Search Results

Search found 1696 results on 68 pages for 'five'.

Page 27/68 | < Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >

  • Netbeans configuration problem

    - by Yatendra Goel
    I am using Netbeans 6.8 The problem is that the projects explorer (that displays all the projects and their contents) displays each package as a node. For instance, if there is package hierarchy like this; com.mycompany.myproject.package1.package1.1 then it displays 5 nodes for the five packages which is very disturbing while development. Is there any way by which I can configure it(Netbeans) so that it groups all the subpackages of a package under one node and displays the subpackages only when I expand the package node?

    Read the article

  • Formatting currency within a specific precision range

    - by Alex Prose
    I am trying to format currency that will always contain 2 decimal digits, but if there are extra digits of accuracy to display up to five. As an example: for value = 5.0 display: $5.00 for value = 5.023 display: $5.023 for value = 5.333333333333333 display: $5.33333 I have been playing with the .ToString() formatting, but I can't seem to find the right match of options. Clarification: I want to show from 2-5 decimals, truncating zeros after the second digit. for value = 5.000000000000000 display: $5.00 for value = 5.333333333333333 display: $5.33333

    Read the article

  • WCF channel timed out error

    - by stackuser3
    Hi, I have devloped an application which connects the database thrugh WCF + LINQ. I am able invoke the service from my asp.net application successfuly. But the problem here is that, when i navigate from end to end in my application almost after four or five clicks, i am getting the late response and says channel timed out error. If anyone is aware about the soltion for this. It would be really helpful for me. Thanks,

    Read the article

  • What does the below query explain?

    - by Parth
    What does the below query explain? SELECT * FROM `jos_menu` WHERE (id = 69 OR id = 72) I know its very silly question, but sometimes easy things creates mess in my skulls interpreter.. Pls help EDIT Its giving me record for both IDs, why is it doing so? It should five me the record for either 69 or 72....

    Read the article

  • How to save the values of one model in another?

    - by ragupathi
    I have user model and Language model where the language model contains different languages and i want the user to select the languages from that model and it should be stored for the corresponding user. Consider there are five languages A, B, C, D, E then the user has to select from the languages. Suppose user 1 selects A and C whereas user 2 selects B and D then the languages has to be stored for that user. How can i do this? please help me.

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Specifying a Postfix Instance to send outbound email

    - by Catherine Jefferson
    I have a CentOS 6.5 server running Postfix 2.6x (the default distribution) with five public IPv4 IPs bound to it. Each IP has DNS and rDNS set separately. Each uses a different hostname at a different domain. I have five Postfix instances, one bound to each IP, like this example: 192.168.34.104 red.example.com /etc/postfix 192.168.36.48 green.example.net /etc/postfix-green 192.168.36.49 pink.example.org /etc/postfix-pink 192.168.36.50 orange.example.info /etc/postfix-orange 192.168.36.51 blue.example.us /etc/postfix-blue I've tested each IP by telneting to port 25. Postfix answers and banners properly with the correct hostname. Email is received on all of these instances with no problems and is routed to the correct place. This setup, minus the final instance, has existed for a couple of years and works. I never bothered to set up outbound email to go through any but the main instance, however; there was no need. Now I need to send email from blue.example.us that actually leaves from that interface and IP, such that the Received headers show blue.example.us as the sending mailhost, so that SPF and DKIM validate, etc etc. The email that will be sent from blue.example.com is a feedback loop sent by a single shell account on the server (account5), an account that is dedicated to sending this email. The account receives the feedback loop emails from servers on other networks, saves the bodies of those emails, and then generates a new outbound email header, appends the saved body, and sends the email. It's sending by piping each email to sendmail -oi -t. We're doing it this way to mask the identities of the initial servers. The procmail script that processes these emails works correctly. However, I cannot configure this account to send email through the proper Postfix instance/IP/interface. The exact same account and script sends email through the main Postfix instance /etc/postfix without any issues. When I change MAIL_CONFIG to point to /etc/postfix-blue in either .bash_profile or the Procmail script that handles this email, though, I get this error: sendmail: fatal: User account5(###) is not allowed to submit mail I've read the manuals on Postfix.org, searched Google, and tried the suggestions in three previous answers here on ServerFault.com: Postfix - specify interface to deliver outbound mail on Postfix user is not allowed to submit mail Postfix rejects php mails I have been careful to stop and restart Postfix after each configuration change, and tested the results. Nothing has worked. The main postfix instance happily accepts outbound email from account5. The postfix-blue instance continues to reject email from account5 with the sendmail error above. As tempting as it is to blame machine hostility, I know that I must be missing something or doing something wrong. Does anybody have any suggestions as to what it might be? Please feel free to ask for further information about my setup if you need it. =-=-=-=-=-=-=-=-=-= At the request of the responder, here are main.cf and master.cf for a) the main postfix instance ("red.example.com") and b) the FBL instance ("blue.example.us") [NOTE: All parameters not specified below were left at the default Postfix 2.6 settings] MAIN: master.cf smtp inet n - n - - smtpd main.cf myhostname = red.example.com mydomain = example.com inet_interfaces = $myhostname, localhost inet_protocols = all lmtp_host_lookup = native smtp_host_lookup = native ignore_mx_lookup_error = yes mydestination = $myhostname, localhost.$mydomain, localhost local_recipient_maps = mynetworks = 192.168.34.104/32 relay_domains = example.com, example.info, example.net, example.org, example.us relayhost = [192.168.34.102] # Separate physical server, main mailserver. relay_recipient_maps = hash:/etc/postfix/relay_recipients alias_maps = hash:/etc/aliases alias_database = hash:/etc/aliases smtpd_banner = $myhostname ESMTP $mail_name multi_instance_wrapper = ${command_directory}/postmulti -p -- multi_instance_enable = yes multi_instance_directories = /etc/postfix-green /etc/postfix-pink /etc/postfix-orange /etc/postfix-blue FBL: master.cf 184.173.119.103:25 inet n - n - - smtpd main.cf myhostname = blue.example.us mydomain = blue.example.us <= Deliberately set to subdomain only. myorigin = $mydomain inet_interfaces = $myhostname lmtp_host_lookup = native smtp_host_lookup = native ignore_mx_lookup_error = yes mydestination = $myhostname local_recipient_maps = unix:passwd.byname $alias_maps $virtual_alias_maps mynetworks = 192.168.36.51/32, 192.168.35.20/31 <= Second IP is backup MX servers relay_domains = $mydestination recipient_canonical_maps = hash:/etc/postfix-blue/canonical virtual_alias_maps = hash:/etc/postfix-fbl/virtual alias_maps = hash:/etc/aliases, hash:/etc/postfix-blue/canonical alias_maps = hash:/etc/aliases, hash:/etc/postfix-blue/canonical mailbox_command = /usr/bin/procmail -a "$EXTENSION" DEFAULT=$HOME/Mail/ MAILDIR=$HOME/Mail smtpd_banner = $myhostname ESMTP $mail_name authorized_submit_users = multi_instance_name = postfix-blue multi_instance_enable = yes

    Read the article

  • Ajax Control Toolkit and Superexpert

    - by Stephen Walther
    Microsoft has asked my company, Superexpert Consulting, to take ownership of the development and maintenance of the Ajax Control Toolkit moving forward. In this blog entry, I discuss our strategy for improving the Ajax Control Toolkit. Why the Ajax Control Toolkit? The Ajax Control Toolkit is one of the most popular projects on CodePlex. In fact, some have argued that it is among the most successful open-source projects of all time. It consistently receives over 3,500 downloads a day (not weekends -- workdays). A mind-boggling number of developers use the Ajax Control Toolkit in their ASP.NET Web Forms applications. Why does the Ajax Control Toolkit continue to be such a popular project? The Ajax Control Toolkit fills a strong need in the ASP.NET Web Forms world. The Toolkit enables Web Forms developers to build richly interactive JavaScript applications without writing any JavaScript. For example, by taking advantage of the Ajax Control Toolkit, a Web Forms developer can add modal dialogs, popup calendars, and client tabs to a web application simply by dragging web controls onto a page. The Ajax Control Toolkit is not for everyone. If you are comfortable writing JavaScript then I recommend that you investigate using jQuery plugins instead of the Ajax Control Toolkit. However, if you are a Web Forms developer and you don’t want to get your hands dirty writing JavaScript, then the Ajax Control Toolkit is a great solution. The Ajax Control Toolkit is Vast The Ajax Control Toolkit consists of 40 controls. That’s a lot of controls (For the sake of comparison, jQuery UI consists of only 8 controls – those slackers J). Furthermore, developers expect the Ajax Control Toolkit to work on browsers both old and new. For example, people expect the Ajax Control Toolkit to work with Internet Explorer 6 and Internet Explorer 9 and every version of Internet Explorer in between. People also expect the Ajax Control Toolkit to work on the latest versions of Mozilla Firefox, Apple Safari, and Google Chrome. And, people expect the Ajax Control Toolkit to work with different operating systems. Yikes, that is a lot of combinations. The biggest challenge which my company faces in supporting the Ajax Control Toolkit is ensuring that the Ajax Control Toolkit works across all of these different browsers and operating systems. Testing, Testing, Testing Because we wanted to ensure that we could easily test the Ajax Control Toolkit with different browsers, the very first thing that we did was to set up a dedicated testing server. The dedicated server -- named Schizo -- hosts 4 virtual machines so that we can run Internet Explorer 6, Internet Explorer 7, Internet Explorer 8, and Internet Explorer 9 at the same time (We also use the virtual machines to host the latest versions of Firefox, Chrome, Opera, and Safari). The five developers on our team (plus me) can each publish to a separate FTP website on the testing server. That way, we can quickly test how changes to the Ajax Control Toolkit affect different browsers. QUnit Tests for the Ajax Control Toolkit Introducing regressions – introducing new bugs when trying to fix existing bugs – is the concern which prevents me from sleeping well at night. There are so many people using the Ajax Control Toolkit in so many unique scenarios, that it is difficult to make improvements to the Ajax Control Toolkit without introducing regressions. In order to avoid regressions, we decided early on that it was extremely important to build good test coverage for the 40 controls in the Ajax Control Toolkit. We’ve been focusing a lot of energy on building automated JavaScript unit tests which we can use to help us discover regressions. We decided to write the unit tests with the QUnit test framework. We picked QUnit because it is quickly becoming the standard unit testing framework in the JavaScript world. For example, it is the unit testing framework used by the jQuery team, the jQuery UI team, and many jQuery UI plugin developers. We had to make several enhancements to the QUnit framework in order to test the Ajax Control Toolkit. For example, QUnit does not support tests which include postbacks. We modified the QUnit framework so that it works with IFrames so we could perform postbacks in our automated tests. At this point, we have written hundreds of QUnit tests. For example, we have written 135 QUnit tests for the Accordion control. The QUnit tests are included with the Ajax Control Toolkit source code in a project named AjaxControlToolkit.Tests. You can run all of the QUnit tests contained in the project by opening the Default.aspx page. Automating the QUnit Tests across Multiple Browsers Automated tests are useless if no one ever runs them. In order for the QUnit tests to be useful, we needed an easy way to run the tests automatically against a matrix of browsers. We wanted to run the unit tests against Internet Explorer 6, Internet Explorer 7, Internet Explorer 8, Internet Explorer 9, Firefox, Chrome, and Safari automatically. Expecting a developer to run QUnit tests against every browser after every check-in is just too much to expect. It takes 20 seconds to run the Accordion QUnit tests. We are testing against 8 browsers. That would require the developer to open 8 browsers and wait for the results after each change in code. Too much work. Therefore, we built a JavaScript Test Server. Our JavaScript Test Server project was inspired by John Resig’s TestSwarm project. The JavaScript Test Server runs our QUnit tests in a swarm of browsers (running on different operating systems) automatically. Here’s how the JavaScript Test Server works: 1. We created an ASP.NET page named RunTest.aspx that constantly polls the JavaScript Test Server for a new set of QUnit tests to run. After the RunTest.aspx page runs the QUnit tests, the RunTest.aspx records the test results back to the JavaScript Test Server. 2. We opened the RunTest.aspx page on instances of Internet Explorer 6, Internet Explorer 7, Internet Explorer 8, Internet Explorer 9, FireFox, Chrome, Opera, Google, and Safari. Now that we have the JavaScript Test Server setup, we can run all of our QUnit tests against all of the browsers which we need to support with a single click of a button. A New Release of the Ajax Control Toolkit Each Month The Ajax Control Toolkit Issue Tracker contains over one thousand five hundred open issues and feature requests. So we have plenty of work on our plates J At CodePlex, anyone can vote for an issue to be fixed. Originally, we planned to fix issues in order of their votes. However, we quickly discovered that this approach was inefficient. Constantly switching back and forth between different controls was too time-consuming. It takes time to re-familiarize yourself with a control. Instead, we decided to focus on two or three controls each month and really focus on fixing the issues with those controls. This way, we can fix sets of related issues and avoid the randomization caused by context switching. Our team works in monthly sprints. We plan to do another release of the Ajax Control Toolkit each and every month. So far, we have competed one release of the Ajax Control Toolkit which was released on April 1, 2011. We plan to release a new version in early May. Conclusion Fortunately, I work with a team of smart developers. We currently have 5 developers working on the Ajax Control Toolkit (not full-time, they are also building two very cool ASP.NET MVC applications). All the developers who work on our team are required to have strong JavaScript, jQuery, and ASP.NET MVC skills. In the interest of being as transparent as possible about our work on the Ajax Control Toolkit, I plan to blog frequently about our team’s ongoing work. In my next blog entry, I plan to write about the two Ajax Control Toolkit controls which are the focus of our work for next release.

    Read the article

  • Robotic Arm &ndash; Hardware

    - by Szymon Kobalczyk
    This is first in series of articles about project I've been building  in my spare time since last Summer. Actually it all began when I was researching a topic of modeling human motion kinematics in order to create gesture recognition library for Kinect. This ties heavily into motion theory of robotic manipulators so I also glanced at some designs of robotic arms. Somehow I stumbled upon this cool looking open source robotic arm: It was featured on Thingiverse and published by user jjshortcut (Jan-Jaap). Since for some time I got hooked on toying with microcontrollers, robots and other electronics, I decided to give it a try and build it myself. In this post I will describe the hardware build of the arm and in later posts I will be writing about the software to control it. Another reason to build the arm myself was the cost factor. Even small commercial robotic arms are quite expensive – products from Lynxmotion and Dagu look great but both cost around USD $300 (actually there is one cheap arm available but it looks more like a toy to me). In comparison this design is quite cheap. It uses seven hobby grade servos and even the cheapest ones should work fine. The structure is build from a set of laser cut parts connected with few metal spacers (15mm and 47mm) and lots of M3 screws. Other than that you’d only need a microcontroller board to drive the servos. So in total it comes a lot cheaper to build it yourself than buy an of the shelf robotic arm. Oh, and if you don’t like this one there are few more robotic arm projects at Thingiverse (including one by oomlout). Laser cut parts Some time ago I’ve build another robot using laser cut parts so I knew the process already. You can grab the design files in both DXF and EPS format from Thingiverse, and there are also 3D models of each part in STL. Actually the design is split into a second project for the mini servo gripper (there is also a standard servo version available but it won’t fit this arm).  I wanted to make some small adjustments, layout, and add measurements to the parts before sending it for cutting. I’ve looked at some free 2D CAD programs, and finally did all this work using QCad 3 Beta with worked great for me (I also tried LibreCAD but it didn’t work that well). All parts are cut from 4 mm thick material. Because I was worried that acrylic is too fragile and might break, I also ordered another set cut from plywood. In the end I build it from plywood because it was easier to glue (I was told acrylic requires a special glue). Btw. I found a great laser cutter service in Kraków and highly recommend it (www.ebbox.com.pl). It cost me only USD $26 for both sets ($16 acrylic + $10 plywood). Metal parts I bought all the M3 screws and nuts at local hardware store. Make sure to look for nylon lock (nyloc) nuts for the gripper because otherwise it unscrews and comes apart quickly. I couldn’t find local store with metal spacers and had to order them online (you’d need 11 x 47mm and 3 x 15mm). I think I paid less than USD $10 for all metal parts. Servos This arm uses five standards size servos to drive the arm itself, and two micro servos are used on the gripper. Author of the project used Modelcraft RS-2 Servo and Modelcraft ES-05 HT Servo. I had two Futaba S3001 servos laying around, and ordered additional TowerPro SG-5010 standard size servos and TowerPro SG90 micro servos. However it turned out that the SG90 won’t fit in the gripper so I had to replace it with a slightly smaller E-Sky EK2-0508 micro servo. Later it also turned out that Futaba servos make some strange noise while working so I swapped one with TowerPro SG-5010 which has higher torque (8kg / cm). I’ve also bought three servo extension cables. All servos cost me USD $45. Assembly The build process is not difficult but you need to think carefully about order of assembling it. You can do the base and upper arm first. Because two servos in the base are close together you need to put first with one piece of lower arm already connected before you put the second servo. Then you connect the upper arm and finally put the second piece of lower arm to hold it together. Gripper and base require some gluing so think it through too. Make sure to look closely at all the photos on Thingiverse (also other people copies) and read additional posts on jjshortcust’s blog: My mini servo grippers and completed robotic arm  Multiply the robotic arm and electronics Here is also Rob’s copy cut from aluminum My assembled arm looks like this – I think it turned out really nice: Servo controller board The last piece of hardware I needed was an electronic board that would take command from PC and drive all seven servos. I could probably use Arduino for this task, and in fact there are several Arduino servo shields available (for example from Adafruit or Renbotics).  However one problem is that most support only up to six servos, and second that their accuracy is limited by Arduino’s timer frequency. So instead I looked for dedicated servo controller and found a series of Maestro boards from Pololu. I picked the Pololu Mini Maestro 12-Channel USB Servo Controller. It has many nice features including native USB connection, high resolution pulses (0.25µs) with no jitter, built-in speed and acceleration control, and even scripting capability. Another cool feature is that besides servo control, each channel can be configured as either general input or output. So far I’m using seven channels so I still have five available to connect some sensors (for example distance sensor mounted on gripper might be useful). And last but important factor was that they have SDK in .NET – what more I could wish for! The board itself is very small – half of the size of Tic-Tac box. I picked one for about USD $35 in this store. Perhaps another good alternative would be the Phidgets Advanced Servo 8-Motor – but it is significantly more expensive at USD $87.30. The Maestro Controller Driver and Software package includes Maestro Control Center program with lets you immediately configure the board. For each servo I first figured out their move range and set the min/max limits. I played with setting the speed an acceleration values as well. Big issue for me was that there are two servos that control position of lower arm (shoulder joint), and both have to be moved at the same time. This is where the scripting feature of Pololu board turned out very helpful. I wrote a script that synchronizes position of second servo with first one – so now I only need to move one servo and other will follow automatically. This turned out tricky because I couldn’t find simple offset mapping of the move range for each servo – I had to divide it into several sub-ranges and map each individually. The scripting language is bit assembler-like but gets the job done. And there is even a runtime debugging and stack view available. Altogether I’m very happy with the Pololu Mini Maestro Servo Controller, and with this final piece I completed the build and was able to move my arm from the Meastro Control program.   The total cost of my robotic arm was: $10 laser cut parts $10 metal parts $45 servos $35 servo controller ----------------------- $100 total So here you have all the information about the hardware. In next post I’ll start talking about the software that I wrote in Microsoft Robotics Developer Studio 4. Stay tuned!

    Read the article

  • How to Easily Put a Windows PC into Kiosk Mode With Assigned Access

    - by Chris Hoffman
    Windows 8.1′s Assigned Access feature allows you to easily lock a Windows PC to a single application, such as a web browser. This feature makes it easy for anyone to configure Windows 8.1 devices as point-of-sale or other kiosk systems. In the past, setting up a Windows PC in kiosk mode involved much more work, requiring the use of third-party software, group policy, or Linux distributions designed around kiosk mode. Assigned Access is available on Windows 8.1 RT, Windows 8.1 Professional, and Windows 8.1 Enterprise. The standard edition of Windows 8.1 doesn’t support Assigned Access. Create a User Account for Assigned Access Rather than turn your entire computer into a locked-down kiosk system, Assigned Access allows you to create a separate user account that can only launch a single app — such as a web browser. To set this up, you must be logged into Windows as a user with administrator permissions. First, open the PC settings app — swipe in from the right or press Windows Key + C to open the charms bar, tap Settings, and tap Change PC settings. In the PC settings app, select Accounts and select Other accounts. Use the Add an account button to create a new Windows account. Select  the “Sign in without a Microsoft account” option and select Local account to create a local user account. You could also create a Microsoft account, but you may not want to do this if you just want a locked-down account with only browser access. If you need to install apps from the Windows Store to use in Assigned Access mode, you’ll have to set up a Microsoft account instead of a local account. A local account will still allow you access to the preinstalled apps, such as Internet Explorer. You may want to create a user account with a blank password. This would make it simple for anyone to access kiosk mode, even if the system becomes locked or needs to be rebooted. The account will be created as a standard user account with limited permissions. Leave it as a standard user account — don’t make it an administrator account. Set Up Assigned Access Once you’ve created an account, you’ll first need to sign into it. If you don’t, you’ll see a “This account has no apps” message when trying to enable Assigned Access. Go back to the welcome screen, log in to the new account you created, and allow Windows to go through the first-time account setup process. If you want to use a non-default app in kiosk mode, install it while logged in as that user account. Once you’re done, log out of the other account, log back in as your administrator account, and go back to the Other accounts screen. Click the Set up an account for assigned access option to continue. Select the user account you created and select the app you want to limit the account to. For a web-based kiosk, this can be a web browser such as the Modern version of Internet Explorer. Businesses can also create their own Modern apps and set them to run in kiosk mode in this way. Note that Microsoft’s documentation says “web browsers are not good choices for assigned access” because they require more permissions than average Modern (or “Windows Store”) apps. However, if you want to provide a kiosk for web-browsing, using Assigned Access is a much better option than using Guest Mode and offering up a full Windows desktop. When you’re done, restart your PC and log in as the Assigned Access account. Windows will automatically open the app you chose and won’t allow a user to leave that app. Standard Windows 8 features like the charms bar, app switcher, and Start screen won’t appear. Pressing the Windows key once will do nothing. To sign out of Assigned Access mode, press the Windows key five times — quickly — while signed in. You’ll be sent back to the standard login screen. The account will actually still be logged in and the app will remain running — this method just “locks” the screen and allows another user to log in. Automatically Log Into Assigned Access Whenever your Windows device boots, you can log into the Assigned Access account and turn it into a kiosk system. While this isn’t ideal for all kiosk systems, you may want the device to automatically launch the specific app when it boots without requiring any login process. To do so, you’ll just need to have Windows automatically log into the Assigned Access account when it boots. This option is hidden and not available in the standard Control Panel. You’ll need to use the hidden netplwiz Control Panel tool to set up automatic login on boot. If you didn’t create a password for the user account, leave the Password field empty while configuring this. Security Considerations If you’re using this feature to turn a Windows 8.1 system into a kiosk and leaving it open to the public, remember to consider security. Anyone could come up to the system, press the Windows key five times, and try to log into your standard administrator user account. Ensure the administrator user account has a strong password so people won’t be able to get past the kiosk system’s limitations and tamper with the system. Even Windows 8′s detractors have to admit that it’s an ideal system for a touch-screen kiosk device, running either a browser or another specific application. Assigned Access finally makes this easy to set up on Windows systems in the real world — no IT experience, third-party software, or Linux distributions necessary.     

    Read the article

  • How do I restrict concurrent statistics gathering to a small set of tables from a single schema?

    - by Maria Colgan
    I got an interesting question from one of my colleagues in the performance team last week about how to restrict a concurrent statistics gather to a small subset of tables from one schema, rather than the entire schema. I thought I would share the solution we came up with because it was rather elegant, and took advantage of concurrent statistics gathering, incremental statistics, and the not so well known “obj_filter_list” parameter in DBMS_STATS.GATHER_SCHEMA_STATS procedure. You should note that the solution outline below with “obj_filter_list” still applies, even when concurrent statistics gathering and/or incremental statistics gathering is disabled. The reason my colleague had asked the question in the first place was because he wanted to enable incremental statistics for 5 large partitioned tables in one schema. The first time you gather statistics after you enable incremental statistics on a table, you have to gather statistics for all of the existing partitions so that a synopsis may be created for them. If the partitioned table in question is large and contains a lot of partition, this could take a considerable amount of time. Since my colleague only had the Exadata environment at his disposal overnight, he wanted to re-gather statistics on 5 partition tables as quickly as possible to ensure that it all finished before morning. Prior to Oracle Database 11g Release 2, the only way to do this would have been to write a script with an individual DBMS_STATS.GATHER_TABLE_STATS command for each partition, in each of the 5 tables, as well as another one to gather global statistics on the table. Then, run each script in a separate session and manually manage how many of this session could run concurrently. Since each table has over one thousand partitions that would definitely be a daunting task and would most likely keep my colleague up all night! In Oracle Database 11g Release 2 we can take advantage of concurrent statistics gathering, which enables us to gather statistics on multiple tables in a schema (or database), and multiple (sub)partitions within a table concurrently. By using concurrent statistics gathering we no longer have to run individual statistics gathering commands for each partition. Oracle will automatically create a statistics gathering job for each partition, and one for the global statistics on each partitioned table. With the use of concurrent statistics, our script can now be simplified to just five DBMS_STATS.GATHER_TABLE_STATS commands, one for each table. This approach would work just fine but we really wanted to get this down to just one command. So how can we do that? You may be wondering why we didn’t just use the DBMS_STATS.GATHER_SCHEMA_STATS procedure with the OPTION parameter set to ‘GATHER STALE’. Unfortunately the statistics on the 5 partitioned tables were not stale and enabling incremental statistics does not mark the existing statistics stale. Plus how would we limit the schema statistics gather to just the 5 partitioned tables? So we went to ask one of the statistics developers if there was an alternative way. The developer told us the advantage of the “obj_filter_list” parameter in DBMS_STATS.GATHER_SCHEMA_STATS procedure. The “obj_filter_list” parameter allows you to specify a list of objects that you want to gather statistics on within a schema or database. The parameter takes a collection of type DBMS_STATS.OBJECTTAB. Each entry in the collection has 5 feilds; the schema name or the object owner, the object type (i.e., ‘TABLE’ or ‘INDEX’), object name, partition name, and subpartition name. You don't have to specify all five fields for each entry. Empty fields in an entry are treated as if it is a wildcard field (similar to ‘*’ character in LIKE predicates). Each entry corresponds to one set of filter conditions on the objects. If you have more than one entry, an object is qualified for statistics gathering as long as it satisfies the filter conditions in one entry. You first must create the collection of objects, and then gather statistics for the specified collection. It’s probably easier to explain this with an example. I’m using the SH sample schema but needed a couple of additional partitioned table tables to get recreate my colleagues scenario of 5 partitioned tables. So I created SALES2, SALES3, and COSTS2 as copies of the SALES and COSTS table respectively (setup.sql). I also deleted statistics on all of the tables in the SH schema beforehand to more easily demonstrate our approach. Step 0. Delete the statistics on the tables in the SH schema. Step 1. Enable concurrent statistics gathering. Remember, this has to be done at the global level. Step 2. Enable incremental statistics for the 5 partitioned tables. Step 3. Create the DBMS_STATS.OBJECTTAB and pass it to the DBMS_STATS.GATHER_SCHEMA_STATS command. Here, you will notice that we defined two variables of DBMS_STATS.OBJECTTAB type. The first, filter_lst, will be used to pass the list of tables we want to gather statistics on, and will be the value passed to the obj_filter_list parameter. The second, obj_lst, will be used to capture the list of tables that have had statistics gathered on them by this command, and will be the value passed to the objlist parameter. In Oracle Database 11g Release 2, you need to specify the objlist parameter in order to get the obj_filter_list parameter to work correctly due to bug 14539274. Will also needed to define the number of objects we would supply in the obj_filter_list. In our case we ere specifying 5 tables (filter_lst.extend(5)). Finally, we need to specify the owner name and object name for each of the objects in the list. Once the list definition is complete we can issue the DBMS_STATS.GATHER_SCHEMA_STATS command. Step 4. Confirm statistics were gathered on the 5 partitioned tables. Here are a couple of other things to keep in mind when specifying the entries for the  obj_filter_list parameter. If a field in the entry is empty, i.e., null, it means there is no condition on this field. In the above example , suppose you remove the statement Obj_filter_lst(1).ownname := ‘SH’; You will get the same result since when you have specified gather_schema_stats so there is no need to further specify ownname in the obj_filter_lst. All of the names in the entry are normalized, i.e., uppercased if they are not double quoted. So in the above example, it is OK to use Obj_filter_lst(1).objname := ‘sales’;. However if you have a table called ‘MyTab’ instead of ‘MYTAB’, then you need to specify Obj_filter_lst(1).objname := ‘”MyTab”’; As I said before, although we have illustrated the usage of the obj_filter_list parameter for partitioned tables, with concurrent and incremental statistics gathering turned on, the obj_filter_list parameter is generally applicable to any gather_database_stats, gather_dictionary_stats and gather_schema_stats command. You can get a copy of the script I used to generate this post here. +Maria Colgan

    Read the article

  • Sending notification after an event has remained open for a specified period

    - by Loc Nhan
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Enterprise Manager (EM) 12c allows you to create an incident rule to send a notification and/or create an incident after an event has been open for a specified period. Such an incident rule will help prevent premature alerts on issues that may correct themselves within a certain amount of time. For example, there are some agents in an unstable network area, and often there are communication failures between the agents and the OMS lasting three, four minutes at a time. In this scenario, you may only want to receive alerts after an agent in that area has been in the Agent Unreachable status for at least five minutes. Note: Many non-target availability metrics allow users to specify the “number of occurrences” or the number of consecutive times metric values reach thresholds before a notification is sent. It is best to use the feature for such metrics. This article provides a step-by-step guide for creating an incident rule set to cater for the above scenario, that is, to create an incident and send a notification after the Agent Unreachable event has remained open for a five-minute duration. Steps to create the incident rule 1.     Log on to the console and navigate to Setup -> Incidents -> Incident Rules. Note: A non-super user requires the Create Enterprise Rule Set privilege, which is a resource privilege, to create an incident rule. The Incident Rules - All Enterprise Rules page displays. 2.     Click Create Rule Set … The Create Rule Set page displays. 3.     Enter a name for the rule set (e.g. Rule set for agents in flaky network areas), optionally enter a description, and leave everything else at default values, and click + Add. The Search and Select: Targets page pops up. Note:  While you can create a rule set for individual targets, it is a best practice to use a group for this purpose. 4.     Select an appropriate group, e.g. the AgentsInFlakyNework group. The Select button becomes enabled, click the button. The Create Rule Set page displays. 5.     Leave everything at default values, and click the Rules tab. The Create Rule Set page displays. 6.     Click Create… The Select Type of Rule to Create page pops up. 7.     Leave the Incoming events and updates to events option selected, and click Continue. The Create New Rule : Select Events page displays. 8.     Select Target Availability from the Type drop-down list. The page shows more options for Target Availability. 9.     Select the Specific events of type Target Availability option, and click + Add. The Select Target Availability events page pops up. 10.   Select Agent from the Target Type dropdown list. The page expands. 11.   Click the Agent unreachable checkbox, and click OK. Note: If you want to also receive a notification when the event is cleared, click the Agent unreachable end checkbox as well before clicking OK. The Create New Rule : Select Events page displays. 12.   Click Next. The Create New Rule : Add Actions page displays. 13.   Click + Add. The Add Actions page displays. 14.   Do the following: a.     Select the Only execute the actions if specified conditions match option (You don’t want the action to trigger always). The following options appear in the Conditions for Actions section. b.     Select the Event has been open for specified duration option. The Conditions for actions section expands. c.     Change the values of Event has been open for to 5 Minutes as shown below. d.     In the Create Incident or Update Incident section, click the Create Incident checkbox as following: e.     In the Notifications section, enter an appropriate EM user or email address in the E-mail To field. f.     Click Continue (in the top right hand corner). The Create New Rule : Add Actions page displays. 15.   Click Next. The Create New Rule : Specify name and Description page displays. 16.   Enter a rule name, and click Next. The Create New Rule : Review page appears. 17.   Click Continue, and proceed to save the rule set. The incident rule set creation completes. After one of the agents in the group specified in the rule set is stopped for over 5 minutes, EM will send a mail notification and create an incident as shown in the following screenshot. In conclusion, you have seen the steps to create an example incident rule set that only creates an incident and triggers a notification after an event has been open for a specified period. Such an incident rule can help prevent unnecessary incidents and alert notifications leaving EM administrators time to more important tasks. - Loc Nhan

    Read the article

  • mod_fcgid process doesn't respawn

    - by aaronsw
    I have a Python script running on my server as a FastCGI using Apache2 and mod_fcgid. I let it spawn up to five processes. But I soon get messages like these in the Apache logs: [Wed Sep 02 23:16:34 2009] [warn] (103)Software caused connection abort: mod_fcgid: ap_pass_brigade failed in handle_request function [Wed Sep 02 23:16:35 2009] [warn] (103)Software caused connection abort: mod_fcgid: ap_pass_brigade failed in handle_request function and then Apache doesn't seem to recognize that all its processes are dead (I have a max of 5 backends) and refuses to spawn new ones: [Wed Sep 02 23:26:16 2009] [notice] mod_fcgid: /var/www/hacks.og.theinfo.org/picker.fcgi total process count 5 >= 5, skip the spawn request [Wed Sep 02 23:26:17 2009] [notice] mod_fcgid: /var/www/hacks.og.theinfo.org/picker.fcgi total process count 5 >= 5, skip the spawn request at which point it refuses to respond to requests from the outside world. This doesn't seem to happen with my other FastCGIs, which all use the same Apache config: <IfModule mod_fcgid.c> AddHandler fcgid-script .fcgi IPCConnectTimeout 20 MaxProcessCount 5 DefaultMaxClassProcessCount 2 DefaultMinClassProcessCount 1 </IfModule> Any idea what causes it?

    Read the article

  • Bluehost: 1 Minute Delays?

    - by feklee
    On Bluehost shared hosting (Apache 2.2 + FastCGI + APC), I have the problem that some requests take almost exactly one minute to respond. Yet time spent in PHP is only two seconds. To demonstrate the issue, I created a temporary test page. Sample output: When asking Bluehost support about the issue, I got the following reply: “the fastcgi process don't stay running they will only stay running for a certan period which would explain the timeouts you are seeing it traffic would spawn new ones. [...]” I understand that spawning new FastCGI processes takes some time. But almost exactly one minute? That must be some timeout. But which timeout may that be? What I want in the end: No request should take longer than five seconds to respond, even if it fails. When I asked Bluehost support to set the Apache TimeOut directive accordingly, they told me: “we do not modify the Apache Config File even on a virtual host level.”

    Read the article

  • Windows-Server-2003 setup on Dell-PowerEdge R310 is hanging [closed]

    - by Robert Rose
    Possible Duplicate: Problems installing OS on Dell PowerEdge R410 I am trying to configure a Dell PowerEdge R310 server with Windows Server 2003. I've already configured the two hard drives as RAID1. The HD controller is PERC H700 Integrated and Adapter. Trying to stay with Windows Server 2003 on this fairly new server to save on cost and keep the configuration the same as my old server, which has been running like a champ for five years. Problem: During the OS installation, after everything has been copied from the installation CD, the installation hangs at a window labeled 'Windows Setup' with the message 'Setup is starting Windows' at the bottom. I'm wondering if this is a driver problem and if so, where can I get the drivers for the R310 or where can I get the media for the latest version of Windows Server 2003 which may include the necessary drivers? Will certainly appreciate some help here.

    Read the article

  • Big square ads appear in lower right corner of both IE and Chrome

    - by BrianK
    In both IE and Chrome, large ads appear in the lower right corner of the browser window. Sometime they look reputable like for Microsoft, but sometimes they are big flashing boxes that say "You have won". Right now I am looking at "Need to lose 30 lbs?" I ran Microsofot Security Essentials and it didn't find anything. I then ran Windows Defender Offline (boot from CD). WDO found five things lincluding browser hijack that caused the wrong page to appear after clicking a link. It reported that it cleaned successfully, after which I ran a quick scan to confirm. After rebooting I still see the ads. Do I still have an infection? Any other tools to try? What about ComboFix? Thanks Update: Here's a screenshot - on superuser

    Read the article

  • Draytek Vigor 2820 static IP's

    - by dannymcc
    I have a Draytek Vigor 2820 router which is connected to our ADSL provider (British Telecom, BT). We currently have one static IP address which is accessible from anywhere outside of our network and points at a simple web server on port 80. We have just been given 5 more static IP addresses which I would like to point at five servers that have static IP's. As an example: Current static IP - 80.123.123.123 New Static IP's - 100.100.100.100-105 Server IP's - 192.168.1.129-133 I have confused myself completely between NAT addresses, static routes and WAN IP aliases. If anyone can give me a clear idea of what I need to do it would be greatly appreciated.

    Read the article

  • Cause of flapping UNKNOWN Nagios status?

    - by jldugger
    We run some Nagios service checks via OpsView, and one of our hosts is getting a strange response for SSH: "UNKNOWN: Service results are stale" It happens regularly, but seems to go away as the system retries a 2nd and 3rd time. It started after a patch and reboot of the server in question last week. The system itself responds to SSH from boxes I've tested with (which doesn't include the monitoring system I am not given access to). /var/log/secure is full of lines ala: sshd[15628]: Did not receive identification string from xxx.xxx.226.20 Time stamps are reliably every five minutes, which is pretty obviously the monitoring script disconnecting once it gets a login prompt. Anyone know what might be causing this, or how to fix it? It's really frustrating to see this pop on and off the status page.

    Read the article

  • Problems with chip fan and CPU fan

    - by JS Bangs
    I have a five-year-old ASUS motherboard that has been working fine for me for years, until I attempted to power it on yesterday and got a CPU fan speed and chip fan speed warning. Cracking open the case and powering the computer on, I can see the chip fan working, but it appears to be hitting something as it makes a very loud buzzing noise. The CPU fan, meanwhile, starts up when I power on, but slows down and stops after a few seconds! How can I address these problems? Is there any way to fix these sort of fan speed issues without just replacing the fan (which in the case of the chip fan, probably means replacing the whole motherboard)?

    Read the article

  • Excel help vlookup

    - by user123953
    I need a little help with some excel Employee Locations Hours OT Mr.One Station 1 40 6 Mrs.Seven Station 2 30 6 Mr.Two Station 3 30 4 Mr.Three Station 4 40 4 Mrs.Eight Station 1 32 6 Mr.Four Station 2 32 7 Mrs.Nine Station 3 40 6 Mr.Five Station 4 40 7 Mr.Six Station 1 25 2 Mrs.Ten Station 2 40 3 Mr.Eleven Station 3 60 1 I have spreadsheet with to worksheets one is the data sheet (shown above) on the other sheet is a summary, that has the Locations column as data validation list. I wanna use the data validation list to pull all the people and info from a specific location. I tried using a vlookup put I only know how to use to pull one person at a time not a group of specific to a location.

    Read the article

  • Powerbook G4 unresponsive on wake?

    - by David
    I have a Powerbook G4 17" and I recently updated to the Mac OS 10.5.8 and got a monitor. I put it to sleep by closing the lid and sometimes it resumes normally and sometimes it doesn't. It doesn't matter if it's on sleep for a day or 10 minutes, it just happens randomly. It wakes up, but the screen doesn't flash blue for a few seconds like it normally would, indicating that it found the second monitor. It just wakes up, and a picture appears on both screens and the mouse moves, but nothing responds. The only way I can make it work again is by holding down the power button until it shuts down and then turning it on again. this frustrating because then I have to reopen all my programs and Safari tabs. I tried resetting the PMU by unplugging everything and taking out the batter, then holding the power button for five seconds, but it has the same problem no matter what I do.

    Read the article

  • Top ten security tips for non-technical users

    - by Justin
    I'm giving a presentation later this week to the staff at the company where I work. The goal of the presentation is to serve as a refresher/remidner of good practices that can help keep our network secure. The audience is made up of both programmers and non-technical staff, so the presentation is geared for non-technical users. I want part of this presentation to be a top list of "tips". The list needs to be short (to encourage memory) and be specific and relevant to the user. I have the following five items so far: Never open an attachment you didn't expect Only download software from a trusted source, like download.com Do not distribute passwords when requested via phone or email Be wary of social engineering Do not store sensitive data on an FTP server Some clarifications: This is for our work network These need to be "best practices" tips for the end-user, not IT policy We have backups, OS patches, firewall, AV, etc, all centrally managed This is for a small business (less than 25 people) I have two questions: Do you suggest any additional items? Do you suggest any changes to existing items?

    Read the article

< Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >