Search Results

Search found 3255 results on 131 pages for 'pointers'.

Page 27/131 | < Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >

  • Accessing any structs members at run-time.

    - by jmgunn
    Is it possible to get access to an individual member of a struct or class without knowing the names of its member variables? I would like to do an "offsetof(struct, tyname)" without having the struct name or member variable name hard coded amoungst other things. thanks.

    Read the article

  • What is wrong with my version of strchr?

    - by Eduard Saakashvili
    My assignment is to write my own version of strchr, yet it doesn't seem to work. Any advice would be much appreciated. Here it is: char *strchr (const char *s, int c) //we are looking for c on the string s { int dog; //This is the index on the string, initialized as 0 dog = 0; int point; //this is the pointer to the location given by the index point = &s[dog]; while ((s[dog] != c) && (s[dog] != '\0')) { //it keeps adding to dog until it stumbles upon either c or '\0' dog++; } if (s[dog]==c) { return point; //at this point, if this value is equal to c it returns the pointer to that location } else { return NULL; //if not, this means that c is not on the string } }

    Read the article

  • Does this have anything to do with endian-ness?

    - by eSKay
    This piece of code: #include<stdio.h> void hello() { printf("hello\n"); } void bye() { printf("bye\n"); } int main() { printf("%p\n", hello); printf("%p\n", bye); return 0; } output on my machine: 0x80483f4 0x8048408 [second address is bigger in value] on Codepad 0x8048541 0x8048511 [second address is smaller in value] Does this have anything to do with endian-ness of the machines? If not, Why the difference in the ordering of the addresses? Also, Why the difference in the difference? 0x8048541 - 0x8048511 = 0x30 0x8048408 - 0x80483f4 = 0x14 Btw, I just checked. This code (taken from here) says that both the machines are Little-Endian #include<stdio.h> int main() { int num = 1; if(*(char *)&num == 1) printf("Little-Endian\n"); else printf("Big-Endian\n"); return 0; }

    Read the article

  • List<MyClass*> & array question

    - by Nano HE
    Hi, Assuming a definition like this, list<MyCommand*> subList ... MyCommand* pCmd = (MyCommand*)(m_treeSM.GetItemData(node)); I tried these statements below, but failed. pCmd->subList[2] (pCmd->subList)[2] How can I get the array member values(such as subList[2]). I want to replace the value of subList[2] with other same type value. Thank you.

    Read the article

  • c# Wrapper to native c++ code, wrapping a parameter which is a pointer to an array

    - by mb300dturbo
    Hi, I have the following simple DLL in c++ un-managed code; extern "C" __declspec(dllexport) void ArrayMultiplier(float (*pointerArray)[3], int scalar, int length); void ArrayMultiplier(float (*pointerArray)[3], int scalar, int length) { for (int i = 0 ; i < length ; length++) { for (int j = 0; j < 3; j++) { pointerArray[i][j] = pointerArray[i][j] * scalar; } } } I have tried writing the following wrapper function for the above in c#: [DllImport("sample.dll")] public static extern void ArrayMultiplier(ref float elements, int scalar, int length); where elements is a 2 dimentional 3x3 array: public float[][] elements = { new float[] {2,5,3}, new float [] {4,8,6}, new float [] {5,28,3} }; The code given above compiles, but the program crashes when the wrapper function is called: Wrapper.ArrayMultiplier(ref elements, scalar, length); Please help me here, and tell me whats wrong with the code above, or how a wrapper can be written for a simple c++ function: void SimpleFunction(float (*pointerToArray)[3]); Thank you all in advance

    Read the article

  • Decayed multidimensional array return from function

    - by paul simmons
    related to http://stackoverflow.com/questions/2520535/gcc-multi-dim-array-or-double-pointer-for-warning-free-compile , is there a way to return so-called "decayed array pointer" from a function? in summary (suppose 2 dim array) returning int (*a)[5] format rather than int** format? as far as I see, when returned int** pointer is sent to another function waiting (int*)[] parameter, it is not working correctly.

