Search Results

Search found 8440 results on 338 pages for 'wms implementation'.

Page 279/338 | < Previous Page | 275 276 277 278 279 280 281 282 283 284 285 286  | Next Page >

  • Multisite Enabling a Table

    - by Joe Fitzgibbons
    I am creating a table (table A) that will have a number of columns(of course) and there will be another table (table B) that holds metadata associated to rows in table A. I am working with a multi site implementation that has one database for the whole shabang. Rows in table A could belong to any number of sites but must belong to at least one. The problem I have is I am not sure what the best practice is for defining what site each row in table A belongs to. I want performance and scalability. There is no finite number of sites going forward. Rows in table A could belong to any number of sites in the future. Right now there are only 3. My initial thoughts are to have a primary site ID in Table A and then metadata in table B will have rows defining additional sites as needed. Another thought is to have a column in Table A for each site and it is a boolean as to wether it belongs to that site. Lastly I have thought about having another table to map rows in Table A to each site. What is the best way to associate rows in a table with any number of sites with performance and scalability in mind?

    Read the article

  • Footprint of Lua on a PPC Micro

    - by Adam Shiemke
    We're developing some code on Freescale PPC micros (5517 and 5668 at the moment), and I was wondering if we could put Lua on them. The devices need to be easily programmed/reconfigured in the field, and the current product uses a proprietary interpreted logic language that can be loaded in, and our software (written in C) runs an interpreter. I would like to move to a better language (the implementation is a bit buggy and slow), so I'm considering Lua, but the memory footprint must be very low. For the 5517 (which we may not use), the maximum RAM is 80K. Things are better on the 5668, with 592K of RAM. So does anyone know if I can put Lua on bare metal? We're effectively not running an OS. If so, are there any estimates on what kind of memory footprint we might see? How much effort it would take? Failing this, does anyone know of any kind of interpreter that might be better in a memory-constrained environment without an OS? Or are we better just rolling our own?

    Read the article

  • Implement two functions with the same name but different, non-covariant return types due to multiple abstract base classes

    - by user1508167
    If I have two abstract classes defining a pure virtual function with the same name, but different, non-covariant return types, how can I derive from these and define an implementation for both their functions? #include <iostream> class ITestA { public: virtual ~ITestA() {}; virtual float test() =0; }; class ITestB { public: virtual ~ITestB() {}; virtual bool test() =0; }; class C : public ITestA, public ITestB { public: /* Somehow implement ITestA::test and ITestB::test */ }; int main() { ITestA *a = new C(); std::cout << a->test() << std::endl; // should print a float, like "3.14" ITestB *b = dynamic_cast<ITestB *>(a); if (b) { std::cout << b->test() << std::endl; // should print "1" or "0" } delete(a); return 0; } As long as I don't call C::test() directly there's nothing ambiguous, so I think that it should work somehow and I guess I just didn't find the right notation yet. Or is this impossible, if so: Why?

    Read the article

  • Which way of declaring a variable is fastest?

    - by ADB
    For a variable used in a function that is called very often and for implementation in J2ME on a blackberry (if that changed something, can you explain)? class X { int i; public void someFunc(int j) { i = 0; while( i < j ){ [...] i++; } } } or class X { static int i; public void someFunc(int j) { i = 0; while( i < j ){ [...] i++; } } } or class X { public void someFunc(int j) { int i = 0; while( i < j ){ [...] i++; } } } I know there is a difference how a static versus non-static class variable is accessed, but I don't know it would affect the speed. I also remember reading somewhere that in-function variables may be accessed faster, but I don't know why and where I read that. Background on the question: some painting function in games are called excessively often and even small difference in access time can affect the overall performance when a variable is used in a largish loop.

    Read the article

  • How duplicate an object in a list and update property of duplicated objects ?

    - by user359706
    Hello What would be the best way to duplicate an object placed in a list of items and change a property of duplicated objects ? I thought proceed in the following manner: - get object in the list by "ref" + "article" - Cloned the found object as many times as desired (n times) - Remove the object found - Add the clones in the list What do you think? A concrete example: Private List<Product> listProduct; listProduct= new List<Product>(); Product objProduit_1 = new Produit; objProduct_1.ref = "001"; objProduct_1.article = "G900"; objProduct_1.quantity = 30; listProducts.Add(objProduct_1); ProductobjProduit_2 = new Product; objProduct_2.ref = "002"; objProduct_2.article = "G900"; objProduct_2.quantity = 35; listProduits.Add(objProduct_2); desired method: public void updateProductsList(List<Product> paramListProducts,Produit objProductToUpdate, int32 nbrDuplication, int32 newQuantity){ ... } Calling method example: updateProductsList(listProducts,objProduct_1,2,15); Waiting result: Replace follow object : ref = "001"; article = "G900"; quantite = 30; By: ref = "001"; article = "G900"; quantite = 15; ref = "001"; article = "G900"; quantite = 15; The Algorithm is correct? Would you have an idea of the method implementation "updateProductsList" Thank you in advance for your help.

    Read the article

  • Integrating jQuery autocomplete with Google site search

    - by user1715700
    I have a bit of an odd situation. I have to implement search on a public facing website -but, that search must be able to search both web pages and have an autocomplete/suggestion functionality that comes from a list of terms that are in a DB table. So, I'm wondering a couple things: 1) should I be looking at Google search and jQuery autocomplete? 2) is there something else I should be looking at instead? 3) if this is the right path to be heading down are the enough pointers on implementation? The crux of my problem is that the terms that I need to use for the autocomplete/suggest functionality reside within a database and not on the webpages. So, I thought Google would be appropriate for search the webpages and that I could sort of fill in the blanks so to speak with these terms from the DB. I'm going to say that there are roughly 20-40,000 terms or so that need autocomplete. But that is really just a very rough guess -it could be less. I'm open to ideas and not really married to any particular solution. However, I will admit to liking the ideas of offloading the search to Google. I hear they have a good algorithm ;) Any ideas, thoughts, or leads are greatly appreciated!

    Read the article

  • (Java) Is there a type of object that can handle anything from primitives to arrays?

    - by Michael
    I'm pretty new to Java, so I'm hoping one of you guys knows how to do this. I'm having the user specify both the type and value of arguments, in any XML-like way, to be passed to methods that are external to my application. Example: javac myAppsName externalJavaClass methodofExternalClass [parameters] Of course, to find the proper method, we have to have the proper parameter types as the method may be overloaded and that's the only way to tell the difference between the different versions. Parameters are currently formatted in this manner: (type)value(/type), e.g. (int)71(/int) (string)This is my string that I'm passing as a parameter!(/string) I parse them, getting the constructor for whatever type is indicated, then execute that constructor by running its method, newInstance(<String value>), loading the new instance into an Object. This works fine and dandy, but as we all know, some methods take arrays, or even multi-dimensional arrays. I could handle the argument formatting like so: (array)(array)(int)0(/int)(int)1(/int)(/array)(array)(int)2(/int)(int)3(/int)(/array)(/array)... or perhaps even better... {{(int)0(/int)(int)1(/int)}{(int)2(/int)(int)3(/int)}}. The question is, how can this be implemented? Do I have to start wrapping everything in an Object[] array so I can handle primitives, etc. as argObj[0], but load an array as I normally would? (Unfortunately, I would have to make it an Object[][] array if I wanted to support two-dimensional arrays. This implementation wouldn't be very pretty.)

    Read the article

  • Checking if a function has C-linkage at compile-time [unsolvable]

    - by scjohnno
    Is there any way to check if a given function is declared with C-linkage (that is, with extern "C") at compile-time? I am developing a plugin system. Each plugin can supply factory functions to the plugin-loading code. However, this has to be done via name (and subsequent use of GetProcAddress or dlsym). This requires that the functions be declared with C-linkage so as to prevent name-mangling. It would be nice to be able to throw a compiler error if the referred-to function is declared with C++-linkage (as opposed to finding out at runtime when a function with that name does not exist). Here's a simplified example of what I mean: extern "C" void my_func() { } void my_other_func() { } // Replace this struct with one that actually works template<typename T> struct is_c_linkage { static const bool value = true; }; template<typename T> void assertCLinkage(T *func) { static_assert(is_c_linkage<T>::value, "Supplied function does not have C-linkage"); } int main() { assertCLinkage(my_func); // Should compile assertCLinkage(my_other_func); // Should NOT compile } Is there a possible implementation of is_c_linkage that would throw a compiler error for the second function, but not the first? I'm not sure that it's possible (though it may exist as a compiler extension, which I'd still like to know of). Thanks.

    Read the article

  • How to use scrollTop in jQuery when scrolling within a div?

