Search Results

Search found 4941 results on 198 pages for 'struts2 namespace'.

Page 27/198 | < Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >

  • Where does Flash Builder Plugin seaches for dotted namespace names?

    - by Suzan Cioc
    I have the following text in my MXLM sample: <?xml version="1.0" encoding="utf-8"?> <mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute" xmlns:ns1="com.infrared5.asmf.controls.flex.data.*" xmlns:ns2="com.infrared5.asmf.controls.flex.video.*" xmlns:ns3="com.infrared5.asmf.controls.flex.net.*" xmlns:ns4="jedai.controls.flex.data.*" xmlns:ns5="jedai.controls.flex.video.*" xmlns:ns6="jedai.controls.flex.net.*"> Last 6 namespaces are defined as some "dotted" name pathes. Where does compiler look for them and in which order?

    Read the article

  • Building applications with WPF, MVVM and Prism(aka CAG)

    - by skjagini
    In this article I am going to walk through an application using WPF and Prism (aka composite application guidance, CAG) which simulates engaging a taxi (cab).  The rules are simple, the app would have3 screens A login screen to authenticate the user An information screen. A screen to engage the cab and roam around and calculating the total fare Metered Rate of Fare The meter is required to be engaged when a cab is occupied by anyone $3.00 upon entry $0.35 for each additional unit The unit fare is: one-fifth of a mile, when the cab is traveling at 6 miles an hour or more; or 60 seconds when not in motion or traveling at less than 12 miles per hour. Night surcharge of $.50 after 8:00 PM & before 6:00 AM Peak hour Weekday Surcharge of $1.00 Monday - Friday after 4:00 PM & before 8:00 PM New York State Tax Surcharge of $.50 per ride. Example: Friday (2010-10-08) 5:30pm Start at Lexington Ave & E 57th St End at Irving Pl & E 15th St Start = $3.00 Travels 2 miles at less than 6 mph for 15 minutes = $3.50 Travels at more than 12 mph for 5 minutes = $1.75 Peak hour Weekday Surcharge = $1.00 (ride started at 5:30 pm) New York State Tax Surcharge = $0.50 Before we dive into the app, I would like to give brief description about the framework.  If you want to jump on to the source code, scroll all the way to the end of the post. MVVM MVVM pattern is in no way related to the usage of PRISM in your application and should be considered if you are using WPF irrespective of PRISM or not. Lets say you are not familiar with MVVM, your typical UI would involve adding some UI controls like text boxes, a button, double clicking on the button,  generating event handler, calling a method from business layer and updating the user interface, it works most of the time for developing small scale applications. The problem with this approach is that there is some amount of code specific to business logic wrapped in UI specific code which is hard to unit test it, mock it and MVVM helps to solve the exact problem. MVVM stands for Model(M) – View(V) – ViewModel(VM),  based on the interactions with in the three parties it should be called VVMM,  MVVM sounds more like MVC (Model-View-Controller) so the name. Why it should be called VVMM: View – View Model - Model WPF allows to create user interfaces using XAML and MVVM takes it to the next level by allowing complete separation of user interface and business logic. In WPF each view will have a property, DataContext when set to an instance of a class (which happens to be your view model) provides the data the view is interested in, i.e., view interacts with view model and at the same time view model interacts with view through DataContext. Sujith, if view and view model are interacting directly with each other how does MVVM is helping me separation of concerns? Well, the catch is DataContext is of type Object, since it is of type object view doesn’t know exact type of view model allowing views and views models to be loosely coupled. View models aggregate data from models (data access layer, services, etc) and make it available for views through properties, methods etc, i.e., View Models interact with Models. PRISM Prism is provided by Microsoft Patterns and Practices team and it can be downloaded from codeplex for source code,  samples and documentation on msdn.  The name composite implies, to compose user interface from different modules (views) without direct dependencies on each other, again allowing  loosely coupled development. Well Sujith, I can already do that with user controls, why shall I learn another framework?  That’s correct, you can decouple using user controls, but you still have to manage some amount of coupling, like how to do you communicate between the controls, how do you subscribe/unsubscribe, loading/unloading views dynamically. Prism is not a replacement for user controls, provides the following features which greatly help in designing the composite applications. Dependency Injection (DI)/ Inversion of Control (IoC) Modules Regions Event Aggregator  Commands Simply put, MVVM helps building a single view and Prism helps building an application using the views There are other open source alternatives to Prism, like MVVMLight, Cinch, take a look at them as well. Lets dig into the source code.  1. Solution The solution is made of the following projects Framework: Holds the common functionality in building applications using WPF and Prism TaxiClient: Start up project, boot strapping and app styling TaxiCommon: Helps with the business logic TaxiModules: Holds the meat of the application with views and view models TaxiTests: To test the application 2. DI / IoC Dependency Injection (DI) as the name implies refers to injecting dependencies and Inversion of Control (IoC) means the calling code has no direct control on the dependencies, opposite of normal way of programming where dependencies are passed by caller, i.e inversion; aside from some differences in terminology the concept is same in both the cases. The idea behind DI/IoC pattern is to reduce the amount of direct coupling between different components of the application, the higher the dependency the more tightly coupled the application resulting in code which is hard to modify, unit test and mock.  Initializing Dependency Injection through BootStrapper TaxiClient is the starting project of the solution and App (App.xaml)  is the starting class that gets called when you run the application. From the App’s OnStartup method we will invoke BootStrapper.   namespace TaxiClient { /// <summary> /// Interaction logic for App.xaml /// </summary> public partial class App : Application { protected override void OnStartup(StartupEventArgs e) { base.OnStartup(e);   (new BootStrapper()).Run(); } } } BootStrapper is your contact point for initializing the application including dependency injection, creating Shell and other frameworks. We are going to use Unity for DI and there are lot of open source DI frameworks like Spring.Net, StructureMap etc with different feature set  and you can choose a framework based on your preferences. Note that Prism comes with in built support for Unity, for example we are deriving from UnityBootStrapper in our case and for any other DI framework you have to extend the Prism appropriately   namespace TaxiClient { public class BootStrapper: UnityBootstrapper { protected override IModuleCatalog CreateModuleCatalog() { return new ConfigurationModuleCatalog(); } protected override DependencyObject CreateShell() { Framework.FrameworkBootStrapper.Run(Container, Application.Current.Dispatcher);   Shell shell = new Shell(); shell.ResizeMode = ResizeMode.NoResize; shell.Show();   return shell; } } } Lets take a look into  FrameworkBootStrapper to check out how to register with unity container. namespace Framework { public class FrameworkBootStrapper { public static void Run(IUnityContainer container, Dispatcher dispatcher) { UIDispatcher uiDispatcher = new UIDispatcher(dispatcher); container.RegisterInstance<IDispatcherService>(uiDispatcher);   container.RegisterType<IInjectSingleViewService, InjectSingleViewService>( new ContainerControlledLifetimeManager());   . . . } } } In the above code we are registering two components with unity container. You shall observe that we are following two different approaches, RegisterInstance and RegisterType.  With RegisterInstance we are registering an existing instance and the same instance will be returned for every request made for IDispatcherService   and with RegisterType we are requesting unity container to create an instance for us when required, i.e., when I request for an instance for IInjectSingleViewService, unity will create/return an instance of InjectSingleViewService class and with RegisterType we can configure the life time of the instance being created. With ContaienrControllerLifetimeManager, the unity container caches the instance and reuses for any subsequent requests, without recreating a new instance. Lets take a look into FareViewModel.cs and it’s constructor. The constructor takes one parameter IEventAggregator and if you try to find all references in your solution for IEventAggregator, you will not find a single location where an instance of EventAggregator is passed directly to the constructor. The compiler still finds an instance and works fine because Prism is already configured when used with Unity container to return an instance of EventAggregator when requested for IEventAggregator and in this particular case it is called constructor injection. public class FareViewModel:ObservableBase, IDataErrorInfo { ... private IEventAggregator _eventAggregator;   public FareViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; InitializePropertyNames(); InitializeModel(); PropertyChanged += OnPropertyChanged; } ... 3. Shell Shells are very similar in operation to Master Pages in asp.net or MDI in Windows Forms. And shells contain regions which display the views, you can have as many regions as you wish in a given view. You can also nest regions. i.e, one region can load a view which in itself may contain other regions. We have to create a shell at the start of the application and are doing it by overriding CreateShell method from BootStrapper From the following Shell.xaml you shall notice that we have two content controls with Region names as ‘MenuRegion’ and ‘MainRegion’.  The idea here is that you can inject any user controls into the regions dynamically, i.e., a Menu User Control for MenuRegion and based on the user action you can load appropriate view into MainRegion.    <Window x:Class="TaxiClient.Shell" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Regions="clr-namespace:Microsoft.Practices.Prism.Regions;assembly=Microsoft.Practices.Prism" Title="Taxi" Height="370" Width="800"> <Grid Margin="2"> <ContentControl Regions:RegionManager.RegionName="MenuRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" />   <ContentControl Grid.Row="1" Regions:RegionManager.RegionName="MainRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" /> <!--<Border Grid.ColumnSpan="2" BorderThickness="2" CornerRadius="3" BorderBrush="LightBlue" />-->   </Grid> </Window> 4. Modules Prism provides the ability to build composite applications and modules play an important role in it. For example if you are building a Mortgage Loan Processor application with 3 components, i.e. customer’s credit history,  existing mortgages, new home/loan information; and consider that the customer’s credit history component involves gathering data about his/her address, background information, job details etc. The idea here using Prism modules is to separate the implementation of these 3 components into their own visual studio projects allowing to build components with no dependency on each other and independently. If we need to add another component to the application, the component can be developed by in house team or some other team in the organization by starting with a new Visual Studio project and adding to the solution at the run time with very little knowledge about the application. Prism modules are defined by implementing the IModule interface and each visual studio project to be considered as a module should implement the IModule interface.  From the BootStrapper.cs you shall observe that we are overriding the method by returning a ConfiguratingModuleCatalog which returns the modules that are registered for the application using the app.config file  and you can also add module using code. Lets take a look into configuration file.   <?xml version="1.0"?> <configuration> <configSections> <section name="modules" type="Microsoft.Practices.Prism.Modularity.ModulesConfigurationSection, Microsoft.Practices.Prism"/> </configSections> <modules> <module assemblyFile="TaxiModules.dll" moduleType="TaxiModules.ModuleInitializer, TaxiModules" moduleName="TaxiModules"/> </modules> </configuration> Here we are adding TaxiModules project to our solution and TaxiModules.ModuleInitializer implements IModule interface   5. Module Mapper With Prism modules you can dynamically add or remove modules from the regions, apart from that Prism also provides API to control adding/removing the views from a region within the same module. Taxi Information Screen: Engage the Taxi Screen: The sample application has two screens, ‘Taxi Information’ and ‘Engage the Taxi’ and they both reside in same module, TaxiModules. ‘Engage the Taxi’ is again made of two user controls, FareView on the left and TotalView on the right. We have created a Shell with two regions, MenuRegion and MainRegion with menu loaded into MenuRegion. We can create a wrapper user control called EngageTheTaxi made of FareView and TotalView and load either TaxiInfo or EngageTheTaxi into MainRegion based on the user action. Though it will work it tightly binds the user controls and for every combination of user controls, we need to create a dummy wrapper control to contain them. Instead we can apply the principles we learned so far from Shell/regions and introduce another template (LeftAndRightRegionView.xaml) made of two regions Region1 (left) and Region2 (right) and load  FareView and TotalView dynamically.  To help with loading of the views dynamically I have introduce an helper an interface, IInjectSingleViewService,  idea suggested by Mike Taulty, a must read blog for .Net developers. using System; using System.Collections.Generic; using System.ComponentModel;   namespace Framework.PresentationUtility.Navigation {   public interface IInjectSingleViewService : INotifyPropertyChanged { IEnumerable<CommandViewDefinition> Commands { get; } IEnumerable<ModuleViewDefinition> Modules { get; }   void RegisterViewForRegion(string commandName, string viewName, string regionName, Type viewType); void ClearViewFromRegion(string viewName, string regionName); void RegisterModule(string moduleName, IList<ModuleMapper> moduleMappers); } } The Interface declares three methods to work with views: RegisterViewForRegion: Registers a view with a particular region. You can register multiple views and their regions under one command.  When this particular command is invoked all the views registered under it will be loaded into their regions. ClearViewFromRegion: To unload a specific view from a region. RegisterModule: The idea is when a command is invoked you can load the UI with set of controls in their default position and based on the user interaction, you can load different contols in to different regions on the fly.  And it is supported ModuleViewDefinition and ModuleMappers as shown below. namespace Framework.PresentationUtility.Navigation { public class ModuleViewDefinition { public string ModuleName { get; set; } public IList<ModuleMapper> ModuleMappers; public ICommand Command { get; set; } }   public class ModuleMapper { public string ViewName { get; set; } public string RegionName { get; set; } public Type ViewType { get; set; } } } 6. Event Aggregator Prism event aggregator enables messaging between components as in Observable pattern, Notifier notifies the Observer which receives notification it is interested in. When it comes to Observable pattern, Observer has to unsubscribes for notifications when it no longer interested in notifications, which allows the Notifier to remove the Observer’s reference from it’s local cache. Though .Net has managed garbage collection it cannot remove inactive the instances referenced by an active instance resulting in memory leak, keeping the Observers in memory as long as Notifier stays in memory.  Developers have to be very careful to unsubscribe when necessary and it often gets overlooked, to overcome these problems Prism Event Aggregator uses weak references to cache the reference (Observer in this case)  and releases the reference (memory) once the instance goes out of scope. Using event aggregator is very simple, declare a generic type of CompositePresenationEvent by inheriting from it. using Microsoft.Practices.Prism.Events; using TaxiCommon.BAO;   namespace TaxiCommon.CompositeEvents { public class TaxiOnMoveEvent:CompositePresentationEvent<TaxiOnMove> { } }   TaxiOnMove.cs includes the properties which we want to exchange between the parties, FareView and TotalView. using System;   namespace TaxiCommon.BAO { public class TaxiOnMove { public TimeSpan MinutesAtTweleveMPH { get; set; } public double MilesAtSixMPH { get; set; } } }   Lets take a look into FareViewodel (Notifier) and how it raises the event.  Here we are raising the event by getting the event through GetEvent<..>() and publishing it with the payload private void OnAddMinutes(object obj) { TaxiOnMove payload = new TaxiOnMove(); if(MilesAtSixMPH != null) payload.MilesAtSixMPH = MilesAtSixMPH.Value; if(MinutesAtTweleveMPH != null) payload.MinutesAtTweleveMPH = new TimeSpan(0,0,MinutesAtTweleveMPH.Value,0);   _eventAggregator.GetEvent<TaxiOnMoveEvent>().Publish(payload); ResetMinutesAndMiles(); } And TotalViewModel(Observer) subscribes to notifications by getting the event through GetEvent<..>() namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { .... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; ... }   private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>() .Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>() .Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>() .Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   ... private void OnTaxiMove(TaxiOnMove taxiOnMove) { OnMoveFare fare = new OnMoveFare(taxiOnMove); Fares.Add(fare); SetTotalFare(new []{fare}); }   .... 7. MVVM through example In this section we are going to look into MVVM implementation through example.  I have all the modules declared in a single project, TaxiModules, again it is not necessary to have them into one project. Once the user logs into the application, will be greeted with the ‘Engage the Taxi’ screen which is made of two user controls, FareView.xaml and TotalView.Xaml. As you can see from the solution explorer, each of them have their own code behind files and  ViewModel classes, FareViewMode.cs, TotalViewModel.cs Lets take a look in to the FareView and how it interacts with FareViewModel using MVVM implementation. FareView.xaml acts as a view and FareViewMode.cs is it’s view model. The FareView code behind class   namespace TaxiModules.Views { /// <summary> /// Interaction logic for FareView.xaml /// </summary> public partial class FareView : UserControl { public FareView(FareViewModel viewModel) { InitializeComponent(); this.Loaded += (s, e) => { this.DataContext = viewModel; }; } } } The FareView is bound to FareViewModel through the data context  and you shall observe that DataContext is of type Object, i.e. the FareView doesn’t really know the type of ViewModel (FareViewModel). This helps separation of View and ViewModel as View and ViewModel are independent of each other, you can bind FareView to FareViewModel2 as well and the application compiles just fine. Lets take a look into FareView xaml file  <UserControl x:Class="TaxiModules.Views.FareView" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Toolkit="clr-namespace:Microsoft.Windows.Controls;assembly=WPFToolkit" xmlns:Commands="clr-namespace:Microsoft.Practices.Prism.Commands;assembly=Microsoft.Practices.Prism"> <Grid Margin="10" > ....   <Border Style="{DynamicResource innerBorder}" Grid.Row="0" Grid.Column="0" Grid.RowSpan="11" Grid.ColumnSpan="2" Panel.ZIndex="1"/>   <Label Grid.Row="0" Content="Engage the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="1" Content="Select the State"/> <ComboBox Grid.Row="1" Grid.Column="1" ItemsSource="{Binding States}" Height="auto"> <ComboBox.ItemTemplate> <DataTemplate> <TextBlock Text="{Binding Name}"/> </DataTemplate> </ComboBox.ItemTemplate> <ComboBox.SelectedItem> <Binding Path="SelectedState" Mode="TwoWay"/> </ComboBox.SelectedItem> </ComboBox> <Label Grid.Row="2" Content="Select the Date of Entry"/> <Toolkit:DatePicker Grid.Row="2" Grid.Column="1" SelectedDate="{Binding DateOfEntry, ValidatesOnDataErrors=true}" /> <Label Grid.Row="3" Content="Enter time 24hr format"/> <TextBox Grid.Row="3" Grid.Column="1" Text="{Binding TimeOfEntry, TargetNullValue=''}"/> <Button Grid.Row="4" Grid.Column="1" Content="Start the Meter" Commands:Click.Command="{Binding StartMeterCommand}" />   <Label Grid.Row="5" Content="Run the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="6" Content="Number of Miles &lt;@6mph"/> <TextBox Grid.Row="6" Grid.Column="1" Text="{Binding MilesAtSixMPH, TargetNullValue='', ValidatesOnDataErrors=true}"/> <Label Grid.Row="7" Content="Number of Minutes @12mph"/> <TextBox Grid.Row="7" Grid.Column="1" Text="{Binding MinutesAtTweleveMPH, TargetNullValue=''}"/> <Button Grid.Row="8" Grid.Column="1" Content="Add Minutes and Miles " Commands:Click.Command="{Binding AddMinutesCommand}"/> <Label Grid.Row="9" Content="Other Operations" Style="{DynamicResource innerHeader}"/> <Button Grid.Row="10" Grid.Column="1" Content="Reset the Meter" Commands:Click.Command="{Binding ResetCommand}"/>   </Grid> </UserControl> The highlighted code from the above code shows data binding, for example ComboBox which displays list of states has it’s ItemsSource bound to States property, with DataTemplate bound to Name and SelectedItem  to SelectedState. You might be wondering what are all these properties and how it is able to bind to them.  The answer lies in data context, i.e., when you bound a control, WPF looks for data context on the root object (Grid in this case) and if it can’t find data context it will look into root’s root, i.e. FareView UserControl and it is bound to FareViewModel.  Each of those properties have be declared on the ViewModel for the View to bind correctly. To put simply, View is bound to ViewModel through data context of type object and every control that is bound on the View actually binds to the public property on the ViewModel. Lets look into the ViewModel code (the following code is not an exact copy of FareViewMode.cs, pasted relevant code for this section)   namespace TaxiModules.ViewModels { public class FareViewModel:ObservableBase, IDataErrorInfo { public List<USState> States { get { return USStates.StateList; } }   public USState SelectedState { get { return _selectedState; } set { _selectedState = value; RaisePropertyChanged(_selectedStatePropertyName); } }   public DateTime? DateOfEntry { get { return _dateOfEntry; } set { _dateOfEntry = value; RaisePropertyChanged(_dateOfEntryPropertyName); } }   public TimeSpan? TimeOfEntry { get { return _timeOfEntry; } set { _timeOfEntry = value; RaisePropertyChanged(_timeOfEntryPropertyName); } }   public double? MilesAtSixMPH { get { return _milesAtSixMPH; } set { _milesAtSixMPH = value; RaisePropertyChanged(_distanceAtSixMPHPropertyName); } }   public int? MinutesAtTweleveMPH { get { return _minutesAtTweleveMPH; } set { _minutesAtTweleveMPH = value; RaisePropertyChanged(_minutesAtTweleveMPHPropertyName); } }   public ICommand StartMeterCommand { get { if(_startMeterCommand == null) { _startMeterCommand = new DelegateCommand<object>(OnStartMeter, CanStartMeter); } return _startMeterCommand; } }   public ICommand AddMinutesCommand { get { if(_addMinutesCommand == null) { _addMinutesCommand = new DelegateCommand<object>(OnAddMinutes, CanAddMinutes); } return _addMinutesCommand; } }   public ICommand ResetCommand { get { if(_resetCommand == null) { _resetCommand = new DelegateCommand<object>(OnResetCommand); } return _resetCommand; } }   } private void OnStartMeter(object obj) { _eventAggregator.GetEvent<TaxiStartedEvent>().Publish( new TaxiStarted() { EngagedOn = DateOfEntry.Value.Date + TimeOfEntry.Value, EngagedState = SelectedState.Value });   _isMeterStarted = true; OnPropertyChanged(this,null); } And views communicate user actions like button clicks, tree view item selections, etc using commands. When user clicks on ‘Start the Meter’ button it invokes the method StartMeterCommand, which calls the method OnStartMeter which publishes the event to TotalViewModel using event aggregator  and TaxiStartedEvent. namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { ... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator;   InitializePropertyNames(); InitializeModel(); SubscribeToEvents(); }   public decimal? TotalFare { get { return _totalFare; } set { _totalFare = value; RaisePropertyChanged(_totalFarePropertyName); } } .... private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>().Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>().Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>().Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   private void OnTaxiStarted(TaxiStarted taxiStarted) { Fares.Add(new EntryFare()); Fares.Add(new StateTaxFare(taxiStarted)); Fares.Add(new NightSurchargeFare(taxiStarted)); Fares.Add(new PeakHourWeekdayFare(taxiStarted));   SetTotalFare(Fares); }   private void SetTotalFare(IEnumerable<IFare> fares) { TotalFare = (_totalFare ?? 0) + TaxiFareHelper.GetTotalFare(fares); } ....   } }   TotalViewModel subscribes to events, TaxiStartedEvent and rest. When TaxiStartedEvent gets invoked it calls the OnTaxiStarted method which sets the total fare which includes entry fee, state tax, nightly surcharge, peak hour weekday fare.   Note that TotalViewModel derives from ObservableBase which implements the method RaisePropertyChanged which we are invoking in Set of TotalFare property, i.e, once we update the TotalFare property it raises an the event that  allows the TotalFare text box to fetch the new value through the data context. ViewModel is communicating with View through data context and it has no knowledge about View, helping in loose coupling of ViewModel and View.   I have attached the source code (.Net 4.0, Prism 4.0, VS 2010) , download and play with it and don’t forget to leave your comments.  

    Read the article

  • web service not working on GlassFish

    - by Gunjan Shah
    I am generating web service client in Eclipse Helios by Axis 1.4 version. The client stubs are working fine as per the expectation by using local main programs. But When I deploy the stub and application on GlassFish Server, I am getting the following exception : [#|2012-10-16T03:36:12.166-0700|SEVERE|glassfish3.1|javax.enterprise.system.std.com.sun.enterprise.server.logging|_ThreadID=101;_ThreadName=Thread-1;|java.lang.IllegalStateException: WEB9031: WebappClassLoader unable to load resource [META-INF/services/org.apache.axis.EngineConfigurationFactory], because it has not yet been started, or was already stopped at org.glassfish.web.loader.WebappClassLoader.findResourceInternal(WebappClassLoader.java:2074) at org.glassfish.web.loader.WebappClassLoader.findResource(WebappClassLoader.java:1034) at org.glassfish.web.loader.WebappClassLoader.getResource(WebappClassLoader.java:1169) at org.glassfish.web.loader.WebappClassLoader.getResource(WebappClassLoader.java:1135) at org.apache.commons.discovery.jdk.JDK12Hooks.getResources(JDK12Hooks.java:149) at org.apache.commons.discovery.resource.DiscoverResources$1.getNextResources(DiscoverResources.java:153) at org.apache.commons.discovery.resource.DiscoverResources$1.getNextResource(DiscoverResources.java:129) at org.apache.commons.discovery.resource.DiscoverResources$1.hasNext(DiscoverResources.java:116) at org.apache.commons.discovery.resource.names.DiscoverNamesInFile$1.getNextClassNames(DiscoverNamesInFile.java:186) at org.apache.commons.discovery.resource.names.DiscoverNamesInFile$1.getNextClassName(DiscoverNamesInFile.java:170) at org.apache.commons.discovery.resource.names.DiscoverNamesInFile$1.hasNext(DiscoverNamesInFile.java:157) at org.apache.commons.discovery.resource.names.NameDiscoverers$1.getNextIterator(NameDiscoverers.java:143) at org.apache.commons.discovery.resource.names.NameDiscoverers$1.hasNext(NameDiscoverers.java:126) at org.apache.commons.discovery.resource.classes.ResourceClassDiscoverImpl$1.getNextResource(ResourceClassDiscoverImpl.java:159) at org.apache.commons.discovery.resource.classes.ResourceClassDiscoverImpl$1.hasNext(ResourceClassDiscoverImpl.java:147) at org.apache.axis.configuration.EngineConfigurationFactoryFinder$1.run(EngineConfigurationFactoryFinder.java:120) at java.security.AccessController.doPrivileged(Native Method) at org.apache.axis.configuration.EngineConfigurationFactoryFinder.newFactory(EngineConfigurationFactoryFinder.java:113) at org.apache.axis.configuration.EngineConfigurationFactoryFinder.newFactory(EngineConfigurationFactoryFinder.java:160) at org.apache.axis.client.Service.getEngineConfiguration(Service.java:813) at org.apache.axis.client.Service.getAxisClient(Service.java:104) at org.apache.axis.client.Service.<init>(Service.java:113) at com.payback.mobile.GreenCardServiceLocator.<init>(GreenCardServiceLocator.java:12) at com.pbgc.web.service.client.PentaloonServiceClient.getGreenCardService(PentaloonServiceClient.java:50) at com.pbgc.web.service.provider.LoginService.authenticateUser(LoginService.java:30) at com.pbgc.web.action.LoginAction.doLogin(LoginAction.java:44) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at com.opensymphony.xwork2.DefaultActionInvocation.invokeAction(DefaultActionInvocation.java:452) at com.opensymphony.xwork2.DefaultActionInvocation.invokeActionOnly(DefaultActionInvocation.java:291) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:254) at com.pbgc.web.interceptor.SecurityManager.intercept(SecurityManager.java:45) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:248) at com.opensymphony.xwork2.interceptor.DefaultWorkflowInterceptor.doIntercept(DefaultWorkflowInterceptor.java:176) at com.opensymphony.xwork2.interceptor.MethodFilterInterceptor.intercept(MethodFilterInterceptor.java:98) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:248) at com.opensymphony.xwork2.interceptor.ConversionErrorInterceptor.intercept(ConversionErrorInterceptor.java:133) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:248) at com.opensymphony.xwork2.interceptor.ParametersInterceptor.doIntercept(ParametersInterceptor.java:207) at com.opensymphony.xwork2.interceptor.MethodFilterInterceptor.intercept(MethodFilterInterceptor.java:98) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:248) at com.opensymphony.xwork2.interceptor.ParametersInterceptor.doIntercept(ParametersInterceptor.java:207) at com.opensymphony.xwork2.interceptor.MethodFilterInterceptor.intercept(MethodFilterInterceptor.java:98) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:248) at com.opensymphony.xwork2.interceptor.StaticParametersInterceptor.intercept(StaticParametersInterceptor.java:190) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:248) at org.apache.struts2.interceptor.MultiselectInterceptor.intercept(MultiselectInterceptor.java:75) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:248) at org.apache.struts2.interceptor.CheckboxInterceptor.intercept(CheckboxInterceptor.java:94) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:248) at com.opensymphony.xwork2.interceptor.ChainingInterceptor.intercept(ChainingInterceptor.java:145) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:248) at com.opensymphony.xwork2.interceptor.PrepareInterceptor.doIntercept(PrepareInterceptor.java:171) at com.opensymphony.xwork2.interceptor.MethodFilterInterceptor.intercept(MethodFilterInterceptor.java:98) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:248) at org.apache.struts2.interceptor.ServletConfigInterceptor.intercept(ServletConfigInterceptor.java:164) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:248) at com.opensymphony.xwork2.interceptor.ExceptionMappingInterceptor.intercept(ExceptionMappingInterceptor.java:187) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:248) at org.apache.struts2.impl.StrutsActionProxy.execute(StrutsActionProxy.java:52) at org.apache.struts2.dispatcher.Dispatcher.serviceAction(Dispatcher.java:498) at org.apache.struts2.dispatcher.ng.ExecuteOperations.executeAction(ExecuteOperations.java:77) at org.apache.struts2.dispatcher.ng.filter.StrutsPrepareAndExecuteFilter.doFilter(StrutsPrepareAndExecuteFilter.java:91) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:256) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:215) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:279) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:175) at org.apache.catalina.core.StandardPipeline.doInvoke(StandardPipeline.java:655) at org.apache.catalina.core.StandardPipeline.invoke(StandardPipeline.java:595) at com.sun.enterprise.web.WebPipeline.invoke(WebPipeline.java:98) at com.sun.enterprise.web.PESessionLockingStandardPipeline.invoke(PESessionLockingStandardPipeline.java:91) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:162) at org.apache.catalina.connector.CoyoteAdapter.doService(CoyoteAdapter.java:326) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:227) at com.sun.enterprise.v3.services.impl.ContainerMapper.service(ContainerMapper.java:228) at com.sun.grizzly.http.ProcessorTask.invokeAdapter(ProcessorTask.java:822) at com.sun.grizzly.http.ProcessorTask.doProcess(ProcessorTask.java:719) at com.sun.grizzly.http.ProcessorTask.process(ProcessorTask.java:1013) at com.sun.grizzly.http.DefaultProtocolFilter.execute(DefaultProtocolFilter.java:225) at com.sun.grizzly.DefaultProtocolChain.executeProtocolFilter(DefaultProtocolChain.java:137) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:104) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:90) at co|#] [#|2012-10-16T03:36:12.166-0700|SEVERE|glassfish3.1|javax.enterprise.system.std.com.sun.enterprise.server.logging|_ThreadID=101;_ThreadName=Thread-1;|m.sun.grizzly.http.HttpProtocolChain.execute(HttpProtocolChain.java:79) at com.sun.grizzly.ProtocolChainContextTask.doCall(ProtocolChainContextTask.java:54) at com.sun.grizzly.SelectionKeyContextTask.call(SelectionKeyContextTask.java:59) at com.sun.grizzly.ContextTask.run(ContextTask.java:71) at com.sun.grizzly.util.AbstractThreadPool$Worker.doWork(AbstractThreadPool.java:532) at com.sun.grizzly.util.AbstractThreadPool$Worker.run(AbstractThreadPool.java:513) at java.lang.Thread.run(Thread.java:619) |#] Can anyone tell me, why its happening ? Its happening only when I deploy the application on GlassFish server. Thanks, Gunjan.

    Read the article

  • Use VIM omnicomplete for javascript with ctags

    - by Gramic
    I am using vim/gvim for 4 months already and now I found a way to use it's strengths. My tags file is generated very well and here is a simple row in it. my.namespace.classname /path/to/file.js /^my.namespace.classname = function(first_arg,$/;" f Here is an example what i need to omnicomplete: my.namespace.cla <- omnicomplete list with all classnames in the my.namespace The above is the key to my problem, because it looks like omnicomplete searches only namespace without including "my." in front of it. So i see other element in the omnicomplete list and not my classname at all. However, if i type :tag my.namespace.classname for example gvim opens the correct file at the correct position. What is wrong and how can I make it work?

    Read the article

  • how to compile f# on mono

    - by leon
    I am trying to compile this example in mono on ubuntu. However I get the error wingsit@wingsit-laptop:~/MyFS/kitty$ fsc.exe -o kitty.exe kittyAst.fs kittyParser.fs kittyLexer.fs main.fs Microsoft (R) F# 2.0 Compiler build 2.0.0.0 Copyright (c) Microsoft Corporation. All Rights Reserved. /home/wingsit/MyFS/kitty/kittyAst.fs(1,1): error FS0222: Files in libraries or multiple-file applications must begin with a namespace or module declaration, e.g. 'namespace SomeNamespace.SubNamespace' or 'module SomeNamespace.SomeModule' /home/wingsit/MyFS/kitty/kittyParser.fs(2,1): error FS0222: Files in libraries or multiple-file applications must begin with a namespace or module declaration, e.g. 'namespace SomeNamespace.SubNamespace' or 'module SomeNamespace.SomeModule' /home/wingsit/MyFS/kitty/kittyLexer.fsl(2,1): error FS0222: Files in libraries or multiple-file applications must begin with a namespace or module declaration, e.g. 'namespace SomeNamespace.SubNamespace' or 'module SomeNamespace.SomeModule' wingsit@wingsit-laptop:~/MyFS/kitty$ I am a newbie in F#. Is there something obvious I miss?

    Read the article

  • C#: Problem trying to resolve a class when two namespaces are similar

    - by rally25rs
    I'm running into an issue where I can't make a reference to a class in a different namespace. I have 2 classes: namespace Foo { public class Class1 { ... } } namespace My.App.Foo { public class Class2 { public void SomeMethod() { var x = new Foo.Class1; // compile error! } } } The compile error is: The type or namespace name 'Class1' does not exist in the namespace 'My.App.Foo' In this situation, I can't seem to get Visual Studio to recognize that "Foo.Class1" refers to the first class. If I mouse-over "Foo", it shows that its trying to resolve that to "My.App.Foo.Class1" If I put the line: using Foo; at the top of the .cs file that contains Class2, then it also resolves that to "My.App.Foo". Is there some trick to referencing the right "Foo" namespace without just renaming the namespaces so they don't conflict? Both of these namespaces are in the same assembly.

    Read the article

  • C#: Problem trying to resolve a class when two namespaces are simmilar.

    - by rally25rs
    I'm running into an issue where I can't make a reference to a class in a different namespace. I have 2 classes: namespace Foo { public class Class1 { ... } } namespace My.App.Foo { public class Class2 { public void SomeMethod() { var x = new Foo.Class1; // compile error! } } } The compile error is: The type or namespace name 'Class1' does not exist in the namespace 'My.App.Foo' In this situation, I can't seem to get Visual Studio to recognize that "Foo.Class1" refers to the first class. If I mouse-over "Foo", it shows that its trying to resolve that to "My.App.Foo.Class1" If I put the line: using Foo; at the top of the .cs file that contains Class2, then it also resolves that to "My.App.Foo". Is there some trick to referencing the right "Foo" namespace without just renaming the namespaces so they don't conflict? Both of these namespaces are in the same assembly.

    Read the article

  • How to structure a Visual Studio project for the data access layer

    - by Akk
    I currently have a project that uses various DB access technologies mainly for showcasing or for demos. Currently we have: Namespace App.Data (App.Data.dll) Folder NHibernate Folder EntityFramework Folder LinqToSql The above structure is ok as we only use Sql Server as the DB. But going forward we will be including Oracle, MySql etc. So what would be a better structure with this in mind? I thought about: Namespace App.Data.SqlServer (App.Data.SqlServer.dll) Folder NHibernate Folder EntityFramework Folder LinqToSql Or would it just be better to have separate assemblies for each database and access technology?: Namespace App.Data.SqlServer.NHibernate (App.Data.SqlServer.NHibernate.dll) Namespace App.Data.SqlServer.EntityFramework(App.Data.SqlServer.EntityFramework.dll) Namespace App.Data.Oracle.NHibernate (App.Data.Oracle.NHibernate.dll) Namespace App.Data.MySql.NHibernate (App.Data.MySql.Oracle.dll)

    Read the article

  • What is the most concise, unambiguous syntax for operator associated methods (for overloading etc.) that doesn't pollute the namespace?

    - by Doug Treadwell
    Python tends to add double underscores before its built-in or overloadable operator methods, like __add(), whereas C++ requires declaring overloaded operators as operator + (Thing& thing) { /* code */ } for example. Personally I like the operator syntax because it seems to be more explicit and keeps these operator overloading methods separated from other methods without introducing weird prefix notation. What are your thoughts? Also, what about the case of built-in methods that are needed for the programming language to work properly? Is name mangling (like adding __ prefix or sys or something) the best solution here? What do you think about having another type of method declaration, like ... "system method" for lack of creativity at the moment. So there would be two kinds of declarations: int method_name() { ... } system int method_name() { ... } ... and the call would need to be different to distinguish between them. obj.method_name(); vs obj:method_name(); perhaps, assuming a language where : can be unambiguously used in this situation. obj.method_name() vs obj.(system method_name)() Sure, the latter is ugly, but the idea is to make the common case simple and system stuff should be kept out of the way. Maybe the Objective-C notation of method calls? [obj method_name]? Are there more alternatives? Please make suggestions.

    Read the article

  • How best to modernize the 2002-era J2EE app?

    - by user331465
    I have this friend.... I have this friend who works on a java ee application (j2ee) application started in the early 2000's. Currently they add a feature here and there, but have a large codebase. Over the years the team has shrunk by 70%. [Yes, the "i have this friend is". It's me, attempting to humorously inject teenage high-school counselor shame into the mix] Java, Vintage 2002 The application uses EJB 2.1, struts 1.x, DAO's etc with straight jdbc calls (mixture of stored procedures and prepared statements). No ORM. For caching they use a mixture of OpenSymphony OSCache and a home-grown cache layer. Over the last few years, they have spent effort to modernize the UI using ajax techniques and libraries. This largely involves javascript libaries (jquery, yui, etc). Client Side On the client side, the lack of upgrade path from struts1 to struts2 discouraged them from migrating to struts2. Other web frameworks became popular (wicket, spring , jsf). Struts2 was not the "clear winner". Migrating all the existing UI from Struts1 to Struts2/wicket/etc did not seem to present much marginal benefit at a very high cost. They did not want to have a patchwork of technologies-du-jour (subsystem X in Struts2, subsystem Y in Wicket, etc.) so developer write new features using Struts 1. Server Side On the server side, they looked into moving to ejb 3, but never had a big impetus. The developers are all comfortable with ejb-jar.xml, EJBHome, EJBRemote, that "ejb 2.1 as is" represented the path of least resistance. One big complaint about the ejb environment: programmers still pretend "ejb server runs in separate jvm than servlet engine". No app server (jboss/weblogic) has ever enforced this separation. The team has never deployed the ejb server on a separate box then the app server. The ear file contains multiple copies of the same jar file; one for the 'web layer' (foo.war/WEB-INF/lib) and one for the server side (foo.ear/). The app server only loads one jar. The duplications makes for ambiguity. Caching As for caching, they use several cache implementations: OpenSymphony cache and a homegrown cache. Jgroups provides clustering support Now What? The question: The team currently has spare cycles to to invest in modernizing the application? Where would the smart investor spend them? The main criteria: 1) productivity gains. Specifically reducing the time to develope new subsystems features and reduced maintenance. 2) performance/scalability. They do not care about fashion or techno-du-jour street cred. What do you all recommend? On the persistence side Switch everything (or new development only) to JPA/JPA2? Straight hibernate? Wait for Java EE 6? On the client/web-framework side: Migrate (some or all) to struts2? wicket? jsf/jsf2? As for caching: terracotta? ehcache? coherence? stick with what they have? how best to take advantage of the huge heap sizes that the 64-bit jvms offer? Thanks in advance.

    Read the article

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

  • Where do I place XNA content pipeline references?

    - by Zabby Wabby
    I am relatively new to XNA, and have started to delve into the use of the content pipeline. I have already figured out that tricky issue of adding a game library containing classes for any type of .xml file I want to read. Here's the issue. I am trying to handle the reading of all XML content through use of an XMLHandler object that uses the intermediate deserializer. Any time reading of such data is required, the appropriate method within this object would be called. So, as a simple example, something like this would occur when a character levels: public Spell LevelUp(int levelAchived) { XMLHandler.FindSkillsForLevel(levelAchived); } This method would then read the proper .xml file, sending back the spell for the character to learn. However, the XMLHandler is having issues even being created. I cannot get it to use the using namespace of Microsoft.Xna.Framework.Content.Pipeline. I get an error on my using statement in the XMLHandler class: using Microsoft.Xna.Framework.Content.Pipeline.Serialization.Intermediate; The error is a typical reference error: Type or namespace name "'Pipeline' does not exist in the namespace 'Microsoft.Xna.Framework.Content' (are you missing an assembly reference?)" I THINK this is because this namespace is already referenced in my game's content. I would really have no issue placing this object within my game's content (since that is ALL it deals with anyways), but the Content project does not seem capable of holding anything but content files. In summary, I need to use the Intermediate Deserializer in my main project's logic, but, as far as I can make out, I can't safely reference the associated namespace for it outside of the game's content. I'm not a terribly well-versed programmer, so I may be just missing some big detail I've never learned here. How can I make this object accessible for all projects within the solution? I will gladly post more information if needed!

    Read the article

  • Extreme Optimization Numerical Libraries for .NET – Part 1 of n

    - by JoshReuben
    While many of my colleagues are fascinated in constructing the ultimate ViewModel or ServiceBus, I feel that this kind of plumbing code is re-invented far too many times – at some point in the near future, it will be out of the box standard infra. How many times have you been to a customer site and built a different variation of the same kind of code frameworks? How many times can you abstract Prism or reliable and discoverable WCF communication? As the bar is raised for whats bundled with the framework and more tasks become declarative, automated and configurable, Information Systems will expose a higher level of abstraction, forcing software engineers to focus on more advanced computer science and algorithmic tasks. I've spent the better half of the past decade building skills in .NET and expanding my mathematical horizons by working through the Schaums guides. In this series I am going to examine how these skillsets come together in the implementation provided by ExtremeOptimization. Download the trial version here: http://www.extremeoptimization.com/downloads.aspx Overview The library implements a set of algorithms for: linear algebra, complex numbers, numerical integration and differentiation, solving equations, optimization, random numbers, regression, ANOVA, statistical distributions, hypothesis tests. EONumLib combines three libraries in one - organized in a consistent namespace hierarchy. Mathematics Library - Extreme.Mathematics namespace Vector and Matrix Library - Extreme.Mathematics.LinearAlgebra namespace Statistics Library - Extreme.Statistics namespace System Requirements -.NET framework 4.0  Mathematics Library The classes are organized into the following namespace hierarchy: Extreme.Mathematics – common data types, exception types, and delegates. Extreme.Mathematics.Calculus - numerical integration and differentiation of functions. Extreme.Mathematics.Curves - points, lines and curves, including polynomials and Chebyshev approximations. curve fitting and interpolation. Extreme.Mathematics.Generic - generic arithmetic & linear algebra. Extreme.Mathematics.EquationSolvers - root finding algorithms. Extreme.Mathematics.LinearAlgebra - vectors , matrices , matrix decompositions, solvers for simultaneous linear equations and least squares. Extreme.Mathematics.Optimization – multi-d function optimization + linear programming. Extreme.Mathematics.SignalProcessing - one and two-dimensional discrete Fourier transforms. Extreme.Mathematics.SpecialFunctions

    Read the article

  • Windows 8&ndash;Custom WinRT components and WinJS

    - by Jonas Bush
    Wow, I’m still alive! I installed the RTM of Windows 8 when it became available, and in the last few days have started taking a look at writing a windows 8 app using HTML/JS, which in and of itself is a weird thing. I don’t think that windows developers of 10 years ago would’ve thought something like this would have ever come about. As I was working on this, I ran across a problem, found the solution, and thought I’d blog about it to try and kick start me back into blogging. I already answered my own question on Stack Overflow, but will explain here. I needed to create a custom WinRT component to do some stuff that I either wouldn’t be able to or didn’t know how to do with the javascript libraries available to me. I had a javascript class defined like this: WinJS.Namespace.define("MyApp", { MyClass: WinJS.Class.define(function() { //constructor function }, { /*instance members*/ }, { /*static members*/ }) }); This gives me an object I can access in javascript: var foo = new MyApp.MyClass(); I created my WinRT component like this: namespace MyApp { public sealed class SomeClass { public int SomeMethod() { return 42; } } }   With the thought that from my javascript, I’d be able to do this: var foo = new MyApp.MyClass(); var bar = new MyApp.SomeClass(); //from WinRT component foo.SomeProperty = bar.SomeMethod();   When I tried this, I got the following error when trying to construct MyApp.MyClass (the object defined in Javascript) 0x800a01bd - Javascript runtime error: Object doesn't support this action. I puzzled for a bit, then noticed while debugging that my “MyApp” namespace didn’t have anything in it other than the WinRT component. I changed my WinRT component to this: namespace MyAppUtils { public sealed class SomeClass { //etc } } And after this, everything was fine. So, lesson learned: If you’re using Javascript and create a custom WinRT component, make sure that the WinRT component is in a namespace all its own. Not sure why this happens, and if I find out why or if MS says something about this somewhere, I’ll come back and update this.

    Read the article

  • Which is better: many class definitions in the same file or every class definition in a separate file?

    - by Javed Akram
    Which is better: many class definitions in same file or every class definition in separate file? Examples: 1) Many classes in same file. Say, myManyClasses.cs: namespace myPack { class myClass1() { } class myClass2() { } class myClass3() { } . . . } 2) Every class in separate file: myClass1.cs namespace myPack { class myClass1() { } } myClass2.cs namespace myPack { class myClass2() { } } . . .

    Read the article

  • Including Microsoft.XNA.Framework.Input.Touch in a project?

    - by steven_desu
    So after running through tutorials by both Microsoft and www.xnadevelopment.com I feel very confident in my ability to get to work on my first game using the XNA Framework. I've manipulated sprites, added audio, changed game states, and even went a step further to apply the knowledge I had and figure out how to make animations and basic 2-dimensional physics (including impulses, force, acceleration, and speed calculations) But then shortly into the project I hit a curious bump that I've been unable to figure out. In wanting to implement menus, pause screens, and several different aspects of play (a "pre-level" prep screen, the level itself, and a screen after the level to review how well you did) I took a look at Microsoft's Game State Management sample. I understood the concept, although it was admittedly quite a lot to take in. Not wanting to recreate the entire concept by scratch (after all- what purpose would that serve?) I tried copying and pasting the sample code into my own ScreenManager class (as well as InputState and GameScreen classes) to try and borrow their ingenuity. When I did this, however, my project stopped compiling. I was getting the following error: The type or namespace name 'Touch' does not exist in the namespace 'Microsoft.Xna.Framework.Input' (are you missing an assembly reference?) Having read through their sample code already, I realized that this namespace and every function and class within it could be safely ripped from the code without losing functionality. It's a namespace simply for integrating with touchscreen devices (presumably Windows Phone 7, but maybe also tablets). But then I began to wonder- how come Microsoft's sample compiled but mine didn't? I copied their code exactly so there must be a setting somewhere that I need to change in Visual Studio in order to correct this. I tried creating a new project as a Windows Phone 7 game rather than a Windows game, however that only forced it to compile to a Windows Phone emulator and denied me the ability to change the resolution and other features which I clearly had the power to do in the sample code. So my question is simple - how do I properly use the namespace Microsoft.XNA.Framework.Input.Touch?

    Read the article

  • Different Service behaviors per endpoint

    - by Preben Huybrechts
    The situation We are implementing different sort of security on some WCF service. ClientCertificate, UserName & Password and Anonymous. We have 2 ServiceBehaviorConfigurations, one for httpBinding and one for wsHttpBinding. (We have custom authorization policies for claim based security) As a requirement we need different endpoints for each service. 3 endpoints with httpBinding and 1 with wsHttpBinding. Example for one service: basicHttpBinding : Anonymous basicHttpBinding : UserNameAndPassword basicHttpBinding : BasicSsl wsHttpBinding : BasicSsl The Problem Part 1: We cannot specify the same service twice, once with the http service configuration and once with the wsHttp service configuration. Part 2: We cannot specify service behaviors on an endpoint. (Throws and exception, No endpoint behavior was found... Service behaviors cant be set to endpoint behaviours) The Config For part 1: <services> <service name="Namespace.MyService" behaviorConfiguration="securityBehavior"> <endpoint address="http://server:94/MyService.svc/Anonymous" contract="Namespace.IMyService" binding="basicHttpBinding" bindingConfiguration="Anonymous"> </endpoint> <endpoint address="http://server:94/MyService.svc/UserNameAndPassword" contract="Namespace.IMyService" binding="basicHttpBinding" bindingConfiguration="UserNameAndPassword"> </endpoint> <endpoint address="https://server/MyService.svc/BasicSsl" contract="Namespace.IMyService" binding="basicHttpBinding" bindingConfiguration="BasicSecured"> </endpoint> </service> <service name="Namespace.MyService" behaviorConfiguration="wsHttpCertificateBehavior"> <endpoint address="https://server/MyService.svc/ClientCert" contract="Namespace.IMyService" binding="wsHttpBinding" bindingConfiguration="ClientCert"/> </service> </services> Service Behavior configuration: <serviceBehaviors> <behavior name="securityBehavior"> <serviceAuthorization serviceAuthorizationManagerType="Namespace.AdamAuthorizationManager,Assembly"> <authorizationPolicies> <add policyType="Namespace.AdamAuthorizationManager,Assembly" /> </authorizationPolicies> </serviceAuthorization> </behavior> <behavior name="wsHttpCertificateBehavior"> <serviceMetadata httpGetEnabled="false" httpsGetEnabled="true"/> <serviceAuthorization serviceAuthorizationManagerType="Namespace.AdamAuthorizationManager,Assembly"> <authorizationPolicies> <add policyType="Namespace.AdamAuthorizationManager,Assembly" /> </authorizationPolicies> </serviceAuthorization> <serviceCredentials> <clientCertificate> <authentication certificateValidationMode="PeerOrChainTrust" revocationMode="NoCheck"/> </clientCertificate> <serviceCertificate findValue="CN=CertSubject"/> </serviceCredentials> </behavior> How can we specify a different service behaviour on the WsHttpBinding endpoint? Or how can we apply our authorization policy in a different way for wsHttpBinding then basicHttpBinding. We would use endpoint behavior but we can't specify our authorization policy on an endpoint behavior

    Read the article

  • Boost's "cstdint" Usage

    - by patt0h
    Boost's C99 stdint implementation is awfully handy. One thing bugs me, though. They dump all of their typedefs into the boost namespace. This leaves me with three choices when using this facility: Use "using namespace boost" Use "using boost::[u]<type><width>_t" Explicitly refer to the target type with the boost:: prefix; e.g., boost::uint32_t foo = 0; Option ? 1 kind of defeats the point of namespaces. Even if used within local scope (e.g., within a function), things like function arguments still have to be prefixed like option ? 3. Option ? 2 is better, but there are a bunch of these types, so it can get noisy. Option ? 3 adds an extreme level of noise; the boost:: prefix is often = to the length of the type in question. My question is: What would be the most elegant way to bring all of these types into the global namespace? Should I just write a wrapper around boost/cstdint.hpp that utilizes option ? 2 and be done with it? Also, wrapping the header like so didn't work on VC++ 10 (problems with standard library headers): namespace Foo { #include <boost/cstdint.hpp> using namespace boost; } using namespace Foo; Even if it did work, I guess it would cause ambiguity problems with the ::boost namespace.

    Read the article

  • Exceptional C++[Bug]?

    - by gautam kumar
    I have been reading Exceptional C++ by Herb Sutter. On reaching Item 32 I found the following namespace A { struct X; struct Y; void f( int ); void g( X ); } namespace B { void f( int i ) { f( i ); // which f()? } } This f() calls itself, with infinite recursion. The reason is that the only visible f() is B::f() itself. There is another function with signature f(int), namely the one in namespace A. If B had written "using namespace A;" or "using A::f;", then A::f(int) would have been visible as a candidate when looking up f(int), and the f(i) call would have been ambiguous between A::f(int) and B::f(int). Since B did not bring A::f(int) into scope, however, only B::f(int) can be considered, so the call unambiguously resolves to B::f(int). But when I did the following.. namespace A { struct X; struct Y; void f( int ); void g( X ); } namespace B { using namespace A; void f( int i ) { f( i ); // No error, why? } } That means Herb Sutter has got it all wrong? If not why dont I get an error?

    Read the article

  • Where to add an overloaded operator for the tr1::array?

    - by phlipsy
    Since I need to add an operator& for the std::tr1::array<bool, N> I wrote the following lines template<std::size_t N> std::tr1::array<bool, N> operator& (const std::tr1::array<bool, N>& a, const std::tr1::array<bool, N>& b) { std::tr1::array<bool, N> result; std::transform(a.begin(), a.end(), b.begin(), result.begin(), std::logical_and<bool>()); return result; } Now I don't know in which namespace I've to put this function. I considered the std namespace as a restricted area. Only total specialization and overloaded function templates are allowed to be added by the user. Putting it into the global namespace isn't "allowed" either in order to prevent pollution of the global namespace and clashes with other declarations. And finally putting this function into the namespace of the project doesn't work since the compiler won't find it there. What had I best do? I don't want to write a new array class putted into the project namespace. Because in this case the compiler would find the right namespace via argument dependent name lookup. Or is this the only possible way because writing a new operator for existing classes means extending their interfaces and this isn't allowed either for standard classes?

    Read the article

  • MVC2 Areas and Controller 404

    - by CodeGrue
    My project namespace is MyProject.MVC So my controllers, which are segregated into Areas, are in this namespace: MyProject.MVC.Areas.AreaName But when I try to access a controller action in this namespace, I get a 404 error: http://MySite/AreaName/Action/View If I "remove" the MVC portion from the namespace on my controllers, everything works correctly. MyProject.Areas.AreaName Could I have things wired incorrectly or is this an issues with MVC2 Areas?

    Read the article

  • Design pattern question: encapsulation or inheritance

    - by Matt
    Hey all, I have a question I have been toiling over for quite a while. I am building a templating engine with two main classes Template.php and Tag.php, with a bunch of extension classes like Img.php and String.php. The program works like this: A Template object creates a Tag objects. Each tag object determines which extension class (img, string, etc.) to implement. The point of the Tag class is to provide helper functions for each extension class such as wrap('div'), addClass('slideshow'), etc. Each Img or String class is used to render code specific to what is required, so $Img->render() would give something like <img src='blah.jpg' /> My Question is: Should I encapsulate all extension functionality within the Tag object like so: Tag.php function __construct($namespace, $args) { // Sort out namespace to determine which extension to call $this->extension = new $namespace($this); // Pass in Tag object so it can be used within extension return $this; // Tag object } function render() { return $this->extension->render(); } Img.php function __construct(Tag $T) { $args = $T->getArgs(); $T->addClass('img'); } function render() { return '<img src="blah.jpg" />'; } Usage: $T = new Tag("img", array(...); $T->render(); .... or should I create more of an inheritance structure because "Img is a Tag" Tag.php public static create($namespace, $args) { // Sort out namespace to determine which extension to call return new $namespace($args); } Img.php class Img extends Tag { function __construct($args) { // Determine namespace then call create tag $T = parent::__construct($namespace, $args); } function render() { return '<img src="blah.jpg" />'; } } Usage: $Img = Tag::create('img', array(...)); $Img->render(); One thing I do need is a common interface for creating custom tags, ie I can instantiate Img(...) then instantiate String(...), I do need to instantiate each extension using Tag. I know this is somewhat vague of a question, I'm hoping some of you have dealt with this in the past and can foresee certain issues with choosing each design pattern. If you have any other suggestions I would love to hear them. Thanks! Matt Mueller

    Read the article

  • How do you manage the namespaces of your extension methods?

    - by Robert Harvey
    Do you use a global, catchall namespace for all of your extension methods, or do you put the extension methods in the same namespace as the class(es) they extend? Or do you use some other method, like an application or library-specific namespace? EDIT: I ask because I have a need to extend System.Security.Principal.IIdentity, and putting the extension method in the System.Security.Principal namespace seems to make sense, but I've never seen it done this way.

    Read the article

  • Java xml binding with wrong xmlns attribute name

    - by Tom Brito
    When I use the annotation: @XmlRootElement(name="RootElement", namespace="namespace") class RootElement { to create xml file from java, it creates the root element as: <ns2:RootElement xmlns:ns2="namespace"> but I wanted to create without the "ns2", like: <RootElement xmlns="namespace"> Any idea how to fix it? Reletad link (example I used to create the xml): http://www.java2s.com/Code/JavaAPI/javax.xml.bind.annotation/XmlRootElementname.htm

    Read the article

< Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >