Search Results

Search found 1235 results on 50 pages for 'multicast delegates'.

Page 27/50 | < Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >

  • Suspected network performance issue on VirtualBox Ubuntu guest on Win7 host

    - by Adam
    I set up Ubuntu 12.04 in VirtualBox on the Win7 machine I was allocated on my new project. I am running Java, Eclipse, Tomcat to develop a large data-intensive application and I noticed that this application runs at half the speed of my colleague's identical machine, where he runs it all under Windows. I think I have narrowed down the performance issue to the network, after comparing and equalising all the Java VM settings with my colleague. Is there a ping test I can do or some other network diagnostic test to flag up any problems? To give some background, the network performance is confusing. Running a network speed test to my colleague's machine with iperf shows speeds of 6 Mb/s from my Ubuntu guest, and 90 Mb/s from the win7 host. Large downloads, e.g. the Java SDK, come down at about 1.2 MB/s on both the guest and the host. Pings are sub-1ms on the host, but 1.5ms on the guest. I also did a broadband speed test, and got 10Mb/s download speed on both, but the host has an upload speed of 10Mb/s but the guest only uploads at 3Mb/s. I've been trying to diagnose any MTU problems with ping -M do to identify any kind of packet fragmentation problem but it's progressing very slow because I don't have much experience in this area. From what I read on other people's networking issues with VB and Linux guests on Win7 hosts, I should be able to get the speed on the guest up to the same level as the host. I installed a fresh VM with Ubuntu again to see if I'd foobar'd it somehow, but I'm getting the same readings with iperf on the virgin installation. My setup is: Adapter 1: Intel PRO/1000 MT Desktop (NAT) Adapter 2: ditto (host-only adapter) eth0 Link encap:Ethernet HWaddr 08:00:27:0b:76:bf inet addr:10.0.2.15 Bcast:10.0.2.255 Mask:255.255.255.0 inet6 addr: fe80::a00:27ff:fe0b:76bf/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:86236 errors:0 dropped:0 overruns:0 frame:0 TX packets:49369 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:69163946 (69.1 MB) TX bytes:3530535 (3.5 MB) eth2 Link encap:Ethernet HWaddr 08:00:27:a3:26:b8 inet addr:192.168.56.101 Bcast:192.168.56.255 Mask:255.255.255.0 inet6 addr: fe80::a00:27ff:fea3:26b8/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:59 errors:0 dropped:0 overruns:0 frame:0 TX packets:57 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:9148 (9.1 KB) TX bytes:7648 (7.6 KB) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:701 errors:0 dropped:0 overruns:0 frame:0 TX packets:701 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:66321 (66.3 KB) TX bytes:66321 (66.3 KB)

    Read the article

  • Second network card configuration not working.

    - by Sebas
    I have 4 servers running Centos 5. All of them have two ethernet network cards. I have configured 192.168.1.x IP addresses on their eth0 card. They are all connected to the same switch using their eth0 card and they are all working. I have configured 10.72.11.x IP addresses on their eth1 card.They are all connected to the same switch - a different one from the switch used with eth0 card - using their eth1 card and they are NOT all working. Their configuration files is like: DEVICE=eth1 BOOTPROTO=static IPADDR=10.72.11.236 BROADCAST=10.72.11.191 NETMASK=255.255.255.192 NETWORK=10.72.11.128 HWADDR=84:2B:2B:55:4B:98 IPV6INIT=yes IPV6_AUTOCONF=yes ONBOOT=yes The interfase is starting and configured as I need. [root@sql1 network-scripts]# ifconfig eth0 Link encap:Ethernet HWaddr 84:2B:2B:55:4B:97 inet addr:192.168.1.105 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::862b:2bff:fe55:4b97/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:2981 errors:0 dropped:0 overruns:0 frame:0 TX packets:319 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:386809 (377.7 KiB) TX bytes:66134 (64.5 KiB) Interrupt:36 Memory:da000000-da012800 eth1 Link encap:Ethernet HWaddr 84:2B:2B:55:4B:98 inet addr:10.72.11.236 Bcast:10.72.11.191 Mask:255.255.255.192 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b) Interrupt:48 Memory:dc000000-dc012800 I also added a route-eth1 file that looks like: 10.0.0.0/8 via 10.72.11.254 Routing looks fine to me: [root@sql1 network-scripts]# netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 10.72.11.192 0.0.0.0 255.255.255.192 U 0 0 0 eth1 192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0 169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth1 10.0.0.0 10.72.11.254 255.0.0.0 UG 0 0 0 eth1 0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0 But I cannot ping one server from the other. [root@sql1 network-scripts]# ping 10.72.11.235 PING 10.72.11.235 (10.72.11.235) 56(84) bytes of data. From 10.72.11.236 icmp_seq=1 Destination Host Unreachable From 10.72.11.236 icmp_seq=2 Destination Host Unreachable From 10.72.11.236 icmp_seq=3 Destination Host Unreachable From 10.72.11.236 icmp_seq=4 Destination Host Unreachable From 10.72.11.236 icmp_seq=5 Destination Host Unreachable From 10.72.11.236 icmp_seq=6 Destination Host Unreachable ^C --- 10.72.11.235 ping statistics --- 7 packets transmitted, 0 received, +6 errors, 100% packet loss, time 6033ms , pipe 3 What am I doing wrong?

    Read the article

  • Routing table with two NIC adapters in libvirt/KVM

    - by lzap
    I created a virtual NAT network (192.168.100.0/24 network) in my libvirt and new guest with two interfaces - one in this network, one as bridged (10.34.1.0/24 network) to the local LAN. The reason for that is I need to have my own virtual network for my DHCP/TFTP/DNS testing and still want to access my guest externally from my LAN. On both networks I have working DHCP, both giving them IP addresses. When I setup NAT port forwarding (e.g. for ssh), I can connect to the eth0 (virtual network), everything is fine. But when I try to access the eth1 via bridged interface, I have no response. I guess I have problem with my routing table - outgoing packets are routed to the virtual NAT network (which has access to the machine I am connecting from - I can ping it). But I am not sure if this setup is correct. I think I need to add something to my routing table. # ifconfig eth0 Link encap:Ethernet HWaddr 52:54:00:B4:A7:5F inet addr:192.168.100.14 Bcast:192.168.100.255 Mask:255.255.255.0 inet6 addr: fe80::5054:ff:feb4:a75f/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:16468 errors:0 dropped:27 overruns:0 frame:0 TX packets:6081 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:22066140 (21.0 MiB) TX bytes:483249 (471.9 KiB) Interrupt:11 Base address:0x2000 eth1 Link encap:Ethernet HWaddr 52:54:00:DE:16:21 inet addr:10.34.1.111 Bcast:10.34.1.255 Mask:255.255.255.0 inet6 addr: fe80::5054:ff:fede:1621/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:34 errors:0 dropped:0 overruns:0 frame:0 TX packets:189 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:4911 (4.7 KiB) TX bytes:9 # route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 192.168.100.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0 10.34.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1 169.254.0.0 0.0.0.0 255.255.0.0 U 1002 0 0 eth0 169.254.0.0 0.0.0.0 255.255.0.0 U 1003 0 0 eth1 0.0.0.0 192.168.100.1 0.0.0.0 UG 0 0 0 eth0 Network I am trying to connect from is different than network the hypervisor is connected to: 10.36.0.0. But it is accessible from that network. So I tried to add new route rule: route add -net 10.36.0.0 netmask 255.255.0.0 dev eth1 And it is not working. I thought setting correct interface would be sufficient. What is needed to get my packets coming through?

    Read the article

  • Ubuntu hardware wireless switch has no effect after suspend and 13.10 upgrade

    - by blaineh
    I'm posting this on SU after it stalled on askubuntu. I hope someone here can help! If you'd prefer to answer on AU itself, here's the link: http://askubuntu.com/questions/365177/hardware-wireless-switch-has-no-effect-after-suspend-and-13-10-upgrade Wireless works fine after a reboot, but after a suspend the hardware switch (for my laptop this is f12) has no effect on the wireless, it is just permanently off, and shows that it is with a red LED. My rfkill list all reads: 0: phy0: Wireless LAN Soft blocked: no Hard blocked: yes 1: hp-wifi: Wireless LAN Soft blocked: no Hard blocked: yes Any combination with rfkill <un>block wifi doesn't work, although one time first blocking then unblocking actually turned it on again. sudo lshw -C network reads: *-network DISABLED description: Wireless interface product: AR9285 Wireless Network Adapter (PCI-Express) vendor: Qualcomm Atheros physical id: 0 bus info: pci@0000:02:00.0 logical name: wlan0 version: 01 serial: 78:e4:00:65:2e:3f width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=ath9k driverversion=3.11.0-12-generic firmware=N/A latency=0 link=no multicast=yes wireless=IEEE 802.11bgn resources: irq:17 memory:90100000-9010ffff *-network DISABLED description: Ethernet interface product: RTL8101E/RTL8102E PCI Express Fast Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:03:00.0 logical name: eth0 version: 02 serial: c8:0a:a9:89:b4:30 size: 10Mbit/s capacity: 100Mbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list rom ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=half latency=0 link=no multicast=yes port=MII speed=10Mbit/s resources: irq:42 ioport:2000(size=256) memory:90010000-90010fff memory:90000000-9000ffff memory:90020000-9002ffff Also, adding a /etc/pm/sleep.d/brcm.sh file as recommended here simply prevents the laptop from suspending at all, which of course is no good. This question has an answer urging to install the original driver, but it wasn't an "accepted answer" so I'd rather not take a chance on it. Also I'll admit I'm a bit lost on that and would like help doing so with the specific information I've given. I would be happy to provide more information, so long as you're willing to help me find it for you! This is a very annoying bug. I have a Compaq Presario CQ62. Edit. Output of lspci | grep Network: 02:00.0 Network controller: Qualcomm Atheros AR9285 Wireless Network Adapter (PCI-Express) (rev 01) Edit. This morning, I had had the laptop suspended all night, and then when I tried to awake it, it simply wouldn't. It would try, and then it would sleep again (I guess it felt a little bit like me! </badjoke>). Is it possible these problems are related? Edit. I don't have enough reputation on SU proper to post links to pastebins and other questions I've tried, so I'm putting them in comments, and of course they're available in the original question.

    Read the article

  • Can only bring up one of two interfaces

    - by mstaessen
    I'm having a bizarre issue with my HP Proliant DL 360 G4p server. It has two gigabit ethernet interfaces but I can bring up only one of them. This is starting to freak me out and that's why I turned here. I'm running the x64 ubuntu 11.10 server edition. lshw -c network shows that the second interface is disabled. I have no idea why ans how to enable it. $ sudo lshw -c network *-network:0 description: Ethernet interface product: NetXtreme BCM5704 Gigabit Ethernet vendor: Broadcom Corporation physical id: 2 bus info: pci@0000:02:02.0 logical name: eth0 version: 10 serial: 00:18:71:e3:6d:26 size: 100Mbit/s capacity: 1Gbit/s width: 64 bits clock: 66MHz capabilities: pcix pm vpd msi bus_master cap_list ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=tg3 driverversion=3.119 duplex=full firmware=5704-v3.27b, ASFIPMIc v2.36 ip=10.48.8.x latency=64 link=yes mingnt=64 multicast=yes port=twisted pair speed=100Mbit/s resources: irq:25 memory:fdf70000-fdf7ffff *-network:1 DISABLED description: Ethernet interface product: NetXtreme BCM5704 Gigabit Ethernet vendor: Broadcom Corporation physical id: 2.1 bus info: pci@0000:02:02.1 logical name: eth1 version: 10 serial: 00:18:71:e3:6d:25 capacity: 1Gbit/s width: 64 bits clock: 66MHz capabilities: pcix pm vpd msi bus_master cap_list ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=tg3 driverversion=3.119 firmware=5704-v3.27b latency=64 link=no mingnt=64 multicast=yes port=twisted pair resources: irq:26 memory:fdf60000-fdf6ffff If I try to ifup eth1, then I get $ sudo ifup eth1 Ignoring unknown interface eth1=eth1. I figured that's what happens when there is no eth1 listed in /etc/network/interfaces. But when I add the configuration for eth1, I still can't ifup. $ sudo ifup eth1 RTNETLINK answers: File exists Failed to bring up eth1. I've also tried ifconfig eth1 up but without any result. For clarity, I have added a masked version of /etc/network/interfaces. I don't think it is the cause of the problem though. $ cat /etc/network/interfaces # This file describes the network interfaces available on your system # and how to activate them. For more information, see interfaces(5). # The loopback network interface auto lo iface lo inet loopback # The primary network interface auto eth0 iface eth0 inet static address 10.48.8.x netmask 255.255.255.y network 10.48.8.z broadcast 10.48.8.t gateway 10.48.8.u auto eth1 iface eth1 inet static address 193.190.253.x netmask 255.255.255.y network 193.190.253.z broadcast 193.190.253.t gateway 193.190.253.u I really need some help fixing this. It's driving me crazy. Thanks.

    Read the article

  • arp "who-has tell" on cloned machine

    - by mcmorry
    I have a urgent problem to solve today, but I'm lost. Please help. I've cloned a Virtual Machine hosted on VM Ware ESXi 4.1 The OS is now Ubuntu Server 12.04 LTS, but at the time of cloning it was 10.04 LTS. I fixed the MAC address manually inside /etc/udev/rules.d/70-persistent-net.rules. It is a known problem on Ubuntu. I had to remove the old MAC address and set the new one as eth0. Everything seems to work fine, except ARP. My provider OVH sent me a warning to resolve it today (this is the second day) or they will block my IP! The log contains many lines like this: Tue Jun 5 01:04:29 2012 : arp who-has 178.32.136.212 tell 178.32.136.224 where .224 is the cloned server that is causing problems, and .212 is the cloned one. arp -na returns: ? (178.33.230.254) at 00:07:b4:00:00:02 [ether] on eth0 ? (178.32.136.212) at 00:50:56:09:8e:f1 [ether] on eth0 The first IP is the ESXi machine. The second one should not be there. I'm not an expert and I don't know what else to do to fix this problem. Any help will be very appreciated. Thanks. EDIT: ifcofig on .224: eth0 Link encap:Ethernet HWaddr 00:50:56:01:32:c6 inet addr:178.32.136.224 Bcast:178.32.136.255 Mask:255.255.255.0 inet6 addr: fe80::250:56ff:fe01:32c6/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:399924 errors:0 dropped:465 overruns:0 frame:0 TX packets:241884 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:58006071 (58.0 MB) TX bytes:663603166 (663.6 MB) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:516216 errors:0 dropped:0 overruns:0 frame:0 TX packets:516216 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:236284275 (236.2 MB) TX bytes:236284275 (236.2 MB) ifconfig on .212: eth0 Link encap:Ethernet HWaddr 00:50:56:09:8e:f1 inet addr:178.32.136.212 Bcast:178.32.136.255 Mask:255.255.255.0 inet6 addr: fe80::250:56ff:fe09:8ef1/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:16014 errors:0 dropped:0 overruns:0 frame:0 TX packets:14511 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:15134444 (15.1 MB) TX bytes:2683025 (2.6 MB) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:9944 errors:0 dropped:0 overruns:0 frame:0 TX packets:9944 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:1139347 (1.1 MB) TX bytes:1139347 (1.1 MB)

    Read the article

  • Can't ping Ip over bridge

    - by tmn29a
    I'm unable to ping another host over a bridge I created, I can't see the error -.- It's a remote machine running debian stable with some backports for which I want to set up DHCP on the new Subnet 172.30.xxx.xxx to be used for KVM-Guests. ifconfig : bond0 Link encap:Ethernet HWaddr e4:11:5b:d4:94:30 inet addr:10.54.2.84 Bcast:10.54.2.127 Mask:255.255.255.192 inet6 addr: fe80::e611:5bff:fed4:9430/64 Scope:Link UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1 RX packets:34277 errors:0 dropped:0 overruns:0 frame:0 TX packets:18379 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:2638709 (2.5 MiB) TX bytes:2887894 (2.7 MiB) br0 Link encap:Ethernet HWaddr f2:fc:4d:7f:15:f0 inet addr:172.30.254.66 Bcast:172.30.254.127 Mask:255.255.255.192 inet6 addr: fe80::f0fc:4dff:fe7f:15f0/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:252 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:0 (0.0 B) TX bytes:10800 (10.5 KiB) Pings : ping -I br0 172.30.xxx.65 PING 172.30.xxx.65 (172.30.xxx.65) from 172.30.xxx.66 br0: 56(84) bytes of data. --- 172.30.xxx.65 ping statistics --- 3 packets transmitted, 0 received, 100% packet loss, time 2017ms ping -I bond0 172.30.254.65 PING 172.30.xxx.65 (172.30.xxx.65) from 10.54.2.84 bond0: 56(84) bytes of data. 64 bytes from 172.30.x.65: icmp_req=1 ttl=64 time=0.599 ms 64 bytes from 172.30.x.65: icmp_req=2 ttl=64 time=0.575 ms 64 bytes from 172.30.x.65: icmp_req=3 ttl=64 time=0.565 ms --- 172.30.x.65 ping statistics --- 3 packets transmitted, 3 received, 0% packet loss, time 1999ms rtt min/avg/max/mdev = 0.565/0.579/0.599/0.031 ms Route : Destination Gateway Genmask Flags Metric Ref Use Iface 172.30.x.64 * 255.255.255.192 U 0 0 0 br0 10.54.x.64 * 255.255.255.192 U 0 0 0 bond0 default 10.54.x.65 0.0.0.0 UG 0 0 0 bond0 default 172.30.x.65 0.0.0.0 UG 0 0 0 br0 The Interface : cat /etc/network/interfaces auto lo br0 iface lo inet loopback # Bonding Interface auto bond0 iface bond0 inet static address 10.54.x.84 netmask 255.255.255.192 network 10.54.x.64 gateway 10.54.x.65 slaves eth0 eth1 bond_mode active-backup bond_miimon 100 bond_downdelay 200 bond_updelay 200 iface br0 inet static bridge_ports bond0 address 172.30.x.66 broadcast 172.30.x.127 netmask 255.255.x.192 gateway 172.30.x.65 bridge_maxwait 0 If you need more info please ask. Thanks for your help !

    Read the article

  • How Spanning Tree Protocol detects Loops

    - by AMIT
    For last few days I've been reading about Spanning Tree Protocol ,L2 protocol and understood how it prevents loop in network ,various steps in STP but one thing i wanted to know how STP actually detects the loops in network so that it can prevent it.Somewhere I read STP uses BPDU as probe and detects loops I mean how it happen is when switch send a BPDU with Destination Address as multicast and receive same BPDU again mean there is loop in network . But is it how STP detects loops in network?

    Read the article

  • How to use CLEAR USB internet connection in Ubuntu (host) and WindowsXP (guest) using VirtualBox

    - by bithacker
    I'm trying to use CLEAR Motorola WiMax USB in Ubuntu as there is no support for linux as yet. I've installed windowsxp as guest in ubuntu and the version I'm using is 3.2.2. USB is connecting fine in WindowsXP but I can't use internet in Ubuntu. Can you please tell me how to do it. Here is the configuration that could help you guys. Thanks in advance. I'm using Two Network Adapters. Network Adapter 1: PCnet-FAST III (NAT) Adapter 2: PCnet-FAST III (Host-only adapter, 'vboxnet0') ipconfig [on Guest windowsXP] Windows IP Configuration Ethernet adapter Local Area Connection: PCnet-FAST III (NAT) Connection-specific DNS Suffix . : IP Address. . . . . . . . . . . . : 10.0.2.15 Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : 10.0.2.2 Ethernet adapter Local Area Connection 3: PCnet-FAST III (Host-only adapter, 'vboxnet0') Connection-specific DNS Suffix . : IP Address. . . . . . . . . . . . : 192.168.56.101 Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : Ethernet adapter Local Area Connection 2: Connection-specific DNS Suffix . : CLEAR Motorola USB IP Address. . . . . . . . . . . . : 10.168.242.33 Subnet Mask . . . . . . . . . . . : 255.255.192.0 Default Gateway . . . . . . . . . : 10.168.192.2 IFCONFIG [on Host Ubuntu] (Ethernet) eth0 Link encap:Ethernet HWaddr 00:14:22:b9:9d:76 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:16 eth1 (Wireless) Link encap:Ethernet HWaddr 00:13:ce:f0:9b:0d inet6 addr: fe80::213:ceff:fef0:9b0d/64 Scope:Link UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:1 errors:0 dropped:5 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:84 (84.0 B) Interrupt:17 Base address:0xe000 Memory:dfcff000-dfcfffff lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:2292 errors:0 dropped:0 overruns:0 frame:0 TX packets:2292 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:171952 (171.9 KB) TX bytes:171952 (171.9 KB) vboxnet0 Link encap:Ethernet HWaddr 0a:00:27:00:00:00 inet addr:192.168.56.1 Bcast:192.168.56.255 Mask:255.255.255.0 inet6 addr: fe80::800:27ff:fe00:0/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:137 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:21174 (21.1 KB)

    Read the article

  • Why i disconnect every few seconds? using USB wireless adapter

    - by Rev3rse
    i know it's for ubuntu questions..but mint and ubuntu are very similiar and i had the same problem with linux ubuntu too..so i think this is the right place for my question anyway i don't have experience with drivers and other things,after installing Linux on my machine( i did dist-upgrade btw) everything seem to be great because i didn't have to install any driver, after a while i realized that my connection stop after few minutes(actually it shows that I'm connected but it's not) so i have to reconnect and after few minutes it disconnect again. I'm using Alfa USB wireless adapter AWS036H, and my Linux version is 11 i think the driver i'm using is Realtek i searched in the Internet and i found nothing. these are some outputs of few things people usually ask for: Note: I'm NOT using a laptop. dmsg: [19445.604448] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=2.174.220.77 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=104 ID=10466 DF PROTO=TCP SPT=55150 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19448.164050] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=41982 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=7566 DF PROTO=TCP INCOMPLETE [8 bytes] ] [19465.079565] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=80.128.216.31 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=5100 DF PROTO=TCP SPT=50169 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19486.270328] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=90.130.13.122 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=109 ID=22207 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19497.480522] wlan0: deauthenticating from 00:24:c8:4b:46:e0 by local choice (reason=3) [19497.593276] cfg80211: All devices are disconnected, going to restore regulatory settings [19497.593282] cfg80211: Restoring regulatory settings [19497.593346] cfg80211: Calling CRDA to update world regulatory domain [19497.638740] cfg80211: Updating information on frequency 2412 MHz for a 20 MHz width channel with regulatory rule: [19497.638745] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638749] cfg80211: Updating information on frequency 2417 MHz for a 20 MHz width channel with regulatory rule: [19497.638753] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638756] cfg80211: Updating information on frequency 2422 MHz for a 20 MHz width channel with regulatory rule: [19497.638760] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638763] cfg80211: Updating information on frequency 2427 MHz for a 20 MHz width channel with regulatory rule: [19497.638766] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638770] cfg80211: Updating information on frequency 2432 MHz for a 20 MHz width channel with regulatory rule: [19497.638773] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638776] cfg80211: Updating information on frequency 2437 MHz for a 20 MHz width channel with regulatory rule: [19497.638780] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638783] cfg80211: Updating information on frequency 2442 MHz for a 20 MHz width channel with regulatory rule: [19497.638787] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638790] cfg80211: Updating information on frequency 2447 MHz for a 20 MHz width channel with regulatory rule: [19497.638794] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638797] cfg80211: Updating information on frequency 2452 MHz for a 20 MHz width channel with regulatory rule: [19497.638801] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638804] cfg80211: Updating information on frequency 2457 MHz for a 20 MHz width channel with regulatory rule: [19497.638807] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638811] cfg80211: Updating information on frequency 2462 MHz for a 20 MHz width channel with regulatory rule: [19497.638814] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638817] cfg80211: Updating information on frequency 2467 MHz for a 20 MHz width channel with regulatory rule: [19497.638821] cfg80211: 2457000 KHz - 2482000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638824] cfg80211: Updating information on frequency 2472 MHz for a 20 MHz width channel with regulatory rule: [19497.638828] cfg80211: 2457000 KHz - 2482000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638831] cfg80211: Updating information on frequency 2484 MHz for a 20 MHz width channel with regulatory rule: [19497.638835] cfg80211: 2474000 KHz - 2494000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638838] cfg80211: World regulatory domain updated: [19497.638841] cfg80211: (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp) [19497.638845] cfg80211: (2402000 KHz - 2472000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [19497.638848] cfg80211: (2457000 KHz - 2482000 KHz @ 20000 KHz), (300 mBi, 2000 mBm) [19497.638852] cfg80211: (2474000 KHz - 2494000 KHz @ 20000 KHz), (300 mBi, 2000 mBm) [19497.638855] cfg80211: (5170000 KHz - 5250000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [19497.638859] cfg80211: (5735000 KHz - 5835000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [19513.145150] wlan0: authenticate with 00:24:c8:4b:46:e0 (try 1) [19513.146910] wlan0: authenticated [19513.252775] wlan0: associate with 00:24:c8:4b:46:e0 (try 1) [19513.255149] wlan0: RX AssocResp from 00:24:c8:4b:46:e0 (capab=0x411 status=0 aid=2) [19513.255154] wlan0: associated [19515.675091] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=91.79.8.40 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x20 TTL=110 ID=42720 DF PROTO=TCP SPT=1945 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [19525.684312] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=78.13.80.169 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=109 ID=49890 DF PROTO=TCP SPT=53401 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [19551.856766] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=85.228.39.93 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=103 ID=1162 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19564.623005] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=90.202.21.238 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=114 ID=17881 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19584.855364] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=2.49.151.87 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=117 ID=31716 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19604.688647] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=109.225.124.155 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=112 ID=6656 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19626.362529] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.184.50.41 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=114 ID=23241 DF PROTO=TCP SPT=1416 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [19645.040906] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=92.250.245.244 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=51 ID=0 DF PROTO=TCP SPT=50061 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [19665.212659] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=87.183.3.18 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=111 ID=1689 DF PROTO=TCP SPT=62817 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19685.036415] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=78.13.80.169 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=109 ID=50638 DF PROTO=TCP SPT=49624 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [19705.487915] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=217.122.17.82 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=112 ID=19070 DF PROTO=TCP SPT=54795 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19726.779185] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=80.88.116.239 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=109 ID=32168 DF PROTO=TCP SPT=57330 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19744.755673] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=109.124.5.43 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=2288 DF PROTO=TCP SPT=6475 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [19764.449183] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=79.216.35.19 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=4281 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19784.456189] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.82.25.149 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=114 ID=1866 DF PROTO=TCP SPT=59507 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19804.836687] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.56.199.3 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=108 ID=14749 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19824.812685] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=186.28.7.159 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=107 ID=44686 PROTO=UDP SPT=23418 DPT=6881 LEN=28 [19847.683314] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=78.13.80.169 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=108 ID=63046 DF PROTO=TCP SPT=52192 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [19884.711455] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=84.146.24.238 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=27914 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19884.983589] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=2.107.130.61 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=112 ID=7742 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19905.681078] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=95.21.11.121 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=114 ID=31775 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19926.035707] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=109.76.132.55 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=28140 DF PROTO=TCP SPT=51905 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19945.668326] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=188.92.0.197 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=7865 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19967.200339] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=83.252.102.172 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=105 ID=28408 DF PROTO=TCP SPT=63505 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19999.752732] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=79.166.171.200 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=110 ID=36405 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20007.928719] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=79.235.59.16 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=112 ID=46415 DF PROTO=TCP SPT=4537 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [20026.181726] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.182.169.36 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=106 ID=25126 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20048.845358] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=87.66.118.104 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=111 ID=18068 DF PROTO=TCP SPT=49928 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20064.341857] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=77.2.63.153 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=107 ID=7242 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20090.093490] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=93.16.17.210 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=108 ID=894 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20104.443995] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=89.83.235.99 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=114 ID=17295 DF PROTO=TCP SPT=58979 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20128.625374] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.62.91.79 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=107 ID=21793 DF PROTO=TCP SPT=51446 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20151.055506] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=84.135.217.213 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=112 ID=32452 DF PROTO=TCP SPT=55136 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20164.618874] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=91.79.8.40 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x20 TTL=110 ID=47784 DF PROTO=TCP SPT=2422 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [20184.337745] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=83.252.212.71 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=107 ID=14544 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20205.007512] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=91.62.158.247 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=110 ID=21562 DF PROTO=TCP SPT=3933 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [20225.204018] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=84.146.24.238 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=113 ID=15045 DF PROTO=TCP SPT=49630 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20244.842290] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=82.82.190.168 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=112 ID=23741 DF PROTO=TCP SPT=50766 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20266.701649] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=88.153.108.124 DST=192.168.1.6 LEN=48 TOS=0x02 PREC=0x00 TTL=111 ID=206 DF PROTO=TCP SPT=2451 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [20286.305414] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=78.240.86.73 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=107 ID=325 DF PROTO=TCP SPT=65184 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20294.293989] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43133 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=56899 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20294.297015] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43134 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.40 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=12080 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20294.297242] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43135 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=25195 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20295.478338] wlan0: deauthenticating from 00:24:c8:4b:46:e0 by local choice (reason=3) [20295.552735] cfg80211: All devices are disconnected, going to restore regulatory settings [20295.552742] cfg80211: Restoring regulatory settings [20295.552748] cfg80211: Calling CRDA to update world regulatory domain [20295.680635] cfg80211: Updating information on frequency 2412 MHz for a 20 MHz width channel with regulatory rule: [20295.680641] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680644] cfg80211: Updating information on frequency 2417 MHz for a 20 MHz width channel with regulatory rule: [20295.680648] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680652] cfg80211: Updating information on frequency 2422 MHz for a 20 MHz width channel with regulatory rule: [20295.680655] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680658] cfg80211: Updating information on frequency 2427 MHz for a 20 MHz width channel with regulatory rule: [20295.680662] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680665] cfg80211: Updating information on frequency 2432 MHz for a 20 MHz width channel with regulatory rule: [20295.680669] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680672] cfg80211: Updating information on frequency 2437 MHz for a 20 MHz width channel with regulatory rule: [20295.680676] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680679] cfg80211: Updating information on frequency 2442 MHz for a 20 MHz width channel with regulatory rule: [20295.680683] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680687] cfg80211: Updating information on frequency 2447 MHz for a 20 MHz width channel with regulatory rule: [20295.680690] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680693] cfg80211: Updating information on frequency 2452 MHz for a 20 MHz width channel with regulatory rule: [20295.680697] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680700] cfg80211: Updating information on frequency 2457 MHz for a 20 MHz width channel with regulatory rule: [20295.680704] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680708] cfg80211: Updating information on frequency 2462 MHz for a 20 MHz width channel with regulatory rule: [20295.680711] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680715] cfg80211: Updating information on frequency 2467 MHz for a 20 MHz width channel with regulatory rule: [20295.680718] cfg80211: 2457000 KHz - 2482000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680722] cfg80211: Updating information on frequency 2472 MHz for a 20 MHz width channel with regulatory rule: [20295.680725] cfg80211: 2457000 KHz - 2482000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680728] cfg80211: Updating information on frequency 2484 MHz for a 20 MHz width channel with regulatory rule: [20295.680732] cfg80211: 2474000 KHz - 2494000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680736] cfg80211: World regulatory domain updated: [20295.680738] cfg80211: (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp) [20295.680742] cfg80211: (2402000 KHz - 2472000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [20295.680745] cfg80211: (2457000 KHz - 2482000 KHz @ 20000 KHz), (300 mBi, 2000 mBm) [20295.680749] cfg80211: (2474000 KHz - 2494000 KHz @ 20000 KHz), (300 mBi, 2000 mBm) [20295.680752] cfg80211: (5170000 KHz - 5250000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [20295.680756] cfg80211: (5735000 KHz - 5835000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [20306.009341] wlan0: authenticate with 00:24:c8:4b:46:e0 (try 1) [20306.011225] wlan0: authenticated [20306.118095] wlan0: associate with 00:24:c8:4b:46:e0 (try 1) [20306.120963] wlan0: RX AssocResp from 00:24:c8:4b:46:e0 (capab=0x411 status=0 aid=2) [20306.120967] wlan0: associated [20307.364427] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=87.91.101.130 DST=192.168.1.6 LEN=64 TOS=0x00 PREC=0x00 TTL=49 ID=36839 DF PROTO=TCP SPT=62492 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [20310.914290] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43180 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=56900 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20310.936634] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43181 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.40 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=12081 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20310.939017] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43182 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=25196 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20325.941050] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=217.118.78.99 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=4407 PROTO=UDP SPT=2970 DPT=6881 LEN=28 [20328.801724] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43196 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=56901 DF PROTO=TCP INCOMPLETE [8 bytes] ] ... inxi -N Network: Card-1 Realtek RTL8101E/RTL8102E PCI Express Fast Ethernet controller driver r8169 Card-2 Realtek RTL-8139/8139C/8139C+ driver 8139too /usr/lib/linuxmint/mintWifi/mintWifi.py ------------------------- * I. scanning WIFI PCI devices... ------------------------- * II. querying ndiswrapper... ------------------------- * III. querying iwconfig... lo no wireless extensions. eth0 no wireless extensions. eth1 no wireless extensions. wlan0 IEEE 802.11bg ESSID:"Home" Mode:Managed Frequency:2.437 GHz Access Point: 00:24:C8:4B:46:E0 Bit Rate=54 Mb/s Tx-Power=20 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off Link Quality=68/70 Signal level=-42 dBm Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:0 Invalid misc:1132 Missed beacon:0 ------------------------- * IV. querying ifconfig... eth0 Link encap:Ethernet HWaddr 00:1f:d0:c9:b8:8e UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:43 Base address:0x4000 eth1 Link encap:Ethernet HWaddr 00:0e:2e:77:88:16 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:19 Base address:0xd000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:10696 errors:0 dropped:0 overruns:0 frame:0 TX packets:10696 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:3823011 (3.8 MB) TX bytes:3823011 (3.8 MB) wlan0 Link encap:Ethernet HWaddr 00:c0:ca:44:62:d1 inet addr:192.168.1.6 Bcast:255.255.255.255 Mask:255.255.255.0 inet6 addr: fe80::2c0:caff:fe44:62d1/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:90424 errors:0 dropped:0 overruns:0 frame:0 TX packets:65201 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:98024465 (98.0 MB) TX bytes:10345450 (10.3 MB) ------------------------- * V. querying DHCP... lspci 00:00.0 Host bridge: Intel Corporation 82G33/G31/P35/P31 Express DRAM Controller (rev 10) 00:01.0 PCI bridge: Intel Corporation 82G33/G31/P35/P31 Express PCI Express Root Port (rev 10) 00:1b.0 Audio device: Intel Corporation N10/ICH 7 Family High Definition Audio Controller (rev 01) 00:1c.0 PCI bridge: Intel Corporation N10/ICH 7 Family PCI Express Port 1 (rev 01) 00:1c.1 PCI bridge: Intel Corporation N10/ICH 7 Family PCI Express Port 2 (rev 01) 00:1d.0 USB Controller: Intel Corporation N10/ICH 7 Family USB UHCI Controller #1 (rev 01) 00:1d.1 USB Controller: Intel Corporation N10/ICH 7 Family USB UHCI Controller #2 (rev 01) 00:1d.2 USB Controller: Intel Corporation N10/ICH 7 Family USB UHCI Controller #3 (rev 01) 00:1d.3 USB Controller: Intel Corporation N10/ICH 7 Family USB UHCI Controller #4 (rev 01) 00:1d.7 USB Controller: Intel Corporation N10/ICH 7 Family USB2 EHCI Controller (rev 01) 00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev e1) 00:1f.0 ISA bridge: Intel Corporation 82801GB/GR (ICH7 Family) LPC Interface Bridge (rev 01) 00:1f.2 IDE interface: Intel Corporation N10/ICH7 Family SATA IDE Controller (rev 01) 00:1f.3 SMBus: Intel Corporation N10/ICH 7 Family SMBus Controller (rev 01) 01:00.0 VGA compatible controller: nVidia Corporation G96 [GeForce 9400 GT] (rev a1) 03:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8101E/RTL8102E PCI Express Fast Ethernet controller (rev 02) 04:01.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL-8139/8139C/8139C+ (rev 10) lsmod Module Size Used by ipt_REJECT 12512 1 ipt_LOG 12784 5 xt_limit 12541 7 xt_tcpudp 12531 8 ipt_addrtype 12535 4 xt_state 12514 7 ip6table_filter 12711 1 ip6_tables 22545 1 ip6table_filter nf_nat_irc 12542 0 nf_conntrack_irc 13138 1 nf_nat_irc nf_nat_ftp 12548 0 nf_nat 24827 2 nf_nat_irc,nf_nat_ftp nf_conntrack_ipv4 19024 9 nf_nat nf_defrag_ipv4 12649 1 nf_conntrack_ipv4 nf_conntrack_ftp 13106 1 nf_nat_ftp nf_conntrack 69744 7 xt_state,nf_nat_irc,nf_conntrack_irc,nf_nat_ftp,nf_nat,nf_conntrack_ipv4,nf_conntrack_ftp iptable_filter 12706 1 ip_tables 18125 1 iptable_filter x_tables 21907 10 ipt_REJECT,ipt_LOG,xt_limit,xt_tcpudp,ipt_addrtype,xt_state,ip6table_filter,ip6_tables,iptable_filter,ip_tables nls_utf8 12493 10 udf 83795 1 crc_itu_t 12627 1 udf usb_storage 43946 1 uas 17676 0 snd_seq_dummy 12686 0 cryptd 19801 0 aes_i586 16956 1 aes_generic 38023 1 aes_i586 binfmt_misc 13213 1 dm_crypt 22463 0 vesafb 13449 1 nvidia 9766978 44 arc4 12473 2 rtl8187 56206 0 mac80211 257001 1 rtl8187 cfg80211 156212 2 rtl8187,mac80211 ppdev 12849 0 snd_hda_codec_realtek 255882 1 parport_pc 32111 1 psmouse 73312 0 eeprom_93cx6 12653 1 rtl8187 snd_hda_intel 24113 5 snd_hda_codec 90901 2 snd_hda_codec_realtek,snd_hda_intel snd_hwdep 13274 1 snd_hda_codec snd_pcm 80042 3 snd_hda_intel,snd_hda_codec snd_seq_midi 13132 0 snd_rawmidi 25269 1 snd_seq_midi snd_seq_midi_event 14475 1 snd_seq_midi snd_seq 51291 3 snd_seq_dummy,snd_seq_midi,snd_seq_midi_event snd_timer 28659 2 snd_pcm,snd_seq snd_seq_device 14110 4 snd_seq_dummy,snd_seq_midi,snd_rawmidi,snd_seq joydev 17322 0 snd 55295 18 snd_hda_codec_realtek,snd_hda_intel,snd_hda_codec,snd_hwdep,snd_pcm,snd_rawmidi,snd_seq,snd_timer,snd_seq_device serio_raw 12990 0 soundcore 12600 1 snd snd_page_alloc 14073 2 snd_hda_intel,snd_pcm lp 13349 0 parport 36746 3 ppdev,parport_pc,lp usbhid 41704 0 hid 77084 1 usbhid dm_raid45 88410 0 xor 21860 1 dm_raid45 btrfs 527388 0 zlib_deflate 26594 1 btrfs libcrc32c 12543 1 btrfs 8139too 23208 0 8139cp 22497 0 r8169 42534 0 floppy 60032 0

    Read the article

  • DDD North 3 Presentation and source code &ndash; &lsquo;Event Store - an introduction to a DSD for event sourcing and notifications&rsquo;

    - by Liam Westley
    Originally posted on: http://geekswithblogs.net/twickers/archive/2013/10/15/ddd-north-3-presentation-and-source-code-ndash-lsquoevent-store.aspxThank you everyone at DDD North Thanks to all the people who helped organise the cracking conference that is DDD North 3, returning to Sunderland, and the great facilities at the University of Sunderland, and the fine drinks reception at Sunderland Software City.  The whole event wouldn’t be possible without the sponsors who ensured over 400 people were kept fed and watered so they could enjoy the impressive range of sessions. And lastly, a thank you to all those delegates who gave up their free time on a Saturday to spend a day dashing between lecture rooms, including a late change to my room which saw 40 people having to brave a journey between buildings in the fine drizzle. The enthusiasm from the delegates always helps recharge my geek batteries. Presentation and source code My presentation, source code, Event Store runners and text files containing the various command line parameters used for curl is now available on GitHub; https://github.com/westleyl/DDDNorth3-EventStore. Don’t worry if you don’t have a GitHub account, you don’t need one, you can just click on the Download Zip button on the right hand menu to download all the files as a single ZIP file.  If all you want is the PowerPoint presentation, go to https://github.com/westleyl/DDDNorth3-EventStore/blob/master/Powerpoint/DDDNorth-EventStore.pptx, and click on the View Raw button. Downloading and installing Event Store and Tools Download Event Store http://download.geteventstore.com – I unzipped these files into C:\EventStore\v2.0.1 Download Curl from http://curl.haxx.se/download.html – I downloaded Win64 Generic (with SSL) and unzipped these files into C:\curl version 7.31.0 Running the tools I used in my presentation Demonstration 1 (running Event Store) You can use one of my Event Store runner command files to run the single node version of Event Store, using default ports of 2213 for HTTP and 1113  for TCP, and with a wildcard HTTP pattern.  Both take a single command line parameter to specify the location of the data and log files.  The runners assume the single node executable is located in C:\EventStore\v2.0.1, and will placed data files and logs beneath C:\EventStore\Data, i.e. RunEventStore.cmd TestData1 This will create data files in C:\EventStore\Data\TestData1\Data and log files in C:\EventStore\Data\TestData1\logs. If, when running Event Store you may see the following message, [03288,15,06:23:00.622] Failed to start http server Access is denied You will either need to run Event Store in an administrator console window, or you can use the netsh command to create a firewall permission to allow HTTP listening (this will need to be run, once, in an administrator console window), netsh http add urlacl url=http://*:2213/ user=liam You can always delete this later by running the delete; netsh http delete urlacl url=http://*:2213/ If you want to confirm that everything is running OK, open the management console in a browser by navigating to http://127.0.0.1:2213. If at any point you are asked for a user name and password use the default of ‘admin’/‘changeit’.   Demonstration 2 (reading and adding data, curl) In my second demonstration I used curl directly from the console to read streams, write events and then read back those events. On GitHub I have included is a set of curl commands, CurlCommandLine.txt, and a sample data file, SampleData.json, to load an event into a DDDNorth3 stream. As there is not much data in the Event Store at this point I used the $stats-127.0.0.1:2113 which is a stream containing performance statistics for Event Store and is updated every 30 seconds (default). Demonstration 3 (projections) On GitHub I have included a sample projection, Projection-ByRoom.txt, which will create streams based on the room on which a session was held on the DDDNorth3 agenda. Browse to the management console, http://127.0.0.1:2213.  Click on Projections, New Projection, give it a name, Sessions-ByRoom, and copy in the JavaScript in the Projection-ByRoom.txt file.  Select Continuous, tick Emit Enabled and then click on Post. It should run immediately. You may by challenged for the administration login for the management console, if so use the default user name and password; 'admin'/'changeit'.   Demonstration 4 (C# client) The final demonstration was the Visual Studio 2012 project using the Event Store client – referenced directly as C:\EventStore\v2.0.1\EventStore.ClientAPI.dll, although you can switch this to the latest Event Store client NuGet package. The source code provides a console app for viewing projections with the projection manager (HTTP connection), as well as containing a full set of data for the entire DDDNorth3 agenda.  It also deals with the strategy for reading newest events backwards to older events and ignoring older events that have been superseded. Resources Event Store home page: http://www.geteventstore.com/ Event Store source code on GitHub: https://github.com/eventstore/eventstore Event Store documentation on GitHub: https://github.com/eventstore/eventstore/wiki (includes index to @RobAshton’s blog series on Event Store at https://github.com/eventstore/eventstore/wiki#rob-ashton---projections-series) Event Store forum in Google Groups: https://groups.google.com/forum/?fromgroups#!forum/event-store TopShelf Windows service wrapper is available on github: https://gist.github.com/trbngr/5083266

    Read the article

  • Diving into OpenStack Network Architecture - Part 1

    - by Ronen Kofman
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} rkofman Normal rkofman 83 3045 2014-05-23T21:11:00Z 2014-05-27T06:58:00Z 3 1883 10739 Oracle Corporation 89 25 12597 12.00 140 Clean Clean false false false false EN-US X-NONE HE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} Before we begin OpenStack networking has very powerful capabilities but at the same time it is quite complicated. In this blog series we will review an existing OpenStack setup using the Oracle OpenStack Tech Preview and explain the different network components through use cases and examples. The goal is to show how the different pieces come together and provide a bigger picture view of the network architecture in OpenStack. This can be very helpful to users making their first steps in OpenStack or anyone wishes to understand how networking works in this environment.  We will go through the basics first and build the examples as we go. According to the recent Icehouse user survey and the one before it, Neutron with Open vSwitch plug-in is the most widely used network setup both in production and in POCs (in terms of number of customers) and so in this blog series we will analyze this specific OpenStack networking setup. As we know there are many options to setup OpenStack networking and while Neturon + Open vSwitch is the most popular setup there is no claim that it is either best or the most efficient option. Neutron + Open vSwitch is an example, one which provides a good starting point for anyone interested in understanding OpenStack networking. Even if you are using different kind of network setup such as different Neutron plug-in or even not using Neutron at all this will still be a good starting point to understand the network architecture in OpenStack. The setup we are using for the examples is the one used in the Oracle OpenStack Tech Preview. Installing it is simple and it would be helpful to have it as reference. In this setup we use eth2 on all servers for VM network, all VM traffic will be flowing through this interface.The Oracle OpenStack Tech Preview is using VLANs for L2 isolation to provide tenant and network isolation. The following diagram shows how we have configured our deployment: This first post is a bit long and will focus on some basic concepts in OpenStack networking. The components we will be discussing are Open vSwitch, network namespaces, Linux bridge and veth pairs. Note that this is not meant to be a comprehensive review of these components, it is meant to describe the component as much as needed to understand OpenStack network architecture. All the components described here can be further explored using other resources. Open vSwitch (OVS) In the Oracle OpenStack Tech Preview OVS is used to connect virtual machines to the physical port (in our case eth2) as shown in the deployment diagram. OVS contains bridges and ports, the OVS bridges are different from the Linux bridge (controlled by the brctl command) which are also used in this setup. To get started let’s view the OVS structure, use the following command: # ovs-vsctl show 7ec51567-ab42-49e8-906d-b854309c9edf     Bridge br-int         Port br-int             Interface br-int type: internal         Port "int-br-eth2"             Interface "int-br-eth2"     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2" type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2" ovs_version: "1.11.0" We see a standard post deployment OVS on a compute node with two bridges and several ports hanging off of each of them. The example above is a compute node without any VMs, we can see that the physical port eth2 is connected to a bridge called “br-eth2”. We also see two ports "int-br-eth2" and "phy-br-eth2" which are actually a veth pair and form virtual wire between the two bridges, veth pairs are discussed later in this post. When a virtual machine is created a port is created on one the br-int bridge and this port is eventually connected to the virtual machine (we will discuss the exact connectivity later in the series). Here is how OVS looks after a VM was launched: # ovs-vsctl show efd98c87-dc62-422d-8f73-a68c2a14e73d     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port br-int             Interface br-int type: internal         Port "qvocb64ea96-9f" tag: 1             Interface "qvocb64ea96-9f"     Bridge "br-eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"         Port "br-eth2"             Interface "br-eth2" type: internal         Port "eth2"             Interface "eth2" ovs_version: "1.11.0" Bridge "br-int" now has a new port "qvocb64ea96-9f" which connects to the VM and tagged with VLAN 1. Every VM which will be launched will add a port on the “br-int” bridge for every network interface the VM has. Another useful command on OVS is dump-flows for example: # ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4): cookie=0x0, duration=735.544s, table=0, n_packets=70, n_bytes=9976, idle_age=17, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL cookie=0x0, duration=76679.786s, table=0, n_packets=0, n_bytes=0, idle_age=65534, hard_age=65534, priority=2,in_port=1 actions=drop cookie=0x0, duration=76681.36s, table=0, n_packets=68, n_bytes=7950, idle_age=17, hard_age=65534, priority=1 actions=NORMAL As we see the port which is connected to the VM has the VLAN tag 1. However the port on the VM network (eth2) will be using tag 1000. OVS is modifying the vlan as the packet flow from the VM to the physical interface. In OpenStack the Open vSwitch agent takes care of programming the flows in Open vSwitch so the users do not have to deal with this at all. If you wish to learn more about how to program the Open vSwitch you can read more about it at http://openvswitch.org looking at the documentation describing the ovs-ofctl command. Network Namespaces (netns) Network namespaces is a very cool Linux feature can be used for many purposes and is heavily used in OpenStack networking. Network namespaces are isolated containers which can hold a network configuration and is not seen from outside of the namespace. A network namespace can be used to encapsulate specific network functionality or provide a network service in isolation as well as simply help to organize a complicated network setup. Using the Oracle OpenStack Tech Preview we are using the latest Unbreakable Enterprise Kernel R3 (UEK3), this kernel provides a complete support for netns. Let's see how namespaces work through couple of examples to control network namespaces we use the ip netns command: Defining a new namespace: # ip netns add my-ns # ip netns list my-ns As mentioned the namespace is an isolated container, we can perform all the normal actions in the namespace context using the exec command for example running the ifconfig command: # ip netns exec my-ns ifconfig -a lo        Link encap:Local Loopback           LOOPBACK  MTU:16436 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) We can run every command in the namespace context, this is especially useful for debug using tcpdump command, we can ping or ssh or define iptables all within the namespace. Connecting the namespace to the outside world: There are various ways to connect into a namespaces and between namespaces we will focus on how this is done in OpenStack. OpenStack uses a combination of Open vSwitch and network namespaces. OVS defines the interfaces and then we can add those interfaces to namespace. So first let's add a bridge to OVS: # ovs-vsctl add-br my-bridge Now let's add a port on the OVS and make it internal: # ovs-vsctl add-port my-bridge my-port # ovs-vsctl set Interface my-port type=internal And let's connect it into the namespace: # ip link set my-port netns my-ns Looking inside the namespace: # ip netns exec my-ns ifconfig -a lo        Link encap:Local Loopback           LOOPBACK  MTU:65536 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) my-port   Link encap:Ethernet HWaddr 22:04:45:E2:85:21           BROADCAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) Now we can add more ports to the OVS bridge and connect it to other namespaces or other device like physical interfaces. Neutron is using network namespaces to implement network services such as DCHP, routing, gateway, firewall, load balance and more. In the next post we will go into this in further details. Linux Bridge and veth pairs Linux bridge is used to connect the port from OVS to the VM. Every port goes from the OVS bridge to a Linux bridge and from there to the VM. The reason for using regular Linux bridges is for security groups’ enforcement. Security groups are implemented using iptables and iptables can only be applied to Linux bridges and not to OVS bridges. Veth pairs are used extensively throughout the network setup in OpenStack and are also a good tool to debug a network problem. Veth pairs are simply a virtual wire and so veths always come in pairs. Typically one side of the veth pair will connect to a bridge and the other side to another bridge or simply left as a usable interface. In this example we will create some veth pairs, connect them to bridges and test connectivity. This example is using regular Linux server and not an OpenStack node: Creating a veth pair, note that we define names for both ends: # ip link add veth0 type veth peer name veth1 # ifconfig -a . . veth0     Link encap:Ethernet HWaddr 5E:2C:E6:03:D0:17           BROADCAST MULTICAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) veth1     Link encap:Ethernet HWaddr E6:B6:E2:6D:42:B8           BROADCAST MULTICAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) . . To make the example more meaningful this we will create the following setup: veth0 => veth1 => br-eth3 => eth3 ======> eth2 on another Linux server br-eth3 – a regular Linux bridge which will be connected to veth1 and eth3 eth3 – a physical interface with no IP on it, connected to a private network eth2 – a physical interface on the remote Linux box connected to the private network and configured with the IP of 50.50.50.1 Once we create the setup we will ping 50.50.50.1 (the remote IP) through veth0 to test that the connection is up: # brctl addbr br-eth3 # brctl addif br-eth3 eth3 # brctl addif br-eth3 veth1 # brctl show bridge name     bridge id               STP enabled     interfaces br-eth3         8000.00505682e7f6       no              eth3                                                         veth1 # ifconfig veth0 50.50.50.50 # ping -I veth0 50.50.50.51 PING 50.50.50.51 (50.50.50.51) from 50.50.50.50 veth0: 56(84) bytes of data. 64 bytes from 50.50.50.51: icmp_seq=1 ttl=64 time=0.454 ms 64 bytes from 50.50.50.51: icmp_seq=2 ttl=64 time=0.298 ms When the naming is not as obvious as the previous example and we don't know who are the paired veth interfaces we can use the ethtool command to figure this out. The ethtool command returns an index we can look up using ip link command, for example: # ethtool -S veth1 NIC statistics: peer_ifindex: 12 # ip link . . 12: veth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 Summary That’s all for now, we quickly reviewed OVS, network namespaces, Linux bridges and veth pairs. These components are heavily used in the OpenStack network architecture we are exploring and understanding them well will be very useful when reviewing the different use cases. In the next post we will look at how the OpenStack network is laid out connecting the virtual machines to each other and to the external world. @RonenKofman

    Read the article

  • Smarter, Faster, Cheaper: The Insurance Industry’s Dream

    - by Jenna Danko
    On June 3rd, I saw the Gaylord Resort Centre in Washington D.C. become the hub of C level executives and managers of insurance carriers for the IASA 2013 Conference.  Insurance Accounting/Regulation and Technology sessions took the focus, but there were plenty of tertiary sessions for career development, which complemented the overall strong networking side of the conference.  As an exhibitor, Oracle, along with several hundred other product providers, welcomed the opportunity to display and demonstrate our solutions and we were encouraged by hustle and bustle of the exhibition floor.  The IASA organizers had pre-arranged fast track tours whereby interested conference delegates could sign up for a series of like-themed presentations from Vendors, giving them a level of 'Speed Dating' introductions to possible solutions and services.  Oracle participated in a number of these, which were very well subscribed.  Clearly, the conference had a strong business focus; however, attendees saw technology as a key enabler to get their processes done smarter, faster and cheaper.  As we navigated through the exhibition, it became clear from the inquiries that came to us that insurance carriers are gravitating to a number of focus areas: Navigating the maze of upcoming regulatory reporting changes. For US carriers with European holdings, Solvency II carries a myriad of rules and reporting requirements. Alignment across the globe of the Own Risk and Solvency Assessment (ORSA) processes brings to the fore the National Insurance of Insurance commissioners' (NAIC) recent guidance manual publication. Doing more with less and to certainly expect more from technology for less dollars. The overall cost of IT, in particular hardware, has dropped in real terms (though the appetite for more has risen: more CPU, more RAM, more storage), but software has seen less change. Clearly, customers expect either to pay less or get a lot more from their software solutions for the same buck. Doing things smarter – A recognition that with the advance of technology to stand still no longer means you are technically going backwards. Technology and, in particular technology interactions with human business processes, has undergone incredible change over the past 5 years. Consumer usage (iPhones, etc.) has been at the forefront, but now at the Enterprise level ever more effective technology exploitation is beginning to take place. That data and, in particular gleaning knowledge from data, is refining and improving business processes.  Organizations are now consuming more data than ever before, and it is set to grow exponentially for some time to come.  Amassing large volumes of data is one thing, but effectively analyzing that data is another.  It is the results of such analysis that leads to improvements both in terms of insurance product offerings and the processes to support them. Regulatory Compliance, damned if you do and damned if you don’t! Clearly, around the globe at lot is changing from a regulatory perspective and it is evident that in terms of regulatory requirements, whilst there is a greater convergence across jurisdictions bringing uniformity, there is also a lot of work to be done in the next 5 years. Just like the big data, hidden behind effective regulatory compliance there often lies golden nuggets that can give competitive advantages. From Oracle's perspective, our Rating Engine, Billing, Document Management and Insurance Analytics solutions on display served to strike up good conversations and, as is always the case at conferences, it was a great opportunity to meet and speak with existing Oracle customers that we might not have otherwise caught up with for a while. Fortunately, I was able to catch up on a few sessions at the close of the Exhibition.  The speaker quality was high and the audience asked challenging, but pertinent, questions.  During Dr. Jackie Freiberg’s keynote “Bye Bye Business as Usual,” the author discussed 8 strategies to help leaders create a culture where teams consistently deliver innovative ideas by disrupting the status quo.  The very first strategy: Get wired for innovation.  Freiberg admitted that folks in the insurance and financial services industry understand and know innovation is important, but oftentimes they are slow adopters.  Today, technology and innovation go hand in hand. In speaking to delegates during and after the conference, a high degree of satisfaction could be measured from their positive comments of speaker sessions and the exhibitors. I suspect many will be back in 2014 with Indianapolis as the conference location. Did you attend the IASA Conference in Washington D.C.?  If so, I would love to hear your comments. Andrew Collins is the Director, Solvency II of Oracle Financial Services. He can be reached at andrew.collins AT oracle.com.

    Read the article

  • Wireless cuts out on Toshiba Satellite S7208

    - by alecRN
    I recently got a Toshiba Satellite L875-S7208 with Windows 7 preinstalled. I installed Ubuntu 12.04 LTS dual boot to the same Windows partition. However, usually 15 minutes or less after booting, the wifi connection dies. Here's some hopefully relevant information: lspci -knn 00:00.0 Host bridge [0600]: Intel Corporation 2nd Generation Core Processor Family DRAM Controller [8086:0104] (rev 09) Subsystem: Toshiba America Info Systems Device [1179:fb41] Kernel driver in use: agpgart-intel 00:02.0 VGA compatible controller [0300]: Intel Corporation 2nd Generation Core Processor Family Integrated Graphics Controller [8086:0116] (rev 09) Subsystem: Toshiba America Info Systems Device [1179:fb40] Kernel driver in use: i915 Kernel modules: i915 00:14.0 USB controller [0c03]: Intel Corporation Panther Point USB xHCI Host Controller [8086:1e31] (rev 04) Subsystem: Toshiba America Info Systems Device [1179:fb41] Kernel driver in use: xhci_hcd 00:16.0 Communication controller [0780]: Intel Corporation Panther Point MEI Controller #1 [8086:1e3a] (rev 04) Subsystem: Toshiba America Info Systems Device [1179:fb41] Kernel driver in use: mei Kernel modules: mei 00:1a.0 USB controller [0c03]: Intel Corporation Panther Point USB Enhanced Host Controller #2 [8086:1e2d] (rev 04) Subsystem: Toshiba America Info Systems Device [1179:fb41] Kernel driver in use: ehci_hcd 00:1b.0 Audio device [0403]: Intel Corporation Panther Point High Definition Audio Controller [8086:1e20] (rev 04) Subsystem: Toshiba America Info Systems Device [1179:fb40] Kernel driver in use: snd_hda_intel Kernel modules: snd-hda-intel 00:1c.0 PCI bridge [0604]: Intel Corporation Panther Point PCI Express Root Port 1 [8086:1e10] (rev c4) Kernel driver in use: pcieport Kernel modules: shpchp 00:1c.1 PCI bridge [0604]: Intel Corporation Panther Point PCI Express Root Port 2 [8086:1e12] (rev c4) Kernel driver in use: pcieport Kernel modules: shpchp 00:1c.2 PCI bridge [0604]: Intel Corporation Panther Point PCI Express Root Port 3 [8086:1e14] (rev c4) Kernel driver in use: pcieport Kernel modules: shpchp 00:1d.0 USB controller [0c03]: Intel Corporation Panther Point USB Enhanced Host Controller #1 [8086:1e26] (rev 04) Subsystem: Toshiba America Info Systems Device [1179:fb41] Kernel driver in use: ehci_hcd 00:1f.0 ISA bridge [0601]: Intel Corporation Panther Point LPC Controller [8086:1e59] (rev 04) Subsystem: Toshiba America Info Systems Device [1179:fb41] Kernel modules: iTCO_wdt 00:1f.2 SATA controller [0106]: Intel Corporation Panther Point 6 port SATA Controller [AHCI mode] [8086:1e03] (rev 04) Subsystem: Toshiba America Info Systems Device [1179:fb41] Kernel driver in use: ahci 00:1f.3 SMBus [0c05]: Intel Corporation Panther Point SMBus Controller [8086:1e22] (rev 04) Subsystem: Toshiba America Info Systems Device [1179:fb41] Kernel modules: i2c-i801 02:00.0 Network controller [0280]: Realtek Semiconductor Co., Ltd. RTL8188CE 802.11b/g/n WiFi Adapter [10ec:8176] (rev 01) Subsystem: Realtek Semiconductor Co., Ltd. Device [10ec:8211] Kernel driver in use: rtl8192ce Kernel modules: rtl8192ce 03:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8101E/RTL8102E PCI Express Fast Ethernet controller [10ec:8136] (rev 05) Subsystem: Toshiba America Info Systems Device [1179:fb37] Kernel driver in use: r8169 Kernel modules: r8169 lsmod Module Size Used by snd_hda_codec_hdmi 32474 1 snd_hda_codec_realtek 224066 1 joydev 17693 0 rfcomm 47604 0 bnep 18281 2 bluetooth 180104 10 rfcomm,bnep parport_pc 32866 0 ppdev 17113 0 arc4 12529 2 snd_hda_intel 33773 3 snd_hda_codec 127706 3 snd_hda_codec_hdmi,snd_hda_codec_realtek,snd_hda_intel snd_hwdep 13668 1 snd_hda_codec snd_pcm 97188 3 snd_hda_codec_hdmi,snd_hda_intel,snd_hda_codec snd_seq_midi 13324 0 snd_rawmidi 30748 1 snd_seq_midi snd_seq_midi_event 14899 1 snd_seq_midi snd_seq 61896 2 snd_seq_midi,snd_seq_midi_event snd_timer 29990 2 snd_pcm,snd_seq snd_seq_device 14540 3 snd_seq_midi,snd_rawmidi,snd_seq psmouse 87692 0 serio_raw 13211 0 rtl8192ce 84826 0 rtl8192c_common 75767 1 rtl8192ce rtlwifi 111202 1 rtl8192ce mac80211 506816 3 rtl8192ce,rtl8192c_common,rtlwifi snd 78855 16 snd_hda_codec_hdmi,snd_hda_codec_realtek,snd_hda_intel,snd_hda_codec,snd_hwdep,snd_pcm,snd_rawmidi,snd_seq,snd_timer,snd_seq_device sparse_keymap 13890 0 uvcvideo 72627 0 videodev 98259 1 uvcvideo v4l2_compat_ioctl32 17128 1 videodev mac_hid 13253 0 mei 41616 0 wmi 19256 0 soundcore 15091 1 snd i915 472941 3 snd_page_alloc 18529 2 snd_hda_intel,snd_pcm drm_kms_helper 46978 1 i915 cfg80211 205544 2 rtlwifi,mac80211 drm 242038 4 i915,drm_kms_helper i2c_algo_bit 13423 1 i915 video 19596 1 i915 lp 17799 0 parport 46562 3 parport_pc,ppdev,lp r8169 62099 0 ums_realtek 18248 0 uas 18180 0 usb_storage 49198 1 ums_realtek dmesg | grep firmware [ 15.692951] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 16.240881] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 452.419288] rtl8192c_common:rtl92c_firmware_selfreset(): 8051 reset fail. [ 458.572211] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 465.440640] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 472.337617] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 479.175471] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 485.978582] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 492.764893] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 499.579348] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 506.386934] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 513.209545] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 519.991365] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 526.778375] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 533.629695] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 540.426004] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 547.238125] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 554.024434] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 560.854794] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 567.678160] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 574.494666] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 581.336653] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 588.157710] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 595.221122] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 602.047429] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 608.829534] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 615.639079] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 622.454991] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 629.273231] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 636.056613] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 642.858096] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 649.640753] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 657.184094] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 664.008018] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 670.838639] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 677.675418] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 684.507255] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 691.310994] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 698.095325] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 704.914509] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin [ 711.725178] rtl8192c_common: Loading firmware file rtlwifi/rtl8192cfw.bin uname -r 3.2.0-29-generic ifconfig eth0 Link encap:Ethernet HWaddr 4c:72:b9:59:6c:61 inet addr:192.168.0.11 Bcast:192.168.0.255 Mask:255.255.255.0 inet6 addr: fe80::4e72:b9ff:fe59:6c61/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:4447 errors:0 dropped:0 overruns:0 frame:0 TX packets:2762 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:3671147 (3.6 MB) TX bytes:335133 (335.1 KB) Interrupt:42 Base address:0x2000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:515 errors:0 dropped:0 overruns:0 frame:0 TX packets:515 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:83153 (83.1 KB) TX bytes:83153 (83.1 KB) wlan0 Link encap:Ethernet HWaddr 74:e5:43:32:47:95 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:280 errors:0 dropped:0 overruns:0 frame:0 TX packets:51 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:32958 (32.9 KB) TX bytes:10431 (10.4 KB)

    Read the article

  • RT3290 Bluetooth not pairing in Ubuntu 14.04

    - by Nashhole
    I recently followed the instructions listed in the following link to get my RT3290 bluetooth working on my laptop. These instructions have yielded the most progress I have had in the year I have had this laptop. My machine now sees my bluetooth, I can scan for and see devices, and other devices and see my laptop, but pairing continually fails. Ralink RT 3290 Bluetooth Problem on Ubuntu 14.04 -lscpi reads 04:00.1 Bluetooth: Ralink corp. RT3290 Bluetooth -rfkill list reads 0: hci0: Bluetooth Soft blocked: no Hard blocked: no -dmesg | grep Blue reads [ 5.965811] Bluetooth: Core ver 2.17 [ 5.965833] Bluetooth: HCI device and connection manager initialized [ 5.965840] Bluetooth: HCI socket layer initialized [ 5.965842] Bluetooth: L2CAP socket layer initialized [ 5.965847] Bluetooth: SCO socket layer initialized [ 6.038085] Bluetooth: BNEP (Ethernet Emulation) ver 1.3 [ 6.038088] Bluetooth: BNEP filters: protocol multicast [ 6.038096] Bluetooth: BNEP socket layer initialized [ 6.058013] Bluetooth: RFCOMM TTY layer initialized [ 6.058024] Bluetooth: RFCOMM socket layer initialized [ 6.058029] Bluetooth: RFCOMM ver 1.11 Any one have any thoughts or ideas I could try? Thanks in advance for your time and assistance.

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Is there a "golden ratio" in coding?

    - by badallen
    My coworkers and I often come up with silly ideas such as adding entries to Urban Dictionary that are inappropriate but completely make sense if you are a developer. Or making rap songs that are about delegates, reflections or closures in JS... Anyhow, here is what I brought up this afternoon which was immediately dismissed to be a stupid idea. So I want to see if I can get redemptions here. My idea is coming up with a Golden Ratio (or in the neighborhood of) between the number of classes per project versus the number of methods/functions per class versus the number of lines per method/function. I know this is silly and borderline, if not completely, useless, but just think of all the legacy methods or classes you have encountered that are absolutely horrid - like methods with 10000 lines or classes with 10000 methods. So Golden Ratio, anyone? :)

    Read the article

  • I have a problem with a AE1200 Cisco/Linksys Wireless-N USB adapter having stopped working after I ran the update manager in Ubuntu 12.04

    - by user69670
    Here is the problem, I use a Cisco/Linksys AE1200 wireless network adapter to connect my desktop to a public wifi internet connection. I use ndiswrapper to use the windows driver and it had been working fine for me untill I ran the update manager overnight a few days ago. When I woke up it was asking for the normal computer restart to implement the changes but after rebooting the computer, the wireless adapter did not work, the status light on the adapter did not light up even though ubuntu recognizes it is there and according to ndiswrapper the drivers are loaded and the hardware is present. the grep command is being a bitch for some unknown reason today so this will be long sorry Output from "lspci": 00:00.0 Host bridge: Advanced Micro Devices [AMD] nee ATI Radeon Xpress 200 Host Bridge (rev 01) 00:01.0 PCI bridge: Advanced Micro Devices [AMD] nee ATI RS480 PCI Bridge 00:12.0 SATA controller: Advanced Micro Devices [AMD] nee ATI SB600 Non-Raid-5 SATA 00:13.0 USB controller: Advanced Micro Devices [AMD] nee ATI SB600 USB (OHCI0) 00:13.1 USB controller: Advanced Micro Devices [AMD] nee ATI SB600 USB (OHCI1) 00:13.2 USB controller: Advanced Micro Devices [AMD] nee ATI SB600 USB (OHCI2) 00:13.3 USB controller: Advanced Micro Devices [AMD] nee ATI SB600 USB (OHCI3) 00:13.4 USB controller: Advanced Micro Devices [AMD] nee ATI SB600 USB (OHCI4) 00:13.5 USB controller: Advanced Micro Devices [AMD] nee ATI SB600 USB Controller (EHCI) 00:14.0 SMBus: Advanced Micro Devices [AMD] nee ATI SBx00 SMBus Controller (rev 13) 00:14.1 IDE interface: Advanced Micro Devices [AMD] nee ATI SB600 IDE 00:14.3 ISA bridge: Advanced Micro Devices [AMD] nee ATI SB600 PCI to LPC Bridge 00:14.4 PCI bridge: Advanced Micro Devices [AMD] nee ATI SBx00 PCI to PCI Bridge 01:05.0 VGA compatible controller: Advanced Micro Devices [AMD] nee ATI RC410 [Radeon Xpress 200] 02:02.0 Communication controller: Conexant Systems, Inc. HSF 56k Data/Fax Modem 02:03.0 Multimedia audio controller: Creative Labs CA0106 Soundblaster 02:05.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL-8139/8139C/8139C+ (rev 10) Output from "lsusb": Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 001 Device 009: ID 13b1:0039 Linksys AE1200 802.11bgn Wireless Adapter [Broadcom BCM43235] Bus 003 Device 002: ID 045e:0053 Microsoft Corp. Optical Mouse Bus 004 Device 002: ID 1043:8006 iCreate Technologies Corp. Flash Disk 32-256 MB Output from "ifconfig": eth0 Link encap:Ethernet HWaddr 00:19:21:b6:af:7c UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:20 Base address:0xb400 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:13232 errors:0 dropped:0 overruns:0 frame:0 TX packets:13232 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:1084624 (1.0 MB) TX bytes:1084624 (1.0 MB) Output from "iwconfig": lo no wireless extensions. eth0 no wireless extensions. Output from "lsmod": Module Size Used by nls_iso8859_1 12617 1 nls_cp437 12751 1 vfat 17308 1 fat 55605 1 vfat uas 17828 0 usb_storage 39646 1 nls_utf8 12493 1 udf 84366 1 crc_itu_t 12627 1 udf snd_ca0106 39279 2 snd_ac97_codec 106082 1 snd_ca0106 ac97_bus 12642 1 snd_ac97_codec snd_pcm 80845 2 snd_ca0106,snd_ac97_codec rfcomm 38139 0 snd_seq_midi 13132 0 snd_rawmidi 25424 2 snd_ca0106,snd_seq_midi bnep 17830 2 parport_pc 32114 0 bluetooth 158438 10 rfcomm,bnep ppdev 12849 0 snd_seq_midi_event 14475 1 snd_seq_midi snd_seq 51567 2 snd_seq_midi,snd_seq_midi_event snd_timer 28931 2 snd_pcm,snd_seq snd_seq_device 14172 3 snd_seq_midi,snd_rawmidi,snd_seq snd 62064 11 snd_ca0106, snd_ac97_codec,snd_pcm,snd_rawj9fe snd_ca0106,snd_ac97_codec,snd_pcm,snd_rawmidi,snd_seq,snd_timer,snd_seq_device soundcore 14635 1 snd snd_page_alloc 14108 2 snd_ca0106,snd_pcm sp5100_tco 13495 0 i2c_piix4 13093 0 radeon 733693 3 ttm 65344 1 radeon drm_kms_helper 45466 1 radeon drm 197692 5 radeon,ttm,drm_kms_helper i2c_algo_bit 13199 1 radeon mac_hid 13077 0 shpchp 32325 0 ati_agp 13242 0 lp 17455 0 parport 40930 3 parport_pc,ppdev,lp usbhid 41906 0 hid 77367 1 usbhid 8139too 23283 0 8139cp 26759 0 pata_atiixp 12999 1 Output from "sudo lshw -C network": *-network description: Ethernet interface product: RTL-8139/8139C/8139C+ vendor: Realtek Semiconductor Co., Ltd. physical id: 5 bus info: pci@0000:02:05.0 logical name: eth0 version: 10 serial: 00:19:21:b6:af:7c size: 10Mbit/s capacity: 100Mbit/s width: 32 bits clock: 33MHz capabilities: pm bus_master cap_list ethernet physical tp mii 10bt 10bt-fd 100bt 10 0bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=8139too driverversion=0.9.28 duplex=half latency=64 link=no maxlatency=64 mingnt=32 multicast=yes port=MII speed=10Mbit/s resources: irq:20 ioport:b400(size=256) memory:ff5fdc00-ff5fdcff Output from "iwlist scan": lo Interface doesn't support scanning. eth0 Interface doesn't support scanning. Output from "lsb_release -d": Ubuntu 12.04 LTS Output from "uname -mr": 3.2.0-24-generic-pae i686 Output from "sudo /etc/init.d/networking restart": * Running /etc/init.d/networking restart is deprecated because it may not enable again some interfaces * Reconfiguring network interfaces... [ OK ]

    Read the article

  • Luxottica Delivers an Elevated Customer Experience

    - by user801960
    Luxottica Group is a global leader in premium, luxury and sports eyewear with nearly 6,250 stores worldwide. The Group’s strong brand portfolio comprises ten house brands including Oakley, Ray-Ban, Percol and Arnette, and 20 licensed brands such as Bulgari, Chanel and Versace. In January at the Oracle Retail Exchange in New York, Luca Del Din, Luxottica Group’s IT Manager – Global Retail Demand and Integration and Irven Cassio, Digital Experience Director for Luxottica Retail introduced our REx delegates to their flagship Sunglass Hut store on Fifth Avenue. This store showcase provided the opportunity to explore this fantastic retail space incorporating the store’s interactive retail concept, the Sunglass Hut Social Sun station. I invite you to hear from Luca and Irven as we explore some of the innovative technologies and concepts that Luxottica deployed in this store and how these deliver an elevated customer experience.

    Read the article

  • Two Wifi Icons in Panel [Solved]

    - by Alex
    I have the exact problem in 13.10 as this user Two Wifi indicators in panel. Here are some screenshots: Here are some screenshots from another user: http://ubuntuforums.org/showthread.php?t=2183020&p=12825563 ifconfig and iwconfig outputs $ ifconfig lo Link encap:Local Loopback inet addr:XXXXXX Mask:XXXXXXX inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:2243 errors:0 dropped:0 overruns:0 frame:0 TX packets:2243 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:209889 (209.8 KB) TX bytes:209889 (209.8 KB) wlan0 Link encap:Ethernet HWaddr XXXXXXXXX inet addr:XXXXXX Bcast:XXXXXXXX Mask:XXXXXXX inet6 addr: XXXXXXX Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:5925 errors:0 dropped:0 overruns:0 frame:0 TX packets:3361 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:2951818 (2.9 MB) TX bytes:630579 (630.5 KB) $ iwconfig lo no wireless extensions. wlan0 IEEE 802.11abgn ESSID:"XXXXX" Mode:Managed Frequency:2.437 GHz Access Point: XXXXXXXX Bit Rate=72.2 Mb/s Tx-Power=15 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:on Link Quality=49/70 Signal level=-61 dBm Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:153 Invalid misc:472 Missed beacon:0

    Read the article

  • Bluetooth not detected on Asus X401A / Ubuntu 12.10

    - by Majster-pl
    I have Asus X401A ( according to specs bluetooth is build-in to this laptop, http://www.asus.com/Notebooks/Versatile_Performance/X401A/#specifications ) Bluetooth in global settings is gray ( unable to turn it on ) rfkill list output: 0: phy0: Wireless LAN Soft blocked: no Hard blocked: no 1: asus-wlan: Wireless LAN Soft blocked: no Hard blocked: no cat /var/log/dmesg | grep Blue* [ 5.895791] Bluetooth: Core ver 2.16 [ 5.895807] Bluetooth: HCI device and connection manager initialized [ 5.895809] Bluetooth: HCI socket layer initialized [ 5.895810] Bluetooth: L2CAP socket layer initialized [ 5.895814] Bluetooth: SCO socket layer initialized [ 5.909618] Bluetooth: BNEP (Ethernet Emulation) ver 1.3 [ 5.909621] Bluetooth: BNEP filters: protocol multicast [ 5.910020] Bluetooth: RFCOMM TTY layer initialized [ 5.910024] Bluetooth: RFCOMM socket layer initialized [ 5.910025] Bluetooth: RFCOMM ver 1.11 hcitool dev Devices: (empty) My wifes laptop Asus K53 have the same problem Ubuntu 12.04 LTS Any help please ?

    Read the article

  • Configure IPv6 on your Linux system (Ubuntu)

    After the presentation on IPv6 at the first event of the Emtel Knowledge Series and some recent discussion on social media networks with other geeks and Linux interested IT people here in Mauritius, I thought that I should give it a try (finally) and tweak my local network infrastructure. Honestly, I have been to busy with contractual project work and it never really occurred to me to set up IPv6 in my LAN. Well, the following paragraphs are going to shed some light on those aspects of modern computer and network technology. This is the first article in a series on IPv6 configuration: Configure IPv6 on your Linux system DHCPv6: Provide IPv6 information in your local network Enabling DNS for IPv6 infrastructure Accessing your web server via IPv6 Piece of advice: This is based on my findings on the internet while reading other people's helpful articles and going through a couple of man-pages on my local system. Let's embrace IPv6 The basic configuration on Linux is actually very simple as the kernel, operating system, and user-space programs support that protocol natively. If your system is ready to go for IP (aka: IPv4), then you are good to go for anything else. At least, I didn't have to install any additional packages on my system(s). We are going to assign a static IPv6 address to the system. Hence, we have to modify the definition of interfaces and check whether we have an inet6 entry specified. Open your favourite text editor and check the following entries (it should be at least similar to this): $ sudo nano /etc/network/interfaces auto eth0# IPv4 configurationiface eth0 inet static  address 192.168.1.2  network 192.168.1.0  netmask 255.255.255.0  broadcast 192.168.1.255# IPv6 configurationiface eth0 inet6 static  pre-up modprobe ipv6  address 2001:db8:bad:a55::2  netmask 64 Of course, you might have to adjust your interface device (eth0) or you might be interested to have multiple directives for additional devices (eth1, eth2, etc.). The auto instruction takes care that your device is enabled and configured during the booting phase. The use of the pre-up directive depends on your kernel configuration but in most scenarios this might be an optional line. Anyways, it doesn't hurt to have it enabled after all - just to be on the safe side. Next, either restart your network subsystem like so: $ sudo service networking restart Or you might prefer to do it manually with identical parameters, like so: $ sudo ifconfig eth0 inet6 add 2001:db8:bad:a55::2/64 In case that you're logged in remotely into your PC (ie. via ssh), it is highly advised to opt for the second choice and add the device manually. You can check your configuration afterwards with one of the following commands (depends on whether it is installed): $ sudo ifconfig eth0eth0      Link encap:Ethernet  HWaddr 00:21:5a:50:d7:94            inet addr:192.168.160.2  Bcast:192.168.160.255  Mask:255.255.255.0          inet6 addr: fe80::221:5aff:fe50:d794/64 Scope:Link          inet6 addr: 2001:db8:bad:a55::2/64 Scope:Global          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1 $ sudo ip -6 address show eth03: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000    inet6 2001:db8:bad:a55::2/64 scope global        valid_lft forever preferred_lft forever    inet6 fe80::221:5aff:fe50:d794/64 scope link        valid_lft forever preferred_lft forever In both cases, it confirms that our network device has been assigned a valid IPv6 address. That's it in general for your setup on one system. But of course, you might be interested to enable more services for IPv6, especially if you're already running a couple of them in your IP network. More details are available on the official Ubuntu Wiki. Continue to configure your network to provide IPv6 address information automatically in your local infrastructure.

    Read the article

  • Cannot connect to secure wireless with Netgear wna3100 USB

    - by Vince Radice
    I have installed Ubuntu 11.10. I used a wired connection to download and install all of the updates. When I tried to use a Netgear WNA3100 wireless USB network adapter, it failed. Much searching and trying things I was finally able to get it working by disabling security on my router. I have verified this by disabling security and I was able to connect. When I enabled security (WPA2 PSK), the connection failed. What is necessary to enable security (WPA2 PSK) and still use the Netgear USB interface? Here is the output from the commands most requested lsusb Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 001 Device 003: ID 0846:9020 NetGear, Inc. WNA3100(v1) Wireless-N 300 [Broadcom BCM43231] lshw -C network *-network description: Ethernet interface product: RTL-8139/8139C/8139C+ vendor: Realtek Semiconductor Co., Ltd. physical id: 3 bus info: pci@0000:02:03.0 logical name: eth0 version: 10 serial: 00:40:ca:44:e6:3e size: 10Mbit/s capacity: 100Mbit/s width: 32 bits clock: 33MHz capabilities: pm bus_master cap_list rom ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=8139too driverversion=0.9.28 duplex=half latency=32 link=no maxlatency=64 mingnt=32 multicast=yes port=MII speed=10Mbit/s resources: irq:19 ioport:c800(size=256) memory:ee011000-ee0110ff memory:40000000-4000ffff *-network description: Wireless interface physical id: 1 logical name: wlan0 serial: e0:91:f5:56:e1:0d capabilities: ethernet physical wireless configuration: broadcast=yes driver=ndiswrapper+bcmn43xx32 driverversion=1.56+,08/26/2009, 5.10.79.30 ip=192.168.1.104 link=yes multicast=yes wireless=IEEE 802.11g iwconfig lo no wireless extensions. eth0 no wireless extensions. wlan0 IEEE 802.11g ESSID:"vincecarolradice" Mode:Managed Frequency:2.422 GHz Access Point: A0:21:B7:9F:E5:EE Bit Rate=121.5 Mb/s Tx-Power:32 dBm RTS thr:2347 B Fragment thr:2346 B Encryption key:off Power Management:off Link Quality:76/100 Signal level:-47 dBm Noise level:-96 dBm Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:0 Invalid misc:0 Missed beacon:0 ndiswrapper -l bcmn43xx32 : driver installed device (0846:9020) present lsmod | grep ndis ndiswrapper 193669 0 dmesg | grep -e ndis -e wlan [ 907.466392] ndiswrapper version 1.56 loaded (smp=yes, preempt=no) [ 907.838507] ndiswrapper (import:233): unknown symbol: ntoskrnl.exe:'IoUnregisterPlugPlayNotification' [ 907.838955] ndiswrapper: driver bcmwlhigh5 (Netgear,11/05/2009, 5.60.180.11) loaded [ 908.137940] wlan0: ethernet device e0:91:f5:56:e1:0d using NDIS driver: bcmwlhigh5, version: 0x53cb40b, NDIS version: 0x501, vendor: 'NDIS Network Adapter', 0846:9020.F.conf [ 908.141879] wlan0: encryption modes supported: WEP; TKIP with WPA, WPA2, WPA2PSK; AES/CCMP with WPA, WPA2, WPA2PSK [ 908.143048] usbcore: registered new interface driver ndiswrapper [ 908.178826] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 994.015088] usbcore: deregistering interface driver ndiswrapper [ 994.028892] ndiswrapper: device wlan0 removed [ 994.080558] ndiswrapper version 1.56 loaded (smp=yes, preempt=no) [ 994.374929] ndiswrapper: driver bcmn43xx32 (,08/26/2009, 5.10.79.30) loaded [ 994.404366] ndiswrapper (mp_init:219): couldn't initialize device: C0000001 [ 994.404384] ndiswrapper (pnp_start_device:435): Windows driver couldn't initialize the device (C0000001) [ 994.404666] ndiswrapper (mp_halt:262): device e05b6480 is not initialized - not halting [ 994.404671] ndiswrapper: device eth%d removed [ 994.404709] ndiswrapper: probe of 1-5:1.0 failed with error -22 [ 994.406318] usbcore: registered new interface driver ndiswrapper [ 2302.058692] wlan0: ethernet device e0:91:f5:56:e1:0d using NDIS driver: bcmn43xx32, version: 0x50a4f1e, NDIS version: 0x501, vendor: 'NDIS Network Adapter', 0846:9020.F.conf [ 2302.060882] wlan0: encryption modes supported: WEP; TKIP with WPA, WPA2, WPA2PSK; AES/CCMP with WPA, WPA2, WPA2PSK [ 2302.113838] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 2354.611318] ndiswrapper (iw_set_auth:1602): invalid cmd 12 [ 2355.268902] ADDRCONF(NETDEV_CHANGE): wlan0: link becomes ready [ 2365.400023] wlan0: no IPv6 routers present [ 2779.226096] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 2779.422343] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 2797.574474] ndiswrapper (iw_set_auth:1602): invalid cmd 12 [ 2802.607937] ndiswrapper (iw_set_auth:1602): invalid cmd 12 [ 2803.261315] ADDRCONF(NETDEV_CHANGE): wlan0: link becomes ready [ 2813.952028] wlan0: no IPv6 routers present [ 3135.738431] ndiswrapper (iw_set_auth:1602): invalid cmd 12 [ 3139.180963] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3139.816561] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3163.229872] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3163.444542] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3163.758297] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3163.860684] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3205.118732] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3205.139553] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3205.300542] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3353.341402] ndiswrapper (iw_set_auth:1602): invalid cmd 12 [ 3363.266399] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3363.505475] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3363.506619] ndiswrapper (set_iw_auth_mode:601): setting auth mode to 5 failed (00010003) [ 3363.717203] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3363.779206] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3405.206152] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3405.248624] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3405.577664] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3438.852457] ndiswrapper (iw_set_auth:1602): invalid cmd 12 [ 3438.908573] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3568.282995] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3568.325237] ndiswrapper (set_iw_auth_mode:601): setting auth mode to 5 failed (00010003) [ 3568.460716] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3568.461763] ndiswrapper (set_iw_auth_mode:601): setting auth mode to 5 failed (00010003) [ 3568.809776] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3568.880641] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3610.122848] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3610.148328] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3610.324502] ADDRCONF(NETDEV_UP): wlan0: link is not ready [ 3636.088798] ndiswrapper (iw_set_auth:1602): invalid cmd 12 [ 3636.712186] ADDRCONF(NETDEV_CHANGE): wlan0: link becomes ready [ 3647.600040] wlan0: no IPv6 routers present I am using the system now with the router security turned off. When I submit this, I will turn security back on.

    Read the article

  • Wireless not working on Dell XPS 17 after installing 12.04

    - by user60622
    I (linux newbie) have a Dell XPS 17 and tried to install Ubuntu 12.04. After installation all WLAN accesspoints near are detected. But I can not connect (but I am able to connect with other computers as well as with Dell XPS 17 under windows). Outputs: iwconfig lo no wireless extensions. wlan0 IEEE 802.11bg ESSID:"LerchenPoint" Mode:Managed Frequency:2.412 GHz Access Point: 58:6D:8F:A0:2D:58 Bit Rate=1 Mb/s Tx-Power=14 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off Link Quality=70/70 Signal level=-37 dBm Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:0 Invalid misc:19 Missed beacon:0 eth0 no wireless extensions. sudo lshw -class network *-network description: Wireless interface product: Centrino Wireless-N 1000 vendor: Intel Corporation physical id: 0 bus info: pci@0000:04:00.0 logical name: wlan0 version: 00 serial: 00:26:c7:99:98:28 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=iwlwifi driverversion=3.2.0-24-generic firmware=39.31.5.1 build 35138 latency=0 link=no multicast=yes wireless=IEEE 802.11bg resources: irq:50 memory:f0400000-f0401fff *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:0a:00.0 logical name: eth0 version: 06 serial: f0:4d:a2:56:e3:94 size: 1Gbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=full firmware=rtl_nic/rtl8168e-2.fw ip=192.168.0.123 latency=0 link=yes multicast=yes port=MII speed=1Gbit/s resources: irq:47 ioport:6000(size=256) memory:f0a04000-f0a04fff memory:f0a00000-f0a03fff dmesg | grep iwl [ 10.157531] iwlwifi 0000:04:00.0: PCI INT A -> GSI 17 (level, low) -> IRQ 17 [ 10.157561] iwlwifi 0000:04:00.0: setting latency timer to 64 [ 10.157598] iwlwifi 0000:04:00.0: pci_resource_len = 0x00002000 [ 10.157599] iwlwifi 0000:04:00.0: pci_resource_base = ffffc90011090000 [ 10.157601] iwlwifi 0000:04:00.0: HW Revision ID = 0x0 [ 10.157731] iwlwifi 0000:04:00.0: irq 50 for MSI/MSI-X [ 10.157834] iwlwifi 0000:04:00.0: Detected Intel(R) Centrino(R) Wireless-N 1000 BGN, REV=0x6C [ 10.157976] iwlwifi 0000:04:00.0: L1 Enabled; Disabling L0S [ 10.179772] iwlwifi 0000:04:00.0: device EEPROM VER=0x15d, CALIB=0x6 [ 10.179775] iwlwifi 0000:04:00.0: Device SKU: 0X50 [ 10.179777] iwlwifi 0000:04:00.0: Valid Tx ant: 0X1, Valid Rx ant: 0X3 [ 10.179796] iwlwifi 0000:04:00.0: Tunable channels: 13 802.11bg, 0 802.11a channels [ 10.574728] iwlwifi 0000:04:00.0: loaded firmware version 39.31.5.1 build 35138 [ 10.726409] ieee80211 phy0: Selected rate control algorithm 'iwl-agn-rs' [ 19.714132] iwlwifi 0000:04:00.0: L1 Enabled; Disabling L0S [ 19.777862] iwlwifi 0000:04:00.0: L1 Enabled; Disabling L0S [ 2251.603089] iwlwifi 0000:04:00.0: PCI INT A disabled [ 2266.578350] iwlwifi 0000:04:00.0: PCI INT A -> GSI 17 (level, low) -> IRQ 17 [ 2266.578399] iwlwifi 0000:04:00.0: setting latency timer to 64 [ 2266.578435] iwlwifi 0000:04:00.0: pci_resource_len = 0x00002000 [ 2266.578437] iwlwifi 0000:04:00.0: pci_resource_base = ffffc90011090000 [ 2266.578439] iwlwifi 0000:04:00.0: HW Revision ID = 0x0 [ 2266.578704] iwlwifi 0000:04:00.0: irq 50 for MSI/MSI-X [ 2266.578808] iwlwifi 0000:04:00.0: Detected Intel(R) Centrino(R) Wireless-N 1000 BGN, REV=0x6C [ 2266.578916] iwlwifi 0000:04:00.0: L1 Enabled; Disabling L0S [ 2266.600709] iwlwifi 0000:04:00.0: device EEPROM VER=0x15d, CALIB=0x6 [ 2266.600712] iwlwifi 0000:04:00.0: Device SKU: 0X50 [ 2266.600713] iwlwifi 0000:04:00.0: Valid Tx ant: 0X1, Valid Rx ant: 0X3 [ 2266.600727] iwlwifi 0000:04:00.0: Tunable channels: 13 802.11bg, 0 802.11a channels [ 2266.605978] iwlwifi 0000:04:00.0: loaded firmware version 39.31.5.1 build 35138 [ 2266.606331] ieee80211 phy0: Selected rate control algorithm 'iwl-agn-rs' [ 2266.614179] iwlwifi 0000:04:00.0: L1 Enabled; Disabling L0S [ 2266.681541] iwlwifi 0000:04:00.0: L1 Enabled; Disabling L0S Solutions I tried: rfkill list all 0: dell-wifi: Wireless LAN Soft blocked: no Hard blocked: no 2: phy0: Wireless LAN Soft blocked: no Hard blocked: no echo "options iwlwifi 11n_disable=1" | sudo tee /etc/modprobe.d/iwlwifi.conf options iwlwifi 11n_disable=1 sudo modprobe -rfv iwlwifi WARNING: All config files need .conf: /etc/modprobe.d/blacklist, it will be ignored in a future release. rmmod /lib/modules/3.2.0-24-generic/kernel/drivers/net/wireless/iwlwifi/iwlwifi.ko rmmod /lib/modules/3.2.0-24-generic/kernel/net/mac80211/mac80211.ko rmmod /lib/modules/3.2.0-24-generic/kernel/net/wireless/cfg80211.ko sudo modprobe iwlwifi WARNING: All config files need .conf: /etc/modprobe.d/blacklist, it will be ignored in a future release. replacing iwlwifi-1000-5.ucode (current driver) against iwlwifi-1000-3.ucode sudo jockey-gtk: (jockey-gtk:2493): Gtk-CRITICAL **: gtk_icon_set_render_icon_pixbuf: assertion icon_set != NULL' failed (jockey-gtk:2493): Gtk-CRITICAL **: gtk_icon_set_render_icon_pixbuf: assertion icon_set != NULL' failed nothing is listet in "Additional drivers" (german: "Zusätzliche Treiber"). gksudo gedit /etc/modprobe.d/blacklist.conf add "blacklist acer_wmi" Any help would be appreciated very much. Thanks!!

    Read the article

< Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >