Search Results

Search found 2659 results on 107 pages for 'vector drawings'.

Page 27/107 | < Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >

  • How can I send an std::vector<std::string> over a UNIX socket?

    - by Mike
    For my application, I need to be able to send an std::vector<std::string> over a UNIX socket(local), and get a copy of the vector on the other end of the socket. What's the easiest way to do this with O(1) messages relative to the size of the vector(i.e. without sending a message for each string in the vector)? Since this is all on the same host, and because I control both ends of the socket, I'm not concerned with machine-specific issues such as endinness or vector/string representation.

    Read the article

  • Basic C++ code for multiplication of 2 matrix or vectors (C++ beginner)

    - by Ice
    I am a new C++ user and I am also doing a major in Maths so thought I would try implement a simple calculator. I got some code off the internet and now I just need help to multiply elements of 2 matrices or vectors. Matrixf multiply(Matrixf const& left, Matrixf const& right) { // error check if (left.ncols() != right.nrows()) { throw std::runtime_error("Unable to multiply: matrix dimensions not agree."); } /* I have all the other part of the code for matrix*/ /** Now I am not sure how to implement multiplication of vector or matrix.**/ Matrixf ret(1, 1); return ret; }

    Read the article

  • C/C++ Bit Array or Bit Vector

    - by MovieYoda
    Hi, I am learning C/C++ programming & have encountered the usage of 'Bit arrays' or 'Bit Vectors'. Am not able to understand their purpose? here are my doubts - Are they used as boolean flags? Can one use int arrays instead? (more memory of course, but..) What's this concept of Bit-Masking? If bit-masking is simple bit operations to get an appropriate flag, how do one program for them? is it not difficult to do this operation in head to see what the flag would be, as apposed to decimal numbers? I am looking for applications, so that I can understand better. for Eg - Q. You are given a file containing integers in the range (1 to 1 million). There are some duplicates and hence some numbers are missing. Find the fastest way of finding missing numbers? For the above question, I have read solutions telling me to use bit arrays. How would one store each integer in a bit?

    Read the article

  • Rotation in a Vector2d class in Java

    - by wanstein
    I've been working on this for one hour, just can't get it. I have a Vector2d class: public class Vector2d { public double x = 0.0; public double y = 0.0; .... } This vector class has a rotate() method which is causing me trouble. The first snippet seems to make the x and y values smaller and smaller. The second one works just fine! Am I missing something simple here? public void rotate(double n) { this.x = (this.x * Math.cos(n)) - (this.y * Math.sin(n)); this.y = (this.x * Math.sin(n)) + (this.y * Math.cos(n)); } This works: public void rotate(double n) { rx = (this.x * Math.cos(n)) - (this.y * Math.sin(n)); ry = (this.x * Math.sin(n)) + (this.y * Math.cos(n)); x = rx; y = ry; } I just can't spot any difference there

    Read the article

  • Why use third-party vector libraries at all?

    - by Patrick Powns
    So I'm thinking of using the Eigen matrix library for a project I'm doing (2D space simulator). I just went ahead and profiled some code with Eigen::Vector2d, and with bare arrays. I noticed a 10x improvement in assigning values to elements in the array, and a 40x improvement in calculating the dot products. Here is my profiling if you want to check it out, basically it's ~4.065s against ~0.110s. Obviously bare arrays are much more efficient at dot products and assigning stuff. So why use the Eigen library (or any other library, Eigen just seemed the fastest)? Is it stability? Complicated maths that would be hard to code by yourself efficiently?

    Read the article

  • Find consecutive sub-vectors of length k out of a numeric vector which satisfy a given condition

    - by user3559153
    I have a numeric vector in R, say v= c(2,3,5,6,7,6,3,2,3,4,5,7,8,9,6,1,1,2,5,6,7,11,2,3,4). Now, I have to find all the consecutive sub-vector of size 4 out of it with the condition that each element of the sub-vector must be greater than 2 and all sub-vector must be disjoint in the sense that non of the two sub-vector can contain same index element. So my output will be: (3,5,6,7),(3,4,5,7),(5,6,7,11). [Explanation: c(2,3,5,6,7,6,3,2,3,4,5,7,8,9,6,1,3,2,5,6,7,11,2,3,4) ]

    Read the article

  • Quickest way to compute the number of shared elements between two vectors

    - by shn
    Suppose I have two vectors of the same size vector< pair<float, NodeDataID> > v1, v2; I want to compute how many elements from both v1 and v2 have the same NodeDataID. For example if v1 = {<3.7, 22>, <2.22, 64>, <1.9, 29>, <0.8, 7>}, and v2 = {<1.66, 7>, <0.03, 9>, <5.65, 64>, <4.9, 11>}, then I want to return 2 because there are two elements from v1 and v2 that share the same NodeDataIDs: 7 and 64. What is the quickest way to do that in C++ ? Just for information, note that the type NodeDataIDs is defined as I use boost as: typedef adjacency_list<setS, setS, undirectedS, NodeData, EdgeData> myGraph; typedef myGraph::vertex_descriptor NodeDataID; But it is not important since we can compare two NodeDataID using the operator == (that is, possible to do v1[i].second == v2[j].second)

