in notepad): // This interface is implemented by all classes that needs the data interface IDataSubscriber { void RegisterData(Entity data); } // This interface is implemented by the data access class interface IDataProvider { void EnsureLoaded(Key dataKey); void RegisterSubscriber(IDataSubscriber subscriber); } class MyClassThatNeedsData : IDataSubscriber { IDataProvider _provider; MyClassThatNeedsData(IDataProvider provider) { _provider = provider; _provider.RegisterSubscriber(this); } public void RegisterData(Entity data) { // Save data for later StoreDataInCache(data); } void UseData(Key key) { // Make sure that the data has been stored in cache _provider.EnsureLoaded(key); Entity data = GetDataFromCache(key); } } class MyDataProvider : IDataProvider { List<IDataSubscriber> _subscribers; // Make sure that the data for key has been loaded to all subscribers public void EnsureLoaded(Key key) { if (HasKeyBeenMarkedAsLoaded(key)) return; PublishDataToSubscribers(key); MarkKeyAsLoaded(key); } // Force all subscribers to get a new version of the data for key public void ForceReload(Key key) { PublishDataToSubscribers(key); MarkKeyAsLoaded(key); } void PublishDataToSubscribers(Key key) { Entity data = FetchDataFromStore(key); foreach(var subscriber in _subscribers) { subscriber.RegisterData(data); } } } // This class will be spun off on startup and should make sure that all data is // preloaded as quickly as possible class MyPreloadingThread { IDataProvider _provider; MyPreloadingThread(IDataProvider provider) { _provider = provider; } void RunInBackground() { IEnumerable<Key> allKeys = GetAllKeys(); foreach(var key in allKeys) { _provider.EnsureLoaded(key); } } } I have a feeling though that this is not necessarily the best way of doing this.. Just the fact that explaining it seems to take two pages feels like an indication.. Any ideas? Any patterns out there I should have a look at?

    Read the article

  • Adding a JPanel to another JPanel having TableLayout

    - by user253530
    I am trying to develop a map editor in java. My map window receives as a constructor a Map object. From that map object i am able to retrieve the Grid and every item in the grid along with other getters and setters. The problem is that even though the Mapping extends JComponent, when I place it in a panel it is not painted. I have overridden the paint method to satisfy my needs. Here is the code, maybe you could help me. public class MapTest extends JFrame implements ActionListener { private JPanel mainPanel; private JPanel mapPanel; private JPanel minimapPanel; private JPanel relationPanel; private TableLayout tableLayout; private JPanel tile; MapTest(Map map) { mainPanel = (JPanel) getContentPane(); mapPanel = new JPanel(); populateMapPanel(map); mainPanel.add(mapPanel); this.setPreferredSize(new Dimension(800, 600)); this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } private double[][] generateTableLayoutSize(int x, int y, int size) { double panelSize[][] = new double[x][y]; for (int i = 0; i < x; i++) { for (int j = 0; j < y; j++) { panelSize[i][j] = size; } } return panelSize; } private void populateMapPanel(Map map) { double[][] layoutSize = generateTableLayoutSize(map.getMapGrid().getRows(), map.getMapGrid().getColumns(), 50); tableLayout = new TableLayout(layoutSize); for(int i = 0; i < map.getMapGrid().getRows(); i++) { for(int j = 0; j < map.getMapGrid().getColumns(); j++) { tile = new JPanel(); tile.setName(String.valueOf(((Mapping)map.getMapGrid().getItem(i, j)).getCharacter())); tile.add(map.getMapItem(i, j)); String constraint = i + "," + j; mapPanel.add(tile, constraint); } } mapPanel.validate(); mapPanel.repaint(); } public void actionPerformed(ActionEvent e) { throw new UnsupportedOperationException("Not supported yet."); } } My Mapping Class public class Mapping extends JComponent implements Serializable{ private BufferedImage image; private Character character; //default public Mapping() { super(); this.image = null; this.character = '\u0000'; } //Mapping from image and char public Mapping(BufferedImage image, char character) { super(); this.image = image; this.character = character; } //Mapping from file and char public Mapping(File file, char character) { try { this.image = ImageIO.read(file); this.character = character; } catch (IOException ex) { System.out.println(ex); } } public char getCharacter() { return character; } public void setCharacter(char character) { this.character = character; } public BufferedImage getImage() { return image; } public void setImage(BufferedImage image) { this.image = image; repaint(); } @Override /*Two mappings are consider the same if -they have the same image OR -they have the same character OR -both of the above*/ public boolean equals(Object mapping) { if (this == mapping) { return true; } if (mapping instanceof Mapping) { return true; } //WARNING! equals might not work for images return (this.getImage()).equals(((Mapping) mapping).getImage()) || (this.getCharacter()) == (((Mapping) mapping).getCharacter()); } @Override public void paintComponent(Graphics g) { super.paintComponent(g); //g.drawImage(image, 0, 0, null); g.drawImage(image, 0, 0, this.getWidth(), this.getHeight(), null); } // @Override // public Dimension getPreferredSize() { // if (image == null) { // return new Dimension(10, 10); //instead of 100,100 set any prefered dimentions // } else { // return new Dimension(100, 100);//(image.getWidth(null), image.getHeight(null)); // } // } private void readObject(java.io.ObjectInputStream in) throws IOException, ClassNotFoundException { character = (Character) in.readObject(); image = ImageIO.read(ImageIO.createImageInputStream(in)); } private void writeObject(java.io.ObjectOutputStream out) throws IOException { out.writeObject(character); ImageWriter writer = (ImageWriter) ImageIO.getImageWritersBySuffix("jpg").next(); writer.setOutput(ImageIO.createImageOutputStream(out)); ImageWriteParam param = writer.getDefaultWriteParam(); param.setCompressionMode(ImageWriteParam.MODE_EXPLICIT); param.setCompressionQuality(0.85f); writer.write(null, new IIOImage(image, null, null), param); } }

    Read the article

  • Data access pattern, combining push and pull?

    - by andlju
    I need some advice on what kind of pattern(s) I should use for pushing/pulling data into my application. I'm writing a rule-engine that needs to hold quite a large amount of data in-memory in order to be efficient enough. I have some rather conflicting requirements; It is not acceptable for the engine to always have to wait for a full pre-load of all data before it is functional. Only fetching and caching data on-demand will lead to the engine taking too long before it is running quickly enough. An external event can trigger the need for specific parts of the data to be reloaded. Basically, I think I need a combination of pushing and pulling data into the application. A simplified version of my current "pattern" looks like this (in psuedo-C# written in notepad): // This interface is implemented by all classes that needs the data interface IDataSubscriber { void RegisterData(Entity data); } // This interface is implemented by the data access class interface IDataProvider { void EnsureLoaded(Key dataKey); void RegisterSubscriber(IDataSubscriber subscriber); } class MyClassThatNeedsData : IDataSubscriber { IDataProvider _provider; MyClassThatNeedsData(IDataProvider provider) { _provider = provider; _provider.RegisterSubscriber(this); } public void RegisterData(Entity data) { // Save data for later StoreDataInCache(data); } void UseData(Key key) { // Make sure that the data has been stored in cache _provider.EnsureLoaded(key); Entity data = GetDataFromCache(key); } } class MyDataProvider : IDataProvider { List<IDataSubscriber> _subscribers; // Make sure that the data for key has been loaded to all subscribers public void EnsureLoaded(Key key) { if (HasKeyBeenMarkedAsLoaded(key)) return; PublishDataToSubscribers(key); MarkKeyAsLoaded(key); } // Force all subscribers to get a new version of the data for key public void ForceReload(Key key) { PublishDataToSubscribers(key); MarkKeyAsLoaded(key); } void PublishDataToSubscribers(Key key) { Entity data = FetchDataFromStore(key); foreach(var subscriber in _subscribers) { subscriber.RegisterData(data); } } } // This class will be spun off on startup and should make sure that all data is // preloaded as quickly as possible class MyPreloadingThread { IDataProvider _provider; MyPreloadingThread(IDataProvider provider) { _provider = provider; } void RunInBackground() { IEnumerable<Key> allKeys = GetAllKeys(); foreach(var key in allKeys) { _provider.EnsureLoaded(key); } } } I have a feeling though that this is not necessarily the best way of doing this.. Just the fact that explaining it seems to take two pages feels like an indication.. Any ideas? Any patterns out there I should have a look at?

    Read the article

  • Import csv data (SDK iphone)

    - by Ni
    I am new to cocoa. I have been working on these stuff for a few days. For the following code, i can read all the data in the string, and successfully get the data for plot. NSMutableArray *contentArray = [NSMutableArray array]; NSString *filePath = @"995,995,995,995,995,995,995,995,1000,997,995,994,992,993,992,989,988,987,990,993,989"; NSArray *myText = [filePath componentsSeparatedByString:@","]; NSInteger idx; for (idx = 0; idx < myText.count; idx++) { NSString *data =[myText objectAtIndex:idx]; NSLog(@"%@", data); id x = [NSNumber numberWithFloat:0+idx*0.002777778]; id y = [NSDecimalNumber decimalNumberWithString:data]; [contentArray addObject: [NSMutableDictionary dictionaryWithObjectsAndKeys:x, @"x", y, @"y", nil]]; } self.dataForPlot = contentArray; then, i try to load the data from csv file. the data in Data.csv file has the same value and the same format as 995,995,995,995,995,995,995,995,1000,997,995,994,992,993,992,989,988,987,990,993,989. I run the code, it is supposed to give the same graph output. however, it seems that the data is not loaded from csv file successfully. i can not figure out what's wrong with my code. NSMutableArray *contentArray = [NSMutableArray array]; NSString *filePath = [[NSBundle mainBundle] pathForResource:@"Data" ofType:@"csv"]; NSString *Data = [NSString stringWithContentsOfFile:filePath encoding:NSUTF8StringEncoding error:nil ]; if (Data) { NSArray *myText = [Data componentsSeparatedByString:@","]; NSInteger idx; for (idx = 0; idx < myText.count; idx++) { NSString *data =[myText objectAtIndex:idx]; NSLog(@"%@", data); id x = [NSNumber numberWithFloat:0+idx*0.002777778]; id y = [NSDecimalNumber decimalNumberWithString:data]; [contentArray addObject: [NSMutableDictionary dictionaryWithObjectsAndKeys:x, @"x", y, @"y",nil]]; } self.dataForPlot = contentArray; } The only difference is NSString *filePath = [[NSBundle mainBundle] pathForResource:@"Data" ofType:@"csv"]; NSString *Data = [NSString stringWithContentsOfFile:filePath encoding:NSUTF8StringEncoding error:nil ]; if (data){ } did i do anything wrong here?? Thanks for your help!!!!

    Read the article

  • POST data not being received

    - by Alexander
    I've got an iPhone App that is supposed to send POST data to my server to register the device in a MySQL database so we can send notifications etc... to it. It sends it's unique identifier, device name, token, and a few other small things like passwords and usernames as a POST request to our server. The problem is that sometimes the server doesn't receive the data. And by this I mean, its not just receiving blank values for the POST inputs but, its not receiving ANY post data at all. I am logging all POST inputs to my server into some log files and when the script that relies on the POST data from the device fails (detects no data) I notice that its because NO POST data was sent. Is this a problem on the server, like refusing data or something or does this have to be on the client's side? What could be causing this?

    Read the article

  • How to implement multi-source XSLT mapping in 11g BPEL

    - by [email protected]
    In SOA 11g, you can create a XSLT mapper that uses multiple sources as the input. To implement a multi-source mapper, just follow the instructions below, Drag and drop a Transform Activity to a BPEL process Double-click on the Transform Activity, the Transform dialog window appears. Add source variables by clicking the Add icon and selecting the variable and part of the variable as needed. You can select multiple input variables. The first variable represents the main XML input to the XSL mapping, while additional variables that are added here are defined in the XSL mapping as input parameters. Select the target variable and its part if available. Specify the mapper file name, the default file name is xsl/Transformation_%SEQ%.xsl, where %SEQ% represents the sequence number of the mapper. Click OK, the xls file will be opened in the graphical mode. You can map the sources to the target as usual. Open the mapper source code, you will notice the variable representing the additional source payload, is defined as the input parameter in the map source spec and body<mapSources>    <source type="XSD">      <schema location="../xsd/po.xsd"/>      <rootElement name="PurchaseOrder" namespace="http://www.oracle.com/pcbpel/po"/>    </source>    <source type="XSD">      <schema location="../xsd/customer.xsd"/>      <rootElement name="Customer" namespace="http://www.oracle.com/pcbpel/Customer"/>      <param name="v_customer" />    </source>  </mapSources>...<xsl:param name="v_customer"/> Let's take a look at the BPEL source code used to execute xslt mapper. <assign name="Transform_1">            <bpelx:annotation>                <bpelx:pattern>transformation</bpelx:pattern>            </bpelx:annotation>            <copy>                <from expression="ora:doXSLTransformForDoc('xsl/Transformation_1.xsl',bpws:getVariableData('v_po'),'v_customer',bpws:getVariableData('v_customer'))"/>                <to variable="v_invoice"/>            </copy>        </assign> You will see BPEL uses ora:doXSLTransformForDoc XPath function to execute the XSLT mapper.This function returns the result of  XSLT transformation when the xslt template matching the document. The signature of this function is  ora:doXSLTransformForDoc(template,input, [paramQName, paramValue]*).Wheretemplate is the XSLT mapper nameinput is the string representation of xml input, paramQName is the parameter defined in the xslt mapper as the additional sourceparameterValue is the additional source payload. You can add more sources to the mapper at the later stage, but you have to modify the ora:doXSLTransformForDoc in the BPEL source code and make sure it passes correct parameter and its value pair that reflects the changes in the XSLT mapper.So the best practices are : create the variables before creating the mapping file, therefore you can add multiple sources when you define the transformation in the first place, which is more straightforward than adding them later on. Review ora:doXSLTransformForDoc code in the BPEL source and make sure it passes the correct parameters to the mapper.

    Read the article

  • Oracle Big Data Learning Library - Click on LEARN BY PRODUCT to Open Page

    - by chberger
    Oracle Big Data Learning Library... Learn about Oracle Big Data, Data Science, Learning Analytics, Oracle NoSQL Database, and more! Oracle Big Data Essentials Attend this Oracle University Course! Using Oracle NoSQL Database Attend this Oracle University class! Oracle and Big Data on OTN See the latest resource on OTN. Search Welcome Get Started Learn by Role Learn by Product Latest Additions Additional Resources Oracle Big Data Appliance Oracle Big Data and Data Science Basics Meeting the Challenge of Big Data Oracle Big Data Tutorial Video Series Oracle MoviePlex - a Big Data End-to-End Series of Demonstrations Oracle Big Data Overview Oracle Big Data Essentials Data Mining Oracle NoSQL Database Tutorial Videos Oracle NoSQL Database Tutorial Series Oracle NoSQL Database Release 2 New Features Using Oracle NoSQL Database Exalytics Enterprise Manager 12c R3: Manage Exalytics Setting Up and Running Summary Advisor on an E s Oracle R Enterprise Oracle R Enterprise Tutorial Series Oracle Big Data Connectors Integrate All Your Data with Oracle Big Data Connectors Using Oracle Direct Connector for HDFS to Read the Data from HDSF Using Oracle R Connector for Hadoop to Analyze Data Oracle NoSQL Database Oracle NoSQL Database Tutorial Videos Oracle NoSQL Database Tutorial Series Oracle NoSQL Database Release 2 New Features  Using Oracle NoSQL Database eries Oracle Business Intelligence Enterprise Edition Oracle Business Intelligence Oracle BI 11g R1: Create Analyses and Dashboards - 4 day class Oracle BI Publisher 11g R1: Fundamentals - 3 day class Oracle BI 11g R1: Build Repositories - 5 day class

    Read the article

  • Let's introduce the Oracle Enterprise Data Quality family!

    - by Sarah Zanchetti
    The Oracle Enterprise Data Quality family of products helps you to achieve maximum value from their business applications by delivering fit-­for-­purpose data. OEDQ is a state-of-the-art collaborative data quality profiling, analysis, parsing, standardization, matching and merging product, designed to help you understand, improve, protect and govern the quality of the information your business uses, all from a single integrated environment. Oracle Enterprise Data Quality products are: Oracle Enterprise Data Quality Profile and Audit Oracle Enterprise Data Quality Parsing and Standardization Oracle Enterprise Data Quality Match and Merge Oracle Enterprise Data Quality Address Verification Server Oracle Enterprise Data Quality Product Data Parsing and Standardization Oracle Enterprise Data Quality Product Data Match and Merge Also, the following are some of the key features of OEDQ: Integrated data profiling, auditing, cleansing and matching Browser-based client access Ability to handle all types of data – for example customer, product, asset, financial, operational Connection to any JDBC-compliant data sources and targets Multi-user project support (role-based access, issue tracking, process annotation, and version control) Services Oriented Architecture (SOA) - support for designing processes that may be exposed to external applications as a service Designed to process large data volumes A single repository to hold data along with gathered statistics and project tracking information, with shared access Intuitive graphical user interface designed to help you solve real-world information quality issues quickly Easy, data-led creation and extension of validation and transformation rules Fully extensible architecture allowing the insertion of any required custom processing  If you need to learn more about EDQ, or get assistance for any kind of issue, the Oracle Technology Network offers a huge range of resources on Oracle software. Discuss technical problems and solutions on the Discussion Forums. Get hands-on step-by-step tutorials with Oracle By Example. Download Sample Code. Get the latest news and information on any Oracle product. You can also get further help and information with Oracle software from: My Oracle Support Oracle Support Services An Information Center is available, where you can find technical information and fast solutions to the most common already solved issues: Information Center: Oracle Enterprise Data Quality [ID 1555073.2]

    Read the article

  • BizTalk&ndash;Mapping repeating EDI segments using a Table Looping functoid

    - by Bill Osuch
    BizTalk’s HIPAA X12 schemas have several repeating date/time segments in them, where the XML winds up looking something like this: <DTM_StatementDate> <DTM01_DateTimeQualifier>232</DTM01_DateTimeQualifier> <DTM02_ClaimDate>20120301</DTM02_ClaimDate> </DTM_StatementDate> <DTM_StatementDate> <DTM01_DateTimeQualifier>233</DTM01_DateTimeQualifier> <DTM02_ClaimDate>20120302</DTM02_ClaimDate> </DTM_StatementDate> The corresponding EDI segments would look like this: DTM*232*20120301~ DTM*233*20120302~ The DateTimeQualifier element indicates whether it’s the start date or end date – 232 for start, 233 for end. So in this example (an X12 835) we’re saying the statement starts on 3/1/2012 and ends on 3/2/2012. When you’re mapping from some other data format, many times your start and end dates will be within the same node, like this: <StatementDates> <Begin>20120301</Begin> <End>20120302</End> </StatementDates> So how do you map from that and create two repeating segments in your destination map? You could connect both the <Begin> and <End> nodes to a looping functoid, and connect its output to <DTM_StatementDate>, then connect both <Begin> and <End> to <DTM_StatementDate> … this would give you two repeating segments, each with the correct date, but how to add the correct qualifier? The answer is the Table Looping Functoid! To test this, let’s create a simplified schema that just contains the date fields we’re mapping. First, create your input schema: And your output schema: Now create a map that uses these two schemas, and drag a Table Looping functoid onto it. The first input parameter configures the scope (or how many times the records will loop), so drag a link from the StatementDates node over to the functoid. Yes, StatementDates only appears once, so this would make it seem like it would only loop once, but you’ll see in just a minute. The second parameter in the functoid is the number of columns in the output table. We want to fill two fields, so just set this to 2. Now drag the Begin and End nodes over to the functoid. Finally, we want to add the constant values for DateTimeQualifier, so add a value of 232 and another of 233. When all your inputs are configured, it should look like this: Now we’ll configure the output table. Click on the Table Looping Grid, and configure it to look like this: Microsoft’s description of this functoid says “The Table Looping functoid repeats with the looping record it is connected to. Within each iteration, it loops once per row in the table looping grid, producing multiple output loops.” So here we will loop (# of <StatementDates> nodes) * (Rows in the table), or 2 times. Drag two Table Extractor functoids onto the map; these are what are going to pull the data we want out of the table. The first input to each of these will be the output of the TableLooping functoid, and the second input will be the row number to pull from. So the functoid connected to <DTM01_DateTimeQualifier> will look like this: Connect these two functoids to the two nodes we want to populate, and connect another output from the Table Looping functoid to the <DTM_StatementDate> record. You should have a map that looks something like this: Create some sample xml, use it as the TestMap Input Instance, and you should get a result like the XML at the top of this post. Technorati Tags: BizTalk, EDI, Mapping

    Read the article

  • S#harp architecture mapping many to many and ado.net data services: A single resource was expected f

    - by Leg10n
    Hi, I'm developing an application that reads data from a SQL server database (migrated from a legacy DB) with nHibernate and s#arp architecture through ADO.NET Data services. I'm trying to map a many-to-many relationship. I have a Error class: public class Error { public virtual int ERROR_ID { get; set; } public virtual string ERROR_CODE { get; set; } public virtual string DESCRIPTION { get; set; } public virtual IList<ErrorGroup> GROUPS { get; protected set; } } And then I have the error group class: public class ErrorGroup { public virtual int ERROR_GROUP_ID {get; set;} public virtual string ERROR_GROUP_NAME { get; set; } public virtual string DESCRIPTION { get; set; } public virtual IList<Error> ERRORS { get; protected set; } } And the overrides: public class ErrorGroupOverride : IAutoMappingOverride<ErrorGroup> { public void Override(AutoMapping<ErrorGroup> mapping) { mapping.Table("ERROR_GROUP"); mapping.Id(x => x.ERROR_GROUP_ID, "ERROR_GROUP_ID"); mapping.IgnoreProperty(x => x.Id); mapping.HasManyToMany<Error>(x => x.Error) .Table("ERROR_GROUP_LINK") .ParentKeyColumn("ERROR_GROUP_ID") .ChildKeyColumn("ERROR_ID").Inverse().AsBag(); } } public class ErrorOverride : IAutoMappingOverride<Error> { public void Override(AutoMapping<Error> mapping) { mapping.Table("ERROR"); mapping.Id(x => x.ERROR_ID, "ERROR_ID"); mapping.IgnoreProperty(x => x.Id); mapping.HasManyToMany<ErrorGroup>(x => x.GROUPS) .Table("ERROR_GROUP_LINK") .ParentKeyColumn("ERROR_ID") .ChildKeyColumn("ERROR_GROUP_ID").AsBag(); } } When I view the Data service in the browser like: http://localhost:1905/DataService.svc/Errors it shows the list of errors with no problems, and using it like http://localhost:1905/DataService.svc/Errors(123) works too. The Problem When I want to see the Errors in a group or the groups form an error, like: "http://localhost:1905/DataService.svc/Errors(123)?$expand=GROUPS" I get the XML Document, but the browser says: The XML page cannot be displayed Cannot view XML input using XSL style sheet. Please correct the error and then click the Refresh button, or try again later. -------------------------------------------------------------------------------- Only one top level element is allowed in an XML document. Error processing resource 'http://localhost:1905/DataServic... <error xmlns="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"> -^ I view the sourcecode, and I get the data. However it comes with an exception: <error xmlns="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"> <code></code> <message xml:lang="en-US">An error occurred while processing this request.</message> <innererror xmlns="xmlns"> <message>A single resource was expected for the result, but multiple resources were found.</message> <type>System.InvalidOperationException</type> <stacktrace> at System.Data.Services.Serializers.Serializer.WriteRequest(IEnumerator queryResults, Boolean hasMoved)&#xD; at System.Data.Services.ResponseBodyWriter.Write(Stream stream)</stacktrace> </innererror> </error> A I missing something??? Where does this error come from?

    Read the article

  • [Hibernate Mapping] relationship set between table and mapping table to use joins.

    - by Matthew De'Loughry
    Hi guys, I have two table a "Module" table and a "StaffModule" I'm wanting to display a list of modules by which staff are present on the staffmodule mapping table. I've tried from Module join Staffmodule sm with ID = sm.MID with no luck, I get the following error Path Expected for join! however I thought I had the correct join too allow this but obviously not can any one help StaffModule HBM <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN" "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd"> <!-- Generated Apr 26, 2010 9:50:23 AM by Hibernate Tools 3.2.1.GA --> <hibernate-mapping> <class name="Hibernate.Staffmodule" schema="WALK" table="STAFFMODULE"> <composite-id class="Hibernate.StaffmoduleId" name="id"> <key-many-to-one name="mid" class="Hibernate.Module"> <column name="MID"/> </key-many-to-one> <key-property name="staffid" type="int"> <column name="STAFFID"/> </key-property> </composite-id> </class> </hibernate-mapping> and Module.HBM <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN" "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd"> <!-- Generated Apr 26, 2010 9:50:23 AM by Hibernate Tools 3.2.1.GA --> <hibernate-mapping> <class name="Hibernate.Module" schema="WALK" table="MODULE"> <id name="id" type="int"> <column name="ID"/> <generator class="assigned"/> </id> <property name="modulename" type="string"> <column length="50" name="MODULENAME"/> </property> <property name="teacherid" type="int"> <column name="TEACHERID" not-null="true"/> </property> </class> hope thats enough information! and thanks in advance.

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

  • Oracle Enterprise Data Quality - Geared Up and Ready for OpenWorld 2012

    - by Mala Narasimharajan
    10 days and counting till Oracle OpenWorld 2012 is upon us.  Enterprise data quality is key to every information integration and consolidation initiative. At this year's OpenWorld, hear how Oracle Enterprise Data Quality provides the critical piece to achieving trusted, reliable master data and increases the value of data integration initiatives. Here are the different ways you can learn and experience Enterprise Data Quality at OpenWorld:  Conference sessions: Oracle Enterprise Data Quality: Product Overview and Roadmap - Monday 10/1/12, 1:45-2:45 PM - Moscone West - 3006 Data Preparation and Ongoing Governance with the Oracle Enterprise Data Quality Platform - Wednesday 10/3/2012, 1:15-2:15 PM - Moscone West - 3000  Data Acquisition, Migration and Integration with the Oracle Enterprise Data Quality Platform - Thursday 10/4/2012, 12:45-1:45 PM - Moscone West - 3005  Hands on Labs: Introduction to Oracle Enterprise Data Quality Platform -  Monday 10/2/2012, 4:45-5:45 PM - Marriot Marquis - Salon 1/2 Demos:  Trusted Data with Oracle Enterprise Data Quality - Moscone South, Right - S-243 (note: proceed to Middleware Demo grounds) For a list of Master Data Management and Data Quality sessions and other events click here. 

    Read the article

  • Core data migration failing with "Can't find model for source store" but managedObjectModel for source is present

    - by Ira Cooke
    I have a cocoa application using core-data, which is now at the 4th version of its managed object model. My managed object model contains abstract entities but so far I have managed to get migration working by creating appropriate mapping models and creating my persistent store using addPersistentStoreWithType:configuration:options:error and with the NSMigratePersistentStoresAutomaticallyOption set to YES. NSDictionary *optionsDictionary = [NSDictionary dictionaryWithObject:[NSNumber numberWithBool:YES] forKey:NSMigratePersistentStoresAutomaticallyOption]; NSURL *url = [NSURL fileURLWithPath: [applicationSupportFolder stringByAppendingPathComponent: @"MyApp.xml"]]; NSError *error=nil; [theCoordinator addPersistentStoreWithType:NSXMLStoreType configuration:nil URL:url options:optionsDictionary error:&error] This works fine when I migrate from model version 3 to 4, which is a migration that involves adding attributes to several entities. Now when I try to add a new model version (version 5), the call to addPersistentStoreWithType returns nil and the error remains empty. The migration from 4 to 5 involves adding a single attribute. I am struggling to debug the problem and have checked all the following; The source database is in fact at version 4 and the persistentStoreCoordinator's managed object model is at version 5. The 4-5 mapping model as well as managed object models for versions 4 and 5 are present in the resources folder of my built application. I've tried various model upgrade paths. Strangely I find that upgrading from an early version 3 - 5 works .. but upgrading from 4 - 5 fails. I've tried adding a custom entity migration policy for migration of the entity whose attributes are changing ... in this case I overrode the method beginEntityMapping:manager:error: . Interestingly this method does get called when migration works (ie when I migrate from 3 to 4, or from 3 to 5 ), but it does not get called in the case that fails ( 4 to 5 ). I'm pretty much at a loss as to where to proceed. Any ideas to help debug this problem would be much appreciated.

    Read the article

  • Mapping a Vertex Buffer in DirectX11

    - by judeclarke
    I have a VertexBuffer that I am remapping on a per frame base for a bunch of quads that are constantly updated, sharing the same material\index buffer but have different width/heights. However, currently right now there is a really bad flicker on this geometry. Although it is flickering, the flicker looks correct. I know it is the vertex buffer mapping because if I recreate the entire VB then it will render fine. However, as an optimization I figured I would just remap it. Does anyone know what the problem is? The length (width, size) of the vertex buffer is always the same. One might think it is double buffering, however, it would not be double buffering because it only happens when I map/unmap the buffer, so that leads me to believe that I am setting some parameters wrong on the creation or mapping. I am using DirectX11, my initialization and remap code are: Initialization code D3D11_BUFFER_DESC bd; ZeroMemory( &bd, sizeof(bd) ); bd.Usage = D3D11_USAGE_DYNAMIC; bd.ByteWidth = vertCount * vertexTypeWidth; bd.BindFlags = D3D11_BIND_VERTEX_BUFFER; //bd.CPUAccessFlags = 0; bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; D3D11_SUBRESOURCE_DATA InitData; ZeroMemory( &InitData, sizeof(InitData) ); InitData.pSysMem = vertices; mVertexType = vertexType; HRESULT hResult = device->CreateBuffer( &bd, &InitData, &m_pVertexBuffer ); // This will be S_OK if(hResult != S_OK) return false; Remap code D3D11_MAPPED_SUBRESOURCE resource; HRESULT hResult = deviceContext->Map(m_pVertexBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &resource); // This will be S_OK if(hResult != S_OK) return false; resource.pData = vertices; deviceContext->Unmap(m_pVertexBuffer, 0);

    Read the article

  • BizTalk: mapping with Xslt

    - by Leonid Ganeline
    BizTalk Map Editor (Mapper) is a good editor, especially in the last 2010 version of the BizTalk. But still sometimes it cannot do the tasks easily. It is time for the Xslt code, It is time to remember that the maps are executed by the Xslt engine.  Right-click the Mapper Grid (a field between the source and target schemas) and choose Properties /Custom XSLT Path.  Input here a name of the file with Xslt code. Only this code will be executed, forget the picture in the Mapper, all those links and functoids.  Let’s see the real-life example. There are two source Addresses. One is on the top level and the second is inside the Member_Address record with MaxOccurs=* . The target address is placed inside the Locator record with MaxOccurs=*. The requirement is to map all source address to the one target address structure. The source Xml document looks like: The result Xml should be like this: Try to do this mapping with the Mapper and you will spent good amount of time and the result map would be tricky. If we use the Xslt code, the mapping will be simple and unambiguous, like this: Simple, elegant.

    Read the article

  • Windows Physical Direct Memory Mapping

    - by chrisjleaf
    I'm a bit disappointed there is almost no discussion of this no matter where I look so I guess I'll have to ask. I'm writing a cross platform memory bench marking application which requires direct physical address mapping rather than virtual addressing. EDIT The solution would look something like the Linux/Unix system calls: int fd = open("/dev/mem", O_RDONLY); mmap(NULL, len, PROT_READ, MAP_SHARED, fd, PHYSICAL_ADDRESS_OFFSET); which will require the kernel to either give you a virtual page mapping to the desired physical address or return that it failed. This does require supervisor privileges but that is ok. I have seen a lot of information about shared memory and memory mapped files but all of these reside on disc and are thus not really useful when I'm trying to make a system dependent read. It is very similar to writing an IO driver although I do no need write permissions to the physical address. This site gives an example of how to do it on a driver level using the Windows Driver Kit: NT Insider: Sharing Memory between drivers and applications This solution would probably require Visual Studio which currently I do not have access to. (I have downloaded the WDK api but it complained about my use of GCC for Windows). I'm traditionally a Linux programmer so I'm hoping there might be something really simple I'm missing. Thanks in advance if you know something I don't!

    Read the article

  • How can I eager-load a child collection mapped to a non-primary key in NHibernate 2.1.2?

    - by David Rubin
    Hi, I have two objects with a many-to-many relationship between them, as follows: public class LeftHandSide { public LeftHandSide() { Name = String.Empty; Rights = new HashSet<RightHandSide>(); } public int Id { get; set; } public string Name { get; set; } public ICollection<RightHandSide> Rights { get; set; } } public class RightHandSide { public RightHandSide() { OtherProp = String.Empty; Lefts = new HashSet<LeftHandSide>(); } public int Id { get; set; } public string OtherProp { get; set; } public ICollection<LeftHandSide> Lefts { get; set; } } and I'm using a legacy database, so my mappings look like: Notice that LeftHandSide and RightHandSide are associated by a different column than RightHandSide's primary key. <class name="LeftHandSide" table="[dbo].[lefts]" lazy="false"> <id name="Id" column="ID" unsaved-value="0"> <generator class="identity" /> </id> <property name="Name" not-null="true" /> <set name="Rights" table="[dbo].[lefts2rights]"> <key column="leftId" /> <!-- THIS IS THE IMPORTANT BIT: I MUST USE PROPERTY-REF --> <many-to-many class="RightHandSide" column="rightProp" property-ref="OtherProp" /> </set> </class> <class name="RightHandSide" table="[dbo].[rights]" lazy="false"> <id name="Id" column="id" unsaved-value="0"> <generator class="identity" /> </id> <property name="OtherProp" column="otherProp" /> <set name="Lefts" table="[dbo].[lefts2rights]"> <!-- THIS IS THE IMPORTANT BIT: I MUST USE PROPERTY-REF --> <key column="rightProp" property-ref="OtherProp" /> <many-to-many class="LeftHandSide" column="leftId" /> </set> </class> The problem comes when I go to do a query: LeftHandSide lhs = _session.CreateCriteria<LeftHandSide>() .Add(Expression.IdEq(13)) .UniqueResult<LeftHandSide>(); works just fine. But LeftHandSide lhs = _session.CreateCriteria<LeftHandSide>() .Add(Expression.IdEq(13)) .SetFetchMode("Rights", FetchMode.Join) .UniqueResult<LeftHandSide>(); throws an exception (see below). Interestingly, RightHandSide rhs = _session.CreateCriteria<RightHandSide>() .Add(Expression.IdEq(127)) .SetFetchMode("Lefts", FetchMode.Join) .UniqueResult<RightHandSide>(); seems to be perfectly fine as well. NHibernate.Exceptions.GenericADOException Message: Error performing LoadByUniqueKey[SQL: SQL not available] Source: NHibernate StackTrace: c:\opt\nhibernate\2.1.2\source\src\NHibernate\Type\EntityType.cs(563,0): at NHibernate.Type.EntityType.LoadByUniqueKey(String entityName, String uniqueKeyPropertyName, Object key, ISessionImplementor session) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Type\EntityType.cs(428,0): at NHibernate.Type.EntityType.ResolveIdentifier(Object value, ISessionImplementor session, Object owner) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Type\EntityType.cs(300,0): at NHibernate.Type.EntityType.NullSafeGet(IDataReader rs, String[] names, ISessionImplementor session, Object owner) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Persister\Collection\AbstractCollectionPersister.cs(695,0): at NHibernate.Persister.Collection.AbstractCollectionPersister.ReadElement(IDataReader rs, Object owner, String[] aliases, ISessionImplementor session) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Collection\Generic\PersistentGenericSet.cs(54,0): at NHibernate.Collection.Generic.PersistentGenericSet`1.ReadFrom(IDataReader rs, ICollectionPersister role, ICollectionAliases descriptor, Object owner) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(706,0): at NHibernate.Loader.Loader.ReadCollectionElement(Object optionalOwner, Object optionalKey, ICollectionPersister persister, ICollectionAliases descriptor, IDataReader rs, ISessionImplementor session) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(385,0): at NHibernate.Loader.Loader.ReadCollectionElements(Object[] row, IDataReader resultSet, ISessionImplementor session) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(326,0): at NHibernate.Loader.Loader.GetRowFromResultSet(IDataReader resultSet, ISessionImplementor session, QueryParameters queryParameters, LockMode[] lockModeArray, EntityKey optionalObjectKey, IList hydratedObjects, EntityKey[] keys, Boolean returnProxies) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(453,0): at NHibernate.Loader.Loader.DoQuery(ISessionImplementor session, QueryParameters queryParameters, Boolean returnProxies) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(236,0): at NHibernate.Loader.Loader.DoQueryAndInitializeNonLazyCollections(ISessionImplementor session, QueryParameters queryParameters, Boolean returnProxies) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(1649,0): at NHibernate.Loader.Loader.DoList(ISessionImplementor session, QueryParameters queryParameters) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(1568,0): at NHibernate.Loader.Loader.ListIgnoreQueryCache(ISessionImplementor session, QueryParameters queryParameters) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(1562,0): at NHibernate.Loader.Loader.List(ISessionImplementor session, QueryParameters queryParameters, ISet`1 querySpaces, IType[] resultTypes) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Criteria\CriteriaLoader.cs(73,0): at NHibernate.Loader.Criteria.CriteriaLoader.List(ISessionImplementor session) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Impl\SessionImpl.cs(1936,0): at NHibernate.Impl.SessionImpl.List(CriteriaImpl criteria, IList results) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Impl\CriteriaImpl.cs(246,0): at NHibernate.Impl.CriteriaImpl.List(IList results) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Impl\CriteriaImpl.cs(237,0): at NHibernate.Impl.CriteriaImpl.List() c:\opt\nhibernate\2.1.2\source\src\NHibernate\Impl\CriteriaImpl.cs(398,0): at NHibernate.Impl.CriteriaImpl.UniqueResult() c:\opt\nhibernate\2.1.2\source\src\NHibernate\Impl\CriteriaImpl.cs(263,0): at NHibernate.Impl.CriteriaImpl.UniqueResult[T]() D:\proj\CMS3\branches\nh_auth\DomainModel2Tests\Authorization\TempTests.cs(46,0): at CMS.DomainModel.Authorization.TempTests.Test1() Inner Exception System.Collections.Generic.KeyNotFoundException Message: The given key was not present in the dictionary. Source: mscorlib StackTrace: at System.ThrowHelper.ThrowKeyNotFoundException() at System.Collections.Generic.Dictionary`2.get_Item(TKey key) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Persister\Entity\AbstractEntityPersister.cs(2047,0): at NHibernate.Persister.Entity.AbstractEntityPersister.GetAppropriateUniqueKeyLoader(String propertyName, IDictionary`2 enabledFilters) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Persister\Entity\AbstractEntityPersister.cs(2037,0): at NHibernate.Persister.Entity.AbstractEntityPersister.LoadByUniqueKey(String propertyName, Object uniqueKey, ISessionImplementor session) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Type\EntityType.cs(552,0): at NHibernate.Type.EntityType.LoadByUniqueKey(String entityName, String uniqueKeyPropertyName, Object key, ISessionImplementor session) I'm using NHibernate 2.1.2 and I've been debugging into the NHibernate source, but I'm coming up empty. Any suggestions? Thanks so much!

    Read the article

  • SL3/SL4 - Ado.Net Data Services Error during new DataServiceCollection<T>(queryResponse)

    - by Soulhuntre
    Hey all, I have two functions in a SL project (VS2010) that do almost exactly the same thing, yet one throws an error and the other does not. It seems to be related to the projections, but I am unsure about the best way to resolve. The function that works is... public void LoadAllChunksExpandAll(DataHelperReturnHandler handler, string orderby) { DataServiceCollection<CmsChunk> data = null; DataServiceQuery<CmsChunk> theQuery = _dataservice .CmsChunks .Expand("CmsItemState") .AddQueryOption("$orderby", orderby); theQuery.BeginExecute( delegate(IAsyncResult asyncResult) { _callback_dispatcher.BeginInvoke( () => { try { DataServiceQuery<CmsChunk> query = asyncResult.AsyncState as DataServiceQuery<CmsChunk>; if (query != null) { //create a tracked DataServiceCollection from the result of the asynchronous query. QueryOperationResponse<CmsChunk> queryResponse = query.EndExecute(asyncResult) as QueryOperationResponse<CmsChunk>; data = new DataServiceCollection<CmsChunk>(queryResponse); handler(data); } } catch { handler(data); } } ); }, theQuery ); } This compiles and runs as expected. A very, very similar function (shown below) fails... public void LoadAllPagesExpandAll(DataHelperReturnHandler handler, string orderby) { DataServiceCollection<CmsPage> data = null; DataServiceQuery<CmsPage> theQuery = _dataservice .CmsPages .Expand("CmsChildPages") .Expand("CmsParentPage") .Expand("CmsItemState") .AddQueryOption("$orderby", orderby); theQuery.BeginExecute( delegate(IAsyncResult asyncResult) { _callback_dispatcher.BeginInvoke( () => { try { DataServiceQuery<CmsPage> query = asyncResult.AsyncState as DataServiceQuery<CmsPage>; if (query != null) { //create a tracked DataServiceCollection from the result of the asynchronous query. QueryOperationResponse<CmsPage> queryResponse = query.EndExecute(asyncResult) as QueryOperationResponse<CmsPage>; data = new DataServiceCollection<CmsPage>(queryResponse); handler(data); } } catch { handler(data); } } ); }, theQuery ); } Clearly the issue is the Expand projections that involve a self referencing relationship (pages can contain other pages). This is under SL4 or SL3 using ADONETDataServices SL3 Update CTP3. I am open to any work around or pointers to goo information, a Google search for the error results in two hits, neither particularly helpful that I can decipher. The short error is "An item could not be added to the collection. When items in a DataServiceCollection are tracked by the DataServiceContext, new items cannot be added before items have been loaded into the collection." The full error is... System.Reflection.TargetInvocationException was caught Message=Exception has been thrown by the target of an invocation. StackTrace: at System.RuntimeMethodHandle.InvokeMethodFast(IRuntimeMethodInfo method, Object target, Object[] arguments, SignatureStruct& sig, MethodAttributes methodAttributes, RuntimeType typeOwner) at System.Reflection.RuntimeMethodInfo.Invoke(Object obj, BindingFlags invokeAttr, Binder binder, Object[] parameters, CultureInfo culture, Boolean skipVisibilityChecks) at System.Reflection.RuntimeMethodInfo.Invoke(Object obj, BindingFlags invokeAttr, Binder binder, Object[] parameters, CultureInfo culture) at System.Reflection.MethodBase.Invoke(Object obj, Object[] parameters) at System.Data.Services.Client.ClientType.ClientProperty.SetValue(Object instance, Object value, String propertyName, Boolean allowAdd) at System.Data.Services.Client.AtomMaterializer.ApplyItemsToCollection(AtomEntry entry, ClientProperty property, IEnumerable items, Uri nextLink, ProjectionPlan continuationPlan) at System.Data.Services.Client.AtomMaterializer.ApplyFeedToCollection(AtomEntry entry, ClientProperty property, AtomFeed feed, Boolean includeLinks) at System.Data.Services.Client.AtomMaterializer.MaterializeResolvedEntry(AtomEntry entry, Boolean includeLinks) at System.Data.Services.Client.AtomMaterializer.Materialize(AtomEntry entry, Type expectedEntryType, Boolean includeLinks) at System.Data.Services.Client.AtomMaterializer.DirectMaterializePlan(AtomMaterializer materializer, AtomEntry entry, Type expectedEntryType) at System.Data.Services.Client.AtomMaterializerInvoker.DirectMaterializePlan(Object materializer, Object entry, Type expectedEntryType) at System.Data.Services.Client.ProjectionPlan.Run(AtomMaterializer materializer, AtomEntry entry, Type expectedType) at System.Data.Services.Client.AtomMaterializer.Read() at System.Data.Services.Client.MaterializeAtom.MoveNextInternal() at System.Data.Services.Client.MaterializeAtom.MoveNext() at System.Linq.Enumerable.d_b11.MoveNext() at System.Data.Services.Client.DataServiceCollection1.InternalLoadCollection(IEnumerable1 items) at System.Data.Services.Client.DataServiceCollection1.StartTracking(DataServiceContext context, IEnumerable1 items, String entitySet, Func2 entityChanged, Func2 collectionChanged) at System.Data.Services.Client.DataServiceCollection1..ctor(DataServiceContext context, IEnumerable1 items, TrackingMode trackingMode, String entitySetName, Func2 entityChangedCallback, Func2 collectionChangedCallback) at System.Data.Services.Client.DataServiceCollection1..ctor(IEnumerable1 items) at Phinli.Dashboard.Silverlight.Helpers.DataHelper.<>c__DisplayClass44.<>c__DisplayClass46.<LoadAllPagesExpandAll>b__43() InnerException: System.InvalidOperationException Message=An item could not be added to the collection. When items in a DataServiceCollection are tracked by the DataServiceContext, new items cannot be added before items have been loaded into the collection. StackTrace: at System.Data.Services.Client.DataServiceCollection1.InsertItem(Int32 index, T item) at System.Collections.ObjectModel.Collection`1.Add(T item) InnerException: Thanks for any help!

    Read the article

  • 3rd party data - Store in Data Warehouse or Primary database?

    - by brydgesk
    This is mostly a data warehouse philosophy question. My project involves an Oracle forms application, and a Teradata Data Warehouse for reporting and ad-hoc purposes. In addition to the primary data created by the users of our application, we also require data from various other sources. Currently, this 3rd party data comes via FTPd flat files directly to our Data Warehouse. To access the data, our users must use a series of custom BusinessObjects reports. My question is, would it make more sense for this data to be sent to our source Oracle system instead? Is it ever appropriate for a Data Warehouse to be the point of origin for users to access raw data? In short, is it more important that the operational database contain only the data created by your project, or that the data warehouse remain dedicated solely to reporting and analysis?

    Read the article

  • Starting to construct a data access layer. Things to consider?

    - by Phil
    Our organisation uses inline sql. We have been tasked with providing a suitable data access layer and are weighing up the pro's and cons of which way to go... Datasets ADO.net Linq Entity framework Subsonic Other? Some tutorials and articles I have been using for reference: http://www.asp.net/(S(pdfrohu0ajmwt445fanvj2r3))/learn/data-access/tutorial-01-vb.aspx http://www.simple-talk.com/dotnet/.net-framework/designing-a-data-access-layer-in-linq-to-sql/ http://msdn.microsoft.com/en-us/magazine/cc188750.aspx http://msdn.microsoft.com/en-us/library/aa697427(VS.80).aspx http://www.subsonicproject.com/ I'm extremely torn, and finding it very difficult to make a decision on which way to go. Our site is a series of 2 internal portals and a public web site. We are using vs2008 sp1 and framework version 3.5. Please can you give me advise on what factors to consider and any pro's and cons you have faced with your data access layer. Thanks.

    Read the article

  • Inconsistent Loading Times for GeoRSS Overlay Between Firefox and IE

    - by Mark Fruhling
    I have a very simple page built to display a map and overlay a line based on points in a GeoRSS XML file. Here is the publicly accessible file. http://68.178.230.189/georssimport.html Firefox is loading in about 5 secs, which is expected because there are a lot of points to map, but IE (6 & 7) is taking upwards of 45 secs to a minute. What can I do to diagnose what is going on? What is a tool that will show me what is going on? (i.e. Firebug for IE) Thanks, Mark

    Read the article

  • Using Core Data Concurrently and Reliably

    - by John Topley
    I'm building my first iOS app, which in theory should be pretty straightforward but I'm having difficulty making it sufficiently bulletproof for me to feel confident submitting it to the App Store. Briefly, the main screen has a table view, upon selecting a row it segues to another table view that displays information relevant for the selected row in a master-detail fashion. The underlying data is retrieved as JSON data from a web service once a day and then cached in a Core Data store. The data previous to that day is deleted to stop the SQLite database file from growing indefinitely. All data persistence operations are performed using Core Data, with an NSFetchedResultsController underpinning the detail table view. The problem I am seeing is that if you switch quickly between the master and detail screens several times whilst fresh data is being retrieved, parsed and saved, the app freezes or crashes completely. There seems to be some sort of race condition, maybe due to Core Data importing data in the background whilst the main thread is trying to perform a fetch, but I'm speculating. I've had trouble capturing any meaningful crash information, usually it's a SIGSEGV deep in the Core Data stack. The table below shows the actual order of events that happen when the detail table view controller is loaded: Main Thread Background Thread viewDidLoad Get JSON data (using AFNetworking) Create child NSManagedObjectContext (MOC) Parse JSON data Insert managed objects in child MOC Save child MOC Post import completion notification Receive import completion notification Save parent MOC Perform fetch and reload table view Delete old managed objects in child MOC Save child MOC Post deletion completion notification Receive deletion completion notification Save parent MOC Once the AFNetworking completion block is triggered when the JSON data has arrived, a nested NSManagedObjectContext is created and passed to an "importer" object that parses the JSON data and saves the objects to the Core Data store. The importer executes using the new performBlock method introduced in iOS 5: NSManagedObjectContext *child = [[NSManagedObjectContext alloc] initWithConcurrencyType:NSPrivateQueueConcurrencyType]; [child setParentContext:self.managedObjectContext]; [child performBlock:^{ // Create importer instance, passing it the child MOC... }]; The importer object observes its own MOC's NSManagedObjectContextDidSaveNotification and then posts its own notification which is observed by the detail table view controller. When this notification is posted the table view controller performs a save on its own (parent) MOC. I use the same basic pattern with a "deleter" object for deleting the old data after the new data for the day has been imported. This occurs asynchronously after the new data has been fetched by the fetched results controller and the detail table view has been reloaded. One thing I am not doing is observing any merge notifications or locking any of the managed object contexts or the persistent store coordinator. Is this something I should be doing? I'm a bit unsure how to architect this all correctly so would appreciate any advice.

    Read the article

< Previous Page | 22 23 24 25 26 27 28 29 30 31 32 33  | Next Page >