    - by sharataka
    I am trying to get the scrollTop using jQuery to work when the content I am trying to scroll to is located in within a div. The current implementation doesn't do anything javascript <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.5.1/jquery.min.js"></script> <script> $(document).ready(function (){ //$(this).animate(function(){ $('html, body').animate({ scrollTop: $("#test4").offset().top }, 2000); //}); }); </script> html <div class="row"> <div class = "span12"> <div class = "row"> <div class = "span2"> <div style="height:480px;font:12px Georgia, Garamond, Serif;overflow:auto;"> <div id = "test1">Test1</div> <div id = "test2">Test2</div> <div id = "test3">Test3</div> <div id = "test4">Test4</div> </div> </div> <div class = "row"> <div class = "span8"> Other content on the page </div> </div> </div> </div> </div>

    Read the article

  • Graph not following orientation

    - by user1214037
    so I am trying to draw some grid lines that in landscape go all the way down to the bottom, however when I switch to landscape the the graph doesn't follow and the grid lines go smaller. I have set the - (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation { // Return YES for supported orientations return YES; } However it still doesn't work, here is my code. Can anyone spot the problem? this is the custom view file, the view controller is the default apart from the code above that returns yes. .h file #import <UIKit/UIKit.h> #define kGraphHeight 300 #define kDefaultGraphWidth 900 #define kOffsetX 10 #define kStepX 50 #define kGraphBottom 300 #define kGraphTop 0 @interface GraphView : UIView @end And here is the implementation - (void)drawRect:(CGRect)rect { CGContextRef context = UIGraphicsGetCurrentContext(); CGContextSetLineWidth(context, 0.6); CGContextSetStrokeColorWithColor(context, [[UIColor lightGrayColor] CGColor]); // How many lines? int howMany = (kDefaultGraphWidth - kOffsetX) / kStepX; // Here the lines go for (int i = 0; i < howMany; i++) { CGContextMoveToPoint(context, kOffsetX + i * kStepX, kGraphTop); CGContextAddLineToPoint(context, kOffsetX + i * kStepX, kGraphBottom); } CGContextStrokePath(context); } Any help would be appreciated btw I am following this tutorial http://buildmobile.com/creating-a-graph-with-quartz-2d/#fbid=YDPLqDHZ_9X

    Read the article

  • definition of wait-free (referring to parallel programming)

    - by tecuhtli
    In Maurice Herlihy paper "Wait-free synchronization" he defines wait-free: "A wait-free implementation of a concurrent data object is one that guarantees that any process can complete any operation in a finite number of steps, regardless the execution speeds on the other processes." www.cs.brown.edu/~mph/Herlihy91/p124-herlihy.pdf Let's take one operation op from the universe. (1) Does the definition mean: "Every process completes a certain operation op in the same finite number n of steps."? (2) Or does it mean: "Every process completes a certain operation op in any finite number of steps. So that a process can complete op in k steps another process in j steps, where k != j."? Just by reading the definition i would understand meaning (2). However this makes no sense to me, since a process executing op in k steps and another time in k + m steps meets the definition, but m steps could be a waiting loop. If meaning (2) is right, can anybody explain to me, why this describes wait-free? In contrast to (2), meaning (1) would guarantee that op is executed in the same number of steps k. So there can't be any additional steps m that are necessary e.g. in a waiting loop. Which meaning is right and why? Thanks a lot, sebastian

    Read the article

  • Initializing ExportFactory using MEF

    - by Riz
    Scenario Application has multiple parts. Each part is in separate dll and implements interface IFoo All such dlls are present in same directory (plugins) The application can instantiate multiple instances of each part Below is the code snippet for the interfaces, part(export) and the import. The problem I am running into is, the "factories" object is initialized with empty list. However, if I try container.Resolve(typeof(IEnumerable< IFoo )) I do get object with the part. But that doesn't serve my purpose (point 4). Can anyone point what I am doing wrong here? public interface IFoo { string Name { get; } } public interface IFooMeta { string CompType { get; } } Implementation of IFoo in separate Dll [ExportMetadata("CompType", "Foo1")] [Export(typeof(IFoo), RequiredCreationPolicy = CreationPolicy.NonShared))] public class Foo1 : IFoo { public string Name { get { return this.GetType().ToString(); } } } Main application that loads all the parts and instantiate them as needed class PartsManager { [ImportMany] private IEnumerable<ExportFactory<IFoo, IFooMeta>> factories; public PartsManager() { IContainer container = ConstructContainer(); factories = (IEnumerable<ExportFactory<IFoo, IFooMeta>>) container.Resolve(typeof(IEnumerable<ExportFactory<IFoo, IFooMeta>>)); } private static IContainer ConstructContainer() { var catalog = new DirectoryCatalog(@"C:\plugins\"); var builder = new ContainerBuilder(); builder.RegisterComposablePartCatalog(catalog); return builder.Build(); } public IFoo GetPart(string compType) { var matchingFactory = factories.FirstOrDefault( x => x.Metadata.CompType == compType); if (factories == null) { return null; } else { IFoo foo = matchingFactory.CreateExport().Value; return foo; } } }

    Read the article

  • recvfrom() return values in Stop-and-Wait UDP?

    - by mavErick
    I am trying to implement a Stop-and-Wait UDP client-server socket program in C. As known, there are basically three possible scenarios for Stop-and-Wait flow control. i.e., After transmitting a packet, the sender receives a correct ACK and thus starts transmitting the next packet; the sender receives an incorrect ACK and thus retransmits this packet; the sender receives no ACK within a TIMEOUT and thus retransmits this packet. My idea is to differentiate these three scenarios with the return value of recvfrom() on the sender side. For scenario 1&2: recvfrom() just returns the length of the received ACK. Since in my implementation the incorrect ACK is of the same length of the correct one, so I will have to go deeper and check the contents of the ACK. It's not a big deal. I know how to do. Problems come when I am trying to recognize scenario 3 where no ACK is received. What confuses me is that my recvfrom() is within a while loop, so the recvfrom() will be called constantly. What will it return when the receiver is not actually sending the sender ACK? Is it 0 or 1?

    Read the article

  • What does this Java generics paradigm do and what is it called?

    - by Tom
    I'm looking at some Java classes that have the following form: public abstract class A <E extends A<E>> implements Comparable <E> { public final int compareTo( E other ) { // etc } } public class B extends A <B> { // etc } public class C extends A <C> { // etc } My usage of "Comparable" here is just to illustrate a possible use of the generic parameter "E". Does this usage of generics/inheritance have a name? What is it used for? My impression is that this allows the abstract class to provide a common implementation of a method (such as compareTo) without having to provide it in the subclasses. However, in this example, unlike an inherited method it would restrict subclasses to invoking compareTo on other instances of the same subclass, rather than any "A" subclass. Does this sound right? Anyway, just curious if any gurus out there have seen this before and know what it does. Thanks!

    Read the article

  • using buttons to open webviews

    - by A-P
    hey guys im trying to make the buttons on my project to open a different webview url. Im new to ios programming, but im used to andriod programming. Is this possible? Ive a,ready created another webview view that sits in the supporting files folderHere is my code below Viewcontroller.m #import "ViewController.h" @implementation ViewController - (void)didReceiveMemoryWarning { [super didReceiveMemoryWarning]; // Release any cached data, images, etc that aren't in use. } #pragma mark - View lifecycle - (void)viewDidLoad { NSString *urlString = @"http://www.athletic-profile.com/Application"; //Create a URL object. NSURL *url = [NSURL URLWithString:urlString]; //URL Requst Object NSURLRequest *webRequest = [NSURLRequest requestWithURL:url]; //Load the request in the UIWebView. [webView loadRequest:webRequest]; [super viewDidLoad]; // Do any additional setup after loading the view, typically from a nib. } - (void)viewDidUnload { [super viewDidUnload]; // Release any retained subviews of the main view. // e.g. self.myOutlet = nil; } - (void)viewWillAppear:(BOOL)animated { [super viewWillAppear:animated]; } - (void)viewDidAppear:(BOOL)animated { [super viewDidAppear:animated]; } - (void)viewWillDisappear:(BOOL)animated { [super viewWillDisappear:animated]; } - (void)viewDidDisappear:(BOOL)animated { [super viewDidDisappear:animated]; } - (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation { // Return YES for supported orientations return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown); } @synthesize webView; @end

    Read the article

  • How specific do I get in BDD scenarios?

    - by CodeSpelunker
    Take two different ways of stating the same behavior. Option A: Given a customer has 50 items in their shopping cart When they check out Then they will receive a 10% discount on their order Option B: Given a customer has a high volume of items in their shopping cart When they check out Then they will receive a high volume discount on their order The former is far more specific. If someone has some question about exactly when a customer gets a high volume discount or how much to give them, reading this scenario makes it very clear. Serving the purposes of documenting the behavior, it's about as specific as it can be, although any change in those values will require changing the scenario. The second is more generalized and doesn't have the clarity of the first. Automating it would require incorporating the values "50" and "10" in the step implementations. On the other hand, the scenario captures the core business need: a high volume customer gets a discount. If we later decide to use "40" and "15", the scenario doesn't have to change because the core business need hasn't really changed (though the step implementation would). Also, the term "high volume customer" communicates something about why we're giving them the discount. So, which is better? Rather, under what circumstances should I favor the former or the latter?

    Read the article

  • Problem with class methods in objective c

    - by Rajashekar
    Hi Guys i have a tableview controller like so, NSString *selectedindex; @interface ContactsController : UITableViewController { NSMutableArray *names; NSMutableArray *phonenumbers; NSMutableArray *contacts; DatabaseCRUD *sampledatabase; } +(NSString *) returnselectedindex; @end in the implementation file i have +(NSString *) returnselectedindex { return selectedindex; } when a row is selected in the tableview i put have the following code. selectedindex = [NSString stringWithFormat:@"%d", indexPath.row]; NSLog(@"selected row is %@",selectedindex); in a different class i am trying to access the selectedindex. like so selected = [ContactsController returnselectedindex]; NSLog(@"selected is %@",selected); it gives me a warning: 'ContactsController' may not respond to '+returnselectedindex' and crashes. i am not sure why. i have used class methods previously lot of times , and never had a problem. any help please. Thank You.

    Read the article

  • delegate issues in Xcode

    - by trludt
    .h file #import <UIKit/UIKit.h> @interface AddEventViewController : UIViewController <UITextViewDelegate> @end .m file @property (weak, nonatomic) IBOutlet UITextField *textField1; @property (weak, nonatomic) IBOutlet UITextField *textField2; @property (weak, nonatomic) IBOutlet UITextField *textField3; - (IBAction)textFieldReturn:(id)sender; @end @implementation AddEventViewController @synthesize textField1, textField2, textField3; - (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil { self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil]; if (self) { // Custom initialization } return self; } - (IBAction)textFieldReturn:(id)sender; { [sender resignFirstResponder]; } - (void)viewDidLoad { [super viewDidLoad]; self.textField1.delegate = self; textField1.delegate = self; // Do any additional setup after loading the view. } - (void)didReceiveMemoryWarning { [super didReceiveMemoryWarning]; // Dispose of any resources that can be recreated. } - (void)touchesBegan: (NSSet *) touches withEvent: (UIEvent *)event { if (textField1) { if ([textField1 canResignFirstResponder]) [textField1 resignFirstResponder]; } [super touchesBegan: touches withEvent: event]; if (textField2) { if ([textField2 canResignFirstResponder]) [textField2 resignFirstResponder]; } [super touchesBegan: touches withEvent: event]; if (textField3) { if ([textField3 canResignFirstResponder]) [textField3 resignFirstResponder]; } [super touchesBegan: touches withEvent: event]; } - (BOOL)textFieldShouldReturn:(UITextField *)textField { [textField1 resignFirstResponder]; return NO; [textField2 resignFirstResponder]; return NO; [textField3 resignFirstResponder]; return NO; } @end Ok so im getting the yellow bug symbol on the lines: - (void)viewDidLoad { [super viewDidLoad]; self.textField1.delegate = self; textField1.delegate = self; } I don't know how to delegate all of my textFields? how do i make this textFieldReturn work for all of my textFields.. that viewDidLoad area has to be the problem, because everything else works good...

    Read the article

  • Generating an identifier for objects so that they can be added to a hashtable I have created

    - by dukenukem
    I have a hashtable base class and I am creating different type of hashtable by deriving from it. I only allow it to accept objects that implement my IHashable interface.For example - class LinearProbingHashTable<T> : HashTableBase<T> where T: IHashable { ... ... ... } interface IHashable { /** * Every IHashable implementation should provide an indentfying value for use in generating a hash key. */ int getIdentifier(); } class Car : IHashable { public String Make { get; set; } public String Model { get; set; } public String Color { get; set; } public int Year { get; set; } public int getIdentifier() { /// ??? } } Can anyone suggest a good method for generating an identifier for the car that can be used by the hash function to place it in the hash table? I am actually really looking for a general purpose solution to generating an id for any given class. I would like to have a base class for all classes, HashableObject, that implements IHashable and its getIdentifier method. So then I could just derive from HashableObject which would automatically provide an identifier for any instances. Which means I wouldn't have to write a different getIdentifier method for every object I add to the hashtable. public class HashableObject : IHashable { public int getIdentifier() { // Looking for code here that would generate an id for any object... } } public class Dog : HashableObject { // Dont need to implement getIdentifier because the parent class does it for me }

    Read the article

  • An Introduction to ASP.NET Web API

    - by Rick Strahl
    Microsoft recently released ASP.NET MVC 4.0 and .NET 4.5 and along with it, the brand spanking new ASP.NET Web API. Web API is an exciting new addition to the ASP.NET stack that provides a new, well-designed HTTP framework for creating REST and AJAX APIs (API is Microsoft’s new jargon for a service, in case you’re wondering). Although Web API ships and installs with ASP.NET MVC 4, you can use Web API functionality in any ASP.NET project, including WebForms, WebPages and MVC or just a Web API by itself. And you can also self-host Web API in your own applications from Console, Desktop or Service applications. If you're interested in a high level overview on what ASP.NET Web API is and how it fits into the ASP.NET stack you can check out my previous post: Where does ASP.NET Web API fit? In the following article, I'll focus on a practical, by example introduction to ASP.NET Web API. All the code discussed in this article is available in GitHub: https://github.com/RickStrahl/AspNetWebApiArticle [republished from my Code Magazine Article and updated for RTM release of ASP.NET Web API] Getting Started To start I’ll create a new empty ASP.NET application to demonstrate that Web API can work with any kind of ASP.NET project. Although you can create a new project based on the ASP.NET MVC/Web API template to quickly get up and running, I’ll take you through the manual setup process, because one common use case is to add Web API functionality to an existing ASP.NET application. This process describes the steps needed to hook up Web API to any ASP.NET 4.0 application. Start by creating an ASP.NET Empty Project. Then create a new folder in the project called Controllers. Add a Web API Controller Class Once you have any kind of ASP.NET project open, you can add a Web API Controller class to it. Web API Controllers are very similar to MVC Controller classes, but they work in any kind of project. Add a new item to this folder by using the Add New Item option in Visual Studio and choose Web API Controller Class, as shown in Figure 1. Figure 1: This is how you create a new Controller Class in Visual Studio   Make sure that the name of the controller class includes Controller at the end of it, which is required in order for Web API routing to find it. Here, the name for the class is AlbumApiController. For this example, I’ll use a Music Album model to demonstrate basic behavior of Web API. The model consists of albums and related songs where an album has properties like Name, Artist and YearReleased and a list of songs with a SongName and SongLength as well as an AlbumId that links it to the album. You can find the code for the model (and the rest of these samples) on Github. To add the file manually, create a new folder called Model, and add a new class Album.cs and copy the code into it. There’s a static AlbumData class with a static CreateSampleAlbumData() method that creates a short list of albums on a static .Current that I’ll use for the examples. Before we look at what goes into the controller class though, let’s hook up routing so we can access this new controller. Hooking up Routing in Global.asax To start, I need to perform the one required configuration task in order for Web API to work: I need to configure routing to the controller. Like MVC, Web API uses routing to provide clean, extension-less URLs to controller methods. Using an extension method to ASP.NET’s static RouteTable class, you can use the MapHttpRoute() (in the System.Web.Http namespace) method to hook-up the routing during Application_Start in global.asax.cs shown in Listing 1.using System; using System.Web.Routing; using System.Web.Http; namespace AspNetWebApi { public class Global : System.Web.HttpApplication { protected void Application_Start(object sender, EventArgs e) { RouteTable.Routes.MapHttpRoute( name: "AlbumVerbs", routeTemplate: "albums/{title}", defaults: new { symbol = RouteParameter.Optional, controller="AlbumApi" } ); } } } This route configures Web API to direct URLs that start with an albums folder to the AlbumApiController class. Routing in ASP.NET is used to create extensionless URLs and allows you to map segments of the URL to specific Route Value parameters. A route parameter, with a name inside curly brackets like {name}, is mapped to parameters on the controller methods. Route parameters can be optional, and there are two special route parameters – controller and action – that determine the controller to call and the method to activate respectively. HTTP Verb Routing Routing in Web API can route requests by HTTP Verb in addition to standard {controller},{action} routing. For the first examples, I use HTTP Verb routing, as shown Listing 1. Notice that the route I’ve defined does not include an {action} route value or action value in the defaults. Rather, Web API can use the HTTP Verb in this route to determine the method to call the controller, and a GET request maps to any method that starts with Get. So methods called Get() or GetAlbums() are matched by a GET request and a POST request maps to a Post() or PostAlbum(). Web API matches a method by name and parameter signature to match a route, query string or POST values. In lieu of the method name, the [HttpGet,HttpPost,HttpPut,HttpDelete, etc] attributes can also be used to designate the accepted verbs explicitly if you don’t want to follow the verb naming conventions. Although HTTP Verb routing is a good practice for REST style resource APIs, it’s not required and you can still use more traditional routes with an explicit {action} route parameter. When {action} is supplied, the HTTP verb routing is ignored. I’ll talk more about alternate routes later. When you’re finished with initial creation of files, your project should look like Figure 2.   Figure 2: The initial project has the new API Controller Album model   Creating a small Album Model Now it’s time to create some controller methods to serve data. For these examples, I’ll use a very simple Album and Songs model to play with, as shown in Listing 2. public class Song { public string AlbumId { get; set; } [Required, StringLength(80)] public string SongName { get; set; } [StringLength(5)] public string SongLength { get; set; } } public class Album { public string Id { get; set; } [Required, StringLength(80)] public string AlbumName { get; set; } [StringLength(80)] public string Artist { get; set; } public int YearReleased { get; set; } public DateTime Entered { get; set; } [StringLength(150)] public string AlbumImageUrl { get; set; } [StringLength(200)] public string AmazonUrl { get; set; } public virtual List<Song> Songs { get; set; } public Album() { Songs = new List<Song>(); Entered = DateTime.Now; // Poor man's unique Id off GUID hash Id = Guid.NewGuid().GetHashCode().ToString("x"); } public void AddSong(string songName, string songLength = null) { this.Songs.Add(new Song() { AlbumId = this.Id, SongName = songName, SongLength = songLength }); } } Once the model has been created, I also added an AlbumData class that generates some static data in memory that is loaded onto a static .Current member. The signature of this class looks like this and that's what I'll access to retrieve the base data:public static class AlbumData { // sample data - static list public static List<Album> Current = CreateSampleAlbumData(); /// <summary> /// Create some sample data /// </summary> /// <returns></returns> public static List<Album> CreateSampleAlbumData() { … }} You can check out the full code for the data generation online. Creating an AlbumApiController Web API shares many concepts of ASP.NET MVC, and the implementation of your API logic is done by implementing a subclass of the System.Web.Http.ApiController class. Each public method in the implemented controller is a potential endpoint for the HTTP API, as long as a matching route can be found to invoke it. The class name you create should end in Controller, which is how Web API matches the controller route value to figure out which class to invoke. Inside the controller you can implement methods that take standard .NET input parameters and return .NET values as results. Web API’s binding tries to match POST data, route values, form values or query string values to your parameters. Because the controller is configured for HTTP Verb based routing (no {action} parameter in the route), any methods that start with Getxxxx() are called by an HTTP GET operation. You can have multiple methods that match each HTTP Verb as long as the parameter signatures are different and can be matched by Web API. In Listing 3, I create an AlbumApiController with two methods to retrieve a list of albums and a single album by its title .public class AlbumApiController : ApiController { public IEnumerable<Album> GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); return albums; } public Album GetAlbum(string title) { var album = AlbumData.Current .SingleOrDefault(alb => alb.AlbumName.Contains(title)); return album; }} To access the first two requests, you can use the following URLs in your browser: http://localhost/aspnetWebApi/albumshttp://localhost/aspnetWebApi/albums/Dirty%20Deeds Note that you’re not specifying the actions of GetAlbum or GetAlbums in these URLs. Instead Web API’s routing uses HTTP GET verb to route to these methods that start with Getxxx() with the first mapping to the parameterless GetAlbums() method and the latter to the GetAlbum(title) method that receives the title parameter mapped as optional in the route. Content Negotiation When you access any of the URLs above from a browser, you get either an XML or JSON result returned back. The album list result for Chrome 17 and Internet Explorer 9 is shown Figure 3. Figure 3: Web API responses can vary depending on the browser used, demonstrating Content Negotiation in action as these two browsers send different HTTP Accept headers.   Notice that the results are not the same: Chrome returns an XML response and IE9 returns a JSON response. Whoa, what’s going on here? Shouldn’t we see the same result in both browsers? Actually, no. Web API determines what type of content to return based on Accept headers. HTTP clients, like browsers, use Accept headers to specify what kind of content they’d like to see returned. Browsers generally ask for HTML first, followed by a few additional content types. Chrome (and most other major browsers) ask for: Accept: text/html, application/xhtml+xml,application/xml; q=0.9,*/*;q=0.8 IE9 asks for: Accept: text/html, application/xhtml+xml, */* Note that Chrome’s Accept header includes application/xml, which Web API finds in its list of supported media types and returns an XML response. IE9 does not include an Accept header type that works on Web API by default, and so it returns the default format, which is JSON. This is an important and very useful feature that was missing from any previous Microsoft REST tools: Web API automatically switches output formats based on HTTP Accept headers. Nowhere in the server code above do you have to explicitly specify the output format. Rather, Web API determines what format the client is requesting based on the Accept headers and automatically returns the result based on the available formatters. This means that a single method can handle both XML and JSON results.. Using this simple approach makes it very easy to create a single controller method that can return JSON, XML, ATOM or even OData feeds by providing the appropriate Accept header from the client. By default you don’t have to worry about the output format in your code. Note that you can still specify an explicit output format if you choose, either globally by overriding the installed formatters, or individually by returning a lower level HttpResponseMessage instance and setting the formatter explicitly. More on that in a minute. Along the same lines, any content sent to the server via POST/PUT is parsed by Web API based on the HTTP Content-type of the data sent. The same formats allowed for output are also allowed on input. Again, you don’t have to do anything in your code – Web API automatically performs the deserialization from the content. Accessing Web API JSON Data with jQuery A very common scenario for Web API endpoints is to retrieve data for AJAX calls from the Web browser. Because JSON is the default format for Web API, it’s easy to access data from the server using jQuery and its getJSON() method. This example receives the albums array from GetAlbums() and databinds it into the page using knockout.js.$.getJSON("albums/", function (albums) { // make knockout template visible $(".album").show(); // create view object and attach array var view = { albums: albums }; ko.applyBindings(view); }); Figure 4 shows this and the next example’s HTML output. You can check out the complete HTML and script code at http://goo.gl/Ix33C (.html) and http://goo.gl/tETlg (.js). Figu Figure 4: The Album Display sample uses JSON data loaded from Web API.   The result from the getJSON() call is a JavaScript object of the server result, which comes back as a JavaScript array. In the code, I use knockout.js to bind this array into the UI, which as you can see, requires very little code, instead using knockout’s data-bind attributes to bind server data to the UI. Of course, this is just one way to use the data – it’s entirely up to you to decide what to do with the data in your client code. Along the same lines, I can retrieve a single album to display when the user clicks on an album. The response returns the album information and a child array with all the songs. The code to do this is very similar to the last example where we pulled the albums array:$(".albumlink").live("click", function () { var id = $(this).data("id"); // title $.getJSON("albums/" + id, function (album) { ko.applyBindings(album, $("#divAlbumDialog")[0]); $("#divAlbumDialog").show(); }); }); Here the URL looks like this: /albums/Dirty%20Deeds, where the title is the ID captured from the clicked element’s data ID attribute. Explicitly Overriding Output Format When Web API automatically converts output using content negotiation, it does so by matching Accept header media types to the GlobalConfiguration.Configuration.Formatters and the SupportedMediaTypes of each individual formatter. You can add and remove formatters to globally affect what formats are available and it’s easy to create and plug in custom formatters.The example project includes a JSONP formatter that can be plugged in to provide JSONP support for requests that have a callback= querystring parameter. Adding, removing or replacing formatters is a global option you can use to manipulate content. It’s beyond the scope of this introduction to show how it works, but you can review the sample code or check out my blog entry on the subject (http://goo.gl/UAzaR). If automatic processing is not desirable in a particular Controller method, you can override the response output explicitly by returning an HttpResponseMessage instance. HttpResponseMessage is similar to ActionResult in ASP.NET MVC in that it’s a common way to return an abstract result message that contains content. HttpResponseMessage s parsed by the Web API framework using standard interfaces to retrieve the response data, status code, headers and so on[MS2] . Web API turns every response – including those Controller methods that return static results – into HttpResponseMessage instances. Explicitly returning an HttpResponseMessage instance gives you full control over the output and lets you mostly bypass WebAPI’s post-processing of the HTTP response on your behalf. HttpResponseMessage allows you to customize the response in great detail. Web API’s attention to detail in the HTTP spec really shows; many HTTP options are exposed as properties and enumerations with detailed IntelliSense comments. Even if you’re new to building REST-based interfaces, the API guides you in the right direction for returning valid responses and response codes. For example, assume that I always want to return JSON from the GetAlbums() controller method and ignore the default media type content negotiation. To do this, I can adjust the output format and headers as shown in Listing 4.public HttpResponseMessage GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); // Create a new HttpResponse with Json Formatter explicitly var resp = new HttpResponseMessage(HttpStatusCode.OK); resp.Content = new ObjectContent<IEnumerable<Album>>( albums, new JsonMediaTypeFormatter()); // Get Default Formatter based on Content Negotiation //var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); resp.Headers.ConnectionClose = true; resp.Headers.CacheControl = new CacheControlHeaderValue(); resp.Headers.CacheControl.Public = true; return resp; } This example returns the same IEnumerable<Album> value, but it wraps the response into an HttpResponseMessage so you can control the entire HTTP message result including the headers, formatter and status code. In Listing 4, I explicitly specify the formatter using the JsonMediaTypeFormatter to always force the content to JSON.  If you prefer to use the default content negotiation with HttpResponseMessage results, you can create the Response instance using the Request.CreateResponse method:var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); This provides you an HttpResponse object that's pre-configured with the default formatter based on Content Negotiation. Once you have an HttpResponse object you can easily control most HTTP aspects on this object. What's sweet here is that there are many more detailed properties on HttpResponse than the core ASP.NET Response object, with most options being explicitly configurable with enumerations that make it easy to pick the right headers and response codes from a list of valid codes. It makes HTTP features available much more discoverable even for non-hardcore REST/HTTP geeks. Non-Serialized Results The output returned doesn’t have to be a serialized value but can also be raw data, like strings, binary data or streams. You can use the HttpResponseMessage.Content object to set a number of common Content classes. Listing 5 shows how to return a binary image using the ByteArrayContent class from a Controller method. [HttpGet] public HttpResponseMessage AlbumArt(string title) { var album = AlbumData.Current.FirstOrDefault(abl => abl.AlbumName.StartsWith(title)); if (album == null) { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found")); return resp; } // kinda silly - we would normally serve this directly // but hey - it's a demo. var http = new WebClient(); var imageData = http.DownloadData(album.AlbumImageUrl); // create response and return var result = new HttpResponseMessage(HttpStatusCode.OK); result.Content = new ByteArrayContent(imageData); result.Content.Headers.ContentType = new MediaTypeHeaderValue("image/jpeg"); return result; } The image retrieval from Amazon is contrived, but it shows how to return binary data using ByteArrayContent. It also demonstrates that you can easily return multiple types of content from a single controller method, which is actually quite common. If an error occurs - such as a resource can’t be found or a validation error – you can return an error response to the client that’s very specific to the error. In GetAlbumArt(), if the album can’t be found, we want to return a 404 Not Found status (and realistically no error, as it’s an image). Note that if you are not using HTTP Verb-based routing or not accessing a method that starts with Get/Post etc., you have to specify one or more HTTP Verb attributes on the method explicitly. Here, I used the [HttpGet] attribute to serve the image. Another option to handle the error could be to return a fixed placeholder image if no album could be matched or the album doesn’t have an image. When returning an error code, you can also return a strongly typed response to the client. For example, you can set the 404 status code and also return a custom error object (ApiMessageError is a class I defined) like this:return Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found") );   If the album can be found, the image will be returned. The image is downloaded into a byte[] array, and then assigned to the result’s Content property. I created a new ByteArrayContent instance and assigned the image’s bytes and the content type so that it displays properly in the browser. There are other content classes available: StringContent, StreamContent, ByteArrayContent, MultipartContent, and ObjectContent are at your disposal to return just about any kind of content. You can create your own Content classes if you frequently return custom types and handle the default formatter assignments that should be used to send the data out . Although HttpResponseMessage results require more code than returning a plain .NET value from a method, it allows much more control over the actual HTTP processing than automatic processing. It also makes it much easier to test your controller methods as you get a response object that you can check for specific status codes and output messages rather than just a result value. Routing Again Ok, let’s get back to the image example. Using the original routing we have setup using HTTP Verb routing there's no good way to serve the image. In order to return my album art image I’d like to use a URL like this: http://localhost/aspnetWebApi/albums/Dirty%20Deeds/image In order to create a URL like this, I have to create a new Controller because my earlier routes pointed to the AlbumApiController using HTTP Verb routing. HTTP Verb based routing is great for representing a single set of resources such as albums. You can map operations like add, delete, update and read easily using HTTP Verbs. But you cannot mix action based routing into a an HTTP Verb routing controller - you can only map HTTP Verbs and each method has to be unique based on parameter signature. You can't have multiple GET operations to methods with the same signature. So GetImage(string id) and GetAlbum(string title) are in conflict in an HTTP GET routing scenario. In fact, I was unable to make the above Image URL work with any combination of HTTP Verb plus Custom routing using the single Albums controller. There are number of ways around this, but all involve additional controllers.  Personally, I think it’s easier to use explicit Action routing and then add custom routes if you need to simplify your URLs further. So in order to accommodate some of the other examples, I created another controller – AlbumRpcApiController – to handle all requests that are explicitly routed via actions (/albums/rpc/AlbumArt) or are custom routed with explicit routes defined in the HttpConfiguration. I added the AlbumArt() method to this new AlbumRpcApiController class. For the image URL to work with the new AlbumRpcApiController, you need a custom route placed before the default route from Listing 1.RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); Now I can use either of the following URLs to access the image: Custom route: (/albums/rpc/{title}/image)http://localhost/aspnetWebApi/albums/PowerAge/image Action route: (/albums/rpc/action/{title})http://localhost/aspnetWebAPI/albums/rpc/albumart/PowerAge Sending Data to the Server To send data to the server and add a new album, you can use an HTTP POST operation. Since I’m using HTTP Verb-based routing in the original AlbumApiController, I can implement a method called PostAlbum()to accept a new album from the client. Listing 6 shows the Web API code to add a new album.public HttpResponseMessage PostAlbum(Album album) { if (!this.ModelState.IsValid) { // my custom error class var error = new ApiMessageError() { message = "Model is invalid" }; // add errors into our client error model for client foreach (var prop in ModelState.Values) { var modelError = prop.Errors.FirstOrDefault(); if (!string.IsNullOrEmpty(modelError.ErrorMessage)) error.errors.Add(modelError.ErrorMessage); else error.errors.Add(modelError.Exception.Message); } return Request.CreateResponse<ApiMessageError>(HttpStatusCode.Conflict, error); } // update song id which isn't provided foreach (var song in album.Songs) song.AlbumId = album.Id; // see if album exists already var matchedAlbum = AlbumData.Current .SingleOrDefault(alb => alb.Id == album.Id || alb.AlbumName == album.AlbumName); if (matchedAlbum == null) AlbumData.Current.Add(album); else matchedAlbum = album; // return a string to show that the value got here var resp = Request.CreateResponse(HttpStatusCode.OK, string.Empty); resp.Content = new StringContent(album.AlbumName + " " + album.Entered.ToString(), Encoding.UTF8, "text/plain"); return resp; } The PostAlbum() method receives an album parameter, which is automatically deserialized from the POST buffer the client sent. The data passed from the client can be either XML or JSON. Web API automatically figures out what format it needs to deserialize based on the content type and binds the content to the album object. Web API uses model binding to bind the request content to the parameter(s) of controller methods. Like MVC you can check the model by looking at ModelState.IsValid. If it’s not valid, you can run through the ModelState.Values collection and check each binding for errors. Here I collect the error messages into a string array that gets passed back to the client via the result ApiErrorMessage object. When a binding error occurs, you’ll want to return an HTTP error response and it’s best to do that with an HttpResponseMessage result. In Listing 6, I used a custom error class that holds a message and an array of detailed error messages for each binding error. I used this object as the content to return to the client along with my Conflict HTTP Status Code response. If binding succeeds, the example returns a string with the name and date entered to demonstrate that you captured the data. Normally, a method like this should return a Boolean or no response at all (HttpStatusCode.NoConent). The sample uses a simple static list to hold albums, so once you’ve added the album using the Post operation, you can hit the /albums/ URL to see that the new album was added. The client jQuery code to call the POST operation from the client with jQuery is shown in Listing 7. var id = new Date().getTime().toString(); var album = { "Id": id, "AlbumName": "Power Age", "Artist": "AC/DC", "YearReleased": 1977, "Entered": "2002-03-11T18:24:43.5580794-10:00", "AlbumImageUrl": http://ecx.images-amazon.com/images/…, "AmazonUrl": http://www.amazon.com/…, "Songs": [ { "SongName": "Rock 'n Roll Damnation", "SongLength": 3.12}, { "SongName": "Downpayment Blues", "SongLength": 4.22 }, { "SongName": "Riff Raff", "SongLength": 2.42 } ] } $.ajax( { url: "albums/", type: "POST", contentType: "application/json", data: JSON.stringify(album), processData: false, beforeSend: function (xhr) { // not required since JSON is default output xhr.setRequestHeader("Accept", "application/json"); }, success: function (result) { // reload list of albums page.loadAlbums(); }, error: function (xhr, status, p3, p4) { var err = "Error"; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); The code in Listing 7 creates an album object in JavaScript to match the structure of the .NET Album class. This object is passed to the $.ajax() function to send to the server as POST. The data is turned into JSON and the content type set to application/json so that the server knows what to convert when deserializing in the Album instance. The jQuery code hooks up success and failure events. Success returns the result data, which is a string that’s echoed back with an alert box. If an error occurs, jQuery returns the XHR instance and status code. You can check the XHR to see if a JSON object is embedded and if it is, you can extract it by de-serializing it and accessing the .message property. REST standards suggest that updates to existing resources should use PUT operations. REST standards aside, I’m not a big fan of separating out inserts and updates so I tend to have a single method that handles both. But if you want to follow REST suggestions, you can create a PUT method that handles updates by forwarding the PUT operation to the POST method:public HttpResponseMessage PutAlbum(Album album) { return PostAlbum(album); } To make the corresponding $.ajax() call, all you have to change from Listing 7 is the type: from POST to PUT. Model Binding with UrlEncoded POST Variables In the example in Listing 7 I used JSON objects to post a serialized object to a server method that accepted an strongly typed object with the same structure, which is a common way to send data to the server. However, Web API supports a number of different ways that data can be received by server methods. For example, another common way is to use plain UrlEncoded POST  values to send to the server. Web API supports Model Binding that works similar (but not the same) as MVC's model binding where POST variables are mapped to properties of object parameters of the target method. This is actually quite common for AJAX calls that want to avoid serialization and the potential requirement of a JSON parser on older browsers. For example, using jQUery you might use the $.post() method to send a new album to the server (albeit one without songs) using code like the following:$.post("albums/",{AlbumName: "Dirty Deeds", YearReleased: 1976 … },albumPostCallback); Although the code looks very similar to the client code we used before passing JSON, here the data passed is URL encoded values (AlbumName=Dirty+Deeds&YearReleased=1976 etc.). Web API then takes this POST data and maps each of the POST values to the properties of the Album object in the method's parameter. Although the client code is different the server can both handle the JSON object, or the UrlEncoded POST values. Dynamic Access to POST Data There are also a few options available to dynamically access POST data, if you know what type of data you're dealing with. If you have POST UrlEncoded values, you can dynamically using a FormsDataCollection:[HttpPost] public string PostAlbum(FormDataCollection form) { return string.Format("{0} - released {1}", form.Get("AlbumName"),form.Get("RearReleased")); } The FormDataCollection is a very simple object, that essentially provides the same functionality as Request.Form[] in ASP.NET. Request.Form[] still works if you're running hosted in an ASP.NET application. However as a general rule, while ASP.NET's functionality is always available when running Web API hosted inside of an  ASP.NET application, using the built in classes specific to Web API makes it possible to run Web API applications in a self hosted environment outside of ASP.NET. If your client is sending JSON to your server, and you don't want to map the JSON to a strongly typed object because you only want to retrieve a few simple values, you can also accept a JObject parameter in your API methods:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } There quite a few options available to you to receive data with Web API, which gives you more choices for the right tool for the job. Unfortunately one shortcoming of Web API is that POST data is always mapped to a single parameter. This means you can't pass multiple POST parameters to methods that receive POST data. It's possible to accept multiple parameters, but only one can map to the POST content - the others have to come from the query string or route values. I have a couple of Blog POSTs that explain what works and what doesn't here: Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API   Handling Delete Operations Finally, to round out the server API code of the album example we've been discussin, here’s the DELETE verb controller method that allows removal of an album by its title:public HttpResponseMessage DeleteAlbum(string title) { var matchedAlbum = AlbumData.Current.Where(alb => alb.AlbumName == title) .SingleOrDefault(); if (matchedAlbum == null) return new HttpResponseMessage(HttpStatusCode.NotFound); AlbumData.Current.Remove(matchedAlbum); return new HttpResponseMessage(HttpStatusCode.NoContent); } To call this action method using jQuery, you can use:$(".removeimage").live("click", function () { var $el = $(this).parent(".album"); var txt = $el.find("a").text(); $.ajax({ url: "albums/" + encodeURIComponent(txt), type: "Delete", success: function (result) { $el.fadeOut().remove(); }, error: jqError }); }   Note the use of the DELETE verb in the $.ajax() call, which routes to DeleteAlbum on the server. DELETE is a non-content operation, so you supply a resource ID (the title) via route value or the querystring. Routing Conflicts In all requests with the exception of the AlbumArt image example shown so far, I used HTTP Verb routing that I set up in Listing 1. HTTP Verb Routing is a recommendation that is in line with typical REST access to HTTP resources. However, it takes quite a bit of effort to create REST-compliant API implementations based only on HTTP Verb routing only. You saw one example that didn’t really fit – the return of an image where I created a custom route albums/{title}/image that required creation of a second controller and a custom route to work. HTTP Verb routing to a controller does not mix with custom or action routing to the same controller because of the limited mapping of HTTP verbs imposed by HTTP Verb routing. To understand some of the problems with verb routing, let’s look at another example. Let’s say you create a GetSortableAlbums() method like this and add it to the original AlbumApiController accessed via HTTP Verb routing:[HttpGet] public IQueryable<Album> SortableAlbums() { var albums = AlbumData.Current; // generally should be done only on actual queryable results (EF etc.) // Done here because we're running with a static list but otherwise might be slow return albums.AsQueryable(); } If you compile this code and try to now access the /albums/ link, you get an error: Multiple Actions were found that match the request. HTTP Verb routing only allows access to one GET operation per parameter/route value match. If more than one method exists with the same parameter signature, it doesn’t work. As I mentioned earlier for the image display, the only solution to get this method to work is to throw it into another controller. Because I already set up the AlbumRpcApiController I can add the method there. First, I should rename the method to SortableAlbums() so I’m not using a Get prefix for the method. This also makes the action parameter look cleaner in the URL - it looks less like a method and more like a noun. I can then create a new route that handles direct-action mapping:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); As I am explicitly adding a route segment – rpc – into the route template, I can now reference explicit methods in the Web API controller using URLs like this: http://localhost/AspNetWebApi/rpc/SortableAlbums Error Handling I’ve already done some minimal error handling in the examples. For example in Listing 6, I detected some known-error scenarios like model validation failing or a resource not being found and returning an appropriate HttpResponseMessage result. But what happens if your code just blows up or causes an exception? If you have a controller method, like this:[HttpGet] public void ThrowException() { throw new UnauthorizedAccessException("Unauthorized Access Sucka"); } You can call it with this: http://localhost/AspNetWebApi/albums/rpc/ThrowException The default exception handling displays a 500-status response with the serialized exception on the local computer only. When you connect from a remote computer, Web API throws back a 500  HTTP Error with no data returned (IIS then adds its HTML error page). The behavior is configurable in the GlobalConfiguration:GlobalConfiguration .Configuration .IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never; If you want more control over your error responses sent from code, you can throw explicit error responses yourself using HttpResponseException. When you throw an HttpResponseException the response parameter is used to generate the output for the Controller action. [HttpGet] public void ThrowError() { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.BadRequest, new ApiMessageError("Your code stinks!")); throw new HttpResponseException(resp); } Throwing an HttpResponseException stops the processing of the controller method and immediately returns the response you passed to the exception. Unlike other Exceptions fired inside of WebAPI, HttpResponseException bypasses the Exception Filters installed and instead just outputs the response you provide. In this case, the serialized ApiMessageError result string is returned in the default serialization format – XML or JSON. You can pass any content to HttpResponseMessage, which includes creating your own exception objects and consistently returning error messages to the client. Here’s a small helper method on the controller that you might use to send exception info back to the client consistently:private void ThrowSafeException(string message, HttpStatusCode statusCode = HttpStatusCode.BadRequest) { var errResponse = Request.CreateResponse<ApiMessageError>(statusCode, new ApiMessageError() { message = message }); throw new HttpResponseException(errResponse); } You can then use it to output any captured errors from code:[HttpGet] public void ThrowErrorSafe() { try { List<string> list = null; list.Add("Rick"); } catch (Exception ex) { ThrowSafeException(ex.Message); } }   Exception Filters Another more global solution is to create an Exception Filter. Filters in Web API provide the ability to pre- and post-process controller method operations. An exception filter looks at all exceptions fired and then optionally creates an HttpResponseMessage result. Listing 8 shows an example of a basic Exception filter implementation.public class UnhandledExceptionFilter : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { HttpStatusCode status = HttpStatusCode.InternalServerError; var exType = context.Exception.GetType(); if (exType == typeof(UnauthorizedAccessException)) status = HttpStatusCode.Unauthorized; else if (exType == typeof(ArgumentException)) status = HttpStatusCode.NotFound; var apiError = new ApiMessageError() { message = context.Exception.Message }; // create a new response and attach our ApiError object // which now gets returned on ANY exception result var errorResponse = context.Request.CreateResponse<ApiMessageError>(status, apiError); context.Response = errorResponse; base.OnException(context); } } Exception Filter Attributes can be assigned to an ApiController class like this:[UnhandledExceptionFilter] public class AlbumRpcApiController : ApiController or you can globally assign it to all controllers by adding it to the HTTP Configuration's Filters collection:GlobalConfiguration.Configuration.Filters.Add(new UnhandledExceptionFilter()); The latter is a great way to get global error trapping so that all errors (short of hard IIS errors and explicit HttpResponseException errors) return a valid error response that includes error information in the form of a known-error object. Using a filter like this allows you to throw an exception as you normally would and have your filter create a response in the appropriate output format that the client expects. For example, an AJAX application can on failure expect to see a JSON error result that corresponds to the real error that occurred rather than a 500 error along with HTML error page that IIS throws up. You can even create some custom exceptions so you can differentiate your own exceptions from unhandled system exceptions - you often don't want to display error information from 'unknown' exceptions as they may contain sensitive system information or info that's not generally useful to users of your application/site. This is just one example of how ASP.NET Web API is configurable and extensible. Exception filters are just one example of how you can plug-in into the Web API request flow to modify output. Many more hooks exist and I’ll take a closer look at extensibility in Part 2 of this article in the future. Summary Web API is a big improvement over previous Microsoft REST and AJAX toolkits. The key features to its usefulness are its ease of use with simple controller based logic, familiar MVC-style routing, low configuration impact, extensibility at all levels and tight attention to exposing and making HTTP semantics easily discoverable and easy to use. Although none of the concepts used in Web API are new or radical, Web API combines the best of previous platforms into a single framework that’s highly functional, easy to work with, and extensible to boot. I think that Microsoft has hit a home run with Web API. Related Resources Where does ASP.NET Web API fit? Sample Source Code on GitHub Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API Creating a JSONP Formatter for ASP.NET Web API Removing the XML Formatter from ASP.NET Web API Applications© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • SQL SERVER – History of SQL Server Database Encryption

    - by pinaldave
    I recently met Michael Coles and Rodeney Landrum the author of one of the kind book Expert SQL Server 2008 Encryption at SQLPASS in Seattle. During the conversation we ended up how Microsoft is evolving encryption technology. The same discussion lead to talking about history of encryption tools in SQL Server. Michale pointed me to page 18 of his book of encryption. He explicitly give me permission to re-produce relevant part of history from his book. Encryption in SQL Server 2000 Built-in cryptographic encryption functionality was nonexistent in SQL Server 2000 and prior versions. In order to get server-side encryption in SQL Server you had to resort to purchasing or creating your own SQL Server XPs. Creating your own cryptographic XPs could be a daunting task owing to the fact that XPs had to be compiled as native DLLs (using a language like C or C++) and the XP application programming interface (API) was poorly documented. In addition there were always concerns around creating wellbehaved XPs that “played nicely” with the SQL Server process. Encryption in SQL Server 2005 Prior to the release of SQL Server 2005 there was a flurry of regulatory activity in response to accounting scandals and attacks on repositories of confidential consumer data. Much of this regulation centered onthe need for protecting and controlling access to sensitive financial and consumer information. With the release of SQL Server 2005 Microsoft responded to the increasing demand for built-in encryption byproviding the necessary tools to encrypt data at the column level. This functionality prominently featured the following: Support for column-level encryption of data using symmetric keys or passphrases. Built-in access to a variety of symmetric and asymmetric encryption algorithms, including AES, DES, Triple DES, RC2, RC4, and RSA. Capability to create and manage symmetric keys. Key creation and management. Ability to generate asymmetric keys and self-signed certificates, or to install external asymmetric keys and certificates. Implementation of hierarchical model for encryption key management, similar to the ANSI X9.17 standard model. SQL functions to generate one-way hash codes and digital signatures, including SHA-1 and MD5 hashes. Additional SQL functions to encrypt and decrypt data. Extensions to the SQL language to support creation, use, and administration of encryption keys and certificates. SQL CLR extensions that provide access to .NET-based encryption functionality. Encryption in SQL Server 2008 Encryption demands have increased over the past few years. For instance, there has been a demand for the ability to store encryption keys “off-the-box,” physically separate from the database and the data it contains. Also there is a recognized requirement for legacy databases and applications to take advantage of encryption without changing the existing code base. To address these needs SQL Server 2008 adds the following features to its encryption arsenal: Transparent Data Encryption (TDE): Allows you to encrypt an entire database, including log files and the tempdb database, in such a way that it is transparent to client applications. Extensible Key Management (EKM): Allows you to store and manage your encryption keys on an external device known as a hardware security module (HSM). Cryptographic random number generation functionality. Additional cryptography-related catalog views and dynamic management views. SQL language extensions to support the new encryption functionality. The encryption book covers all the tools in its various chapter in one simple story. If you are interested how encryption evolved and reached to the stage where it is today, this book is must for everyone. You can read my earlier review of the book over here. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQLAuthority Book Review, SQLAuthority News, T SQL, Technology Tagged: Encryption, SQL Server Encryption, SQLPASS

    Read the article

  • Cocos2d-xna memory management for WP8

    - by Arkiliknam
    I recently upgraded to VS2012 and try my in dev game out on the new WP8 emulators but was dismayed to find out the emulator now crashes and throws an out of memory exception during my sprite loading procedure (funnily, it still works in WP7 emulators and on my WP7). Regardless of whether the problem is the emulator or not, I want to get a clear understanding of how I should be managing memory in the game. My game consists of a character whom has 4 or more different animations. Each animation consists of 4 to 7 frames. On top of that, the character has up to 8 stackable visualization modifications (eg eye type, nose type, hair type, clothes type). Pre memory issue, I preloaded all textures for each animation frame and customization and created animate action out of them. The game then plays animations using the customizations applied to that current character. I re-looked at this implementation when I received the out of memory exceptions and have started playing with RenderTexture instead, so instead of pre loading all possible textures, it on loads textures needed for the character, renders them onto a single texture, from which the animation is built. This means the animations use 1/8th of the sprites they were before. I thought this would solve my issue, but it hasn't. Here's a snippet of my code: var characterTexture = CCRenderTexture.Create((int)width, (int)height); characterTexture.BeginWithClear(0, 0, 0, 0); // stamp a body onto my texture var bodySprite = MethodToCreateSpecificSprite(); bodySprite.Position = centerPoint; bodySprite.Visit(); bodySprite.Cleanup(); bodySprite = null; // stamp eyes, nose, mouth, clothes, etc... characterTexture.End(); As you can see, I'm calling CleanUp and setting the sprite to null in the hope of releasing the memory, though I don't believe this is the right way, nor does it seem to work... I also tried using SharedTextureCache to load textures before Stamping my texture out, and then clearing the SharedTextureCache with: CCTextureCache.SharedTextureCache.RemoveAllTextures(); But this didn't have an effect either. Any tips on what I'm not doing? I used VS to do a memory profile of the emulation causing the crash. Both WP7.1 and WP8 emulators peak at about 150mb of usage. WP8 crashes and throws an out of memory exception. Each customisation/frame is 15kb at the most. Lets say there are 8 layers of customisation = 120kb but I render then onto one texture which I would assume is only 15kb again. Each animation is 8 frames at the most. That's 15kb for 1 texture, or 960kb for 8 textures of customisation. There are 4 animation sets. That's 60Kb for 4 sets of 1 texture, or 3.75MB for 4 sets of 8 textures of customisation. So even if its storing every layer, its 3.75MB.... no where near the 150mb breaking point my profiler seems to suggest :( WP 7.1 Memory Profile (max 150MB) WP8 Memory Profile (max 150MB and crashes)

    Read the article

  • Our Oracle Recruitment Team is Growing - Multiple Job Opportunities in Bangalore, India

    - by david.talamelli
    DON"T GET STUCK IN THE MATRIXSEE YOUR FUTUREVISIT THE ORACLE The position(s): CORPORATE RECRUITING RESEARCH ANALYST(S) ABOUT ORACLE Oracle's business is information--how to manage it, use it, share it, protect it. For three decades, Oracle, the world's largest enterprise software company, has provided the software and services that allow organizations to get the most up-to-date and accurate information from their business systems. Only Oracle powers the information-driven enterprise by offering a complete, integrated solution for every segment of the process industry. When you run Oracle applications on Oracle technology, you speed implementation, optimize performance, and maximize ROI. Great hiring doesn't happen by accident; it's the culmination of a series of thoughtfully planned and well executed events. At the core of any hiring process is a sourcing strategy. This is where you come in... Do you want to be a part of a world-class recruiting organization that's on the cutting edge of technology? Would you like to experience a rewarding work environment that allows you to further develop your skills, while giving you the opportunity to develop new skills? If you answered yes, you've taken your first step towards a future with Oracle. We are building a Research Team to support our North America Recruitment Team, and we need creative, smart, and ambitious individuals to help us drive our research department forward. Oracle has a track record for employing and developing the very best in the industry. We invest generously in employee development, training and resources. Be a part of the most progressive internal recruiting team in the industry. For more information about Oracle, please visit our Web site at http://www.oracle.com Escape the hum drum job world matrix, visit the Oracle and be a part of a winning team, apply today. POSITION: Corporate Recruiting Research Analyst LOCATION: Bangalore, India RESPONSIBILITIES: •Develop candidate pipeline using Web 2.0 sourcing strategies and advanced Boolean Search techniques to support U.S. Recruiting Team for various job functions and levels. •Engage with assigned recruiters to understand the supported business as well as the recruiting requirements; partner with recruiters to meet expectations and deliver a qualified pipeline of candidates. •Source candidates to include both active and passive job seekers to provide a strong pipeline of qualified candidates for each recruiter; exercise creativity to find candidates using Oracle's advanced sourcing tools/techniques. •Fully evaluate candidate's background against the requirements provided by recruiter, and process leads using ATS (Applicant Tracking System). •Manage your efforts efficiently; maintain the highest levels of client satisfaction as well as strong operations and reporting of research activities. PREFERRED QUALIFICATIONS: •Fluent in English, with excellent written and oral communication skills. •Undergraduate degree required, MBA or Masters preferred. •Proficiency with Boolean Search techniques desired. •Ability to learn new software applications quickly. •Must be able to accommodate some U.S. evening hours. •Strong organization and attention to detail skills. •Prior HR or corporate in-house recruiting experiences a plus. •The fire in the belly to learn new ideas and succeed. •Ability to work in team and individual environments. This is an excellent opportunity to join Oracle in our Bangalore Offices. Interested applicants can send their resume to [email protected] or contact David on +61 3 8616 3364

    Read the article

  • Advanced Data Source Engine coming to Telerik Reporting Q1 2010

    This is the final blog post from the pre-release series. In it we are going to share with you some of the updates coming to our reporting solution in Q1 2010. A new Declarative Data Source Engine will be added to Telerik Reporting, that will allow full control over data management, and deliver significant gains in rendering performance and memory consumption. Some of the engines new features will be: Data source parameters - those parameters will be used to limit data retrieved from the data source to just the data needed for the report. Data source parameters are processed on the data source side, however only queried data is fetched to the reporting engine, rather than the full data source. This leads to lower memory consumption, because data operations are performed on queried data only, rather than on all data. As a result, only the queried data needs to be stored in the memory vs. the whole dataset, which was the case with the old approach Support for stored procedures - they will assist in achieving a consistent implementation of logic across applications, and are especially practical for performing repetitive tasks. A stored procedure stores the SQL statements and logic, which can then be executed in different reports and/or applications. Stored Procedures will not only save development time, but they will also improve performance, because each stored procedure is compiled on the data base server once, and then is reutilized. In Telerik Reporting, the stored procedure will also be parameterized, where elements of the SQL statement will be bound to parameters. These parameterized SQL queries will be handled through the data source parameters, and are evaluated at run time. Using parameterized SQL queries will improve the performance and decrease the memory footprint of your application, because they will be applied directly on the database server and only the necessary data will be downloaded on the middle tier or client machine; Calculated fields through expressions - with the help of the new reporting engine you will be able to use field values in formulas to come up with a calculated field. A calculated field is a user defined field that is computed "on the fly" and does not exist in the data source, but can perform calculations using the data of the data source object it belongs to. Calculated fields are very handy for adding frequently used formulas to your reports; Improved performance and optimized in-memory OLAP engine - the new data source will come with several improvements in how aggregates are calculated, and memory is managed. As a result, you may experience between 30% (for simpler reports) and 400% (for calculation-intensive reports) in rendering performance, and about 50% decrease in memory consumption. Full design time support through wizards - Declarative data sources are a great advance and will save developers countless hours of coding. In Q1 2010, and true to Telerik Reportings essence, using the new data source engine and its features requires little to no coding, because we have extended most of the wizards to support the new functionality. The newly extended wizards are available in VS2005/VS2008/VS2010 design-time. More features will be revealed on the product's what's new page when the new version is officially released in a few days. Also make sure you attend the free webinar on Thursday, March 11th that will be dedicated to the updates in Telerik Reporting Q1 2010. Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • CRM 2011 - Workflows Vs JavaScripts

    - by Kanini
    In the Contact entity, I have the following attributes Preferred email - A read only field of type Email Personal email 1 - An email field Personal email 2 - An email field Work email 1 - An email field Work email 2 - An email field School email - An email field Other email - An email field Preferred email option - An option set with the following values {Personal email 1, Personal email 2, Work email 1, Work email 2, School email and Other email). None of the above mentioned fields are required. Requirement When user picks a value from Preferred email option, we copy the email address available in that field and apply the same in the Preferred email field. Implementation The Solution Architect suggested that we implement the above requirement as a Workflow. The reason he provided was - most of the times, these values are to be populated by an external website and the data is then fed into CRM 2011 system. So, when they update Preferred email option via a Web Service call to CRM, the WF will run and updated the Preferred email field. My argument / solution What will happen if I do not pick a value from the Preferred email Option Set? Do I set it to any of the email addresses that has a value in it? If so, what if there is more than one of the email address fields are populated, i.e., what if Personal email 1 and Work email 1 is populated but no value is picked in the Option Set? What if a value existed in the Preferred email Option Set and I then change it to NULL? Should the field Preferred email (where the text value of email address is stored) be set to Read Only? If not, what if I have picked Personal email 1 in the Option Set and then edit the Preferred email address text field with a completely new email address If yes, then we are enforcing that the preferred email should be one among Personal email 1, Personal email 2, Work email 1, Work email 2, School email or Other email [My preference would be this] What if I had a value of [email protected] in the personal email 1 field and personal email 2 is empty and choose value of Personal email 1 in the drop down for Preferred email (this will set the Preferred email field to [email protected]) and later, I change the value to Personal email 2 in the Preferred email. It overwrites a valid email address with nothing. I agree that it would be highly unlikely that a user will pick Preferred email as Personal email 2 and not have a value in it but nevertheless it is a possible scenario, isn’t it? What if users typed in a value in Personal email 1 but by mistake picked Personal email 2 in the option set and Personal email 2 field had no value in it. Solution The field Preferred email option should be a required field A JS should run whenever Preferred email option is changed. That JS function should set the relevant email field as required (based on the option chosen) and another JS function should be called (see step 3). A JS function should update the value of Preferred email with the value in the email field (as picked in the option set). The JS function should also be run every time someone updates the actual email field which is chosen in the option set. The guys who are managing the external website should update the Preferred email field - surely, if they can update Preferred email option via a Web Service call, it is easy enough to update the Preferred email right? Question Which is a better method? Should it be written as a JS or a WorkFlow? Also, whose responsibility is it to update the Preferred email field when the data flows from an external website? I am new to CRM 2011 but have around 6 years of experience as a CRM consultant (with other products). I do not come from a development background as I started off as a Application Support Engineer but have picked up development in the last couple of years.

    Read the article

< Previous Page | 275 276 277 278 279 280 281 282 283 284 285 286  | Next Page >