    Read the article

  • C++: why a self pointer of a struct automatically changes to void*

    - by Stone
    struct ptr{ int node; ptr *next; ptr(){} ptr(int _node, ptr *_next){ node=_node; next=_next; } }; struct list_t{ ptr *sht; int size; void push(int node){ size++; sht=new ptr(node,sht); } }shthead[100001], comp[200001], tree[200001]; The struct ptr is a smart pointer, be used as a linked list. But when I debug the code in gdb, I found that the ptr*'s were all converted to void*. GDB output: (gdb) pt ptr type = struct ptr { int node; void *next; public: ptr(void); ptr(int, void *); } However, I can still see the data of the struct if I covert them back to ptr* in gdb. What's the reason for this please?

    Read the article

  • C pointer initialization and dereferencing, what's wrong here?

    - by randombits
    This should be super simple, but I'm not sure why the compiler is complaining here. #include <stdio.h> #include <stdlib.h> int main(int argc, char *argv[]) { int *n = 5; printf ("n: %d", *n); exit(0); } Getting the following complaints: foo.c: In function ‘main’: foo.c:6: warning: initialization makes pointer from integer without a cast I just want to print the value that the pointer n references. I'm dereferencing it in the printf() statement and I get a segmentation fault. Compiling this with gcc -o foo foo.c.

    Read the article

  • NULL pointer comparison fails

    - by Ilya
    Hello, I'm initializing in a class a pointer to be NULL. Afterwards I check if it is NULL in the same class. But it's not always 0x0. Sometimes it's 0x8 or 0xfeffffff or 0x3f800000 or 0x80 or other strange stuff. In most case the pointer is 0x0 but sometimes it gets altered somehow. I'm sure that I'm not changing it anywhere in my code. Is there a way it gets changed by "itself"? Here's my code: MeshObject::MeshObject() { mesh.vertexColors = NULL; } MeshObject::MeshObject(const MeshObject &_copyFromMe) { SimpleLog("vertexColors pointer: %p", _copyFromMe.mesh.vertexColors); if (_copyFromMe.mesh.vertexColors != NULL) { SimpleLog("vertexColors"); this->mesh.vertexColors = new tColor4i[_copyFromMe.mesh.vertexCount]; memcpy(this->mesh.vertexColors, _copyFromMe.mesh.vertexColors, _copyFromMe.mesh.vertexCount * sizeof(tColor4i) ); } } My application crashes, because vertexColors wasn't initialized and is being copied. However it is NULL and shouldn't be copied. Thanks.

    Read the article

  • I can't get that `bus error` to stop sucking.

    - by Koning Baard XIV
    I have this a class called PPString: PPString.h #ifndef __CPP_PPString #define __CPP_PPString #include "PPObject.h" class PPString : public PPObject { char *stringValue[]; public: char *pointerToCharString(); void setCharString(char *charString[]); void setCharString(const char charString[]); }; #endif PPString.cpp #include "PPString.h" char *PPString::pointerToCharString() { return *stringValue; } void PPString::setCharString(char *charString[]) { *stringValue = *charString; } void PPString::setCharString(const char charString[]) { *stringValue = (char *)charString; } I'm trying to set the stringValue using std::cin: main.cpp PPString myString; myString.setCharString("LOLZ"); std::cout << myString.pointerToCharString() << std::endl; char *aa[1000]; std::cin >> *aa; myString.setCharString(aa); std::cout << myString.pointerToCharString() << std::endl; The first one, which uses a const char works, but the second one, with a char doesn't, and I get this output: copy and paste from STDOUT LOLZ im entering a string now... Bus error where the second line is what I entered, followed by pressing the return key. Can anyone help me fixing this? Thanks...

    Read the article

  • Pointer mysteriously moves

    - by Armen Ablak
    Hi, I have this code for Node rotation and in a line which is marked something happens and I don't really know what and why :). //Test case 30 \ 16 / 29 RotationRight(node->mParent); //call template<class T> void SplayTree<T>::RotationRight(SplayNode<T> *&node) const { SplayNode<T> *left = node->mLeft; SplayNode<T> *parent = node->mParent; node->mLeft = left->mRight; if(left->HasRight()) left->mRight->mParent = node; left->mRight = node; //node in this line points to 0x00445198 {30} left->mParent = node->mParent; //and in this line it points to 0x00444fb8 {16} (node, not node->mParent) node->mParent = left; node = left; } Well, left-mParent points to node also, so I basically do node = node-mParent. The problem is I can't find a work around - how to unpin in from node and change it's pointing address without changing it's.

    Read the article

  • collect string in loop and printout all the string outside loop

    - by user1508163
    I'm newbie here and there is some question that I want have some lesson from you guys. For example: #include <stdio.h> #include<stdlib.h> #include<ctype.h> void main() { char name[51],selection; do { printf("Enter name: "); fflush(stdin); gets(name); printf("Enter another name?(Y/N)"); scanf("%c",&selection); selection=toupper(selection); }while (selection=='Y'); //I want to printout the entered name here but dunno the coding printf("END\n"); system("pause"); } As I know when the loops perform will overwrite the variable then how I perform a coding that will printout all the name user entered? I have already ask my tutor and he is ask me to use pointer, can anyone guide me in this case?

    Read the article

  • Could I ever want to access the address zero?

    - by Joel
    The constant 0 is used as the null pointer in C and C++. But as in http://stackoverflow.com/questions/2389251/pointer-to-a-specific-fixed-address there seems to be some possible use of assigning fixed addresses. Is there ever any conceivable need, in any system, for whatever low level task, for accessing the address 0? If there is, how is that solved with 0 being the null pointer and all? If not, what makes it certain that there is not such a need?

    Read the article

  • Acessing a struct member, using a pointer to a vector of structs. Error:base operand of '->' has non-pointer type

    - by Matt Munson
    #include <iostream> #include <vector> using namespace std; struct s_Astruct { vector <int> z; }; int main () { vector <s_Astruct> v_a; for(int q=0;q<10;q++) { v_a.push_back(s_Astruct()); for(int w =0;w<5;w++) v_a[q].z.push_back(8); } vector <s_Astruct> * p_v_a = & v_a; cout << p_v_a[0]->z[4]; //error: base operand of '->' has non-pointer type //'__gnu_debug_def::vector<s_Astruct, std::allocator<s_Astruct> >' } There seems to be some issue with this sort of operation that I don't understand. In the code that I'm working on I actually have things like p_class-vector[]-vector[]-int; and I'm getting a similar error.

    Read the article

  • Evaluation of (de)reference operators

    - by Micha
    I have an (uncommented...) source file which I'm trying to understand. static const Map *gCurMap; static std::vector<Map> mapVec; then auto e = mapVec.end(); auto i = mapVec.begin(); while(i!=e) { // ... const Map *map = gCurMap = &(*(i++)); // ... } I don't understand what &(*(i++)) does. It does not compile when just using i++, but to me it looks the same, because I'm "incrementing" i, then I'm requesting the value at the given address and then I'm requesting the address of this value?!

    Read the article

  • C++ deleting a pointer

    - by eSKay
    On this page, its written that One reason is that the operand of delete need not be an lvalue. Consider: delete p+1; delete f(x); Here, the implementation of delete does not have a pointer to which it can assign zero. Adding a number to a pointer shifts it forward in memory by those many number of sizeof(*p) units. So, what is the difference between delete p and delete p+1, and why would making the pointer 0 only be a problem with delete p+1?

    Read the article

  • Can somebody please explain this recursive function for me?

    - by capncoolio
    #include <stdio.h> #include <stdlib.h> void reprint(char *a[]) { if(*a) { printf("%d ",a); reprint(a+1); printf("%s ",*a); } } int main() { char *coll[] = {"C", "Objective", "like", "don't", "I", NULL}; reprint(coll); printf("\n"); return EXIT_SUCCESS; } As the more experienced will know, this prints the array in reverse. I don't quite understand how! I need help understanding what reprint(char *a[]) does. I understand pointer arithmetic to a degree, but from inserting printf's here and there, I've determined that the function increments up to the array end, and then back down to the start, only printing on the way down. However, I do not understand how it does this; all I've managed to understand by looking at the actual code is that if *a isn't NULL, then call reprint again, at the next index. Thanks guys!

    Read the article

  • Check if a pointer points to allocated memory on the heap.

    - by Ugo
    Ok, I know this question seems to have been asked many times on stackoverflow. but please read Well the answer for any address is "No you can't" but the question here is to know if a pointer points to a piece of memory allocated with malloc/new. Actually I think it could be easily implemented overriding malloc/free and keeping track of allocated memory ranges. Do you know a memory management library providing this specific tool ?

    Read the article

  • How to return a copy of the data in C++

    - by Josh Curren
    I am trying to return a new copy of the data in a C++ Template class. The following code is getting this error: invalid conversion from ‘int*’ to ‘int’. If I remove the new T then I am not returning a copy of the data but a pointer to it. template<class T> T OrderedList<T>::get( int k ) { Node<T>* n = list; for( int i = 0; i < k; i++ ) { n=n->get_link(); } return new T( n->get_data() ); // This line is getting the error ********** }

    Read the article

  • Class lookup structure array in C++

    - by wyatt
    I'm trying to create a structure array which links input strings to classes as follows: struct {string command; CommandPath cPath;} cPathLookup[] = { {"set an alarm", AlarmCommandPath}, {"send an email", EmailCommandPath}, {"", NULL} }; which will be used as follows: CommandPath *cPath = NULL; string input; getline(cin, input); for(int i = 0; cPathLookup[i] != ""; i++) { if(cPathLookup[i].command == input) cPath = new cPathLookup[i].cPath; } Obviously, this code is meaningless, but I think my intention is apparent - depending on input, I'd like cPath to be initialized as either a new AlarmCommandPath or a new EmailCommandPath. I could handle it with a function returning an instance depending on input, but a whole sequence of ifs just seems inelegant. I should also note that, in case it's not apparent and important, that AlarmCommandPath and EmailCommandPath are derived from CommandPath, and CommandPath is an abstract class. Thanks for any help you can offer. EDIT: I just noticed that, in spite of CommandPath being abstract, I have a declaration: CommandPath *cPath = NULL; in working code. Why does that compile?

    Read the article

  • why no implicit conversion from pointer to reference to const pointer.

    - by user316606
    I'll illustrate my question with code: #include <iostream> void PrintInt(const unsigned char*& ptr) { int data = 0; ::memcpy(&data, ptr, sizeof(data)); // advance the pointer reference. ptr += sizeof(data); std::cout << std::hex << data << " " << std::endl; } int main(int, char**) { unsigned char buffer[] = { 0x11, 0x11, 0x11, 0x11, 0x22, 0x22, 0x22, 0x22, }; /* const */ unsigned char* ptr = buffer; PrintInt(ptr); // error C2664: ... PrintInt(ptr); // error C2664: ... return 0; } When I run this code (in VS2008) I get this: error C2664: 'PrintInt' : cannot convert parameter 1 from 'unsigned char *' to 'const unsigned char *&'. If I uncomment the "const" comment it works fine. However shouldn't pointer implicitly convert into const pointer and then reference be taken? Am I wrong in expecting this to work? Thanks!

    Read the article

  • casting char[][] to char** causes segfault?

    - by Earlz
    Ok my C is a bit rusty but I figured I'd make my next(small) project in C so I could polish back up on it and less than 20 lines in I already have a seg fault. This is my complete code: #define ROWS 4 #define COLS 4 char main_map[ROWS][COLS+1]={ "a.bb", "a.c.", "adc.", ".dc."}; void print_map(char** map){ int i; for(i=0;i<ROWS;i++){ puts(map[i]); //segfault here } } int main(){ print_map(main_map); //if I comment out this line it will work. puts(main_map[3]); return 0; } I am completely confused as to how this is causing a segfault. What is happening when casting from [][] to **!? That is the only warning I get. rushhour.c:23:3: warning: passing argument 1 of ‘print_map’ from incompatible pointer type rushhour.c:13:7: note: expected ‘char **’ but argument is of type ‘char (*)[5]’ Are [][] and ** really not compatible pointer types? They seem like they are just syntax to me.

    Read the article

< Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >