Search Results

Search found 8343 results on 334 pages for 'report generation'.

Page 274/334 | < Previous Page | 270 271 272 273 274 275 276 277 278 279 280 281  | Next Page >

  • Using an unencoded key vs a real Key, benefits?

    - by user246114
    Hi, I am reading the docs for Key generation in app engine. I'm not sure what effect using a simple String key has over a real Key. For example, when my users sign up, they must supply a unique username: class User { /** Key type = unencoded string. */ @PrimaryKey private String name; } now if I understand the docs correctly, I should still be able to generate named keys and entity groups using this, right?: // Find an instance of this entity: User user = pm.findObjectById(User.class, "myusername"); // Create a new obj and put it in same entity group: Key key = new KeyFactory.Builder( User.class.getSimpleName(), "myusername") .addChild(Goat.class.getSimpleName(), "baa").getKey(); Goat goat = new Goat(); goat.setKey(key); pm.makePersistent(goat); the Goat instance should now be in the same entity group as that User, right? I mean there's no problem with leaving the User's primary key as just the raw String? Is there a performance benefit to using a Key though? Should I update to: class User { /** Key type = unencoded string. */ @PrimaryKey private Key key; } // Generate like: Key key = KeyFactory.createKey( User.class.getSimpleName(), "myusername"); user.setKey(key); it's almost the same thing, I'd still just be generating the Key using the unique username anyway, Thanks

    Read the article

  • Identity alternative for SQL Azure Federation : are Azure Queues or Service Bus Queues a good choice?

    - by JYL
    As many of developers, I'm looking for a way to integrate my existing app to SQL Azure Federations, and replacing the Identity columns (the primary keys of my tables) is a big problem. For many reasons, I do NOT want use GUID for my primary keys (please don't open the debate about the GUID or not, it's not my question : i just don't want a GUID, period). So I need to build a key provider to replace the "identity" feature of a standard SQL database. I'm using Entity Framework, so i can easily find one place to set the Id value just before the insert (by overriding the SaveChanges method of my ObjectContext class). I just need to find a "not too complicated" implementation for getting the current Id, which is "farm-ready". I've read this SO post : "ID Generation for Sharded Database (Azure Federated Database)" and "Synchronizing Multiple Nodes in Windows Azure from MSDN Magazine", but this solution sounds a bit complicated for me. I'm thinking about creating (automatically) one azure queue for each SQL table, which contain a pre-loaded list of consecutive integer. When I want an Id value, I just have to get a message from the queue (which becomes invisible and is deleted on the way), which give me the current available Id. About the choice between "Windows Azure Queues" and "Windows Azure Service Bus Queues", I prefere "Windows Azure Queues", due to the "high" latency of Service Bus Queues. I don't think that the lack of "ordering garantee" of Azure Queues is a problem. What do you think about that idea of using Azure Queues to provide Id values ? Do you see any argument to give up that idea ? Do you have a better idea, or even a good practice, to provider integer ids in SQL Azure Federation databases ? Thanks.

    Read the article

  • PHP checking/refreashing functions

    - by user1284360
    ok i have a main document that displays a chatbox, what i want is for the chatbox to refreash on everyone who is logged in's screen whenever someone posts a new message... ive tried many methods including sleep timers and new functions that call then sleep and get recalled but this just generates an endless line of the same or little diffrent data making the form unusable until error... this is my code <?php // set error reporting level if (version_compare(phpversion(), "5.3.0", ">=") == 1) error_reporting(E_ALL & ~E_NOTICE & ~E_DEPRECATED); else error_reporting(E_ALL & ~E_NOTICE); require_once('inc/login.inc.php'); require_once('inc/chat.inc.php'); // initialization of login system and generation code $oSimpleLoginSystem = new SimpleLoginSystem(); $oSimpleChat = new SimpleChat(); // draw login box echo $oSimpleLoginSystem->getLoginBox(); // draw chat application $sChatResult = '<font color="0x99000"> <a href="Register_form.html">New Account</a><br> login to send a message<br> or register for a new account</font>'; if ($_COOKIE['member_name'] && $_COOKIE['member_pass']) { if ($oSimpleLoginSystem->check_login($_COOKIE['member_name'], $_COOKIE['member_pass'])) { $sChatResult = ""; if($oSimpleLoginSystem->check_privledges($_COOKIE['member_name']) >= 2) { $sChatResult .= "<br>privledge check Working<br>"; } $sChatResult .= "<form action=$_SERVER[PHP_SELF] method='post'> <input type='hidden' name='foo' value='<?= $foo ?>' /> <input type='submit' name='submit' value='Refresh Messages' /> </form>"; $sChatResult .= $oSimpleChat->acceptMessages(); $sChatResult .= "<br><br>"; $sChatResult .= $oSimpleChat->getMessages(); } } echo $sChatResult; ?>

    Read the article

  • Interview question : What is the fastest way to generate prime number recursively ?

    - by hilal
    Generation of prime number is simple but what is the fastest way to find it and generate( prime numbers) it recursively ? Here is my solution. However, it is not the best way. I think it is O(N*sqrt(N)). Please correct me, if I am wrong. public static boolean isPrime(int n) { if (n < 2) { return false; } else if (n % 2 == 0 & n != 2) { return false; } else { return isPrime(n, (int) Math.sqrt(n)); } } private static boolean isPrime(int n, int i) { if (i < 2) { return true; } else if (n % i == 0) { return false; } else { return isPrime(n, --i); } } public static void generatePrimes(int n){ if(n < 2) { return ; } else if(isPrime(n)) { System.out.println(n); } generatePrimes(--n); } public static void main(String[] args) { generatePrimes(200); }

    Read the article

  • linux bash script: set date/time variable to auto-update (for inclusion in file names)

    - by user1859492
    Essentially, I have a standard format for file naming conventions. It breaks down to this: target_dateUTC_timeUTC_tool So, for instance, if I run tcpdump on a target of 'foo', then the file would be foo_dateUTC_timeUTC_tcpdump. Simple enough, but a pain for everyone to constantly (and consistently) enter... so I've tried to create a bash script which sets system variables like so: FILENAME=$TARGET\_$UTCTIME\_$TOOL Then, I can just call the variable at runtime, like so: tcpdump -w $FILENAME.lpc All of this works like a champ. I've got a menu-driven .sh which gives the user the options of viewing the current variables as well as setting them... file generation is a breeze. Unfortunately, by setting the date/time variable, it is locked to the value at the time of creation (naturally). I set the variable like so: UTCTIME=$(/bin/date --utc +"%Y%m%d_%H%M%Z") What I really need is either a way to create a variable which updates at runtime, or (more likely) another way to skin this cat. While scouring for solutions, I came across a similar issues... like this. But, to be honest, I'm stumped on how to marry the two approaches and create a simple, distributable solution. I can post the entire .sh if anyone cares to review (about 120 lines)

    Read the article

  • Nginx Rails app can't deploy

    - by user3596718
    I have an issue with my rails application running with passenger and nginx hosted in Ubuntu 12.04. In the nginx.conf file below, my "example.com" (Regular HTML) and "redmine.example.com" (Rails app) are working perfectly, but my "crete.example.com" (Another Rails app) is showing "502 bad gateway". I have them both hosted in /var/data with the same permissions and ownerships, also tried different ports, I can't think of something else to try. worker_processes 1; events { worker_connections 1024; } http { passenger_root /usr/lib/ruby/vendor_ruby/phusion_passenger/locations.ini; include mime.types; default_type application/octet-stream; sendfile on; keepalive_timeout 65; server{ listen 80; server_name example.com; root /opt/nginx/html; } server{ server_name redmine.example.com; root /var/data/redmine/public; passenger_enabled on; location ~ ^/<SUBURI>(/.*|$){ alias /var/data/redmine/public$1; passenger_base_uri /redmine; passenger_app_root /var/data/redmine; passenger_document_root /var/data/redmine/public; passenger_enabled on;} } server{ server_name crete.example.com; root /var/data/crete/public; passenger_enabled on; location ~ ^/<SUBURI>(/.*|$){ alias /var/data/crete/public$1; passenger_base_uri /crete; passenger_app_root /var/data/crete; passenger_document_root /var/data/crete/public; passenger_enabled on;} } } This are my Ruby and Rails versions: ruby 2.0.0p451 (2014-02-24 revision 45167) [x86_64-linux] Rails 4.1.0 My nginx error.log 2014/05/02 12:29:50 [error] 3343#0: *4 upstream prematurely closed connection while reading response header from upstream, client: xxx.xx.xx.xx, server: crete.example.com, request: "GET / HTTP/1.1", upstream: "passenger:/tmp/passenger.1.0.3 323/generation-0/request:", host: "crete.example.com" Any other conf file you might need to solve this don't hesitate to ask.

    Read the article

  • Slow loading of UITableView. How know why?

    - by mamcx
    I have a UITableView that show a long list of data. Use sections and follow the sugestion of http://stackoverflow.com/questions/695814/how-solve-slow-scrolling-in-uitableview . The flow is load a main UITableView & push a second selecting a row from there. However, with 3000 items take 11 seconds to show. I suspect first from the load of the records from sqlite (I preload the first 200). So I cut it to only 50. However, no matter if I preload only 1 or 500, the time is the same. The view is made from IB and all is opaque. I run out of ideas in how detect the problem. I run the Instruments tool but not know what to look. Also, when the user select a cell from the previous UITable, no visual feedback is show (ie: the cell not turn selected) for a while so he thinks he not select it and try several times. Is related to this problem. What to do? NOTE: The problem is only in the actual device: iPod Touch 2d generation Using fmdb as sqlite api Doing the caching in viewDidLoad Using NSDictionary for the caching Using a NSAutoreleasePool for the caching part. Only caching the row ID & mac 4 fields necesary to show the cell data UIView made with interface builder, SDK 2.2.1 Instruments say I use 2.5 MB in the device

    Read the article

  • Replace occurance of character with all letters in the alphabet

    - by McAvoy
    I have created a scrabble game with a computer opponent. If a blank tile is found in the computer's rack during the word generation if needs to be swapped out for every letter in the alphabet. I have my current solution to solve this problem below, but was wondering if there is a better more efficient way to accomplish this task. if (str.Contains("*")) { char c = 'A'; String made = ""; while(c < 'Z') { made = str.ReplaceFirst("*", c.ToString()); if (!made.Contains("*")) { wordsMade.Add(made); if (theGame.theTrie.Search(made) == Trie.SearchResults.Found) { validWords.Add(made); } } else { char ch = 'A'; String made2 = ""; while (ch < 'Z') { made2 = made.ReplaceFirst("*", c.ToString()); wordsMade.Add(made2); if (theGame.theTrie.Search(made2) == Trie.SearchResults.Found) { validWords.Add(made2); } ch++; } } c++; }

    Read the article

  • JAXB Unable To Handle Attribute with Colon (:) in name?

    - by Intellectual Tortoise
    I am attempting to use JAXB to unmarshall an XML files whose schema is defined by a DTD (ugh!). The external provider of the DTD has specified one of the element attributes as xml:lang: <!ATTLIST langSet id ID #IMPLIED xml:lang CDATA #REQUIRED > This comes into the xjc-generated class (standard generation; no *.xjb magic) as: @XmlAttribute(name = "xml:lang", required = true) @XmlJavaTypeAdapter(NormalizedStringAdapter.class) protected String xmlLang; However, when unmarshalling valid XML files with JAXB, the xmlLang attribute is always null. When I edited the XML file, replacing xml:lang with lang and changed the @XmlAttribute to match, unmarshalling was successful (i.e. attributes were non-null). I did find this http://old.nabble.com/unmarshalling-ignores-element-attribute-%27xml%27-td22558466.html. But, the resolution there was to convert to XML Schema, etc. My strong preference is to go straight from an un-altered DTD (since it is externally provided and defined by an ISO standard). Is this a JAXB bug? Am I missing something about "namespaces" in attribute names? FWIW, java -version = "build 1.6.0_20-b02" and xjc -version = "xjc version "JAXB 2.1.10 in JDK 6""

    Read the article

  • what's a good technique for building and running many similar unit tests?

    - by jcollum
    I have a test setup where I have many very similar unit tests that I need to run. For example, there are about 40 stored procedures that need to be checked for existence in the target environment. However I'd like all the tests to be grouped by their business unit. So there'd be 40 instances of a very similar TestMethod in 40 separate classes. Kinda lame. One other thing: each group of tests need to be in their own solution. So Business Unit A will have a solution called Tests.BusinessUnitA. I'm thinking that I can set this all up by passing a configuration object (with the name of the stored proc to check, among other things) to a TestRunner class. The problem is that I'm losing the atomicity of my unit tests. I wouldn't be able to run just one of the tests, I'd have to run all the tests in the TestRunner class. This is what the code looks like at this time. Sure, it's nice and compact, but if Test 8 fails, I have no way of running just Test 8. TestRunner runner = new TestRunner(config, this.TestContext); var runnerType = typeof(TestRunner); var methods = runnerType.GetMethods() .Where(x => x.GetCustomAttributes(typeof(TestMethodAttribute), false) .Count() > 0).ToArray(); foreach (var method in methods) { method.Invoke(runner, null); } So I'm looking for suggestions for making a group of unit tests that take in a configuration object but won't require me to generate many many TestMethods. This looks like it might require code-generation, but I'd like to solve it without that.

    Read the article

  • Select All in Javascript (Firefox extension) not working right

    - by leezer3
    I'm having some problems with a select all/ none function. (I didn't write it, I'm trying to fix it!) It currently looks like this: rsfindmod.SelAll = function(){ document.getElementById("ListBox").selectAll(); document.getElementById("ListBox").focus(); } It's being used on a dynamically generated set of links, so there's no set number of items in this listbox. This seems to work most of the time, but randomly it only selects those which are visible at the time. Scrolling the list or hitting the button again seems to normally make it work as expected. My first (Obvious?) thought was to replace the function entirely with the one from this link for testing: http://viralpatel.net/blogs/2009/06/listbox-select-all-move-left-right-up-down-javascript.html Trouble is that I can't get this one to work whatsoever! This gives me the error that listbox.options is not defined Any thoughts please? I'm by no means certain whether it's the original function at fault, or something in the generation of this listbox.

    Read the article

  • Quickly generate junk data of certain size in Javascript

    - by user1357607
    I am writing an upload speed test in Javascript. I am using Jquery (and Ajax) to send chunks of data to a server in order to time how long it takes to get a response. This should, in theory give an estimation, of the upload speed. Of course to cater for different bandwidths of the user I sequentially upload larger and larger amounts of junk data until a threshold duration is reached. Currently I generate the junk data using the following function, however, it is very slow when generation megabytes of data. function generate_random_data(size){ var chars = "abcdefghijklmnopqrstuvwxyz"; var random_data = ""; for (var i = 0; i < size; i++){ var random_num = Math.floor(Math.random() * char.length); random_data = random_data + chars.substring(random_num,random_num+1); } return random_data; Really all I am doing is generating a chunk of bytes to send to the server, however, this is the only way I could find out how in Javascript. Any help would be appreciated.

    Read the article

  • Selecting an option with given value

    - by Maven
    I am trying to select a particular option from a select list depending on the value, I have following markup: <select name="class" id="class"> <option value="1">679460ED-0B15-4ED9-B3C8-A8C276DF1C82</option> <option value="2">B99BF873-7DF0-4E7F-95FF-3F1FD1A26139</option> <option value="3">1DCD5AD7-F57C-414</option> <option value="4">6B0170AA-F044-4F9C-8BB8-31A51E452CE4</option> <option value="5">C6A8B</option> <option value="6">1BBD6FA4-335A-4D8F-8681-DFED317B8052</option> <option value="7">727D71AB-F7D1-4B83-9D6D-6BEEAAB</option> <option value="8">BC4DE8A2-C864-4C7C-B83C-EE2450AF11B1</option> <option value="9">AIR CONDITIONING SYSTEM</option> <option value="10">POWER GENERATION SYSTEM</option> </select> <script> selectThisValue('#class',3); </script> in .js function selectThisValue(element,value) { console.log(value); var elem = $(element + ' option[value=' + value + ']'); console.log(elem); elem.attr("selected", "selected"); } Results for console.log are as follows: 3 [prevObject: i.fn.i.init[1], context: document, selector: "#class option[value=3]", jquery: "1.10.2", constructor: function…] But this is not working, no errors are given but nothing happens also. Please help identifying the where am I wrong.

    Read the article

  • Effective simulation of compound poisson process in Matlab

    - by Henrik
    I need to simulate a huge bunch of compound poisson processes in Matlab on a very fine grid so I am looking to do it most effectively. I need to do a lot of simulations on the same random numbers but with parameters changing so it is practical to draw the uniforms and normals beforehand even though it means i have to draw a lot more than i will probably need and won't matter much because it will only need to be done once compared to in the order 500*n repl times the actual compound process generation. My method is the following: Let T be for how long i need to simulate and N the grid points, then my grid is: t=linspace(1,T,N); Let nrepl be the number of processes i need then I simulate P=poissrnd(lambda,nrepl,1); % Number of jumps for each replication U=(T-1)*rand(10000,nrepl)+1; % Set of uniforms on (1,T) for jump times N=randn(10000,nrepl); % Set of normals for jump size Then for replication j: Poiss=P(j); % Jumps for replication Uni=U(1:Poiss,j);% Jump times Norm=mu+sigma*N(1:Poiss,j);% Jump sizes Then this I guess is where I need your advice, I use this one-liner but it seems very slow: CPP_norm=sum(bsxfun(@times,bsxfun(@gt,t,Uni),Norm),1); In the inner for each jump it creates a series of same length as t with 0 until jump and then 1 after, multiplying this will create a grid with zeroes until jump has arrived and then the jump size and finally adding all these will produce the entire jump process on the grid. How can this be done more effectively? Thank you very much.

    Read the article

  • Hibernate Relationship Mapping/Speed up batch inserts

    - by manyxcxi
    I have 5 MySQL InnoDB tables: Test,InputInvoice,InputLine,OutputInvoice,OutputLine and each is mapped and functioning in Hibernate. I have played with using StatelessSession/Session, and JDBC batch size. I have removed any generator classes to let MySQL handle the id generation- but it is still performing quite slow. Each of those tables is represented in a java class, and mapped in hibernate accordingly. Currently when it comes time to write the data out, I loop through the objects and do a session.save(Object) or session.insert(Object) if I'm using StatelessSession. I also do a flush and clear (when using Session) when my line count reaches the max jdbc batch size (50). Would it be faster if I had these in a 'parent' class that held the objects and did a session.save(master) instead of each one? If I had them in a master/container class, how would I map that in hibernate to reflect the relationship? The container class wouldn't actually be a table of it's own, but a relationship all based on two indexes run_id (int) and line (int). Another direction would be: How do I get Hibernate to do a multi-row insert?

    Read the article

  • Why does LogonUser place user profiles in c:\users of the server?

    - by Lalit_M
    We have developed a ASP.NET web application and has implemented a custom authentication solution using active directory as the credentials store. Our front end application uses a normal login form to capture the user name and password and leverages the Win32 LogonUser method to authenticate the user’s credentials. When we are calling the LogonUser method, we are using the LOGON32_LOGON_NETWORK as the logon type. The issue we have found is that user profile folders are being created under the C:\Users folder of the web server. The folder seems to be created when a new user who has never logged on before is logging in for the first time. As the number of new users logging into the application grows, disk space is shrinking due to the large number of new user folders getting created. Has anyone seen this behavior with the Win32 LogonUser method? Does anyone know how to disable this behavior? I have tried LOGON32_LOGON_BATCH but it was giving an error 1385 in authentication user. I need either of the solution 1) Is there any way to stop the folder generation. 2) What parameter I need to pass this to work? Thanks

    Read the article

  • WIN32 API question - Looking for answer asap

    - by Lalit_M
    We have developed a ASP.NET web application and has implemented a custom authentication solution using active directory as the credentials store. Our front end application uses a normal login form to capture the user name and password and leverages the Win32 LogonUser method to authenticate the user’s credentials. When we are calling the LogonUser method, we are using the LOGON32_LOGON_NETWORK as the logon type. The issue we have found is that user profile folders are being created under the C:\Users folder of the web server. The folder seems to be created when a new user who has never logged on before is logging in for the first time. As the number of new users logging into the application grows, disk space is shrinking due to the large number of new user folders getting created. Has anyone seen this behavior with the Win32 LogonUser method? Does anyone know how to disable this behavior? I have tried LOGON32_LOGON_BATCH but it was giving an error 1385 in authentication user. I need either of the solution 1) Is there any way to stop the folder generation. 2) What parameter I need to pass this to work? Thanks

    Read the article

  • Keeping a web app project organized?

    - by user246114
    Hi, I'm writing a web app, using jsp to create the page content. I need a pretty good amount of javascript to make the app work. Does anyone have any recommendations on how to structure my project, such that it doesn't become a mess? This is a broad question, but the basic problem is that I'm insert javascript code directly into my jsp content. Then I might have some external js files. Ids and such are strewn between multiple files. I'm not really sure what a best practice is for keeping this type of project organized. Do you always keep your javascript in separate files? There has to be a few hooks in the jsp pages though for them, right? I tried using GWT because I'm really a c/java developer, and I was hoping it would help keep my project more organized (definitely helps) - but GWT is a pain to use with jsp, it really wants you to do all UI generation client side after the page is done loading, doesn't work for what I need to do. Again, broad question, any tips would be great, Thanks

    Read the article

  • A good php framework in 2012

    - by Jormundir
    I've done a lot of googling around this, and practically all of the answers I find are pre 2011, and are answered in the usual, here are the 5 most popular frameworks... So I'd like to update this topic for 2012, I'm going to build a web application with a pretty complex back-end system driving it, and I'd like to use a framework so I don't have to reinvent the wheel. My application will be hugely user based, so I would appreciate a built in authentication/validation system. (When this is missing it takes me a good 2 weeks of intense and frivolous research to try to pick the "best" one (I don't want to roll my own, I don't think I'd do a better job than what's out there). I've looked into a tried a few, so I'll give you what I like and don't like, but I don't want to bias answers too much. I don't like: Frameworks that auto-generate bloated code. If they have the feature, fine, but if I have to use it, I get frustrated. Backwards compatibility with php4, eww. I don't need backwards compatibility at all. I like: Getting up and running quickly (but without all the auto-generation bogus), what I mean by this is that all the essentials are there, so I don't have to come to a grinding halt to research what the best 3rd party plugin is to get the feature I need. Thorough documentation, good tutorials. Good presentation of these materials. Please explain why your framework suggestion is good, don't just give the name of a framework without any justification. Thanks!

    Read the article

  • Change form submission (enter to tab)

    - by user1298883
    I have a real basic form (code below) with a bunch of back-panel PhP. There is a scanner being used to input the data, but instead of tab after each item, it sends an "enter" command. Is it viable to add javascript to cause enter to instead tab to the next form field, and upon the last form field, submit it instead? I have found a few scripts online, but none that I have tried have worked in Firefox/Chrome. CODE: <html><head><title>Barcode Generation</title></head><body> <fieldset style="width: 300px;"> <form action="generator.php" method="post"> Invoice Number:<input type="text" name="invoice" /><br /> Model Number:<input type="text" name="model" /><br /> Serial Number:<input type="text" name="serial" /><br /> <input type="hidden" name="reload" value="true" /> <input type="submit" /> </form><br /><a href=null>en espanol</a></fieldset> </body></html>

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Scroll Viewer not visible in wpf DataGrid

    - by cre-johnny07
    I have a datagrid in a grid but the scrollviewer is not visibile even though I made it auto. Below in my code. I can't figure out where's the problem. <Grid Grid.Row="0" Grid.Column="0"> <Grid.RowDefinitions> <RowDefinition Height="Auto" ></RowDefinition> <RowDefinition Height="Auto" ></RowDefinition> <RowDefinition Height="Auto" ></RowDefinition> <RowDefinition Height="Auto" ></RowDefinition> <RowDefinition Height="Auto" ></RowDefinition> <RowDefinition Height="Auto" ></RowDefinition> <RowDefinition Height="Auto" ></RowDefinition> <RowDefinition Height="Auto" ></RowDefinition> <RowDefinition Height="Auto"></RowDefinition> <RowDefinition Height="Auto"></RowDefinition> </Grid.RowDefinitions> <Grid.ColumnDefinitions> <ColumnDefinition Width="Auto"></ColumnDefinition> <ColumnDefinition Width="Auto"></ColumnDefinition> </Grid.ColumnDefinitions> <TextBlock Text="Doctor Name" Grid.Row="0" Grid.Column="0" Margin="5,5,0,0"/> <TextBlock Text="Doctor Address" Grid.Row="1" Grid.Column="0" Margin="5,5,0,0"/> <TextBlock Text="Entry Note" Grid.Row="2" Grid.Column="0" Margin="5,5,0,0"/> <TextBlock Text="Join Date" Grid.Row="3" Grid.Column="0" Margin="5,5,0,0"/> <TextBlock Text="Default Discount" Grid.Row="4" Grid.Column="0" Margin="5,5,0,0"/> <TextBlock Text="Discount Valid Till" Grid.Row="5" Grid.Column="0" Margin="5,5,0,0"/> <TextBlock Text="Employee Name" Grid.Row="6" Grid.Column="0" Margin="5,5,0,0"/> <Grid Grid.Row="7" Grid.Column="0" Grid.ColumnSpan="2"> <Grid.ColumnDefinitions> <ColumnDefinition></ColumnDefinition> <ColumnDefinition></ColumnDefinition> <ColumnDefinition></ColumnDefinition> </Grid.ColumnDefinitions> <TextBlock Text="Report Type" Grid.Row="0" Grid.Column="0" Margin="5,5,0,0"/> <ComboBox Grid.Row="0" Grid.Column="1" Name="cmbReportType" Text="{Binding CurrentEntity.ReportType}"/> <Button Grid.Row="0" Grid.Column="2" Name="btnAddDetail" Content="Add Details" Command="{Binding AddDetailsCommand}"/> </Grid> <TextBox Grid.Row="0" Grid.Column="1" Margin="5,5,0,0" Width="190" Name="txtDocName" Text="{Binding CurrentEntity.RefName}"/> <TextBox Grid.Row="1" Grid.Column="1" Margin="5,5,0,0" Width="190" Height="75" Name="txtDocAddress" Text="{Binding CurrentEntity.RefAddress}"/> <TextBox Grid.Row="2" Grid.Column="1" Margin="5,5,0,0" Width="190" Height="100" Name="txtEntryNote" Text="{Binding CurrentEntity.EntryNotes}"/> <Custom:DatePicker Grid.Row="3" Grid.Column="1" Margin="5,3,0,0" Width="125" Name="dtpJoinDate" Height="24" HorizontalAlignment="Left" VerticalAlignment="Top" SelectedDate="{Binding CurrentEntity.DateStarted}" SelectedDateFormat="Short"/> <TextBox Grid.Row="4" Grid.Column="1" Height="25" Width="75" Name="txtDefaultDiscount" HorizontalAlignment="Left" Margin="5,0,0,0" VerticalAlignment="Top" Text="{Binding CurrentEntity.DefaultDiscount}"/> <Custom:DatePicker Grid.Row="5" Grid.Column="1" Margin="5,3,0,0" Width="125" Name="dtpValidTill" Height="24" HorizontalAlignment="Left" VerticalAlignment="Top" SelectedDate="{Binding CurrentEntity.DefaultDiscountValidTill}" SelectedDateFormat="Short"/> <ComboBox Grid.Row="6" Grid.Column="1" Margin="5,3,0,0" Width="190" Height="30" Name="cmbEmployeeName" ItemsSource="{Binding Employees}" DisplayMemberPath="FullName" SelectedIndex="{Binding SelecteIndex}"> </ComboBox> <Custom:DataGrid Grid.Row="8" Grid.Column="0" Grid.ColumnSpan="2" ItemsSource="{Binding XYZ}" AutoGenerateColumns="False" Name="grdTestDept"> <Custom:DataGrid.Columns> <Custom:DataGridTextColumn Binding="{Binding dep_id}" Width="40" Header="ID"/> <Custom:DataGridTextColumn Binding="{Binding dep_name}" Width="125" Header="Name"/> <Custom:DataGridTextColumn Binding="{Binding default_data}" Width="100" Header="Default Data"/> </Custom:DataGrid.Columns> </Custom:DataGrid> </Grid> <Grid Grid.Row="0" Grid.Column="1" Grid.RowSpan="9"> <Grid.ColumnDefinitions> <ColumnDefinition Width="Auto" MinWidth="43"></ColumnDefinition> <ColumnDefinition Width="Auto" MinWidth="150"></ColumnDefinition> <ColumnDefinition Width="Auto" MinWidth="50"></ColumnDefinition> </Grid.ColumnDefinitions> <Grid.RowDefinitions> <RowDefinition Height="34*" ></RowDefinition> <RowDefinition Height="337.88*"></RowDefinition> </Grid.RowDefinitions> <TextBlock Text="Name: " Grid.Row="0" Grid.Column="0" Margin="5,4,0,0" /> <cc:ValueEnabledCombo Grid.Column="1" x:Name="cmbfilEmployeeName" Width="150" Height="30" Margin="5,4,0,0" VerticalAlignment="Top" SelectedIndex="0" ItemsSource="{Binding Employees}" DisplayMemberPath="FullName" SelectedValuePath="EmployeeId" cc:ValueEnabledCombo.SelectionChanged="{Binding SelectionChangedCommand}"> </cc:ValueEnabledCombo> <Button Grid.Column="2" Name="btnReport" Width="50" Content="Report" Height="28" Margin="5,4,0,0" Command="{Binding ReportCommand}" VerticalAlignment="Top" /> <Grid Grid.Row="1" Grid.Column="0" Grid.ColumnSpan="3"> <Custom:DataGrid ItemsSource="{Binding DoctorList}" AutoGenerateColumns="False" Name="grdDoctor" ScrollViewer.HorizontalScrollBarVisibility="Auto" ScrollViewer.VerticalScrollBarVisibility="Auto"> <Custom:DataGrid.Columns> <Custom:DataGridTextColumn Binding="{Binding RefName}" Width="Auto" Header="Doctor Name"/> <Custom:DataGridTextColumn Binding="{Binding EmployeeFullName}" Width="Auto" Header="Employee Name"/> </Custom:DataGrid.Columns> </Custom:DataGrid> </Grid> </Grid> </Grid>

    Read the article

  • Why won't ruby recognize Haml under ubuntu64 while using jekyll static blog generator?

    - by oldmanjoyce
    I have been trying, quite unsuccessfully, to run henrik's fork of the jekyll static blog generator on Ubuntu 64-bit. I just can't seem to figure this out and I've tried a bunch of different things. Originally I posted this over at stackoverflow, but this is probably the better spot for it. The base stats of my machine: Ubuntu 9.04, 64 bit, ruby 1.8.7 (2008-08-11 patchlevel 72) [x86_64-linux], rubygems 1.3.1. When I attempt to build the site, this is what happens: $ jekyll --pygments Configuration from ./_config.yml Using Sass for CSS generation You must have the haml gem installed first Using rdiscount for Markdown Building site: . - ./_site /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/../lib/jekyll/core_ext.rb:27:in `method_missing': undefined method 'header' for #, page=# ..... cut ..... (NoMethodError) from (haml):9:in `render' from /home/chris/.gem/gems/haml-2.2.3/lib/haml/engine.rb:167:in 'render' from /home/chris/.gem/gems/haml-2.2.3/lib/haml/engine.rb:167:in 'instance_eval' from /home/chris/.gem/gems/haml-2.2.3/lib/haml/engine.rb:167:in 'render' from /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/../lib/jekyll/convertible.rb:72:in 'render_haml_in_context' from /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/../lib/jekyll/convertible.rb:105:in 'do_layout' from /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/../lib/jekyll/post.rb:226:in 'render' from /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/../lib/jekyll/site.rb:172:in 'read_posts' from /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/../lib/jekyll/site.rb:171:in 'each' from /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/../lib/jekyll/site.rb:171:in 'read_posts' from /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/../lib/jekyll/site.rb:210:in 'transform_pages' from /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/../lib/jekyll/site.rb:126:in 'process' from /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/jekyll:135 from /home/chris/.gem/bin/jekyll:19:in `load' from /home/chris/.gem/bin/jekyll:19 I added spaces to the left of the ClosedStruct to enable better visibility - sorry that my inline html/formatting isn't perfect. I also cut out some middle text that is just data. $ gem list *** LOCAL GEMS *** actionmailer (2.3.4) actionpack (2.3.4) activerecord (2.3.4) activeresource (2.3.4) activesupport (2.3.4) classifier (1.3.1) directory_watcher (1.2.0) haml (2.2.3) haml-edge (2.3.27) henrik-jekyll (0.5.2) liquid (2.0.0) maruku (0.6.0) open4 (0.9.6) rack (1.0.0) rails (2.3.4) rake (0.8.7) rdiscount (1.3.5) RedCloth (4.2.2) stemmer (1.0.1) syntax (1.0.0) Some showing for path verification: $ echo $PATH /home/chris/.gem/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games $ which haml /home/chris/.gem/bin/haml $ which jekyll /home/chris/.gem/bin/jekyll

    Read the article

  • Simple Backup Strategy for Amazon EC2 instances / volumes?

    - by minerj
    You have entered Introductory Backups for Amazon EC2 EBS-backed Windows Images 010... I have been browsing my brains out to find a simple backup strategy for our single windows 2008 server running SharePoint Services. This is an EBS-backed image of one server with one data volume. I don’t need anything exotic. I only need a “daily” backup (losing a day’s worth of data is not catastrophic). We have created and saved an EBS backed AMI image (Windows 2008) we are comfortable using. We started off making backups by simply creating a new EBS AMI image. This is really simple, but the running server is put offline during the first 10 – 15 minutes of creating the image – not ideal. The standard way of creating backups would seem to be creating snapshots of volumes attached to a running instance. Again it’s pretty simple and the server remains usable during the snapshot generation. The apparent Catch-22 is that you can’t simply launch a new instance directly from a snapshot. I know how to bundle a running instance to S3 storage and then register the AMI from the S3 bucket. This does allow me to capture a backup of a running instance and, if the running instance is lost, register the AMI from the S3 bucket and launch the new AMI to recover the instance, but this seems really convoluted and it seems ridiculous to have to juggle back and forth between the AWS Console and the S3 Organizer plug-in for Firefox to get this accomplished. (Please don't mention the command line approach, this is an 010 level course). From playing around with EBS-backed images, the following approach appears to work for me (all done within the AWS Console): 1.For your backups, simply snapshot the system volume (/dev/sda1) as needed. 2.If you lose your running instance, do the following: a.Create a new volume from your last snapshot backup b.Launch another instance of your starting AMI (must be EBS-backed) c.Stop this instance. d.Detach the existing system volume from the new stopped instance and discard. e.Attach the newly created volume as system volume (/dev/sda1) to the stopped instance. f.Re-start the new instance. I have tested this out a couple of times and it seems to work for me. Question: Is there anything wrong with this approach?

    Read the article

< Previous Page | 270 271 272 273 274 275 276 277 278 279 280 281  | Next Page >