    Read the article

  • Method of transforming 3D vectors with a matrix

    - by Drew Noakes
    I've been doing some reading on transforming Vector3 with matrices, and am tossing up digging deeper into the math and coding this myself versus using existing code. For whatever reason my school curriculum never included matrices, so I'm filling a gap in my knowledge. Thankfully I only need a few simple things, I think. Context is that I'm programming a robot for the RoboCup 3D league. I'm coding it in C# but it'll have to run on Mono. Ideally I wouldn't use any existing graphics libraries for this (WinForms/WPF/XNA) as all I really need is a neat subset of matrix transformations. Specifically, I need translation and x/y/z rotations, and a way of combining multiple transformations into a single matrix. This will then be applied to my own Vector3 type to produce the transformed Vector3. I've read different advice about this. For example, some model the transformation with a 4x3 matrix, others with a 4x4 matrix. Also, some examples show that you need a forth value for the vector's matrix of 1. What happens to this value when it's included in the output? [1 0 0 0] [x y z 1] * [0 1 0 0] = [a b c d] [0 0 1 0] [2 4 6 1] The parts I'm missing are: What sizes my matrices should be Compositing transformations by multiplying the transformation matrices together Transforming 3D vectors with the resulting matrix As I mostly just want to get this running, any psuedo-code would be great. Information about what matrix values perform what transformations is quite clearly defined on many pages, so need not be discussed here unless you're very keen :)

    Read the article

  • How to std::find using a Compare object?

    - by dehmann
    I am confused about the interface of std::find. Why doesn't it take a Compare object that tells it how to compare two objects? If I could pass a Compare object I could make the following code work, where I would like to compare by value, instead of just comparing the pointer values directly: typedef std::vector<std::string*> Vec; Vec vec; std::string* s1 = new std::string("foo"); std::string* s2 = new std::string("foo"); vec.push_back(s1); Vec::const_iterator found = std::find(vec.begin(), vec.end(), s2); // not found, obviously, because I can't tell it to compare by value delete s1; delete s2; Is the following the recommended way to do it? template<class T> struct MyEqualsByVal { const T& x_; MyEqualsByVal(const T& x) : x_(x) {} bool operator()(const T& y) const { return *x_ == *y; } }; // ... vec.push_back(s1); Vec::const_iterator found = std::find_if(vec.begin(), vec.end(), MyEqualsByVal<std::string*>(s2)); // OK, will find "foo"

    Read the article

  • Where can I find BLAS example code (in Fortran)?

    - by Feynman
    I have been searching for decent documentation on blas, and I have found some 315 pages of dense material that ctrl-f does not work on. It provides all the information regarding what input arguments the routines take, but there are a LOT of input arguments and I could really use some example code. I am unable to locate any. I know there has to be some or no one would be able to use these libraries! Specifically, I use ATLAS installed via macports on a mac osx 10.5.8 and I use gfortran from gcc 4.4 (also installed via macports). I am coding in Fortran 90. I am still quite new to Fortran, but I have a fair amount of experience with mathematica, matlab, perl, and shell scripting. I would like to be able to initialize and multiply a dense complex vector by a dense symmetric (but not hermitian) complex matrix. The elements of the matrix are defined through a mathematical function of the indices--call it f(i,j). Could anyone provide some code or a link to some code?

    Read the article

  • "no inclosing instance error " while getting top term frequencies for document from Lucene index

    - by Julia
    Hello ! I am trying to get the most occurring term frequencies for every particular document in Lucene index. I am trying to set the treshold of top occuring terms that I care about, maybe 20 However, I am getting the "no inclosing instance of type DisplayTermVectors is accessible" when calling Comparator... So to this function I pass vector of every document and max top terms i would like to know protected static Collection getTopTerms(TermFreqVector tfv, int maxTerms){ String[] terms = tfv.getTerms(); int[] tFreqs = tfv.getTermFrequencies(); List result = new ArrayList(terms.length); for (int i = 0; i < tFreqs.length; i++) { TermFrq tf = new TermFrq(terms[i], tFreqs[i]); result.add(tf); } Collections.sort(result, new FreqComparator()); if(maxTerms < result.size()){ result = result.subList(0, maxTerms); } return result; } /Class for objects to hold the term/freq pairs/ static class TermFrq{ private String term; private int freq; public TermFrq(String term,int freq){ this.term = term; this.freq = freq; } public String getTerm(){ return this.term; } public int getFreq(){ return this.freq; } } /*Comparator to compare the objects by the frequency*/ class FreqComparator implements Comparator{ public int compare(Object pair1, Object pair2){ int f1 = ((TermFrq)pair1).getFreq(); int f2 = ((TermFrq)pair2).getFreq(); if(f1 > f2) return 1; else if(f1 < f2) return -1; else return 0; } } Explanations and corrections i will very much appreciate, and also if someone else had experience with term frequency extraction and did it better way, I am opened to all suggestions! Please help!!!! Thanx!

    Read the article

  • STL vectors with uninitialized storage?

    - by Jim Hunziker
    I'm writing an inner loop that needs to place structs in contiguous storage. I don't know how many of these structs there will be ahead of time. My problem is that STL's vector initializes its values to 0, so no matter what I do, I incur the cost of the initialization plus the cost of setting the struct's members to their values. Is there any way to prevent the initialization, or is there an STL-like container out there with resizeable contiguous storage and uninitialized elements? (I'm certain that this part of the code needs to be optimized, and I'm certain that the initialization is a significant cost.) Also, see my comments below for a clarification about when the initialization occurs. SOME CODE: void GetsCalledALot(int* data1, int* data2, int count) { int mvSize = memberVector.size() memberVector.resize(mvSize + count); // causes 0-initialization for (int i = 0; i < count; ++i) { memberVector[mvSize + i].d1 = data1[i]; memberVector[mvSize + i].d2 = data2[i]; } }

    Read the article

  • How do I declare and initialize a 2d int vector in C++?

    - by FrankTheTank
    I'm trying to do something like: #include <iostream> #include <vector> #include <ctime> class Clickomania { public: Clickomania(); std::vector<std::vector<int> > board; bool move(int, int); bool isSolved(); void print(); void pushDown(); }; Clickomania::Clickomania() : board(12, std::vector<int>(8,0)) { srand((unsigned)time(0)); for(int i = 0; i < 12; i++) { for(int j = 0; j < 8; j++) { int color = (rand() % 6) + 1; board[i][j] = color; } } } However, apparently I can't initialize the "board" vector of vectors this way. How can I create a public member of a 2d vector type and initialize it properly?

    Read the article

  • Vectors or Java arrays for Tetris?

    - by StackedCrooked
    I'm trying to create a Tetris-like game with Clojure and I'm having some trouble deciding the data structure for the playing field. I want to define the playing field as a mutable grid. The individual blocks are also grids, but don't need to be mutable. My first attempt was to define a grid as a vector of vectors. For example an S-block looks like this: :s-block { :grids [ [ [ 0 1 1 ] [ 1 1 0 ] ] [ [ 1 0 ] [ 1 1 ] [ 0 1 ] ] ] } But that turns out to be rather tricky for simple things like iterating and painting (see the code below). For making the grid mutable my initial idea was to make each row a reference. But then I couldn't really figure out how to change the value of a specific cell in a row. One option would have been to create each individual cell a ref instead of each row. But that feels like an unclean approach. I'm considering using Java arrays now. Clojure's aget and aset functions will probably turn out to be much simpler. However before digging myself in a deeper mess I want to ask ideas/insights. How would you recommend implementing a mutable 2d grid? Feel free to share alternative approaches as well. Source code current state: Tetris.clj (rev452)

    Read the article

  • yet another logic.

    - by Sunil
    I'm working on a research problem out of curiosity and I don't know how to program the logic that I've in mind. Let me explain it to you : I've 4 vectors say for example, v1 = 1 1 1 1 v2 = 2 2 2 2 v3 = 3 3 3 3 v4 = 4 4 4 4 Now what I want to do is to add them combination-wise. i.e v12 = v1+v2 v13 = v1+v3 v14 = v1+v4 v23 = v2+v3 v24 = v2+v4 v34 = v3+v4 Till this step it is just fine. The problem/trick is now, at the end of each iteration I give the obtained vectors into a black box function and it returns only few of the vectors say v12, v13 and v34. Now, I want to add each of these vectors one vector from v1,v2,v3,v4 which it hasn't added before. For example v3 and v4 hasn't been added to v12 so I want to create v123 and v124. similarly for all the vectors like, v12 should become : v123 = v12+v3 v124 = v12+v4 v13 should become : v132 // this should not occur because I already have v123 v134 = v13+v4; v14,v23 and v24 cannot be considered because it was deleted in the black box function so all we have in our hands to work with is v12,v13 and v34. v34 should become : v341 // cannot occur because we have 134 v342 = v34+v2 It is important that I do not do all at one step at the start like for example I can do (4 choose 3) 4C3 and finish it off but I want to do it step by step at each iteration. I've asked a modified version of this question before (without including the black box function) and got answers here. Can anybody tell me how to do it when the black box function is included ? A modification of the previous answer would also be great. Thanks in advance.

    Read the article

  • Animating gradient displays line artifacts in ActionScript

    - by TheDarkIn1978
    i've programatically created a simple gradient (blue to red) sprite rect using my own basic class called GradientRect, but moving or animation the sprite exhibits line artifacts. when the sprite is rotating, it kind of resembles bad reception of an old television set. i'm almost certain the cause is because each line slice of the gradient is vector so there are gaps between the lines - this is visible when the sprite is zoomed in. var colorPickerRect:GradientRect = new GradientRect(200, 200, 0x0000FF, 0xFF0000); addChild(colorPickerRect); colorPickerRect.cacheAsBitmap = true; colorPickerRect.x = colorPickerRect.y = 100; colorPickerRect.addEventListener(Event.ENTER_FRAME, rotate); function rotate(evt:Event):void { evt.target.rotation += 1; } ________________________ //CLASS PACKAGE package { import flash.display.CapsStyle; import flash.display.GradientType; import flash.display.LineScaleMode; import flash.display.Sprite; import flash.geom.Matrix; public class GradientRect extends Sprite { public function GradientRect(gradientRectWidth:Number, gradientRectHeight:Number, ...leftToRightColors) { init(gradientRectWidth, gradientRectHeight, leftToRightColors); } private function init(gradientRectWidth:Number, gradientRectHeight:Number, leftToRightColors:Array):void { var leftToRightAlphas:Array = new Array(); var leftToRightRatios:Array = new Array(); var leftToRightPartition:Number = 255 / (leftToRightColors.length - 1); var pixelColor:Number; var i:int; //Push arrays for (i = 0; i < leftToRightColors.length; i++) { leftToRightAlphas.push(1); leftToRightRatios.push(i * leftToRightPartition); } //Graphics matrix and lineStyle var leftToRightColorsMatrix:Matrix = new Matrix(); leftToRightColorsMatrix.createGradientBox(gradientRectWidth, 1); graphics.lineStyle(1, 0, 1, false, LineScaleMode.NONE, CapsStyle.NONE); for (i = 0; i < gradientRectWidth; i++) { graphics.lineGradientStyle(GradientType.LINEAR, leftToRightColors, leftToRightAlphas, leftToRightRatios, leftToRightColorsMatrix); graphics.moveTo(i, 0); graphics.lineTo(i, gradientRectHeight); } } } } how can i solve this problem?

    Read the article

  • Collision point of 2 curves in a 3d-room

    - by Frank
    Hello, i am programming a small game for quite some time. We started coding a small FPS-Shooter inside of a project at school to get a bit experience using directX. I dont know why, but i couldnt stop the project and started programming at home aswell. At the moment i am trying to create some small AI. Of cause thats definatlly not easy, but thats my personal goal anyways. The topic could prolly fill multiple books hehe. I've got the walking part of my bots done so far. They walk along a scriped path. I am not working on the "aiming" of the bots. While programming that i hit on some math problem i couldnt solve yet. I hope of your input on this to help me get further. Concepts, ideas and everything else are highly appreciated. Problem: Calculate the position (D3DXVECTOR3) where the curve of the projectile (depends on gravity, speed), hit the curved of the enemys walking path (depends on speed). We assume that the enemy walks in a constant line. Known variables: float projectilSpeed = 2000 m/s //speed of the projectile per second float gravitation = 9.81 m/s^2 //of cause the gravity lol D3DXVECTOR3 targetPosition //position of the target stored in a vector (x,y,z) D3DXVECTOR3 projectilePosition //position of the projectile D3DXVECTOR3 targetSpeed //stores the change of the targets position in the last second Variabledefinition ProjectilePosition at time of collision = ProjectilePos_t TargetPosition at time of collision = TargetPos_t ProjectilePosition at time 0, now = ProjectilePos_0 TargetPosition at time 0, now = TargetPos_0 Time to impact = t Aim-angle = theta My try: Found a formular to calculate "drop" (Drop of the projectile based on the gravity) on Wikipedia: float drop = 0.5f * gravity * t * t The speed of the projectile has a horizontal and a vertical part.. Found a formular for that on wikipedia aswell: ProjectilVelocity.x = projectilSpeed * cos(theta) ProjectilVelocity.y = projectilSpeed * sin(theta) So i would assume this is true for the projectile curve: ProjectilePos_t.x = ProjectilePos_0.x + ProjectileSpeed * t ProjectilePos_t.y = ProjectilePos_0.y + ProjectileSpeed * t + 0.5f * gravity * t * t ProjectilePos_t.z = ProjectilePos_0.z + ProjectileSpeed * t The target walk with a constant speed, so we can determine his curve by this: TargetPos_t = TargetPos_0 + TargetSpeed * D3DXVECTOR3(t, t, t) Now i dont know how to continue. I have to solve it somehow to get a hold on the time to impact somehow. As a basic formular i could use: float time = distanz / projectileSpeed But that wouldnt be truly correct as it would assume a linear "Trajectory". We just find this behaivor when using a rocket. I hope i was able to explain the problem as much as possible. If there are questions left, feel free to ask me! Greets from germany, Frank

    Read the article

  • Preallocating memory with C++ in realtime environment

    - by Elazar Leibovich
    I'm having a function which gets an input buffer of n bytes, and needs an auxillary buffer of n bytes in order to process the given input buffer. (I know vector is allocating memory at runtime, let's say that I'm using a vector which uses static preallocated memory. Imagine this is NOT an STL vector.) The usual approach is void processData(vector<T> &vec) { vector<T> &aux = new vector<T>(vec.size()); //dynamically allocate memory // process data } //usage: processData(v) Since I'm working in a real time environment, I wish to preallocate all the memory I'll ever need in advance. The buffer is allocated only once at startup. I want that whenever I'm allocating a vector, I'll automatically allocate auxillary buffer for my processData function. I can do something similar with a template function static void _processData(vector<T> &vec,vector<T> &aux) { // process data } template<size_t sz> void processData(vector<T> &vec) { static aux_buffer[sz]; vector aux(vec.size(),aux_buffer); // use aux_buffer for the vector _processData(vec,aux); } // usage: processData<V_MAX_SIZE>(v); However working alot with templates is not much fun (now let's recompile everything since I changed a comment!), and it forces me to do some bookkeeping whenever I use this function. Are there any nicer designs around this problem?

    Read the article

  • Vector-based fonts vs. bitmap fonts in (2d) games?

    - by jmp97
    I know that many games are using bitmap fonts. Which are the advantages for vector-based font rendering / manipulation when compared to bitmap fonts and in which scenarios would they matter the most? Prefer a focus on 2d games when answering this question. If relevant, please include examples for games using either approach. Some factors you might consider: amount of text used in the game scaling of text overlaying glyphs and anti-aliasing general rendering quality font colors and styling user interface requirements localisation / unicode text wrapping and formatting cross-platform deployment 2d vs 3d Background: I am developing a simple falling blocks game in 2d, targeted for pc. I would like to add text labels for level, score, and menu buttons. I am using SFML which uses FreeType internally, so vector-based features are easily available for my project. In my view, font sizes in simple games often don't vary, and bitmap fonts should be easier for cross-platform concerns (font-formats and font rendering quality). But I am unsure if I am missing some important points here, especially since I want to polish the looks of the final game.

    Read the article

  • What are the advantages to use vector-based fonts over bitmap fonts in (2d) games?

    - by jmp97
    I know that many games are using bitmap fonts. Which are the advantages for vector-based font rendering / manipulation when compared to bitmap fonts and in which scenarios would they matter the most? Prefer a focus on 2d games when answering this question. If relevant, please include examples for games using either approach. Some factors you might consider: amount of text used in the game scaling of text overlaying glyphs and anti-aliasing general rendering quality font colors and styling user interface requirements localisation / unicode text wrapping and formatting cross-platform deployment 2d vs 3d Background: I am developing a simple falling blocks game in 2d, targeted for pc. I would like to add text labels for level, score, and menu buttons. I am using SFML which uses FreeType internally, so vector-based features are easily available for my project. In my view, font sizes in simple games often don't vary, and bitmap fonts should be easier for cross-platform concerns (font-formats and font rendering quality). But I am unsure if I am missing some important points here, especially since I want to polish the looks of the final game.

    Read the article

  • Problems with SAT Collision Detection

    - by DJ AzKai
    I'm doing a project in one of my modules for college in C++ with SFML and I was hoping someone may be able to help me. I'm using a vector of squares and triangles and I am using the SAT collision detection method to see if objects collide and to make the objects respond to the collision appropriately using the MTV(minimum translation vector) Below is my code: //from the main method int main(){ // Create the main window sf::RenderWindow App(sf::VideoMode(800, 600, 32), "SFML OpenGL"); // Create a clock for measuring time elapsed sf::Clock Clock; srand(time(0)); //prepare OpenGL surface for HSR glClearDepth(1.f); glClearColor(0.3f, 0.3f, 0.3f, 0.f); //background colour glEnable(GL_DEPTH_TEST); glDepthMask(GL_TRUE); //// Setup a perspective projection & Camera position glMatrixMode(GL_PROJECTION); glLoadIdentity(); //set up a 3D Perspective View volume //gluPerspective(90.f, 1.f, 1.f, 300.0f);//fov, aspect, zNear, zFar //set up a orthographic projection same size as window //this mease the vertex coordinates are in pixel space glOrtho(0,800,0,600,0,1); // use pixel coordinates // Finally, display rendered frame on screen vector<BouncingThing*> triangles; for(int i = 0; i < 10; i++) { //instantiate each triangle; triangles.push_back(new BouncingTriangle(Vector2f(rand() % 700, rand() % 500), 3)); } vector<BouncingThing*> boxes; for(int i = 0; i < 10; i++) { //instantiate each box; boxes.push_back(new BouncingBox(Vector2f(rand() % 700, rand() % 500), 4)); } CollisionDetection * b = new CollisionDetection(); // Start game loop while (App.isOpen()) { // Process events sf::Event Event; while (App.pollEvent(Event)) { // Close window : exit if (Event.type == sf::Event::Closed) App.close(); // Escape key : exit if ((Event.type == sf::Event::KeyPressed) && (Event.key.code == sf::Keyboard::Escape)) App.close(); } //Prepare for drawing // Clear color and depth buffer glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Apply some transformations glMatrixMode(GL_MODELVIEW); glLoadIdentity(); for(int i = 0; i < 10; i++) { triangles[i]->draw(); boxes[i]->draw(); triangles[i]->update(Vector2f(800,600)); boxes[i]->draw(); boxes[i]->update(Vector2f(800,600)); } for(int j = 0; j < 10; j++) { for(int i = 0; i < 10; i++) { triangles[j]->setCollision(b->CheckCollision(*(triangles[j]),*(boxes[i]))); } } for(int j = 0; j < 10; j++) { for(int i = 0; i < 10; i++) { boxes[j]->setCollision(b->CheckCollision(*(boxes[j]),*(triangles[i]))); } } for(int i = 0; i < triangles.size(); i++) { for(int j = i + 1; j < triangles.size(); j ++) { triangles[j]->setCollision(b->CheckCollision(*(triangles[j]),*(triangles[i]))); } } for(int i = 0; i < triangles.size(); i++) { for(int j = i + 1; j < triangles.size(); j ++) { boxes[j]->setCollision(b->CheckCollision(*(boxes[j]),*(boxes[i]))); } } App.display(); } return EXIT_SUCCESS; } (ignore this line) //from the BouncingThing.cpp BouncingThing::BouncingThing(Vector2f position, int noSides) : pos(position), pi(3.14), radius(3.14), nSides(noSides) { collided = false; if(nSides ==3) { Vector2f vert1 = Vector2f(-12.0f,-12.0f); Vector2f vert2 = Vector2f(0.0f, 12.0f); Vector2f vert3 = Vector2f(12.0f,-12.0f); verts.push_back(vert1); verts.push_back(vert2); verts.push_back(vert3); } else if(nSides == 4) { Vector2f vert1 = Vector2f(-12.0f,12.0f); Vector2f vert2 = Vector2f(12.0f, 12.0f); Vector2f vert3 = Vector2f(12.0f,-12.0f); Vector2f vert4 = Vector2f(-12.0f, -12.0f); verts.push_back(vert1); verts.push_back(vert2); verts.push_back(vert3); verts.push_back(vert4); } velocity.x = ((rand() % 5 + 1) / 3) + 1; velocity.y = ((rand() % 5 + 1) / 3 ) +1; } void BouncingThing::update(Vector2f screenSize) { Transform t; t.rotate(0); for(int i=0;i< verts.size(); i++) { verts[i]=t.transformPoint(verts[i]); } if(pos.x >= screenSize.x || pos.x <= 0) { velocity.x *= -1; } if(pos.y >= screenSize.y || pos.y <= 0) { velocity.y *= -1; } if(collided) { //velocity.x *= -1; //velocity.y *= -1; collided = false; } pos += velocity; } void BouncingThing::setCollision(bool x){ collided = x; } void BouncingThing::draw() { glBegin(GL_POLYGON); glColor3f(0,1,0); for(int i = 0; i < verts.size(); i++) { glVertex2f(pos.x + verts[i].x,pos.y + verts[i].y); } glEnd(); } vector<Vector2f> BouncingThing::getNormals() { vector<Vector2f> normalVerts; if(nSides == 3) { Vector2f ab = Vector2f((verts[1].x + pos.x) - (verts[0].x + pos.x), (verts[1].y + pos.y) - (verts[0].y + pos.y)); ab = flip(ab); ab.x *= -1; normalVerts.push_back(ab); Vector2f bc = Vector2f((verts[2].x + pos.x) - (verts[1].x + pos.x), (verts[2].y + pos.y) - (verts[1].y + pos.y)); bc = flip(bc); bc.x *= -1; normalVerts.push_back(bc); Vector2f ac = Vector2f((verts[2].x + pos.x) - (verts[0].x + pos.x), (verts[2].y + pos.y) - (verts[0].y + pos.y)); ac = flip(ac); ac.x *= -1; normalVerts.push_back(ac); return normalVerts; } if(nSides ==4) { Vector2f ab = Vector2f((verts[1].x + pos.x) - (verts[0].x + pos.x), (verts[1].y + pos.y) - (verts[0].y + pos.y)); ab = flip(ab); ab.x *= -1; normalVerts.push_back(ab); Vector2f bc = Vector2f((verts[2].x + pos.x) - (verts[1].x + pos.x), (verts[2].y + pos.y) - (verts[1].y + pos.y)); bc = flip(bc); bc.x *= -1; normalVerts.push_back(bc); return normalVerts; } } Vector2f BouncingThing::flip(Vector2f v){ float vyTemp = v.x; float vxTemp = v.y * -1; return Vector2f(vxTemp, vyTemp); } (Ignore this line) CollisionDetection::CollisionDetection() { } vector<float> CollisionDetection::bubbleSort(vector<float> w) { int temp; bool finished = false; while (!finished) { finished = true; for (int i = 0; i < w.size()-1; i++) { if (w[i] > w[i+1]) { temp = w[i]; w[i] = w[i+1]; w[i+1] = temp; finished=false; } } } return w; } class Vector{ public: //static int dp_count; static float dot(sf::Vector2f a,sf::Vector2f b){ //dp_count++; return a.x*b.x+a.y*b.y; } static float length(sf::Vector2f a){ return sqrt(a.x*a.x+a.y*a.y); } static Vector2f add(Vector2f a, Vector2f b) { return Vector2f(a.x + b.y, a.y + b.y); } static sf::Vector2f getNormal(sf::Vector2f a,sf::Vector2f b){ sf::Vector2f n; n=a-b; n/=Vector::length(n);//normalise float x=n.x; n.x=n.y; n.y=-x; return n; } }; bool CollisionDetection::CheckCollision(BouncingThing & x, BouncingThing & y) { vector<Vector2f> xVerts = x.getVerts(); vector<Vector2f> yVerts = y.getVerts(); vector<Vector2f> xNormals = x.getNormals(); vector<Vector2f> yNormals = y.getNormals(); int size; vector<float> xRange; vector<float> yRange; for(int j = 0; j < xNormals.size(); j++) { Vector p; for(int i = 0; i < xVerts.size(); i++) { xRange.push_back(p.dot(xNormals[j], Vector2f(xVerts[i].x, xVerts[i].x))); } for(int i = 0; i < yVerts.size(); i++) { yRange.push_back(p.dot(xNormals[j], Vector2f(yVerts[i].x , yVerts[i].y))); } yRange = bubbleSort(yRange); xRange = bubbleSort(xRange); if(xRange[xRange.size() - 1] < yRange[0] || yRange[yRange.size() - 1] < xRange[0]) { return false; } float x3 = Min(xRange[0], yRange[0]); float y3 = Max(xRange[xRange.size() - 1], yRange[yRange.size() - 1]); float length = Max(x3, y3) - Min(x3, y3); } for(int j = 0; j < yNormals.size(); j++) { Vector p; for(int i = 0; i < xVerts.size(); i++) { xRange.push_back(p.dot(yNormals[j], xVerts[i])); } for(int i = 0; i < yVerts.size(); i++) { yRange.push_back(p.dot(yNormals[j], yVerts[i])); } yRange = bubbleSort(yRange); xRange = bubbleSort(xRange); if(xRange[xRange.size() - 1] < yRange[0] || yRange[yRange.size() - 1] < xRange[0]) { return false; } } return true; } float CollisionDetection::Min(float min, float max) { if(max < min) { min = max; } else return min; } float CollisionDetection::Max(float min, float max) { if(min > max) { max = min; } else return min; } On the screen the objects will freeze for a small amount of time before moving off again. However the problem is is that when this happens there are no collisions actually happening and I would really love to find out where the flaw is in the code. If you need any more information/code please don't hesitate to ask and I'll reply as soon as possible Regards, AzKai

    Read the article

  • Is it ok to dynamic cast "this" as a return value?

    - by Panayiotis Karabassis
    This is more of a design question. I have a template class, and I want to add extra methods to it depending on the template type. To practice the DRY principle, I have come up with this pattern (definitions intentionally omitted): template <class T> class BaseVector: public boost::array<T, 3> { protected: BaseVector<T>(const T x, const T y, const T z); public: bool operator == (const Vector<T> &other) const; Vector<T> operator + (const Vector<T> &other) const; Vector<T> operator - (const Vector<T> &other) const; Vector<T> &operator += (const Vector<T> &other) { (*this)[0] += other[0]; (*this)[1] += other[1]; (*this)[2] += other[2]; return *dynamic_cast<Vector<T> * const>(this); } } template <class T> class Vector : public BaseVector<T> { public: Vector<T>(const T x, const T y, const T z) : BaseVector<T>(x, y, z) { } }; template <> class Vector<double> : public BaseVector<double> { public: Vector<double>(const double x, const double y, const double z); Vector<double>(const Vector<int> &other); double norm() const; }; I intend BaseVector to be nothing more than an implementation detail. This works, but I am concerned about operator+=. My question is: is the dynamic cast of the this pointer a code smell? Is there a better way to achieve what I am trying to do (avoid code duplication, and unnecessary casts in the user code)? Or am I safe since, the BaseVector constructor is private?

    Read the article

  • Optimizing collision engine bottleneck

    - by Vittorio Romeo
    Foreword: I'm aware that optimizing this bottleneck is not a necessity - the engine is already very fast. I, however, for fun and educational purposes, would love to find a way to make the engine even faster. I'm creating a general-purpose C++ 2D collision detection/response engine, with an emphasis on flexibility and speed. Here's a very basic diagram of its architecture: Basically, the main class is World, which owns (manages memory) of a ResolverBase*, a SpatialBase* and a vector<Body*>. SpatialBase is a pure virtual class which deals with broad-phase collision detection. ResolverBase is a pure virtual class which deals with collision resolution. The bodies communicate to the World::SpatialBase* with SpatialInfo objects, owned by the bodies themselves. There currenly is one spatial class: Grid : SpatialBase, which is a basic fixed 2D grid. It has it's own info class, GridInfo : SpatialInfo. Here's how its architecture looks: The Grid class owns a 2D array of Cell*. The Cell class contains two collection of (not owned) Body*: a vector<Body*> which contains all the bodies that are in the cell, and a map<int, vector<Body*>> which contains all the bodies that are in the cell, divided in groups. Bodies, in fact, have a groupId int that is used for collision groups. GridInfo objects also contain non-owning pointers to the cells the body is in. As I previously said, the engine is based on groups. Body::getGroups() returns a vector<int> of all the groups the body is part of. Body::getGroupsToCheck() returns a vector<int> of all the groups the body has to check collision against. Bodies can occupy more than a single cell. GridInfo always stores non-owning pointers to the occupied cells. After the bodies move, collision detection happens. We assume that all bodies are axis-aligned bounding boxes. How broad-phase collision detection works: Part 1: spatial info update For each Body body: Top-leftmost occupied cell and bottom-rightmost occupied cells are calculated. If they differ from the previous cells, body.gridInfo.cells is cleared, and filled with all the cells the body occupies (2D for loop from the top-leftmost cell to the bottom-rightmost cell). body is now guaranteed to know what cells it occupies. For a performance boost, it stores a pointer to every map<int, vector<Body*>> of every cell it occupies where the int is a group of body->getGroupsToCheck(). These pointers get stored in gridInfo->queries, which is simply a vector<map<int, vector<Body*>>*>. body is now guaranteed to have a pointer to every vector<Body*> of bodies of groups it needs to check collision against. These pointers are stored in gridInfo->queries. Part 2: actual collision checks For each Body body: body clears and fills a vector<Body*> bodiesToCheck, which contains all the bodies it needs to check against. Duplicates are avoided (bodies can belong to more than one group) by checking if bodiesToCheck already contains the body we're trying to add. const vector<Body*>& GridInfo::getBodiesToCheck() { bodiesToCheck.clear(); for(const auto& q : queries) for(const auto& b : *q) if(!contains(bodiesToCheck, b)) bodiesToCheck.push_back(b); return bodiesToCheck; } The GridInfo::getBodiesToCheck() method IS THE BOTTLENECK. The bodiesToCheck vector must be filled for every body update because bodies could have moved meanwhile. It also needs to prevent duplicate collision checks. The contains function simply checks if the vector already contains a body with std::find. Collision is checked and resolved for every body in bodiesToCheck. That's it. So, I've been trying to optimize this broad-phase collision detection for quite a while now. Every time I try something else than the current architecture/setup, something doesn't go as planned or I make assumption about the simulation that later are proven to be false. My question is: how can I optimize the broad-phase of my collision engine maintaining the grouped bodies approach? Is there some kind of magic C++ optimization that can be applied here? Can the architecture be redesigned in order to allow for more performance? Actual implementation: SSVSCollsion Body.h, Body.cpp World.h, World.cpp Grid.h, Grid.cpp Cell.h, Cell.cpp GridInfo.h, GridInfo.cpp

    Read the article

  • How does this snippet of code create a ray direction vector?

    - by Isaac Waller
    In the Minecraft source code, this code is used to create a direction vector for a ray from pitch and yaw:' float f1 = MathHelper.cos(-rotationYaw * 0.01745329F - 3.141593F); float f3 = MathHelper.sin(-rotationYaw * 0.01745329F - 3.141593F); float f5 = -MathHelper.cos(-rotationPitch * 0.01745329F); float f7 = MathHelper.sin(-rotationPitch * 0.01745329F); return Vec3D.createVector(f3 * f5, f7, f1 * f5); I was wondering how it worked, and what is the constant 0.01745329F?

    Read the article

< Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >