Search Results

Search found 744 results on 30 pages for 'dig dug'.

Page 28/30 | < Previous Page | 24 25 26 27 28 29 30  | Next Page >

  • Using Unity – Part 2

    - by nmarun
    In the first part of this series, we created a simple project and learned how to implement IoC pattern using Unity. In this one, I’ll show how you can instantiate other types that implement our IProduct interface. One place where this one would want to use this feature is to create mock types for testing purposes. Alright, let’s dig in. I added another class – Product2.cs  to the ProductModel project. 1: public class Product2 : IProduct 2: { 3: public string Name { get; set;} 4: public Category Category { get; set; } 5: public DateTime MfgDate { get;set; } 6:  7: public Product2() 8: { 9: Name = "Canon Digital Rebel XTi"; 10: Category = new Category {Name = "Electronics", SubCategoryName = "Digital Cameras"}; 11: MfgDate = DateTime.Now; 12: } 13:  14: public string WriteProductDetails() 15: { 16: return string.Format("Name: {0}<br/>Category: {1}<br/>Mfg Date: {2}", 17: Name, Category, MfgDate.ToShortDateString()); 18: } 19: } Highlights of this class are that it implements IProduct interface and it has some different properties than the Product class. The Category class looks like below: 1: public class Category 2: { 3: public string Name { get; set; } 4: public string SubCategoryName { get; set; } 5:  6: public override string ToString() 7: { 8: return string.Format("{0} - {1}", Name, SubCategoryName); 9: } 10: } We’ll go to our web.config file to add the configuration information about this new class – Product2 that we created. Let’s first add a typeAlias element. 1: <typeAlias alias="Product2" type="ProductModel.Product2, ProductModel"/> That’s all that is needed for us to get an instance of Product2 in our application. I have a new button added to the .aspx page and the click event of this button is where all the magic happens: 1: private IUnityContainer unityContainer; 2: protected void Page_Load(object sender, EventArgs e) 3: { 4: unityContainer = Application["UnityContainer"] as IUnityContainer; 5: 6: if (unityContainer == null) 7: { 8: productDetailsLabel.Text = "ERROR: Unity Container not populated in Global.asax.<p />"; 9: } 10: else 11: { 12: if (!IsPostBack) 13: { 14: IProduct productInstance = unityContainer.Resolve<IProduct>(); 15: productDetailsLabel.Text = productInstance.WriteProductDetails(); 16: } 17: } 18: } 19:  20: protected void Product2Button_Click(object sender, EventArgs e) 21: { 22: unityContainer.RegisterType<IProduct, Product2>(); 23: IProduct product2Instance = unityContainer.Resolve<IProduct>(); 24: productDetailsLabel.Text = product2Instance.WriteProductDetails(); 25: } The unityContainer instance is set in the Page_Load event. Line 22 in the click event of the Product2Button registers a type mapping in the container. In English, this means that when unityContainer tries to resolve for IProduct, it gets an instance of Product2. Once this code runs, following output is rendered: There’s another way of doing this. You can resolve an instance of the requested type with a name from the container. We’ll have to update the container element of our web.config file to include the following: 1: <container name="unityContainer"> 2: <types> 3: <type type="IProduct" mapTo="Product"/> 4: <!-- Named mapping for IProduct to Product --> 5: <type type="IProduct" mapTo="Product" name="LegacyProduct" /> 6: <!-- Named mapping for IProduct to Product2 --> 7: <type type="IProduct" mapTo="Product2" name="NewProduct" /> 8: </types> 9: </container> I’ve added a Dropdownlist and a button to the design page: 1: <asp:DropDownList ID="ModelTypesList" runat="server"> 2: <asp:ListItem Text="Legacy Product" Value="LegacyProduct" /> 3: <asp:ListItem Text="New Product" Value="NewProduct" /> 4: </asp:DropDownList> 5: <br /> 6: <asp:Button ID="SelectedModelButton" Text="Get Selected Instance" runat="server" 7: onclick="SelectedModelButton_Click" /> 1: protected void SelectedModelButton_Click(object sender, EventArgs e) 2: { 3: // get the selected value: LegacyProduct or NewProduct 4: string modelType = ModelTypesList.SelectedValue; 5: // pass the modelType to the Resolve method 6: IProduct customModel = unityContainer.Resolve<IProduct>(modelType); 7: productDetailsLabel.Text = customModel.WriteProductDetails(); 8: } Pretty straight forward right? The only thing to note here is that the values in the dropdownlist item need to match the name attribute of the type. Depending on what you select, you’ll get an instance of either the Product class or the Product2 class and the corresponding WriteProductDetails() method is called. Now you see, how either of these methods can be used to create mock objects your the test project. See the code here. I’ll continue to share more of Unity in the next blog.

    Read the article

  • AdvancedFormatProvider: Making string.format do more

    - by plblum
    When I have an integer that I want to format within the String.Format() and ToString(format) methods, I’m always forgetting the format symbol to use with it. That’s probably because its not very intuitive. Use {0:N0} if you want it with group (thousands) separators. text = String.Format("{0:N0}", 1000); // returns "1,000"   int value1 = 1000; text = value1.ToString("N0"); Use {0:D} or {0:G} if you want it without group separators. text = String.Format("{0:D}", 1000); // returns "1000"   int value2 = 1000; text2 = value2.ToString("D"); The {0:D} is especially confusing because Microsoft gives the token the name “Decimal”. I thought it reasonable to have a new format symbol for String.Format, "I" for integer, and the ability to tell it whether it shows the group separators. Along the same lines, why not expand the format symbols for currency ({0:C}) and percent ({0:P}) to let you omit the currency or percent symbol, omit the group separator, and even to drop the decimal part when the value is equal to the whole number? My solution is an open source project called AdvancedFormatProvider, a group of classes that provide the new format symbols, continue to support the rest of the native symbols and makes it easy to plug in additional format symbols. Please visit https://github.com/plblum/AdvancedFormatProvider to learn about it in detail and explore how its implemented. The rest of this post will explore some of the concepts it takes to expand String.Format() and ToString(format). AdvancedFormatProvider benefits: Supports {0:I} token for integers. It offers the {0:I-,} option to omit the group separator. Supports {0:C} token with several options. {0:C-$} omits the currency symbol. {0:C-,} omits group separators, and {0:C-0} hides the decimal part when the value would show “.00”. For example, 1000.0 becomes “$1000” while 1000.12 becomes “$1000.12”. Supports {0:P} token with several options. {0:P-%} omits the percent symbol. {0:P-,} omits group separators, and {0:P-0} hides the decimal part when the value would show “.00”. For example, 1 becomes “100 %” while 1.1223 becomes “112.23 %”. Provides a plug in framework that lets you create new formatters to handle specific format symbols. You register them globally so you can just pass the AdvancedFormatProvider object into String.Format and ToString(format) without having to figure out which plug ins to add. text = String.Format(AdvancedFormatProvider.Current, "{0:I}", 1000); // returns "1,000" text2 = String.Format(AdvancedFormatProvider.Current, "{0:I-,}", 1000); // returns "1000" text3 = String.Format(AdvancedFormatProvider.Current, "{0:C-$-,}", 1000.0); // returns "1000.00" The IFormatProvider parameter Microsoft has made String.Format() and ToString(format) format expandable. They each take an additional parameter that takes an object that implements System.IFormatProvider. This interface has a single member, the GetFormat() method, which returns an object that knows how to convert the format symbol and value into the desired string. There are already a number of web-based resources to teach you about IFormatProvider and the companion interface ICustomFormatter. I’ll defer to them if you want to dig more into the topic. The only thing I want to point out is what I think are implementation considerations. Why GetFormat() always tests for ICustomFormatter When you see examples of implementing IFormatProviders, the GetFormat() method always tests the parameter against the ICustomFormatter type. Why is that? public object GetFormat(Type formatType) { if (formatType == typeof(ICustomFormatter)) return this; else return null; } The value of formatType is already predetermined by the .net framework. String.Format() uses the StringBuilder.AppendFormat() method to parse the string, extracting the tokens and calling GetFormat() with the ICustomFormatter type. (The .net framework also calls GetFormat() with the types of System.Globalization.NumberFormatInfo and System.Globalization.DateTimeFormatInfo but these are exclusive to how the System.Globalization.CultureInfo class handles its implementation of IFormatProvider.) Your code replaces instead of expands I would have expected the caller to pass in the format string to GetFormat() to allow your code to determine if it handles the request. My vision would be to return null when the format string is not supported. The caller would iterate through IFormatProviders until it finds one that handles the format string. Unfortunatley that is not the case. The reason you write GetFormat() as above is because the caller is expecting an object that handles all formatting cases. You are effectively supposed to write enough code in your formatter to handle your new cases and call .net functions (like String.Format() and ToString(format)) to handle the original cases. Its not hard to support the native functions from within your ICustomFormatter.Format function. Just test the format string to see if it applies to you. If not, call String.Format() with a token using the format passed in. public string Format(string format, object arg, IFormatProvider formatProvider) { if (format.StartsWith("I")) { // handle "I" formatter } else return String.Format(formatProvider, "{0:" + format + "}", arg); } Formatters are only used by explicit request Each time you write a custom formatter (implementer of ICustomFormatter), it is not used unless you explicitly passed an IFormatProvider object that supports your formatter into String.Format() or ToString(). This has several disadvantages: Suppose you have several ICustomFormatters. In order to have all available to String.Format() and ToString(format), you have to merge their code and create an IFormatProvider to return an instance of your new class. You have to remember to utilize the IFormatProvider parameter. Its easy to overlook, especially when you have existing code that calls String.Format() without using it. Some APIs may call String.Format() themselves. If those APIs do not offer an IFormatProvider parameter, your ICustomFormatter will not be available to them. The AdvancedFormatProvider solves the first two of these problems by providing a plug-in architecture.

    Read the article

  • Life Technologies: Making Life Easier to Manage

    - by Michael Snow
    12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} When we’re thinking about customer engagement, we’re acutely aware of all the forces at play competing for our customer’s attention. Solutions that make life easier for our customers draw attention to themselves. We tend to engage more when there is a distinct benefit and we can take a deep breath and accept that there is hope in the world and everything isn’t designed to frustrate us and make our lives miserable. (sigh…) When products are designed to automate processes that were consuming hours of our time with no relief in sight, they deserve to be recognized. One of our recent Oracle Fusion Middleware Innovation Award Winners in the WebCenter category, Life Technologies, has recently posted a video promoting their “award winning” solution. The Oracle Innovation Awards are part of the overall Oracle Excellence awards given to customers for innovation with Oracle products. More info here. Their award nomination included this description: Life Technologies delivered the My Life Service Portal as part of a larger Digital Hub strategy. This Portal is the first of its kind in the biotechnology service providing industry. The Portal provides access to Life Technologies cloud based service monitoring system where all customer deployed instruments can be remotely monitored and proactively repaired. The portal provides alerts from these cloud based monitoring services directly to the customer and to Life Technologies Field Engineers. The Portal provides insight into the instruments and services customers purchased for the purpose of analyzing and anticipating future customer needs and creating targeted sales and service programs. This portal not only provides benefits for Life Technologies internal sales and service teams but provides customers a central place to track all pertinent instrument information including: instrument service history instrument status and previous activities instrument performance analytics planned service visits warranty/contract information discussion forums social networks for lab management and collaboration alerts and notifications on all of the above team scheduling for instrument usage promote optional reagents required to keep instruments performing From their website The Life Technologies Instruments & Services Portal Helps You Save Time and Gain Peace of Mind Introducing the new, award-winning, free online tool that enables easier management of your instrument use and care, faster response to requests for service or service quotes, and instant sharing of key instrument and service information with your colleagues. Now – this unto itself is obviously beneficial for their customers who were previously burdened with having to do all of these tasks separately, manually and inconsistently by nature. Now – all in one place and free to their customers – a portal that ties it all together. They now have built the platform to give their customers yet another reason to do business with them – Their headline on their product page says it all: “Life is now easier to manage - All your instrument use and care in one place – the no-cost, no-hassle Instruments and Services Portal.” Of course – it’s very convenient that the company name includes “Life” and now can also promote to their clients and prospects that doing business with them is easy and their sophisticated lab equipment is easy to manage. In an industry full of PhD’s – “Easy” isn’t usually the first word that comes to mind, but Life Technologies has now tied the word to their brand in a very eloquent way. Between our work lives and family or personal lives, getting any mono-focused minutes of dedicated attention has become such a rare occurrence in our current era of multi-tasking that those moments of focus are highly prized. So – when something is done really well – so well that it becomes captivating and urges sharing impulses – I take notice and dig deeper and most of the time I discover other gems not so hidden below the surface. And then I share with those I know would enjoy and understand. In the spirit of full disclosure, I must admit here that the first person I shared the videos below with was my daughter. She’s in her senior year of high school in the midst of her college search. She’s passionate about her academics and has already decided that she wants to study Neuroscience in college and like her mother will be in for the long haul to a PhD eventually. In a summer science program at Smith College 2 summers ago – she sent the family famous text to me – “I just dissected a sheep’s brain – wicked cool!” – This was followed by an equally memorable text this past summer in a research mentorship in Neuroscience at UConn – “Just sliced up some rat brain. Reminded me of a deli slicer at the supermarket… sorry I forgot to call last night…” So… needless to say – I knew I had an audience that would enjoy and understand these videos below and are now being shared among her science classmates and faculty. And evidently - so does Life Technologies! They’ve done a great job on these making them fun and something that will easily be shared among their customers social networks. They’ve created a neuro-archetypal character, “Ph.Diddy” and know that their world of clients in academics, research, and other institutions would understand and enjoy the “edutainment” value in this series of videos on their YouTube channel that pokes fun at the stereotypes while also promoting their products at the same time. They use their Facebook page for additional engagement with their clients and as another venue to promote these videos. Enjoy this one as well! More to be found here: http://www.youtube.com/lifetechnologies Stay tuned to this Oracle WebCenter blog channel. Tomorrow we'll be taking a look at another winner of the Innovation Awards, LADWP - helping to keep the citizens of Los Angeles engaged with their Water and Power provider.

    Read the article

  • Fixing a SkyDrive Sync Disaster

    - by Rick Strahl
    For a few months I've been using SkyDrive to handle some basic synching tasks for a number of folders of mine. Specifically I've been dumping a few of my development folders into sky drive so I have a live running backup. It had been working just fine until about a week ago when something went awry. Badly! The idea is that the SkyDrive should sync files, but somewhere in its sync relationship it appears that SkyDrive got confused and assumed it needed to sync back older files to my local machine from the SkyDrive server. So rather than syncing my newer files to the server SkyDrive was pushing older files back to me. Because SkyDrive is so slow actually updating data it's not unusual for SkyDrive to be far behind in syncing and apparently some files were out of date by several months. Of course this is insidious because I didn't notice it for quite some time. I'd been happily working away on my files when a few days ago I noted a bunch of files with -RasXps (my machine name) popping up in various folders. At first I thought my Git repository was giving me a fit, but eventually realized that SkyDrive was actually pushing old files into my monitored folders. To be fair SkyDrive did make backups of the existing files, but by the time I caught it there were literally a few thousand files scattered on my machine that were now updated with old files from online. Here's what some of this looks like: If you look at the directory list you see a bunch of files with a -RasXps postfix appended to them. Those are the files that SkyDrive replaced and backed up on my machine. As you can see the backed up files are actually newer than the ones it pulled from the online SkyDrive. Unless I modified the files after they were updated they all were older than the existing local files. Not exactly how I imagined my synching would work. At first I started cleaning up this mess manually. In most cases the obvious solution was to simply delete the original file and replace with the -RasXps file, but not in all files. Some scrutiny was required and besides being a pain in the ass to rename files, quite frequently I had to dig out Beyond Compare to compare a few files where it wasn't quite clear what's wrong. I quickly realized that doing this by hand would be too hard for the large number of files that got hosed. Hacking together a small .NET Utility So, I figured the easiest way to tackle this is to write a small utility app that shows me all the mangled files that have backups, allows me to compare them and then quickly select and update them, removing the -RasXps file after choosing one of the two files. What I ended up with was a quick and dirty WinForms app that allows me to pick a root folder, and then shows all the -MachineName files: I start by picking a base folder and a template to search for - typically the -MachineName. Clicking Go brings up a list of all files in that folder and its subdirectories.  The list also displays the dates for the saved (-MachineName) file and the current file on disk, along with highlighting for the newer of the two. I can right click on any file and get a context menu pop up to open the folder in Explorer, or open Beyond Compare and view the two files to compare differences which I found very helpful for a number of files where I had modified the files after SkyDrive had updated to an old one. Typically these would be the green files (of which there were thankfully few). To 'fix' files I can select any number of files in the list, then use one of the three buttons on the right to apply an operation. I can use the Saved files - that is the backup file that SkyDrive created with the -MachineName extension (-RasXps above). Or I can use the current file, which is the file with the right name on disk right now and delete the -MachineName file. Or on some occasions I can just opt to delete both of them. For some files like binaries it's often easier to just delete and them be rebuild than choosing. For the most part the process involves accepting the pink files, and checking the few green files and see if any modifications were made since the file was updated incorrectly by SkyDrive. For me luckily those are few in number. Anyways, I thought I share this utility in case anybody else runs into this issue. I've included the VS2012 solution and all the source code so you can see how it works and you can tweak it as needed. The .NET 4.5 binaries are also included if you can't compile. Be warned though!  This rough code is provided as is and makes no guarantees or claims about file safety. All three of the action buttons on the form will delete data. It's a very rough utility and there are no safeguards that ask nicely before deleting files. I highly recommend you make a backup before you have at it. This tools is very narrow in focus, but it might also work with other sync issues from other vendors. I seem to remember that I had similar issues with SugarSync at some point and it too created the -MachineName style files on sync conflicts. Hope this helps somebody out so you can avoid wasting the better part of a full work day on this… Resources Download the Source Code and Binaries for SkyDrive Rescue© Rick Strahl, West Wind Technologies, 2005-2013Posted in Windows  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • API Message Localization

    - by Jesse Taber
    In my post, “Keep Localizable Strings Close To Your Users” I talked about the internationalization and localization difficulties that can arise when you sprinkle static localizable strings throughout the different logical layers of an application. The main point of that post is that you should have your localizable strings reside as close to the user-facing modules of your application as possible. For example, if you’re developing an ASP .NET web forms application all of the localizable strings should be kept in .resx files that are associated with the .aspx views of the application. In this post I want to talk about how this same concept can be applied when designing and developing APIs. An API Facilitates Machine-to-Machine Interaction You can typically think about a web, desktop, or mobile application as a collection “views” or “screens” through which users interact with the underlying logic and data. The application can be designed based on the assumption that there will be a human being on the other end of the screen working the controls. You are designing a machine-to-person interaction and the application should be built in a way that facilitates the user’s clear understanding of what is going on. Dates should be be formatted in a way that the user will be familiar with, messages should be presented in the user’s preferred language, etc. When building an API, however, there are no screens and you can’t make assumptions about who or what is on the other end of each call. An API is, by definition, a machine-to-machine interaction. A machine-to-machine interaction should be built in a way that facilitates a clear and unambiguous understanding of what is going on. Dates and numbers should be formatted in predictable and standard ways (e.g. ISO 8601 dates) and messages should be presented in machine-parseable formats. For example, consider an API for a time tracking system that exposes a resource for creating a new time entry. The JSON for creating a new time entry for a user might look like: 1: { 2: "userId": 4532, 3: "startDateUtc": "2012-10-22T14:01:54.98432Z", 4: "endDateUtc": "2012-10-22T11:34:45.29321Z" 5: }   Note how the parameters for start and end date are both expressed as ISO 8601 compliant dates in UTC. Using a date format like this in our API leaves little room for ambiguity. It’s also important to note that using ISO 8601 dates is a much, much saner thing than the \/Date(<milliseconds since epoch>)\/ nonsense that is sometimes used in JSON serialization. Probably the most important thing to note about the JSON snippet above is the fact that the end date comes before the start date! The API should recognize that and disallow the time entry from being created, returning an error to the caller. You might inclined to send a response that looks something like this: 1: { 2: "errors": [ {"message" : "The end date must come after the start date"}] 3: }   While this may seem like an appropriate thing to do there are a few problems with this approach: What if there is a user somewhere on the other end of the API call that doesn’t speak English?  What if the message provided here won’t fit properly within the UI of the application that made the API call? What if the verbiage of the message isn’t consistent with the rest of the application that made the API call? What if there is no user directly on the other end of the API call (e.g. this is a batch job uploading time entries once per night unattended)? The API knows nothing about the context from which the call was made. There are steps you could take to given the API some context (e.g.allow the caller to send along a language code indicating the language that the end user speaks), but that will only get you so far. As the designer of the API you could make some assumptions about how the API will be called, but if we start making assumptions we could very easily make the wrong assumptions. In this situation it’s best to make no assumptions and simply design the API in such a way that the caller has the responsibility to convey error messages in a manner that is appropriate for the context in which the error was raised. You would work around some of these problems by allowing callers to add metadata to each request describing the context from which the call is being made (e.g. accepting a ‘locale’ parameter denoting the desired language), but that will add needless clutter and complexity. It’s better to keep the API simple and push those context-specific concerns down to the caller whenever possible. For our very simple time entry example, this can be done by simply changing our error message response to look like this: 1: { 2: "errors": [ {"code": 100}] 3: }   By changing our error error from exposing a string to a numeric code that is easily parseable by another application, we’ve placed all of the responsibility for conveying the actual meaning of the error message on the caller. It’s best to have the caller be responsible for conveying this meaning because the caller understands the context much better than the API does. Now the caller can see error code 100, know that it means that the end date submitted falls before the start date and take appropriate action. Now all of the problems listed out above are non-issues because the caller can simply translate the error code of ‘100’ into the proper action and message for the current context. The numeric code representation of the error is a much better way to facilitate the machine-to-machine interaction that the API is meant to facilitate. An API Does Have Human Users While APIs should be built for machine-to-machine interaction, people still need to wire these interactions together. As a programmer building a client application that will consume the time entry API I would find it frustrating to have to go dig through the API documentation every time I encounter a new error code (assuming the documentation exists and is accurate). The numeric error code approach hurts the discoverability of the API and makes it painful to integrate with. We can help ease this pain by merging our two approaches: 1: { 2: "errors": [ {"code": 100, "message" : "The end date must come after the start date"}] 3: }   Now we have an easily parseable numeric error code for the machine-to-machine interaction that the API is meant to facilitate and a human-readable message for programmers working with the API. The human-readable message here is not intended to be viewed by end-users of the API and as such is not really a “localizable string” in my opinion. We could opt to expose a locale parameter for all API methods and store translations for all error messages, but that’s a lot of extra effort and overhead that doesn’t add a lot real value to the API. I might be a bit of an “ugly American”, but I think it’s probably fine to have the API return English messages when the target for those messages is a programmer. When resources are limited (which they always are), I’d argue that you’re better off hard-coding these messages in English and putting more effort into building more useful features, improving security, tweaking performance, etc.

    Read the article

  • ASP.NET MVC 3 Hosting :: Rolling with Razor in MVC v3 Preview

    - by mbridge
    Razor is an alternate view engine for asp.net MVC.  It was introduced in the “WebMatrix” tool and has now been released as part of the asp.net MVC 3 preview 1.  Basically, Razor allows us to replace the clunky <% %> syntax with a much cleaner coding model, which integrates very nicely with HTML.  Additionally, it provides some really nice features for master page type scenarios and you don’t lose access to any of the features you are currently familiar with, such as HTML helper methods. First, download and install the ASP.NET MVC Preview 1.  You can find this at http://www.microsoft.com/downloads/details.aspx?FamilyID=cb42f741-8fb1-4f43-a5fa-812096f8d1e8&displaylang=en. Now, follow these steps to create your first asp.net mvc project using Razor: 1. Open Visual Studio 2010 2. Create a new project.  Select File->New->Project (Shift Control N) 3. You will see the list of project types which should look similar to what’s shown:   4. Select “ASP.NET MVC 3 Web Application (Razor).”  Set the application name to RazorTest and the path to c:projectsRazorTest for this tutorial. If you select accidently select ASPX, you will end up with the standard asp.net view engine and template, which isn’t what you want. 5. For this tutorial, and ONLY for this tutorial, select “No, do not create a unit test project.”  In general, you should create and use a unit test project.  Code without unit tests is kind of like diet ice cream.  It just isn’t very good. Now, once we have this done, our brand new project will be created.    In all likelihood, Visual Studio will leave you looking at the “HomeController.cs” class, as shown below: Immediately, you should notice one difference.  The Index action used to look like: public ActionResult Index () { ViewData[“Message”] = “Welcome to ASP.Net MVC!”; Return View(); } While this will still compile and run just fine, ASP.Net MVC 3 has a much nicer way of doing this: public ActionResult Index() { ViewModel.Message = “Welcome to ASP.Net MVC!”; Return View(); } Instead of using ViewData we are using the new ViewModel object, which uses the new dynamic data typing of .Net 4.0 to allow us to express ourselves much more cleanly.  This isn’t a tutorial on ALL of MVC 3, but the ViewModel concept is one we will need as we dig into Razor. What comes in the box? When we create a project using the ASP.Net MVC 3 Template with Razor, we get a standard project setup, just like we did in ASP.NET MVC 2.0 but with some differences.  Instead of seeing “.aspx” view files and “.ascx” files, we see files with the “.cshtml” which is the default razor extension.  Before we discuss the details of a razor file, one thing to keep in mind is that since this is an extremely early preview, intellisense is not currently enabled with the razor view engine.  This is promised as an updated before the final release.  Just like with the aspx view engine, the convention of the folder name for a set of views matching the controller name without the word “Controller” still stands.  Similarly, each action in the controller will usually have a corresponding view file in the appropriate view directory.  Remember, in asp.net MVC, convention over configuration is key to successful development! The initial template organizes views in the following folders, located in the project under Views: - Account – The default account management views used by the Account controller.  Each file represents a distinct view. - Home – Views corresponding to the appropriate actions within the home controller. - Shared – This contains common view objects used by multiple views.  Within here, master pages are stored, as well as partial page views (user controls).  By convention, these partial views are named “_XXXPartial.cshtml” where XXX is the appropriate name, such as _LogonPartial.cshtml.  Additionally, display templates are stored under here. With this in mind, let us take a look at the index.cshtml file under the home view directory.  When you open up index.cshtml you should see 1:   @inherits System.Web.Mvc.WebViewPage 2:  @{ 3:          View.Title = "Home Page"; 4:       LayoutPage = "~/Views/Shared/_Layout.cshtml"; 5:   } 6:  <h2>@View.Message</h2> 7:  <p> 8:     To learn more about ASP.NET MVC visit <a href="http://asp.net/mvc" title="ASP.NET MVC     9:    Website">http://asp.net/mvc</a>. 10:  </p> So looking through this, we observe the following facts: Line 1 imports the base page that all views (using Razor) are based on, which is System.Web.Mvc.WebViewPage.  Note that this is different than System.Web.MVC.ViewPage which is used by asp.net MVC 2.0 Also note that instead of the <% %> syntax, we use the very simple ‘@’ sign.  The View Engine contains enough context sensitive logic that it can even distinguish between @ in code and @ in an email.  It’s a very clean markup.  Line 2 introduces the idea of a code block in razor.  A code block is a scoping mechanism just like it is in a normal C# class.  It is designated by @{… }  and any C# code can be placed in between.  Note that this is all server side code just like it is when using the aspx engine and <% %>.  Line 3 allows us to set the page title in the client page’s file.  This is a new feature which I’ll talk more about when we get to master pages, but it is another of the nice things razor brings to asp.net mvc development. Line 4 is where we specify our “master” page, but as you can see, you can place it almost anywhere you want, because you tell it where it is located.  A Layout Page is similar to a master page, but it gains a bit when it comes to flexibility.  Again, we’ll come back to this in a later installment.  Line 6 and beyond is where we display the contents of our view.  No more using <%: %> intermixed with code.  Instead, we get to use very clean syntax such as @View.Message.  This is a lot easier to read than <%:@View.Message%> especially when intermixed with html.  For example: <p> My name is @View.Name and I live at @View.Address </p> Compare this to the equivalent using the aspx view engine <p> My name is <%:View.Name %> and I live at <%: View.Address %> </p> While not an earth shaking simplification, it is easier on the eyes.  As  we explore other features, this clean markup will become more and more valuable.

    Read the article

  • Java EE 6 and NoSQL/MongoDB on GlassFish using JPA and EclipseLink 2.4 (TOTD #175)

    - by arungupta
    TOTD #166 explained how to use MongoDB in your Java EE 6 applications. The code in that tip used the APIs exposed by the MongoDB Java driver and so requires you to learn a new API. However if you are building Java EE 6 applications then you are already familiar with Java Persistence API (JPA). Eclipse Link 2.4, scheduled to release as part of Eclipse Juno, provides support for NoSQL databases by mapping a JPA entity to a document. Their wiki provides complete explanation of how the mapping is done. This Tip Of The Day (TOTD) will show how you can leverage that support in your Java EE 6 applications deployed on GlassFish 3.1.2. Before we dig into the code, here are the key concepts ... A POJO is mapped to a NoSQL data source using @NoSQL or <no-sql> element in "persistence.xml". A subset of JPQL and Criteria query are supported, based upon the underlying data store Connection properties are defined in "persistence.xml" Now, lets lets take a look at the code ... Download the latest EclipseLink 2.4 Nightly Bundle. There is a Installer, Source, and Bundle - make sure to download the Bundle link (20120410) and unzip. Download GlassFish 3.1.2 zip and unzip. Install the Eclipse Link 2.4 JARs in GlassFish Remove the following JARs from "glassfish/modules": org.eclipse.persistence.antlr.jar org.eclipse.persistence.asm.jar org.eclipse.persistence.core.jar org.eclipse.persistence.jpa.jar org.eclipse.persistence.jpa.modelgen.jar org.eclipse.persistence.moxy.jar org.eclipse.persistence.oracle.jar Add the following JARs from Eclipse Link 2.4 nightly build to "glassfish/modules": org.eclipse.persistence.antlr_3.2.0.v201107111232.jar org.eclipse.persistence.asm_3.3.1.v201107111215.jar org.eclipse.persistence.core.jpql_2.4.0.v20120407-r11132.jar org.eclipse.persistence.core_2.4.0.v20120407-r11132.jar org.eclipse.persistence.jpa.jpql_2.0.0.v20120407-r11132.jar org.eclipse.persistence.jpa.modelgen_2.4.0.v20120407-r11132.jar org.eclipse.persistence.jpa_2.4.0.v20120407-r11132.jar org.eclipse.persistence.moxy_2.4.0.v20120407-r11132.jar org.eclipse.persistence.nosql_2.4.0.v20120407-r11132.jar org.eclipse.persistence.oracle_2.4.0.v20120407-r11132.jar Start MongoDB Download latest MongoDB from here (2.0.4 as of this writing). Create the default data directory for MongoDB as: sudo mkdir -p /data/db/sudo chown `id -u` /data/db Refer to Quickstart for more details. Start MongoDB as: arungup-mac:mongodb-osx-x86_64-2.0.4 <arungup> ->./bin/mongod./bin/mongod --help for help and startup optionsMon Apr  9 12:56:02 [initandlisten] MongoDB starting : pid=3124 port=27017 dbpath=/data/db/ 64-bit host=arungup-mac.localMon Apr  9 12:56:02 [initandlisten] db version v2.0.4, pdfile version 4.5Mon Apr  9 12:56:02 [initandlisten] git version: 329f3c47fe8136c03392c8f0e548506cb21f8ebfMon Apr  9 12:56:02 [initandlisten] build info: Darwin erh2.10gen.cc 9.8.0 Darwin Kernel Version 9.8.0: Wed Jul 15 16:55:01 PDT 2009; root:xnu-1228.15.4~1/RELEASE_I386 i386 BOOST_LIB_VERSION=1_40Mon Apr  9 12:56:02 [initandlisten] options: {}Mon Apr  9 12:56:02 [initandlisten] journal dir=/data/db/journalMon Apr  9 12:56:02 [initandlisten] recover : no journal files present, no recovery neededMon Apr  9 12:56:02 [websvr] admin web console waiting for connections on port 28017Mon Apr  9 12:56:02 [initandlisten] waiting for connections on port 27017 Check out the JPA/NoSQL sample from SVN repository. The complete source code built in this TOTD can be downloaded here. Create Java EE 6 web app Create a Java EE 6 Maven web app as: mvn archetype:generate -DarchetypeGroupId=org.codehaus.mojo.archetypes -DarchetypeArtifactId=webapp-javaee6 -DgroupId=model -DartifactId=javaee-nosql -DarchetypeVersion=1.5 -DinteractiveMode=false Copy the model files from the checked out workspace to the generated project as: cd javaee-nosqlcp -r ~/code/workspaces/org.eclipse.persistence.example.jpa.nosql.mongo/src/model src/main/java Copy "persistence.xml" mkdir src/main/resources cp -r ~/code/workspaces/org.eclipse.persistence.example.jpa.nosql.mongo/src/META-INF ./src/main/resources Add the following dependencies: <dependency> <groupId>org.eclipse.persistence</groupId> <artifactId>org.eclipse.persistence.jpa</artifactId> <version>2.4.0-SNAPSHOT</version> <scope>provided</scope></dependency><dependency> <groupId>org.eclipse.persistence</groupId> <artifactId>org.eclipse.persistence.nosql</artifactId> <version>2.4.0-SNAPSHOT</version></dependency><dependency> <groupId>org.mongodb</groupId> <artifactId>mongo-java-driver</artifactId> <version>2.7.3</version></dependency> The first one is for the EclipseLink latest APIs, the second one is for EclipseLink/NoSQL support, and the last one is the MongoDB Java driver. And the following repository: <repositories> <repository> <id>EclipseLink Repo</id> <url>http://www.eclipse.org/downloads/download.php?r=1&amp;nf=1&amp;file=/rt/eclipselink/maven.repo</url> <snapshots> <enabled>true</enabled> </snapshots> </repository>  </repositories> Copy the "Test.java" to the generated project: mkdir src/main/java/examplecp -r ~/code/workspaces/org.eclipse.persistence.example.jpa.nosql.mongo/src/example/Test.java ./src/main/java/example/ This file contains the source code to CRUD the JPA entity to MongoDB. This sample is explained in detail on EclipseLink wiki. Create a new Servlet in "example" directory as: package example;import java.io.IOException;import java.io.PrintWriter;import javax.servlet.ServletException;import javax.servlet.annotation.WebServlet;import javax.servlet.http.HttpServlet;import javax.servlet.http.HttpServletRequest;import javax.servlet.http.HttpServletResponse;/** * @author Arun Gupta */@WebServlet(name = "TestServlet", urlPatterns = {"/TestServlet"})public class TestServlet extends HttpServlet { protected void processRequest(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { response.setContentType("text/html;charset=UTF-8"); PrintWriter out = response.getWriter(); try { out.println("<html>"); out.println("<head>"); out.println("<title>Servlet TestServlet</title>"); out.println("</head>"); out.println("<body>"); out.println("<h1>Servlet TestServlet at " + request.getContextPath() + "</h1>"); try { Test.main(null); } catch (Exception ex) { ex.printStackTrace(); } out.println("</body>"); out.println("</html>"); } finally { out.close(); } } @Override protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { processRequest(request, response); } @Override protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { processRequest(request, response); }} Build the project and deploy it as: mvn clean packageglassfish3/bin/asadmin deploy --force=true target/javaee-nosql-1.0-SNAPSHOT.war Accessing http://localhost:8080/javaee-nosql/TestServlet shows the following messages in the server.log: connecting(EISLogin( platform=> MongoPlatform user name=> "" MongoConnectionSpec())) . . .Connected: User: Database: 2.7  Version: 2.7 . . .Executing MappedInteraction() spec => null properties => {mongo.collection=CUSTOMER, mongo.operation=INSERT} input => [DatabaseRecord( CUSTOMER._id => 4F848E2BDA0670307E2A8FA4 CUSTOMER.NAME => AMCE)]. . .Data access result: [{TOTALCOST=757.0, ORDERLINES=[{DESCRIPTION=table, LINENUMBER=1, COST=300.0}, {DESCRIPTION=balls, LINENUMBER=2, COST=5.0}, {DESCRIPTION=rackets, LINENUMBER=3, COST=15.0}, {DESCRIPTION=net, LINENUMBER=4, COST=2.0}, {DESCRIPTION=shipping, LINENUMBER=5, COST=80.0}, {DESCRIPTION=handling, LINENUMBER=6, COST=55.0},{DESCRIPTION=tax, LINENUMBER=7, COST=300.0}], SHIPPINGADDRESS=[{POSTALCODE=L5J1H7, PROVINCE=ON, COUNTRY=Canada, CITY=Ottawa,STREET=17 Jane St.}], VERSION=2, _id=4F848E2BDA0670307E2A8FA8,DESCRIPTION=Pingpong table, CUSTOMER__id=4F848E2BDA0670307E2A8FA7, BILLINGADDRESS=[{POSTALCODE=L5J1H8, PROVINCE=ON, COUNTRY=Canada, CITY=Ottawa, STREET=7 Bank St.}]}] You'll not see any output in the browser, just the output in the console. But the code can be easily modified to do so. Once again, the complete Maven project can be downloaded here. Do you want to try accessing relational and non-relational (aka NoSQL) databases in the same PU ?

    Read the article

  • Help me solve my problem with NPR Media Player

    - by Calcipher
    First of, let me apologize for this getting a bit technical. Several weeks ago, I found that while using NPR's media player (e.g. click on 'Listen to the Show' - this is what I've been using as a test) the stream would suddenly halt after a minute or three. I could not get the stream to restart without reloading the page. Now, I assumed this was an issue with NPR's player and Linux (or just a bug in their stuff in general) so I began to dig, the following is what I have tried to date (please note, the tldr; option is to skip to the latest thing as I think I know what is causing the problem). Note: All testing has been done, for consistency purposes, on a clean install of Chromium with no pluggins running. My machine is Ubuntu 10.10x64. First thing I always try, I disabled all firewall stuff on the system (UFW, default deny all, allow ssh). No change, firewall back up for all additional tests unless otherwise noted. In any case, UFW is stateful, so connections it started on a non-specified on different ports will continue to work. I deleted my ~/.macromeda and ~/.adobe folders, restarted (just to be sure) and tried. Program still froze. I decided the problem might be with my install of flash, so I purged the version I had (and the home folders again). I installed the x64 version of flash from a PPA. This had no effect. I decided that the problem might be with the version of flash, so I purged the x64 version and installed the standard x32 version that comes with Ubuntu. No luck. Back to the x64 version for consistency, I decided to set up a 64-bit mini 'clone' of my system in VirtualBox. I was able to run the media player with no problem. I rsynced (in archive mode) my home directory from my real machine to the virtual machine (with bridged networking, so it was fully visible on the network). I also used a few tricks to install ALL of the same software (and repositories) from the real machine to the virtual machine. I was still able to listen to the player. I decided that the problem was with my install (after all, it had gone through two major version upgrades). As I have /home/ on a separate partition it was easy to reinstall and use the same trick from #6 to have my system up and running again within about an hour. I continue to have issues with the NPR Media Player. By this point the weekend had come. At work, I use a wired connection while at home I use a wireless connection. For some reason I forgot that I was having problems and used the NPR Media Player over the weekend. Low and behold it worked just fine at home on wireless (note: for various reasons, I could not test this on wired at home). Following from #6, I decided that the problem was either something with the network at work or still something with my account. As the latter was easier to test, I created a new account on my system and used that at work. The Media Player worked. At a loss, I decided to watch the traffic with tshark (the text based brother of wireshark) - X's to protect the innocent, I am the XXX.24.200.XXX: sudo tshark -i eth0 -p -t a -R "ip.addr == XXX.24.200.XXX && ip.addr == XXX.166.98.XXX" As you would expect, there were tons and tons of packets, but each and every time the player froze, this is what I got 08:42:20.679200 XXX.166.98.XXX - XXX.24.200.XXX TCP macromedia-fcs 56371 [PSH, ACK] Seq=817686 Ack=6 Win=65535 Len=1448 TSV=495713325 TSER=396467 08:42:20.718602 XXX.24.200.XXX - XXX.166.98.XXX TCP [TCP ZeroWindow] 56371 macromedia-fcs [ACK] Seq=6 Ack=819134 Win=0 Len=0 TSV=396475 TSER=495713325 08:42:21.050183 XXX.166.98.XXX - XXX.24.200.XXX TCP [TCP ZeroWindowProbe] macromedia-fcs 56371 [ACK] Seq=819134 Ack=6 Win=65535 Len=1 TSV=495713362 TSER=396475 08:42:21.050221 XXX.24.200.XXX - XXX.166.98.XXX TCP [TCP ZeroWindowProbeAck] [TCP ZeroWindow] 56371 macromedia-fcs [ACK] Seq=6 Ack=819134 Win=0 Len=0 TSV=396508 TSER=495713362 08:42:21.680548 XXX.166.98.XXX - XXX.24.200.XXX TCP [TCP ZeroWindowProbe] macromedia-fcs 56371 [ACK] Seq=819134 Ack=6 Win=65535 Len=1 TSV=495713425 TSER=396508 08:42:21.680605 XXX.24.200.XXX - XXX.166.98.XXX TCP [TCP ZeroWindowProbeAck] [TCP ZeroWindow] 56371 macromedia-fcs [ACK] Seq=6 Ack=819134 Win=0 Len=0 TSV=396571 TSER=495713425 08:42:22.910354 XXX.166.98.XXX - XXX.24.200.XXX TCP [TCP ZeroWindowProbe] macromedia-fcs 56371 [ACK] Seq=819134 Ack=6 Win=65535 Len=1 TSV=495713548 TSER=396571 08:42:22.910400 XXX.24.200.XXX - XXX.166.98.XXX TCP [TCP ZeroWindowProbeAck] [TCP ZeroWindow] 56371 macromedia-fcs [ACK] Seq=6 Ack=819134 Win=0 Len=0 TSV=396694 TSER=495713548 08:42:25.340458 XXX.166.98.XXX - XXX.24.200.XXX TCP [TCP ZeroWindowProbe] macromedia-fcs 56371 [ACK] Seq=819134 Ack=6 Win=65535 Len=1 TSV=495713791 TSER=396694 08:42:25.340517 XXX.24.200.XXX - XXX.166.98.XXX TCP [TCP ZeroWindowProbeAck] [TCP ZeroWindow] 56371 macromedia-fcs [ACK] Seq=6 Ack=819134 Win=0 Len=0 TSV=396937 TSER=495713791 08:42:30.170698 XXX.166.98.XXX - XXX.24.200.XXX TCP [TCP ZeroWindowProbe] macromedia-fcs 56371 [ACK] Seq=819134 Ack=6 Win=65535 Len=1 TSV=495714274 TSER=396937 08:42:30.170746 XXX.24.200.XXX - XXX.166.98.XXX TCP [TCP ZeroWindowProbeAck] [TCP ZeroWindow] 56371 macromedia-fcs [ACK] Seq=6 Ack=819134 Win=0 Len=0 TSV=397420 TSER=495714274 08:42:39.801738 XXX.166.98.XXX - XXX.24.200.XXX TCP [TCP ZeroWindowProbe] macromedia-fcs 56371 [ACK] Seq=819134 Ack=6 Win=65535 Len=1 TSV=495715237 TSER=397420 08:42:39.801784 XXX.24.200.XXX - XXX.166.98.XXX TCP [TCP ZeroWindowProbeAck] [TCP ZeroWindow] 56371 macromedia-fcs [ACK] Seq=6 Ack=819134 Win=0 Len=0 TSV=398383 TSER=495715237 08:42:59.032648 XXX.166.98.XXX - XXX.24.200.XXX TCP [TCP ZeroWindowProbe] macromedia-fcs 56371 [ACK] Seq=819134 Ack=6 Win=65535 Len=1 TSV=495717160 TSER=398383 08:42:59.032696 XXX.24.200.XXX - XXX.166.98.XXX TCP [TCP ZeroWindowProbeAck] [TCP ZeroWindow] 56371 macromedia-fcs [ACK] Seq=6 Ack=819134 Win=0 Len=0 TSV=400306 TSER=495717160 08:43:00.267721 XXX.24.200.XXX - XXX.166.98.XXX TCP 56371 macromedia-fcs [FIN, ACK] Seq=6 Ack=819134 Win=0 Len=0 TSV=400430 TSER=495717160 08:43:00.267827 XXX.24.200.XXX - XXX.166.98.XXX TCP 56371 macromedia-fcs [RST, ACK] Seq=7 Ack=819134 Win=65535 Len=0 TSV=400430 TSER=495717160 So, as you can see, my machine is sending out a ZeroWindow packet (which I think means some buffer or another filled up) which causes the Media Player to halt (unfortunately, terminally - no controls on it really do anything anymore). Any ideas, at all, what would cause this? Why only on eth0 under my main account?

    Read the article

  • My Thoughts On the Xbox 180

    - by Chris Gardner
    Originally posted on: http://geekswithblogs.net/freestylecoding/archive/2013/06/21/my-thoughts-on-the-xbox-180.aspx Everyone seems to be putting their 0.00237 cents into the wishing well over Microsoft's recent decision to reverse the DRM policy on the Xbox One. However, there have been a few issues that nobody has touched. As such, I have decided to dig 0.00237 cents out of my pocket. First, let me be clear about this point. I do not support the decision to reverse the DRM policy on the Xbox One. I wanted that point to be expressed first and unambiguously. I will say it again. I do not support the decision to reverse the DRM policy on the Xbox One. Now that I have that out of the way, let me go into my rationale. This decision removes most of the cool features that enticed me to pre-order the console. No, I didn't cancel my pre-order. There is still five months before the release of the console, and there is still a plethora of information that we, as consumers, do not have. With that, it should be noted that much of the talk in this post is speculation and rhetoric. I do not have any insider information that you do not possess. The persistent connection would have allowed the console to do many of the functions for which we have been begging. That demo where someone was playing Ryse, seamlessly accepted a multiplayer challenge in Killer Instinct, played the match (and a rematch,) and then jumped back into Ryse. That's gone, if you bought the game on disc. The new, DRM free system will require the disc in the system to play a game. That bullet point where one Xbox Live account could have up to 10 slave accounts so families could play together, no matter where they were located. That's gone as well. The promise of huge, expansive, dynamically changing worlds that was brought to us with the power of cloud computing. Well, "the people" didn't want there to be a forced, persistent connection. As such, developers can't rely on a connection and, as such, that feature is gone. This is akin to the removal of the hard drive on the Xbox 360. The list continues, but the enthusiast press has enumerated the list far better than I wish. All of this is because the Xbox team saw the HUGE success of Steam and decided to borrow a few ideas. Yes, Steam. The service that everyone hated for the first six months (for the same reasons the Xbox One is getting flack.) There was an initial growing pain. However, it is now lauded as the way games distribution should be handled. Unless you are Microsoft. I do find it curious that many of the features were originally announced for the PS4 during its unveiling. However, much of that was left strangely absent for Sony's E3 press conference. Instead, we received a single, static slide that basically said the exact opposite of Microsoft's plans. It is not farfetched to believe that slide came into existence during the approximately seven hours between the two media briefings. The thing that majorly annoys me over this whole kerfuffle is that the single thing that caused the call to arms is, really, not an issue. Microsoft never said they were going to block used sales. They said it was up to the publisher to make that decision. This would have allowed publishers to reclaim some of the costs of development in subsequent sales of the product. If you sell your game to GameStop for 7 USD, GameStop is going to sell it for 55 USD. That is 48 USD pure profit for them. Some publishers asked GameStop for a small cut. Was this a huge, money grubbing scheme? Well, yes, but the idea was that they have to handle server infrastructure for dormant accounts, etc. Of course, GameStop flatly refused, and the Online Pass was born. Fortunately, this trend didn’t last, and most publishers have stopped the practice. The ability to sell "licenses" has already begun to be challenged. Are you living in the EU? If so, companies must allow you to sell digital property. With this precedent in place, it's only a matter of time before other areas follow suit. If GameStop were smart, they should have immediately contacted every publisher out there to get the rights to become a clearing house for these licenses. Then, they keep their business model and could reduce their brick and mortar footprint. The digital landscape is changing. We need to not block this process. As Seth MacFarlane best said "Some issues are so important that you should drag people kicking and screaming." I believe this was said on an episode of Real Time with Bill Maher about the issue of Gay Marriages. Much like the original source, this is an issue that we need to drag people to the correct, progressive position. Microsoft, as a company, actually has the resources to weather the transition period. They have a great pool of first and second party developers that can leverage this new framework to prove the validity. Over time, the third party developers will get excited to use these tools. As an old C++ guy, I resisted C# for years. Now, I think it's one of the best languages I've ever used. I have a server room and a Co-Lo full of servers, so I originally didn't see the value in Azure. Now, I wish I could move every one of my projects into the cloud. I still LOVE getting physical packaging, which my music and games collection will proudly attest. However, I have started to see the value in pure digital, and have found ways to integrate this into the ways I consume those products. I can, honestly, understand how some parts of the population would be very apprehensive about this new landscape. There were valid arguments about people with no internet access. There are ways to combat these problems. These methods do not require us to throw the baby out with the bathwater. However, the number of people in the computer industry that I have seen cry foul is truly appalling. We are the forward looking people that help show how technology can improve people's lives. If we can't see the value of the brief pain involved with an exciting new ecosystem, than who will?

    Read the article

  • C# Extension Methods - To Extend or Not To Extend...

    - by James Michael Hare
    I've been thinking a lot about extension methods lately, and I must admit I both love them and hate them. They are a lot like sugar, they taste so nice and sweet, but they'll rot your teeth if you eat them too much.   I can't deny that they aren't useful and very handy. One of the major components of the Shared Component library where I work is a set of useful extension methods. But, I also can't deny that they tend to be overused and abused to willy-nilly extend every living type.   So what constitutes a good extension method? Obviously, you can write an extension method for nearly anything whether it is a good idea or not. Many times, in fact, an idea seems like a good extension method but in retrospect really doesn't fit.   So what's the litmus test? To me, an extension method should be like in the movies when a person runs into their twin, separated at birth. You just know you're related. Obviously, that's hard to quantify, so let's try to put a few rules-of-thumb around them.   A good extension method should:     Apply to any possible instance of the type it extends.     Simplify logic and improve readability/maintainability.     Apply to the most specific type or interface applicable.     Be isolated in a namespace so that it does not pollute IntelliSense.     So let's look at a few examples in relation to these rules.   The first rule, to me, is the most important of all. Once again, it bears repeating, a good extension method should apply to all possible instances of the type it extends. It should feel like the long lost relative that should have been included in the original class but somehow was missing from the family tree.    Take this nifty little int extension, I saw this once in a blog and at first I really thought it was pretty cool, but then I started noticing a code smell I couldn't quite put my finger on. So let's look:       public static class IntExtensinos     {         public static int Seconds(int num)         {             return num * 1000;         }           public static int Minutes(int num)         {             return num * 60000;         }     }     This is so you could do things like:       ...     Thread.Sleep(5.Seconds());     ...     proxy.Timeout = 1.Minutes();     ...     Awww, you say, that's cute! Well, that's the problem, it's kitschy and it doesn't always apply (and incidentally you could achieve the same thing with TimeStamp.FromSeconds(5)). It's syntactical candy that looks cool, but tends to rot and pollute the code. It would allow things like:       total += numberOfTodaysOrders.Seconds();     which makes no sense and should never be allowed. The problem is you're applying an extension method to a logical domain, not a type domain. That is, the extension method Seconds() doesn't really apply to ALL ints, it applies to ints that are representative of time that you want to convert to milliseconds.    Do you see what I mean? The two problems, in a nutshell, are that a) Seconds() called off a non-time value makes no sense and b) calling Seconds() off something to pass to something that does not take milliseconds will be off by a factor of 1000 or worse.   Thus, in my mind, you should only ever have an extension method that applies to the whole domain of that type.   For example, this is one of my personal favorites:       public static bool IsBetween<T>(this T value, T low, T high)         where T : IComparable<T>     {         return value.CompareTo(low) >= 0 && value.CompareTo(high) <= 0;     }   This allows you to check if any IComparable<T> is within an upper and lower bound. Think of how many times you type something like:       if (response.Employee.Address.YearsAt >= 2         && response.Employee.Address.YearsAt <= 10)     {     ...     }     Now, you can instead type:       if(response.Employee.Address.YearsAt.IsBetween(2, 10))     {     ...     }     Note that this applies to all IComparable<T> -- that's ints, chars, strings, DateTime, etc -- and does not depend on any logical domain. In addition, it satisfies the second point and actually makes the code more readable and maintainable.   Let's look at the third point. In it we said that an extension method should fit the most specific interface or type possible. Now, I'm not saying if you have something that applies to enumerables, you create an extension for List, Array, Dictionary, etc (though you may have reasons for doing so), but that you should beware of making things TOO general.   For example, let's say we had an extension method like this:       public static T ConvertTo<T>(this object value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This lets you do more fluent conversions like:       double d = "5.0".ConvertTo<double>();     However, if you dig into Reflector (LOVE that tool) you will see that if the type you are calling on does not implement IConvertible, what you convert to MUST be the exact type or it will throw an InvalidCastException. Now this may or may not be what you want in this situation, and I leave that up to you. Things like this would fail:       object value = new Employee();     ...     // class cast exception because typeof(IEmployee) != typeof(Employee)     IEmployee emp = value.ConvertTo<IEmployee>();       Yes, that's a downfall of working with Convertible in general, but if you wanted your fluent interface to be more type-safe so that ConvertTo were only callable on IConvertibles (and let casting be a manual task), you could easily make it:         public static T ConvertTo<T>(this IConvertible value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This is what I mean by choosing the best type to extend. Consider that if we used the previous (object) version, every time we typed a dot ('.') on an instance we'd pull up ConvertTo() whether it was applicable or not. By filtering our extension method down to only valid types (those that implement IConvertible) we greatly reduce our IntelliSense pollution and apply a good level of compile-time correctness.   Now my fourth rule is just my general rule-of-thumb. Obviously, you can make extension methods as in-your-face as you want. I included all mine in my work libraries in its own sub-namespace, something akin to:       namespace Shared.Core.Extensions { ... }     This is in a library called Shared.Core, so just referencing the Core library doesn't pollute your IntelliSense, you have to actually do a using on Shared.Core.Extensions to bring the methods in. This is very similar to the way Microsoft puts its extension methods in System.Linq. This way, if you want 'em, you use the appropriate namespace. If you don't want 'em, they won't pollute your namespace.   To really make this work, however, that namespace should only include extension methods and subordinate types those extensions themselves may use. If you plant other useful classes in those namespaces, once a user includes it, they get all the extensions too.   Also, just as a personal preference, extension methods that aren't simply syntactical shortcuts, I like to put in a static utility class and then have extension methods for syntactical candy. For instance, I think it imaginable that any object could be converted to XML:       namespace Shared.Core     {         // A collection of XML Utility classes         public static class XmlUtility         {             ...             // Serialize an object into an xml string             public static string ToXml(object input)             {                 var xs = new XmlSerializer(input.GetType());                   // use new UTF8Encoding here, not Encoding.UTF8. The later includes                 // the BOM which screws up subsequent reads, the former does not.                 using (var memoryStream = new MemoryStream())                 using (var xmlTextWriter = new XmlTextWriter(memoryStream, new UTF8Encoding()))                 {                     xs.Serialize(xmlTextWriter, input);                     return Encoding.UTF8.GetString(memoryStream.ToArray());                 }             }             ...         }     }   I also wanted to be able to call this from an object like:       value.ToXml();     But here's the problem, if i made this an extension method from the start with that one little keyword "this", it would pop into IntelliSense for all objects which could be very polluting. Instead, I put the logic into a utility class so that users have the choice of whether or not they want to use it as just a class and not pollute IntelliSense, then in my extensions namespace, I add the syntactical candy:       namespace Shared.Core.Extensions     {         public static class XmlExtensions         {             public static string ToXml(this object value)             {                 return XmlUtility.ToXml(value);             }         }     }   So now it's the best of both worlds. On one hand, they can use the utility class if they don't want to pollute IntelliSense, and on the other hand they can include the Extensions namespace and use as an extension if they want. The neat thing is it also adheres to the Single Responsibility Principle. The XmlUtility is responsible for converting objects to XML, and the XmlExtensions is responsible for extending object's interface for ToXml().

    Read the article

  • Using Sitecore RenderingContext Parameters as MVC controller action arguments

    - by Kyle Burns
    I have been working with the Technical Preview of Sitecore 6.6 on a project and have been for the most part happy with the way that Sitecore (which truly is an MVC implementation unto itself) has been expanded to support ASP.NET MVC. That said, getting up to speed with the combined platform has not been entirely without stumbles and today I want to share one area where Sitecore could have really made things shine from the "it just works" perspective. A couple days ago I was asked by a colleague about the usage of the "Parameters" field that is defined on Sitecore's Controller Rendering data template. Based on the standard way that Sitecore handles a field named Parameters, I was able to deduce that the field expected key/value pairs separated by the "&" character, but beyond that I wasn't sure and didn't see anything from a documentation perspective to guide me, so it was time to dig and find out where the data in the field was made available. My first thought was that it would be really nice if Sitecore handled the parameters in this field consistently with the way that ASP.NET MVC handles the various parameter collections on the HttpRequest object and automatically maps them to parameters of the action method executing. Being the hopeful sort, I configured a name/value pair on one of my renderings, added a parameter with matching name to the controller action and fired up the bugger to see... that the parameter was not populated. Having established that the field's value was not going to be presented to me the way that I had hoped it would, the next assumption that I would work on was that Sitecore would handle this field similar to how they handle other similar data and would plug it into some ambient object that I could reference from within the controller method. After a considerable amount of guessing, testing, and cracking code open with Redgate's Reflector (a must-have companion to Sitecore documentation), I found that the most direct way to access the parameter was through the ambient RenderingContext object using code similar to: string myArgument = string.Empty; var rc = Sitecore.Mvc.Presentation.RenderingContext.CurrentOrNull; if (rc != null) {     var parms = rc.Rendering.Parameters;     myArgument = parms["myArgument"]; } At this point, we know how this field is used out of the box from Sitecore and can provide information from Sitecore's Content Editor that will be available when the controller action is executing, but it feels a little dirty. In order to properly test the action method I would have to do a lot of setup work and possible use an isolation framework such as Pex and Moles to get at a value that my action method is dependent upon. Notice I said that my method is dependent upon the value but in order to meet that dependency I've accepted another dependency upon Sitecore's RenderingContext.  I'm a big believer in, when possible, ensuring that any piece of code explicitly advertises dependencies using the method signature, so I found myself still wanting this to work the same as if the parameters were in the request route, querystring, or form by being able to add a myArgument parameter to the action method and have this parameter populated by the framework. Lucky for us, the ASP.NET MVC framework is extremely flexible and provides some easy to grok and use extensibility points. ASP.NET MVC is able to provide information from the request as input parameters to controller actions because it uses objects which implement an interface called IValueProvider and have been registered to service the application. The most basic statement of responsibility for an IValueProvider implementation is "I know about some data which is indexed by key. If you hand me the key for a piece of data that I know about I give you that data". When preparing to invoke a controller action, the framework queries registered IValueProvider implementations with the name of each method argument to see if the ValueProvider can supply a value for the parameter. (the rest of this post will assume you're working along and make a lot more sense if you do) Let's pull Sitecore out of the equation for a second to simplify things and create an extremely simple IValueProvider implementation. For this example, I first create a new ASP.NET MVC3 project in Visual Studio, selecting "Internet Application" and otherwise taking defaults (I'm assuming that anyone reading this far in the post either already knows how to do this or will need to take a quick run through one of the many available basic MVC tutorials such as the MVC Music Store). Once the new project is created, go to the Index action of HomeController.  This action sets a Message property on the ViewBag to "Welcome to ASP.NET MVC!" and invokes the View, which has been coded to display the Message. For our example, we will remove the hard coded message from this controller (although we'll leave it just as hard coded somewhere else - this is sample code). For the first step in our exercise, add a string parameter to the Index action method called welcomeMessage and use the value of this argument to set the ViewBag.Message property. The updated Index action should look like: public ActionResult Index(string welcomeMessage) {     ViewBag.Message = welcomeMessage;     return View(); } This represents the entirety of the change that you will make to either the controller or view.  If you run the application now, the home page will display and no message will be presented to the user because no value was supplied to the Action method. Let's now write a ValueProvider to ensure this parameter gets populated. We'll start by creating a new class called StaticValueProvider. When the class is created, we'll update the using statements to ensure that they include the following: using System.Collections.Specialized; using System.Globalization; using System.Web.Mvc; With the appropriate using statements in place, we'll update the StaticValueProvider class to implement the IValueProvider interface. The System.Web.Mvc library already contains a pretty flexible dictionary-like implementation called NameValueCollectionValueProvider, so we'll just wrap that and let it do most of the real work for us. The completed class looks like: public class StaticValueProvider : IValueProvider {     private NameValueCollectionValueProvider _wrappedProvider;     public StaticValueProvider(ControllerContext controllerContext)     {         var parameters = new NameValueCollection();         parameters.Add("welcomeMessage", "Hello from the value provider!");         _wrappedProvider = new NameValueCollectionValueProvider(parameters, CultureInfo.InvariantCulture);     }     public bool ContainsPrefix(string prefix)     {         return _wrappedProvider.ContainsPrefix(prefix);     }     public ValueProviderResult GetValue(string key)     {         return _wrappedProvider.GetValue(key);     } } Notice that the only entry in the collection matches the name of the argument to our HomeController's Index action.  This is the important "secret sauce" that will make things work. We've got our new value provider now, but that's not quite enough to be finished. Mvc obtains IValueProvider instances using factories that are registered when the application starts up. These factories extend the abstract ValueProviderFactory class by initializing and returning the appropriate implementation of IValueProvider from the GetValueProvider method. While I wouldn't do so in production code, for the sake of this example, I'm going to add the following class definition within the StaticValueProvider.cs source file: public class StaticValueProviderFactory : ValueProviderFactory {     public override IValueProvider GetValueProvider(ControllerContext controllerContext)     {         return new StaticValueProvider(controllerContext);     } } Now that we have a factory, we can register it by adding the following line to the end of the Application_Start method in Global.asax.cs: ValueProviderFactories.Factories.Add(new StaticValueProviderFactory()); If you've done everything right to this point, you should be able to run the application and be presented with the home page reading "Hello from the value provider!". Now that you have the basics of the IValueProvider down, you have everything you need to enhance your Sitecore MVC implementation by adding an IValueProvider that exposes values from the ambient RenderingContext's Parameters property. I'll provide the code for the IValueProvider implementation (which should look VERY familiar) and you can use the work we've already done as a reference to create and register the factory: public class RenderingContextValueProvider : IValueProvider {     private NameValueCollectionValueProvider _wrappedProvider = null;     public RenderingContextValueProvider(ControllerContext controllerContext)     {         var collection = new NameValueCollection();         var rc = RenderingContext.CurrentOrNull;         if (rc != null && rc.Rendering != null)         {             foreach(var parameter in rc.Rendering.Parameters)             {                 collection.Add(parameter.Key, parameter.Value);             }         }         _wrappedProvider = new NameValueCollectionValueProvider(collection, CultureInfo.InvariantCulture);         }     public bool ContainsPrefix(string prefix)     {         return _wrappedProvider.ContainsPrefix(prefix);     }     public ValueProviderResult GetValue(string key)     {         return _wrappedProvider.GetValue(key);     } } In this post I've discussed the MVC IValueProvider used to map data to controller action method arguments and how this can be integrated into your Sitecore 6.6 MVC solution.

    Read the article

  • ApiChange Is Released!

    - by Alois Kraus
    I have been working on little tool to simplify my life and perhaps yours as developer as well. It is basically a command line tool that allows you to execute queries on your compiled .NET code base. The main purpose is to find out how big the impact of an api change would be if you changed this or that.  Now you can do high level operations like Diff public types for breaking changes. Who uses a method? Who uses a type? Who uses implements an interface? Who references me? What format has the binary  (32/64, Managed C++, Pure IL, Unmanaged)? Search for all event subscribers and unsubscribers. A unique feature is to check for event subscription imbalances. Forgotten event subscriptions are the 90% cause of managed memory leaks. It is done at a per class level. If one class does subscribe to one event more often than it does unsubscribe it is treated as possible event subscription imbalance. Another unique ability is to search for users of string literals which allows you to track users of a string constant which is not possible otherwise. For incremental builds the ShowRebuildTargets command can be used to identify the dependant targets that need a rebuild after you did compile one assembly. It has some heuristics in place to determine the impact of breaking changes and finds out which targets need to be recompiled as well. It has a ton of other features and a an API to access these things programmatically so you can build upon these simple queries create even better tools. Perhaps we get a Visual Studio plug in? You can download it from CodePlex here. It works via XCopy deployment. Simply let it run and check the command line help out. The best feature in my opinion is that the output of nearly all commands can be piped to Excel for further analysis. Since it does read also the pdbs it can show you the source file name and line number as well for all matches. The following picture shows the output of a –WhousesType query. The following command checks where type from BaseLibraryV1.dll are used inside DependantLibV1.dll. All matches are printed out with the reason and matching item along with file and line number. There is even a hyper link to the match which will open Visual Studio. ApiChange -whousestype "*" BaseLibraryV1.dll -in DependantLibV1.dll –excel The "*” is the actual query which means all types. The syntax is the same like in C# just that placeholders are allowed ;-). More info's can be found at the Codeplex Documentation.     The tool was developed in a TDD style manner which means that it is heavily tested and already used by a quite large user base inside the company I do work for. Luckily for you I got the permission to make it public so you take advantage of it. It is fully instrumented with tracing. If you find bugs simply add the –trace command line switch to find out what is failing and send me the output. How is it done? Your first guess might be that it uses reflection. Wrong. It is based on Mono Cecil a free IL parser with a fantastic API to access all internals of a managed assembly. The speed is awesome and to make it even faster I did make the tool heavily multi threaded. The query above did execute in 1.8s with the Excel output. On a rather slow machine I can analyze over 1500 assemblies in less than 40s with a very low memory consumption. The true power of Mono Cecil is that I can load an assembly like any other data file. I have no problems unloading a file but if I would have used reflection I would need to unload a whole AppDomain just to get rid of one assembly in my memory. Just to give you a glimpse how ApiChange.Api.dll can be used I show you one of the unit tests:           public void Can_Find_GenericMethodInvocations_With_Type_Parameters()         { // 1. Create an aggregator to collect our matches             UsageQueryAggregator agg = new UsageQueryAggregator();   // 2. This is the type we want to search for. Load it via the type query             var decimalType = TypeQuery.GetTypeByName(TestConstants.MscorlibAssembly, "System.Decimal");   // 3. register the type query which searches for uses of the Decimal type             new WhoUsesType(agg, decimalType);   // 4. Search for all users of the Decimal type in the DependandLibV1Assembly             agg.Analyze(TestConstants.DependandLibV1Assembly);   // Extract matches and assert             Assert.AreEqual(2, agg.MethodMatches.Count, "Method match count");             Assert.AreEqual("UseGenericMethod", agg.MethodMatches[0].Match.Name);             Assert.AreEqual("UseGenericMethod", agg.MethodMatches[1].Match.Name);         } Many thanks go from here to Jb Evian for the creation of Mono.Cecil. Without this fantastic piece of code it would have been much much harder. There are other options around like the Common Compiler Infrastructure  Metadata Api which should do the same thing but it was not a real option since the Microsoft reader did fail on even simple assemblies (at least in September 2009 this was the case). Besides this I found the CCI Apis much harder to use. The only real competitor was Reflector which does support many things but does not let me access his cool high level analyze commands. So I decided to dig into the IL specs and as a result you can query your compiled binaries from the command line or programmatically. The best thing is you try it out for yourself and give me some feedback what you miss. If you want to contribute or have a cool idea what should be added drop me a mail at A Kraus1@___No [email protected]. There is much more inside the tool I did not talk about it (yet).

    Read the article

  • HTG Explains: Why Does Rebooting a Computer Fix So Many Problems?

    - by Chris Hoffman
    Ask a geek how to fix a problem you’ve having with your Windows computer and they’ll likely ask “Have you tried rebooting it?” This seems like a flippant response, but rebooting a computer can actually solve many problems. So what’s going on here? Why does resetting a device or restarting a program fix so many problems? And why don’t geeks try to identify and fix problems rather than use the blunt hammer of “reset it”? This Isn’t Just About Windows Bear in mind that this soltion isn’t just limited to Windows computers, but applies to all types of computing devices. You’ll find the advice “try resetting it” applied to wireless routers, iPads, Android phones, and more. This same advice even applies to software — is Firefox acting slow and consuming a lot of memory? Try closing it and reopening it! Some Problems Require a Restart To illustrate why rebooting can fix so many problems, let’s take a look at the ultimate software problem a Windows computer can face: Windows halts, showing a blue screen of death. The blue screen was caused by a low-level error, likely a problem with a hardware driver or a hardware malfunction. Windows reaches a state where it doesn’t know how to recover, so it halts, shows a blue-screen of death, gathers information about the problem, and automatically restarts the computer for you . This restart fixes the blue screen of death. Windows has gotten better at dealing with errors — for example, if your graphics driver crashes, Windows XP would have frozen. In Windows Vista and newer versions of Windows, the Windows desktop will lose its fancy graphical effects for a few moments before regaining them. Behind the scenes, Windows is restarting the malfunctioning graphics driver. But why doesn’t Windows simply fix the problem rather than restarting the driver or the computer itself?  Well, because it can’t — the code has encountered a problem and stopped working completely, so there’s no way for it to continue. By restarting, the code can start from square one and hopefully it won’t encounter the same problem again. Examples of Restarting Fixing Problems While certain problems require a complete restart because the operating system or a hardware driver has stopped working, not every problem does. Some problems may be fixable without a restart, though a restart may be the easiest option. Windows is Slow: Let’s say Windows is running very slowly. It’s possible that a misbehaving program is using 99% CPU and draining the computer’s resources. A geek could head to the task manager and look around, hoping to locate the misbehaving process an end it. If an average user encountered this same problem, they could simply reboot their computer to fix it rather than dig through their running processes. Firefox or Another Program is Using Too Much Memory: In the past, Firefox has been the poster child for memory leaks on average PCs. Over time, Firefox would often consume more and more memory, getting larger and larger and slowing down. Closing Firefox will cause it to relinquish all of its memory. When it starts again, it will start from a clean state without any leaked memory. This doesn’t just apply to Firefox, but applies to any software with memory leaks. Internet or Wi-Fi Network Problems: If you have a problem with your Wi-Fi or Internet connection, the software on your router or modem may have encountered a problem. Resetting the router — just by unplugging it from its power socket and then plugging it back in — is a common solution for connection problems. In all cases, a restart wipes away the current state of the software . Any code that’s stuck in a misbehaving state will be swept away, too. When you restart, the computer or device will bring the system up from scratch, restarting all the software from square one so it will work just as well as it was working before. “Soft Resets” vs. “Hard Resets” In the mobile device world, there are two types of “resets” you can perform. A “soft reset” is simply restarting a device normally — turning it off and then on again. A “hard reset” is resetting its software state back to its factory default state. When you think about it, both types of resets fix problems for a similar reason. For example, let’s say your Windows computer refuses to boot or becomes completely infected with malware. Simply restarting the computer won’t fix the problem, as the problem is with the files on the computer’s hard drive — it has corrupted files or malware that loads at startup on its hard drive. However, reinstalling Windows (performing a “Refresh or Reset your PC” operation in Windows 8 terms) will wipe away everything on the computer’s hard drive, restoring it to its formerly clean state. This is simpler than looking through the computer’s hard drive, trying to identify the exact reason for the problems or trying to ensure you’ve obliterated every last trace of malware. It’s much faster to simply start over from a known-good, clean state instead of trying to locate every possible problem and fix it. Ultimately, the answer is that “resetting a computer wipes away the current state of the software, including any problems that have developed, and allows it to start over from square one.” It’s easier and faster to start from a clean state than identify and fix any problems that may be occurring — in fact, in some cases, it may be impossible to fix problems without beginning from that clean state. Image Credit: Arria Belli on Flickr, DeclanTM on Flickr     

    Read the article

  • MapRedux - PowerShell and Big Data

    - by Dittenhafer Solutions
    MapRedux – #PowerShell and #Big Data Have you been hearing about “big data”, “map reduce” and other large scale computing terms over the past couple of years and been curious to dig into more detail? Have you read some of the Apache Hadoop online documentation and unfortunately concluded that it wasn't feasible to setup a “test” hadoop environment on your machine? More recently, I have read about some of Microsoft’s work to enable Hadoop on the Azure cloud. Being a "Microsoft"-leaning technologist, I am more inclinded to be successful with experimentation when on the Windows platform. Of course, it is not that I am "religious" about one set of technologies other another, but rather more experienced. Anyway, within the past couple of weeks I have been thinking about PowerShell a bit more as the 2012 PowerShell Scripting Games approach and it occured to me that PowerShell's support for Windows Remote Management (WinRM), and some other inherent features of PowerShell might lend themselves particularly well to a simple implementation of the MapReduce framework. I fired up my PowerShell ISE and started writing just to see where it would take me. Quite simply, the ScriptBlock feature combined with the ability of Invoke-Command to create remote jobs on networked servers provides much of the plumbing of a distributed computing environment. There are some limiting factors of course. Microsoft provided some default settings which prevent PowerShell from taking over a network without administrative approval first. But even with just one adjustment, a given Windows-based machine can become a node in a MapReduce-style distributed computing environment. Ok, so enough introduction. Let's talk about the code. First, any machine that will participate as a remote "node" will need WinRM enabled for remote access, as shown below. This is not exactly practical for hundreds of intended nodes, but for one (or five) machines in a test environment it does just fine. C:> winrm quickconfig WinRM is not set up to receive requests on this machine. The following changes must be made: Set the WinRM service type to auto start. Start the WinRM service. Make these changes [y/n]? y Alternatively, you could take the approach described in the Remotely enable PSRemoting post from the TechNet forum and use PowerShell to create remote scheduled tasks that will call Enable-PSRemoting on each intended node. Invoke-MapRedux Moving on, now that you have one or more remote "nodes" enabled, you can consider the actual Map and Reduce algorithms. Consider the following snippet: $MyMrResults = Invoke-MapRedux -MapReduceItem $Mr -ComputerName $MyNodes -DataSet $dataset -Verbose Invoke-MapRedux takes an instance of a MapReduceItem which references the Map and Reduce scriptblocks, an array of computer names which are the remote nodes, and the initial data set to be processed. As simple as that, you can start working with concepts of big data and the MapReduce paradigm. Now, how did we get there? I have published the initial version of my PsMapRedux PowerShell Module on GitHub. The PsMapRedux module provides the Invoke-MapRedux function described above. Feel free to browse the underlying code and even contribute to the project! In a later post, I plan to show some of the inner workings of the module, but for now let's move on to how the Map and Reduce functions are defined. Map Both the Map and Reduce functions need to follow a prescribed prototype. The prototype for a Map function in the MapRedux module is as follows. A simple scriptblock that takes one PsObject parameter and returns a hashtable. It is important to note that the PsObject $dataset parameter is a MapRedux custom object that has a "Data" property which offers an array of data to be processed by the Map function. $aMap = { Param ( [PsObject] $dataset ) # Indicate the job is running on the remote node. Write-Host ($env:computername + "::Map"); # The hashtable to return $list = @{}; # ... Perform the mapping work and prepare the $list hashtable result with your custom PSObject... # ... The $dataset has a single 'Data' property which contains an array of data rows # which is a subset of the originally submitted data set. # Return the hashtable (Key, PSObject) Write-Output $list; } Reduce Likewise, with the Reduce function a simple prototype must be followed which takes a $key and a result $dataset from the MapRedux's partitioning function (which joins the Map results by key). Again, the $dataset is a MapRedux custom object that has a "Data" property as described in the Map section. $aReduce = { Param ( [object] $key, [PSObject] $dataset ) Write-Host ($env:computername + "::Reduce - Count: " + $dataset.Data.Count) # The hashtable to return $redux = @{}; # Return Write-Output $redux; } All Together Now When everything is put together in a short example script, you implement your Map and Reduce functions, query for some starting data, build the MapReduxItem via New-MapReduxItem and call Invoke-MapRedux to get the process started: # Import the MapRedux and SQL Server providers Import-Module "MapRedux" Import-Module “sqlps” -DisableNameChecking # Query the database for a dataset Set-Location SQLSERVER:\sql\dbserver1\default\databases\myDb $query = "SELECT MyKey, Date, Value1 FROM BigData ORDER BY MyKey"; Write-Host "Query: $query" $dataset = Invoke-SqlCmd -query $query # Build the Map function $MyMap = { Param ( [PsObject] $dataset ) Write-Host ($env:computername + "::Map"); $list = @{}; foreach($row in $dataset.Data) { # Write-Host ("Key: " + $row.MyKey.ToString()); if($list.ContainsKey($row.MyKey) -eq $true) { $s = $list.Item($row.MyKey); $s.Sum += $row.Value1; $s.Count++; } else { $s = New-Object PSObject; $s | Add-Member -Type NoteProperty -Name MyKey -Value $row.MyKey; $s | Add-Member -type NoteProperty -Name Sum -Value $row.Value1; $list.Add($row.MyKey, $s); } } Write-Output $list; } $MyReduce = { Param ( [object] $key, [PSObject] $dataset ) Write-Host ($env:computername + "::Reduce - Count: " + $dataset.Data.Count) $redux = @{}; $count = 0; foreach($s in $dataset.Data) { $sum += $s.Sum; $count += 1; } # Reduce $redux.Add($s.MyKey, $sum / $count); # Return Write-Output $redux; } # Create the item data $Mr = New-MapReduxItem "My Test MapReduce Job" $MyMap $MyReduce # Array of processing nodes... $MyNodes = ("node1", "node2", "node3", "node4", "localhost") # Run the Map Reduce routine... $MyMrResults = Invoke-MapRedux -MapReduceItem $Mr -ComputerName $MyNodes -DataSet $dataset -Verbose # Show the results Set-Location C:\ $MyMrResults | Out-GridView Conclusion I hope you have seen through this article that PowerShell has a significant infrastructure available for distributed computing. While it does take some code to expose a MapReduce-style framework, much of the work is already done and PowerShell could prove to be the the easiest platform to develop and run big data jobs in your corporate data center, potentially in the Azure cloud, or certainly as an academic excerise at home or school. Follow me on Twitter to stay up to date on the continuing progress of my Powershell MapRedux module, and thanks for reading! Daniel

    Read the article

  • &lt;%: %&gt;, HtmlEncode, IHtmlString and MvcHtmlString

    - by Shaun
    One of my colleague and friend, Robin is playing and struggling with the ASP.NET MVC 2 on a project these days while I’m struggling with a annoying client. Since it’s his first time to use ASP.NET MVC he was meetings with a lot of problem and I was very happy to share my experience to him. Yesterday he asked me when he attempted to insert a <br /> element into his page he found that the page was rendered like this which is bad. He found his <br /> was shown as a part of the string rather than creating a new line. After checked a bit in his code I found that it’s because he utilized a new ASP.NET markup supported in .NET 4.0 – “<%: %>”. If you have been using ASP.NET MVC 1 or in .NET 3.5 world it would be very common that using <%= %> to show something on the page from the backend code. But when you do it you must ensure that the string that are going to be displayed should be Html-safe, which means all the Html markups must be encoded. Otherwise this might cause an XSS (cross-site scripting) problem. So that you’d better use the code like this below to display anything on the page. In .NET 4.0 Microsoft introduced a new markup to solve this problem which is <%: %>. It will encode the content automatically so that you will no need to check and verify your code manually for the XSS issue mentioned below. But this also means that it will encode all things, include the Html element you want to be rendered. So I changed his code like this and it worked well. After helped him solved this problem and finished a spreadsheet for my boring project I considered a bit more on the <%: %>. Since it will encode all thing why it renders correctly when we use “<%: Html.TextBox(“name”) %>” to show a text box? As you know the Html.TextBox will render a “<input name="name" id="name" type="text"/>” element on the page. If <%: %> will encode everything it should not display a text box. So I dig into the source code of the MVC and found some comments in the class MvcHtmlString. 1: // In ASP.NET 4, a new syntax <%: %> is being introduced in WebForms pages, where <%: expression %> is equivalent to 2: // <%= HttpUtility.HtmlEncode(expression) %>. The intent of this is to reduce common causes of XSS vulnerabilities 3: // in WebForms pages (WebForms views in the case of MVC). This involves the addition of an interface 4: // System.Web.IHtmlString and a static method overload System.Web.HttpUtility::HtmlEncode(object). The interface 5: // definition is roughly: 6: // public interface IHtmlString { 7: // string ToHtmlString(); 8: // } 9: // And the HtmlEncode(object) logic is roughly: 10: // - If the input argument is an IHtmlString, return argument.ToHtmlString(), 11: // - Otherwise, return HtmlEncode(Convert.ToString(argument)). 12: // 13: // Unfortunately this has the effect that calling <%: Html.SomeHelper() %> in an MVC application running on .NET 4 14: // will end up encoding output that is already HTML-safe. As a result, we're changing out HTML helpers to return 15: // MvcHtmlString where appropriate. <%= Html.SomeHelper() %> will continue to work in both .NET 3.5 and .NET 4, but 16: // changing the return types to MvcHtmlString has the added benefit that <%: Html.SomeHelper() %> will also work 17: // properly in .NET 4 rather than resulting in a double-encoded output. MVC developers in .NET 4 will then be able 18: // to use the <%: %> syntax almost everywhere instead of having to remember where to use <%= %> and where to use 19: // <%: %>. This should help developers craft more secure web applications by default. 20: // 21: // To create an MvcHtmlString, use the static Create() method instead of calling the protected constructor. The comment said the encoding rule of the <%: %> would be: If the type of the content is IHtmlString it will NOT encode since the IHtmlString indicates that it’s Html-safe. Otherwise it will use HtmlEncode to encode the content. If we check the return type of the Html.TextBox method we will find that it’s MvcHtmlString, which was implemented the IHtmlString interface dynamically. That is the reason why the “<input name="name" id="name" type="text"/>” was not encoded by <%: %>. So if we want to tell ASP.NET MVC, or I should say the ASP.NET runtime that the content is Html-safe and no need, or should not be encoded we can convert the content into IHtmlString. So another resolution would be like this. Also we can create an extension method as well for better developing experience. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Web; 5: using System.Web.Mvc; 6:  7: namespace ShaunXu.Blogs.IHtmlStringIssue 8: { 9: public static class Helpers 10: { 11: public static MvcHtmlString IsHtmlSafe(this string content) 12: { 13: return MvcHtmlString.Create(content); 14: } 15: } 16: } Then the view would be like this. And the page rendered correctly.         Summary In this post I explained a bit about the new markup in .NET 4.0 – <%: %> and its usage. I also explained a bit about how to control the page content, whether it should be encoded or not. We can see the ASP.NET MVC gives us more points to control the web pages.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Cancelling Route Navigation in AngularJS Controllers

    - by dwahlin
    If you’re new to AngularJS check out my AngularJS in 60-ish Minutes video tutorial or download the free eBook. Also check out The AngularJS Magazine for up-to-date information on using AngularJS to build Single Page Applications (SPAs). Routing provides a nice way to associate views with controllers in AngularJS using a minimal amount of code. While a user is normally able to navigate directly to a specific route, there may be times when a user triggers a route change before they’ve finalized an important action such as saving data. In these types of situations you may want to cancel the route navigation and ask the user if they’d like to finish what they were doing so that their data isn’t lost. In this post I’ll talk about a technique that can be used to accomplish this type of routing task.   The $locationChangeStart Event When route navigation occurs in an AngularJS application a few events are raised. One is named $locationChangeStart and the other is named $routeChangeStart (there are other events as well). At the current time (version 1.2) the $routeChangeStart doesn’t provide a way to cancel route navigation, however, the $locationChangeStart event can be used to cancel navigation. If you dig into the AngularJS core script you’ll find the following code that shows how the $locationChangeStart event is raised as the $browser object’s onUrlChange() function is invoked:   $browser.onUrlChange(function (newUrl) { if ($location.absUrl() != newUrl) { if ($rootScope.$broadcast('$locationChangeStart', newUrl, $location.absUrl()).defaultPrevented) { $browser.url($location.absUrl()); return; } $rootScope.$evalAsync(function () { var oldUrl = $location.absUrl(); $location.$$parse(newUrl); afterLocationChange(oldUrl); }); if (!$rootScope.$$phase) $rootScope.$digest(); } }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The key part of the code is the call to $broadcast. This call broadcasts the $locationChangeStart event to all child scopes so that they can be notified before a location change is made. To handle the $locationChangeStart event you can use the $rootScope.on() function. For this example I’ve added a call to $on() into a function that is called immediately after the controller is invoked:   function init() { //initialize data here.. //Make sure they're warned if they made a change but didn't save it //Call to $on returns a "deregistration" function that can be called to //remove the listener (see routeChange() for an example of using it) onRouteChangeOff = $rootScope.$on('$locationChangeStart', routeChange); } This code listens for the $locationChangeStart event and calls routeChange() when it occurs. The value returned from calling $on is a “deregistration” function that can be called to detach from the event. In this case the deregistration function is named onRouteChangeOff (it’s accessible throughout the controller). You’ll see how the onRouteChangeOff function is used in just a moment.   Cancelling Route Navigation The routeChange() callback triggered by the $locationChangeStart event displays a modal dialog similar to the following to prompt the user:     Here’s the code for routeChange(): function routeChange(event, newUrl) { //Navigate to newUrl if the form isn't dirty if (!$scope.editForm.$dirty) return; var modalOptions = { closeButtonText: 'Cancel', actionButtonText: 'Ignore Changes', headerText: 'Unsaved Changes', bodyText: 'You have unsaved changes. Leave the page?' }; modalService.showModal({}, modalOptions).then(function (result) { if (result === 'ok') { onRouteChangeOff(); //Stop listening for location changes $location.path(newUrl); //Go to page they're interested in } }); //prevent navigation by default since we'll handle it //once the user selects a dialog option event.preventDefault(); return; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Looking at the parameters of routeChange() you can see that it accepts an event object and the new route that the user is trying to navigate to. The event object is used to prevent navigation since we need to prompt the user before leaving the current view. Notice the call to event.preventDefault() at the end of the function. The modal dialog is shown by calling modalService.showModal() (see my previous post for more information about the custom modalService that acts as a wrapper around Angular UI Bootstrap’s $modal service). If the user selects “Ignore Changes” then their changes will be discarded and the application will navigate to the route they intended to go to originally. This is done by first detaching from the $locationChangeStart event by calling onRouteChangeOff() (recall that this is the function returned from the call to $on()) so that we don’t get stuck in a never ending cycle where the dialog continues to display when they click the “Ignore Changes” button. A call is then made to $location.path(newUrl) to handle navigating to the target view. If the user cancels the operation they’ll stay on the current view. Conclusion The key to canceling routes is understanding how to work with the $locationChangeStart event and cancelling it so that route navigation doesn’t occur. I’m hoping that in the future the same type of task can be done using the $routeChangeStart event but for now this code gets the job done. You can see this code in action in the Customer Manager application available on Github (specifically the customerEdit view). Learn more about the application here.

    Read the article

  • Metrics - A little knowledge can be a dangerous thing (or 'Why you're not clever enough to interpret metrics data')

    - by Jason Crease
    At RedGate Software, I work on a .NET obfuscator  called SmartAssembly.  Various features of it use a database to store various things (exception reports, name-mappings, etc.) The user is given the option of using either a SQL-Server database (which requires them to have Microsoft SQL Server), or a Microsoft Access MDB file (which requires nothing). MDB is the default option, but power-users soon switch to using a SQL Server database because it offers better performance and data-sharing. In the fashionable spirit of optimization and metrics, an obvious product-management question is 'Which is the most popular? SQL Server or MDB?' We've collected data about this fact, using our 'Feature-Usage-Reporting' technology (available as part of SmartAssembly) and more recently our 'Application Metrics' technology: Parameter Number of users % of total users Number of sessions Number of usages SQL Server 28 19.0 8115 8115 MDB 114 77.6 1449 1449 (As a disclaimer, please note than SmartAssembly has far more than 132 users . This data is just a selection of one build) So, it would appear that SQL-Server is used by fewer users, but more often. Great. But here's why these numbers are useless to me: Only the original developers understand the data What does a single 'usage' of 'MDB' mean? Does this happen once per run? Once per option change? On clicking the 'Obfuscate Now' button? When running the command-line version or just from the UI version? Each question could skew the data 10-fold either way, and the answers only known by the developer that instrumented the application in the first place. In other words, only the original developer can interpret the data - product-managers cannot interpret the data unaided. Most of the data is from uninterested users About half of people who download and run a free-trial from the internet quit it almost immediately. Only a small fraction use it sufficiently to make informed choices. Since the MDB option is the default one, we don't know how many of those 114 were people CHOOSING to use the MDB, or how many were JUST HAPPENING to use this MDB default for their 20-second trial. This is a problem we see across all our metrics: Are people are using X because it's the default or are they using X because they want to use X? We need to segment the data further - asking what percentage of each percentage meet our criteria for an 'established user' or 'informed user'. You end up spending hours writing sophisticated and dubious SQL queries to segment the data further. Not fun. You can't find out why they used this feature Metrics can answer the when and what, but not the why. Why did people use feature X? If you're anything like me, you often click on random buttons in unfamiliar applications just to explore the feature-set. If we listened uncritically to metrics at RedGate, we would eliminate the most-important and more-complex features which people actually buy the software for, leaving just big buttons on the main page and the About-Box. "Ah, that's interesting!" rather than "Ah, that's actionable!" People do love data. Did you know you eat 1201 chickens in a lifetime? But just 4 cows? Interesting, but useless. Often metrics give you a nice number: '5.8% of users have 3 or more monitors' . But unless the statistic is both SUPRISING and ACTIONABLE, it's useless. Most metrics are collected, reviewed with lots of cooing. and then forgotten. Unless a piece-of-data could change things, it's useless collecting it. People get obsessed with significance levels The first things that lots of people do with this data is do a t-test to get a significance level ("Hey! We know with 99.64% confidence that people prefer SQL Server to MDBs!") Believe me: other causes of error/misinterpretation in your data are FAR more significant than your t-test could ever comprehend. Confirmation bias prevents objectivity If the data appears to match our instinct, we feel satisfied and move on. If it doesn't, we suspect the data and dig deeper, plummeting down a rabbit-hole of segmentation and filtering until we give-up and move-on. Data is only useful if it can change our preconceptions. Do you trust this dodgy data more than your own understanding, knowledge and intelligence?  I don't. There's always multiple plausible ways to interpret/action any data Let's say we segment the above data, and get this data: Post-trial users (i.e. those using a paid version after the 14-day free-trial is over): Parameter Number of users % of total users Number of sessions Number of usages SQL Server 13 9.0 1115 1115 MDB 5 4.2 449 449 Trial users: Parameter Number of users % of total users Number of sessions Number of usages SQL Server 15 10.0 7000 7000 MDB 114 77.6 1000 1000 How do you interpret this data? It's one of: Mostly SQL Server users buy our software. People who can't afford SQL Server tend to be unable to afford or unwilling to buy our software. Therefore, ditch MDB-support. Our MDB support is so poor and buggy that our massive MDB user-base doesn't buy it.  Therefore, spend loads of money improving it, and think about ditching SQL-Server support. People 'graduate' naturally from MDB to SQL Server as they use the software more. Things are fine the way they are. We're marketing the tool wrong. The large number of MDB users represent uninformed downloaders. Tell marketing to aggressively target SQL Server users. To choose an interpretation you need to segment again. And again. And again, and again. Opting-out is correlated with feature-usage Metrics tends to be opt-in. This skews the data even further. Between 5% and 30% of people choose to opt-in to metrics (often called 'customer improvement program' or something like that). Casual trial-users who are uninterested in your product or company are less likely to opt-in. This group is probably also likely to be MDB users. How much does this skew your data by? Who knows? It's not all doom and gloom. There are some things metrics can answer well. Environment facts. How many people have 3 monitors? Have Windows 7? Have .NET 4 installed? Have Japanese Windows? Minor optimizations.  Is the text-box big enough for average user-input? Performance data. How long does our app take to start? How many databases does the average user have on their server? As you can see, questions about who-the-user-is rather than what-the-user-does are easier to answer and action. Conclusion Use SmartAssembly. If not for the metrics (called 'Feature-Usage-Reporting'), then at least for the obfuscation/error-reporting. Data raises more questions than it answers. Questions about environment are the easiest to answer.

    Read the article

  • Computer Networks UNISA - Chap 10 &ndash; In Depth TCP/IP Networking

    - by MarkPearl
    After reading this section you should be able to Understand methods of network design unique to TCP/IP networks, including subnetting, CIDR, and address translation Explain the differences between public and private TCP/IP networks Describe protocols used between mail clients and mail servers, including SMTP, POP3, and IMAP4 Employ multiple TCP/IP utilities for network discovery and troubleshooting Designing TCP/IP-Based Networks The following sections explain how network and host information in an IPv4 address can be manipulated to subdivide networks into smaller segments. Subnetting Subnetting separates a network into multiple logically defined segments, or subnets. Networks are commonly subnetted according to geographic locations, departmental boundaries, or technology types. A network administrator might separate traffic to accomplish the following… Enhance security Improve performance Simplify troubleshooting The challenges of Classful Addressing in IPv4 (No subnetting) The simplest type of IPv4 is known as classful addressing (which was the Class A, Class B & Class C network addresses). Classful addressing has the following limitations. Restriction in the number of usable IPv4 addresses (class C would be limited to 254 addresses) Difficult to separate traffic from various parts of a network Because of the above reasons, subnetting was introduced. IPv4 Subnet Masks Subnetting depends on the use of subnet masks to identify how a network is subdivided. A subnet mask indicates where network information is located in an IPv4 address. The 1 in a subnet mask indicates that corresponding bits in the IPv4 address contain network information (likewise 0 indicates the opposite) Each network class is associated with a default subnet mask… Class A = 255.0.0.0 Class B = 255.255.0.0 Class C = 255.255.255.0 An example of calculating  the network ID for a particular device with a subnet mask is shown below.. IP Address = 199.34.89.127 Subnet Mask = 255.255.255.0 Resultant Network ID = 199.34.89.0 IPv4 Subnetting Techniques Subnetting breaks the rules of classful IPv4 addressing. Read page 490 for a detailed explanation Calculating IPv4 Subnets Read page 491 – 494 for an explanation Important… Subnetting only applies to the devices internal to your network. Everything external looks at the class of the IP address instead of the subnet network ID. This way, traffic directed to your network externally still knows where to go, and once it has entered your internal network it can then be prioritized and segmented. CIDR (classless Interdomain Routing) CIDR is also known as classless routing or supernetting. In CIDR conventional network class distinctions do not exist, a subnet boundary can move to the left, therefore generating more usable IP addresses on your network. A subnet created by moving the subnet boundary to the left is known as a supernet. With CIDR also came new shorthand for denoting the position of subnet boundaries known as CIDR notation or slash notation. CIDR notation takes the form of the network ID followed by a forward slash (/) followed by the number of bits that are used for the extended network prefix. To take advantage of classless routing, your networks routers must be able to interpret IP addresses that don;t adhere to conventional network class parameters. Routers that rely on older routing protocols (i.e. RIP) are not capable of interpreting classless IP addresses. Internet Gateways Gateways are a combination of software and hardware that enable two different network segments to exchange data. A gateway facilitates communication between different networks or subnets. Because on device cannot send data directly to a device on another subnet, a gateway must intercede and hand off the information. Every device on a TCP/IP based network has a default gateway (a gateway that first interprets its outbound requests to other subnets, and then interprets its inbound requests from other subnets). The internet contains a vast number of routers and gateways. If each gateway had to track addressing information for every other gateway on the Internet, it would be overtaxed. Instead, each handles only a relatively small amount of addressing information, which it uses to forward data to another gateway that knows more about the data’s destination. The gateways that make up the internet backbone are called core gateways. Address Translation An organizations default gateway can also be used to “hide” the organizations internal IP addresses and keep them from being recognized on a public network. A public network is one that any user may access with little or no restrictions. On private networks, hiding IP addresses allows network managers more flexibility in assigning addresses. Clients behind a gateway may use any IP addressing scheme, regardless of whether it is recognized as legitimate by the Internet authorities but as soon as those devices need to go on the internet, they must have legitimate IP addresses to exchange data. When a clients transmission reaches the default gateway, the gateway opens the IP datagram and replaces the client’s private IP address with an Internet recognized IP address. This process is known as NAT (Network Address Translation). TCP/IP Mail Services All Internet mail services rely on the same principles of mail delivery, storage, and pickup, though they may use different types of software to accomplish these functions. Email servers and clients communicate through special TCP/IP application layer protocols. These protocols, all of which operate on a variety of operating systems are discussed below… SMTP (Simple Mail transfer Protocol) The protocol responsible for moving messages from one mail server to another over TCP/IP based networks. SMTP belongs to the application layer of the ODI model and relies on TCP as its transport protocol. Operates from port 25 on the SMTP server Simple sub-protocol, incapable of doing anything more than transporting mail or holding it in a queue MIME (Multipurpose Internet Mail Extensions) The standard message format specified by SMTP allows for lines that contain no more than 1000 ascii characters meaning if you relied solely on SMTP you would have very short messages and nothing like pictures included in an email. MIME us a standard for encoding and interpreting binary files, images, video, and non-ascii character sets within an email message. MIME identifies each element of a mail message according to content type. MIME does not replace SMTP but works in conjunction with it. Most modern email clients and servers support MIME POP (Post Office Protocol) POP is an application layer protocol used to retrieve messages from a mail server POP3 relies on TCP and operates over port 110 With POP3 mail is delivered and stored on a mail server until it is downloaded by a user Disadvantage of POP3 is that it typically does not allow users to save their messages on the server because of this IMAP is sometimes used IMAP (Internet Message Access Protocol) IMAP is a retrieval protocol that was developed as a more sophisticated alternative to POP3 The single biggest advantage IMAP4 has over POP3 is that users can store messages on the mail server, rather than having to continually download them Users can retrieve all or only a portion of any mail message Users can review their messages and delete them while the messages remain on the server Users can create sophisticated methods of organizing messages on the server Users can share a mailbox in a central location Disadvantages of IMAP are typically related to the fact that it requires more storage space on the server. Additional TCP/IP Utilities Nearly all TCP/IP utilities can be accessed from the command prompt on any type of server or client running TCP/IP. The syntaxt may differ depending on the OS of the client. Below is a list of additional TCP/IP utilities – research their use on your own! Ipconfig (Windows) & Ifconfig (Linux) Netstat Nbtstat Hostname, Host & Nslookup Dig (Linux) Whois (Linux) Traceroute (Tracert) Mtr (my traceroute) Route

    Read the article

  • Passing a parameter so that it cannot be changed – C#

    - by nmarun
    I read this requirement of not allowing a user to change the value of a property passed as a parameter to a method. In C++, as far as I could recall (it’s been over 10 yrs, so I had to refresh memory), you can pass ‘const’ to a function parameter and this ensures that the parameter cannot be changed inside the scope of the function. There’s no such direct way of doing this in C#, but that does not mean it cannot be done!! Ok, so this ‘not-so-direct’ technique depends on the type of the parameter – a simple property or a collection. Parameter as a simple property: This is quite easy (and you might have guessed it already). Bulent Ozkir clearly explains how this can be done here. Parameter as a collection property: Obviously the above does not work if the parameter is a collection of some type. Let’s dig-in. Suppose I need to create a collection of type KeyTitle as defined below. 1: public class KeyTitle 2: { 3: public int Key { get; set; } 4: public string Title { get; set; } 5: } My class is declared as below: 1: public class Class1 2: { 3: public Class1() 4: { 5: MyKeyTitleList = new List<KeyTitle>(); 6: } 7: 8: public List<KeyTitle> MyKeyTitleList { get; set; } 9: public ReadOnlyCollection<KeyTitle> ReadonlyKeyTitleCollection 10: { 11: // .AsReadOnly creates a ReadOnlyCollection<> type 12: get { return MyKeyTitleList.AsReadOnly(); } 13: } 14: } See the .AsReadOnly() method used in the second property? As MSDN says it: “Returns a read-only IList<T> wrapper for the current collection.” Knowing this, I can implement my code as: 1: public static void Main() 2: { 3: Class1 class1 = new Class1(); 4: class1.MyKeyTitleList.Add(new KeyTitle { Key = 1, Title = "abc" }); 5: class1.MyKeyTitleList.Add(new KeyTitle { Key = 2, Title = "def" }); 6: class1.MyKeyTitleList.Add(new KeyTitle { Key = 3, Title = "ghi" }); 7: class1.MyKeyTitleList.Add(new KeyTitle { Key = 4, Title = "jkl" }); 8:  9: TryToModifyCollection(class1.MyKeyTitleList.AsReadOnly()); 10:  11: Console.ReadLine(); 12: } 13:  14: private static void TryToModifyCollection(ReadOnlyCollection<KeyTitle> readOnlyCollection) 15: { 16: // can only read 17: for (int i = 0; i < readOnlyCollection.Count; i++) 18: { 19: Console.WriteLine("{0} - {1}", readOnlyCollection[i].Key, readOnlyCollection[i].Title); 20: } 21: // Add() - not allowed 22: // even the indexer does not have a setter 23: } The output is as expected: The below image shows two things. In the first line, I’ve tried to access an element in my read-only collection through an indexer. It shows that the ReadOnlyCollection<> does not have a setter on the indexer. The second line tells that there’s no ‘Add()’ method for this type of collection. The capture below shows there’s no ‘Remove()’ method either, there-by eliminating all ways of modifying a collection. Mission accomplished… right? Now, even if you have a collection of different type, all you need to do is to somehow cast (used loosely) it to a List<> and then do a .AsReadOnly() to get a ReadOnlyCollection of your custom collection type. As an example, if you have an IDictionary<int, string>, you can create a List<T> of this type with a wrapper class (KeyTitle in our case). 1: public IDictionary<int, string> MyDictionary { get; set; } 2:  3: public ReadOnlyCollection<KeyTitle> ReadonlyDictionary 4: { 5: get 6: { 7: return (from item in MyDictionary 8: select new KeyTitle 9: { 10: Key = item.Key, 11: Title = item.Value, 12: }).ToList().AsReadOnly(); 13: } 14: } Cool huh? Just one thing you need to know about the .AsReadOnly() method is that the only way to modify your ReadOnlyCollection<> is to modify the original collection. So doing: 1: public static void Main() 2: { 3: Class1 class1 = new Class1(); 4: class1.MyKeyTitleList.Add(new KeyTitle { Key = 1, Title = "abc" }); 5: class1.MyKeyTitleList.Add(new KeyTitle { Key = 2, Title = "def" }); 6: class1.MyKeyTitleList.Add(new KeyTitle { Key = 3, Title = "ghi" }); 7: class1.MyKeyTitleList.Add(new KeyTitle { Key = 4, Title = "jkl" }); 8: TryToModifyCollection(class1.MyKeyTitleList.AsReadOnly()); 9:  10: Console.WriteLine(); 11:  12: class1.MyKeyTitleList.Add(new KeyTitle { Key = 5, Title = "mno" }); 13: class1.MyKeyTitleList[2] = new KeyTitle{Key = 3, Title = "GHI"}; 14: TryToModifyCollection(class1.MyKeyTitleList.AsReadOnly()); 15:  16: Console.ReadLine(); 17: } Gives me the output of: See that the second element’s Title is changed to upper-case and the fifth element also gets displayed even though we’re still looping through the same ReadOnlyCollection<KeyTitle>. Verdict: Now you know of a way to implement ‘Method(const param1)’ in your code!

    Read the article

  • Find the set of largest contiguous rectangles to cover multiple areas

    - by joelpt
    I'm working on a tool called Quickfort for the game Dwarf Fortress. Quickfort turns spreadsheets in csv/xls format into a series of commands for Dwarf Fortress to carry out in order to plot a "blueprint" within the game. I am currently trying to optimally solve an area-plotting problem for the 2.0 release of this tool. Consider the following "blueprint" which defines plotting commands for a 2-dimensional grid. Each cell in the grid should either be dug out ("d"), channeled ("c"), or left unplotted ("."). Any number of distinct plotting commands might be present in actual usage. . d . d c c d d d d c c . d d d . c d d d d d c . d . d d c To minimize the number of instructions that need to be sent to Dwarf Fortress, I would like to find the set of largest contiguous rectangles that can be formed to completely cover, or "plot", all of the plottable cells. To be valid, all of a given rectangle's cells must contain the same command. This is a faster approach than Quickfort 1.0 took: plotting every cell individually as a 1x1 rectangle. This video shows the performance difference between the two versions. For the above blueprint, the solution looks like this: . 9 . 0 3 2 8 1 1 1 3 2 . 1 1 1 . 2 7 1 1 1 4 2 . 6 . 5 4 2 Each same-numbered rectangle above denotes a contiguous rectangle. The largest rectangles take precedence over smaller rectangles that could also be formed in their areas. The order of the numbering/rectangles is unimportant. My current approach is iterative. In each iteration, I build a list of the largest rectangles that could be formed from each of the grid's plottable cells by extending in all 4 directions from the cell. After sorting the list largest first, I begin with the largest rectangle found, mark its underlying cells as "plotted", and record the rectangle in a list. Before plotting each rectangle, its underlying cells are checked to ensure they are not yet plotted (overlapping a previous plot). We then start again, finding the largest remaining rectangles that can be formed and plotting them until all cells have been plotted as part of some rectangle. I consider this approach slightly more optimized than a dumb brute-force search, but I am wasting a lot of cycles (re)calculating cells' largest rectangles and checking underlying cells' states. Currently, this rectangle-discovery routine takes the lion's share of the total runtime of the tool, especially for large blueprints. I have sacrificed some accuracy for the sake of speed by only considering rectangles from cells which appear to form a rectangle's corner (determined using some neighboring-cell heuristics which aren't always correct). As a result of this 'optimization', my current code doesn't actually generate the above solution correctly, but it's close enough. More broadly, I consider the goal of largest-rectangles-first to be a "good enough" approach for this application. However I observe that if the goal is instead to find the minimum set (fewest number) of rectangles to completely cover multiple areas, the solution would look like this instead: . 3 . 5 6 8 1 3 4 5 6 8 . 3 4 5 . 8 2 3 4 5 7 8 . 3 . 5 7 8 This second goal actually represents a more optimal solution to the problem, as fewer rectangles usually means fewer commands sent to Dwarf Fortress. However, this approach strikes me as closer to NP-Hard, based on my limited math knowledge. Watch the video if you'd like to better understand the overall strategy; I have not addressed other aspects of Quickfort's process, such as finding the shortest cursor-path that plots all rectangles. Possibly there is a solution to this problem that coherently combines these multiple strategies. Help of any form would be appreciated.

    Read the article

  • Visual Studio 2013 Static Code Analysis in depth: What? When and How?

    - by Hosam Kamel
    In this post I'll illustrate in details the following points What is static code analysis? When to use? Supported platforms Supported Visual Studio versions How to use Run Code Analysis Manually Run Code Analysis Automatically Run Code Analysis while check-in source code to TFS version control (TFSVC) Run Code Analysis as part of Team Build Understand the Code Analysis results & learn how to fix them Create your custom rule set Q & A References What is static Rule analysis? Static Code Analysis feature of Visual Studio performs static code analysis on code to help developers identify potential design, globalization, interoperability, performance, security, and a lot of other categories of potential problems according to Microsoft's rules that mainly targets best practices in writing code, and there is a large set of those rules included with Visual Studio grouped into different categorized targeting specific coding issues like security, design, Interoperability, globalizations and others. Static here means analyzing the source code without executing it and this type of analysis can be performed through automated tools (like Visual Studio 2013 Code Analysis Tool) or manually through Code Review which already supported in Visual Studio 2012 and 2013 (check Using Code Review to Improve Quality video on Channel9) There is also Dynamic analysis which performed on executing programs using software testing techniques such as Code Coverage for example. When to use? Running Code analysis tool at regular intervals during your development process can enhance the quality of your software, examines your code for a set of common defects and violations is always a good programming practice. Adding that Code analysis can also find defects in your code that are difficult to discover through testing allowing you to achieve first level quality gate for you application during development phase before you release it to the testing team. Supported platforms .NET Framework, native (C and C++) Database applications. Support Visual Studio versions All version of Visual Studio starting Visual Studio 2013 (except Visual Studio Test Professional) check Feature comparisons Create and modify a custom rule set required Visual Studio Premium or Ultimate. How to use? Code Analysis can be run manually at any time from within the Visual Studio IDE, or even setup to automatically run as part of a Team Build or check-in policy for Team Foundation Server. Run Code Analysis Manually To run code analysis manually on a project, on the Analyze menu, click Run Code Analysis on your project or simply right click on the project name on the Solution Explorer choose Run Code Analysis from the context menu Run Code Analysis Automatically To run code analysis each time that you build a project, you select Enable Code Analysis on Build on the project's Property Page Run Code Analysis while check-in source code to TFS version control (TFSVC) Team Foundation Version Control (TFVC) provides a way for organizations to enforce practices that lead to better code and more efficient group development through Check-in policies which are rules that are set at the team project level and enforced on developer computers before code is allowed to be checked in. (This is available only if you're using Team Foundation Server) Require permissions on Team Foundation Server: you must have the Edit project-level information permission set to Allow typically your account must be part of Project Administrators, Project Collection Administrators, for more information about Team Foundation permissions check http://msdn.microsoft.com/en-us/library/ms252587(v=vs.120).aspx In Team Explorer, right-click the team project name, point to Team Project Settings, and then click Source Control. In the Source Control dialog box, select the Check-in Policy tab. Click Add to create a new check-in policy. Double-click the existing Code Analysis item in the Policy Type list to change the policy. Check or Uncheck the policy option based on the configurations you need to perform as illustrated below: Enforce check-in to only contain files that are part of current solution: code analysis can run only on files specified in solution and project configuration files. This policy guarantees that all code that is part of a solution is analyzed. Enforce C/C++ Code Analysis (/analyze): Requires that all C or C++ projects be built with the /analyze compiler option to run code analysis before they can be checked in. Enforce Code Analysis for Managed Code: Requires that all managed projects run code analysis and build before they can be checked in. Check Code analysis rule set reference on MSDN What is Rule Set? Rule Set is a group of code analysis rules like the example below where Microsoft.Design is the rule set name where "Do not declare static members on generic types" is the code analysis rule Once you configured the Analysis rule the policy will be enabled for all the team member in this project whenever a team member check-in any source code to the TFSVC the policy section will highlight the Code Analysis policy as below TFS is a very extensible platform so you can simply implement your own custom Code Analysis Check-in policy, check this link for more details http://msdn.microsoft.com/en-us/library/dd492668.aspx but you have to be aware also about compatibility between different TFS versions check http://msdn.microsoft.com/en-us/library/bb907157.aspx Run Code Analysis as part of Team Build With Team Foundation Build (TFBuild), you can create and manage build processes that automatically compile and test your applications, and perform other important functions. Code Analysis can be enabled in the Build Definition file by selecting the correct value for the build process parameter "Perform Code Analysis" Once configure, Kick-off your build definition to queue a new build, Code Analysis will run as part of build workflow and you will be able to see code analysis warning as part of build report Understand the Code Analysis results & learn how to fix them Now after you went through Code Analysis configurations and the different ways of running it, we will go through the Code Analysis result how to understand them and how to resolve them. Code Analysis window in Visual Studio will show all the analysis results based on the rule sets you configured in the project file properties, let's dig deep into what each result item contains: 1 Check ID The unique identifier for the rule. CheckId and Category are used for in-source suppression of a warning.       2 Title The title of warning message       3 Description A description of the problem or suggested fix 4 File Name File name and the line of code number which violate the code analysis rule set 5 Category The code analysis category for this error 6 Warning /Error Depend on how you configure it in the rule set the default is Warning level 7 Action Copy: copy the warning information to the clipboard Create Work Item: If you're connected to Team Foundation Server you can create a work item most probably you may create a Task or Bug and assign it for a developer to fix certain code analysis warning Suppress Message: There are times when you might decide not to fix a code analysis warning. You might decide that resolving the warning requires too much recoding in relation to the probability that the issue will arise in any real-world implementation of your code. Or you might believe that the analysis that is used in the warning is inappropriate for the particular context. You can suppress individual warnings so that they no longer appear in the Code Analysis window. Two options available: In Source inserts a SuppressMessage attribute in the source file above the method that generated the warning. This makes the suppression more discoverable. In Suppression File adds a SuppressMessage attribute to the GlobalSuppressions.cs file of the project. This can make the management of suppressions easier. Note that the SuppressMessage attribute added to GlobalSuppression.cs also targets the method that generated the warning. It does not suppress the warning globally.       Visual Studio makes it very easy to fix Code analysis warning, all you have to do is clicking on the Check Id hyperlink if you are not aware how to fix the warring and you'll be directed to MSDN online or local copy based on the configuration you did while installing Visual Studio and you will find all the information about the warring including how to fix it. Create a Custom Code Analysis Rule Set The Microsoft standard rule sets provide groups of rules that are organized by function and depth. For example, the Microsoft Basic Design Guidelines Rules and the Microsoft Extended Design Guidelines Rules contain rules that focus on usability and maintainability issues, with added emphasis on naming rules in the Extended rule set, you can create and modify a custom rule set to meet specific project needs associated with code analysis. To create a custom rule set, you open one or more standard rule sets in the rule set editor. Create and modify a custom rule set required Visual Studio Premium or Ultimate. You can check How to: Create a Custom Rule Set on MSDN for more details http://msdn.microsoft.com/en-us/library/dd264974.aspx Q & A Visual Studio static code analysis vs. FxCop vs. StyleCpp http://www.excella.com/blog/stylecop-vs-fxcop-difference-between-code-analysis-tools/ Code Analysis for SharePoint Apps and SPDisposeCheck? This post lists some of the rule set you can run specifically for SharePoint applications and how to integrate SPDisposeCheck as well. Code Analysis for SQL Server Database Projects? This post illustrate how to run static code analysis on T-SQL through SSDT ReSharper 8 vs. Visual Studio 2013? This document lists some of the features that are provided by ReSharper 8 but are missing or not as fully implemented in Visual Studio 2013. References A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext What is New in Code Analysis for Visual Studio 2013 http://blogs.msdn.com/b/visualstudioalm/archive/2013/07/03/what-is-new-in-code-analysis-for-visual-studio-2013.aspx Analyze the code quality of Windows Store apps using Visual Studio static code analysis http://msdn.microsoft.com/en-us/library/windows/apps/hh441471.aspx [Hands-on-lab] Using Code Analysis with Visual Studio 2012 to Improve Code Quality http://download.microsoft.com/download/A/9/2/A9253B14-5F23-4BC8-9C7E-F5199DB5F831/Using%20Code%20Analysis%20with%20Visual%20Studio%202012%20to%20Improve%20Code%20Quality.docx Originally posted at "Hosam Kamel| Developer & Platform Evangelist" http://blogs.msdn.com/hkamel

    Read the article

  • SignalR Auto Disconnect when Page Changed in AngularJS

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2014/05/30/signalr-auto-disconnect-when-page-changed-in-angularjs.aspxIf we are using SignalR, the connection lifecycle was handled by itself very well. For example when we connect to SignalR service from browser through SignalR JavaScript Client the connection will be established. And if we refresh the page, close the tab or browser, or navigate to another URL then the connection will be closed automatically. This information had been well documented here. In a browser, SignalR client code that maintains a SignalR connection runs in the JavaScript context of a web page. That's why the SignalR connection has to end when you navigate from one page to another, and that's why you have multiple connections with multiple connection IDs if you connect from multiple browser windows or tabs. When the user closes a browser window or tab, or navigates to a new page or refreshes the page, the SignalR connection immediately ends because SignalR client code handles that browser event for you and calls the "Stop" method. But unfortunately this behavior doesn't work if we are using SignalR with AngularJS. AngularJS is a single page application (SPA) framework created by Google. It hijacks browser's address change event, based on the route table user defined, launch proper view and controller. Hence in AngularJS we address was changed but the web page still there. All changes of the page content are triggered by Ajax. So there's no page unload and load events. This is the reason why SignalR cannot handle disconnect correctly when works with AngularJS. If we dig into the source code of SignalR JavaScript Client source code we will find something below. It monitors the browser page "unload" and "beforeunload" event and send the "stop" message to server to terminate connection. But in AngularJS page change events were hijacked, so SignalR will not receive them and will not stop the connection. 1: // wire the stop handler for when the user leaves the page 2: _pageWindow.bind("unload", function () { 3: connection.log("Window unloading, stopping the connection."); 4:  5: connection.stop(asyncAbort); 6: }); 7:  8: if (isFirefox11OrGreater) { 9: // Firefox does not fire cross-domain XHRs in the normal unload handler on tab close. 10: // #2400 11: _pageWindow.bind("beforeunload", function () { 12: // If connection.stop() runs runs in beforeunload and fails, it will also fail 13: // in unload unless connection.stop() runs after a timeout. 14: window.setTimeout(function () { 15: connection.stop(asyncAbort); 16: }, 0); 17: }); 18: }   Problem Reproduce In the codes below I created a very simple example to demonstrate this issue. Here is the SignalR server side code. 1: public class GreetingHub : Hub 2: { 3: public override Task OnConnected() 4: { 5: Debug.WriteLine(string.Format("Connected: {0}", Context.ConnectionId)); 6: return base.OnConnected(); 7: } 8:  9: public override Task OnDisconnected() 10: { 11: Debug.WriteLine(string.Format("Disconnected: {0}", Context.ConnectionId)); 12: return base.OnDisconnected(); 13: } 14:  15: public void Hello(string user) 16: { 17: Clients.All.hello(string.Format("Hello, {0}!", user)); 18: } 19: } Below is the configuration code which hosts SignalR hub in an ASP.NET WebAPI project with IIS Express. 1: public class Startup 2: { 3: public void Configuration(IAppBuilder app) 4: { 5: app.Map("/signalr", map => 6: { 7: map.UseCors(CorsOptions.AllowAll); 8: map.RunSignalR(new HubConfiguration() 9: { 10: EnableJavaScriptProxies = false 11: }); 12: }); 13: } 14: } Since we will host AngularJS application in Node.js in another process and port, the SignalR connection will be cross domain. So I need to enable CORS above. In client side I have a Node.js file to host AngularJS application as a web server. You can use any web server you like such as IIS, Apache, etc.. Below is the "index.html" page which contains a navigation bar so that I can change the page/state. As you can see I added jQuery, AngularJS, SignalR JavaScript Client Library as well as my AngularJS entry source file "app.js". 1: <html data-ng-app="demo"> 2: <head> 3: <script type="text/javascript" src="jquery-2.1.0.js"></script> 1:  2: <script type="text/javascript" src="angular.js"> 1: </script> 2: <script type="text/javascript" src="angular-ui-router.js"> 1: </script> 2: <script type="text/javascript" src="jquery.signalR-2.0.3.js"> 1: </script> 2: <script type="text/javascript" src="app.js"></script> 4: </head> 5: <body> 6: <h1>SignalR Auto Disconnect with AngularJS by Shaun</h1> 7: <div> 8: <a href="javascript:void(0)" data-ui-sref="view1">View 1</a> | 9: <a href="javascript:void(0)" data-ui-sref="view2">View 2</a> 10: </div> 11: <div data-ui-view></div> 12: </body> 13: </html> Below is the "app.js". My SignalR logic was in the "View1" page and it will connect to server once the controller was executed. User can specify a user name and send to server, all clients that located in this page will receive the server side greeting message through SignalR. 1: 'use strict'; 2:  3: var app = angular.module('demo', ['ui.router']); 4:  5: app.config(['$stateProvider', '$locationProvider', function ($stateProvider, $locationProvider) { 6: $stateProvider.state('view1', { 7: url: '/view1', 8: templateUrl: 'view1.html', 9: controller: 'View1Ctrl' }); 10:  11: $stateProvider.state('view2', { 12: url: '/view2', 13: templateUrl: 'view2.html', 14: controller: 'View2Ctrl' }); 15:  16: $locationProvider.html5Mode(true); 17: }]); 18:  19: app.value('$', $); 20: app.value('endpoint', 'http://localhost:60448'); 21: app.value('hub', 'GreetingHub'); 22:  23: app.controller('View1Ctrl', function ($scope, $, endpoint, hub) { 24: $scope.user = ''; 25: $scope.response = ''; 26:  27: $scope.greeting = function () { 28: proxy.invoke('Hello', $scope.user) 29: .done(function () {}) 30: .fail(function (error) { 31: console.log(error); 32: }); 33: }; 34:  35: var connection = $.hubConnection(endpoint); 36: var proxy = connection.createHubProxy(hub); 37: proxy.on('hello', function (response) { 38: $scope.$apply(function () { 39: $scope.response = response; 40: }); 41: }); 42: connection.start() 43: .done(function () { 44: console.log('signlar connection established'); 45: }) 46: .fail(function (error) { 47: console.log(error); 48: }); 49: }); 50:  51: app.controller('View2Ctrl', function ($scope, $) { 52: }); When we went to View1 the server side "OnConnect" method will be invoked as below. And in any page we send the message to server, all clients will got the response. If we close one of the client, the server side "OnDisconnect" method will be invoked which is correct. But is we click "View 2" link in the page "OnDisconnect" method will not be invoked even though the content and browser address had been changed. This might cause many SignalR connections remain between the client and server. Below is what happened after I clicked "View 1" and "View 2" links four times. As you can see there are 4 live connections.   Solution Since the reason of this issue is because, AngularJS hijacks the page event that SignalR need to stop the connection, we can handle AngularJS route or state change event and stop SignalR connect manually. In the code below I moved the "connection" variant to global scope, added a handler to "$stateChangeStart" and invoked "stop" method of "connection" if its state was not "disconnected". 1: var connection; 2: app.run(['$rootScope', function ($rootScope) { 3: $rootScope.$on('$stateChangeStart', function () { 4: if (connection && connection.state && connection.state !== 4 /* disconnected */) { 5: console.log('signlar connection abort'); 6: connection.stop(); 7: } 8: }); 9: }]); Now if we refresh the page and navigated to View 1, the connection will be opened. At this state if we clicked "View 2" link the content will be changed and the SignalR connection will be closed automatically.   Summary In this post I demonstrated an issue when we are using SignalR with AngularJS. The connection cannot be closed automatically when we navigate to other page/state in AngularJS. And the solution I mentioned below is to move the SignalR connection as a global variant and close it manually when AngularJS route/state changed. You can download the full sample code here. Moving the SignalR connection as a global variant might not be a best solution. It's just for easy to demo here. In production code I suggest wrapping all SignalR operations into an AngularJS factory. Since AngularJS factory is a singleton object, we can safely put the connection variant in the factory function scope.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Revisiting ANTS Performance Profiler 7.4

    - by James Michael Hare
    Last year, I did a small review on the ANTS Performance Profiler 6.3, now that it’s a year later and a major version number higher, I thought I’d revisit the review and revise my last post. This post will take the same examples as the original post and update them to show what’s new in version 7.4 of the profiler. Background A performance profiler’s main job is to keep track of how much time is typically spent in each unit of code. This helps when we have a program that is not running at the performance we expect, and we want to know where the program is experiencing issues. There are many profilers out there of varying capabilities. Red Gate’s typically seem to be the very easy to “jump in” and get started with very little training required. So let’s dig into the Performance Profiler. I’ve constructed a very crude program with some obvious inefficiencies. It’s a simple program that generates random order numbers (or really could be any unique identifier), adds it to a list, sorts the list, then finds the max and min number in the list. Ignore the fact it’s very contrived and obviously inefficient, we just want to use it as an example to show off the tool: 1: // our test program 2: public static class Program 3: { 4: // the number of iterations to perform 5: private static int _iterations = 1000000; 6: 7: // The main method that controls it all 8: public static void Main() 9: { 10: var list = new List<string>(); 11: 12: for (int i = 0; i < _iterations; i++) 13: { 14: var x = GetNextId(); 15: 16: AddToList(list, x); 17: 18: var highLow = GetHighLow(list); 19: 20: if ((i % 1000) == 0) 21: { 22: Console.WriteLine("{0} - High: {1}, Low: {2}", i, highLow.Item1, highLow.Item2); 23: Console.Out.Flush(); 24: } 25: } 26: } 27: 28: // gets the next order id to process (random for us) 29: public static string GetNextId() 30: { 31: var random = new Random(); 32: var num = random.Next(1000000, 9999999); 33: return num.ToString(); 34: } 35: 36: // add it to our list - very inefficiently! 37: public static void AddToList(List<string> list, string item) 38: { 39: list.Add(item); 40: list.Sort(); 41: } 42: 43: // get high and low of order id range - very inefficiently! 44: public static Tuple<int,int> GetHighLow(List<string> list) 45: { 46: return Tuple.Create(list.Max(s => Convert.ToInt32(s)), list.Min(s => Convert.ToInt32(s))); 47: } 48: } So let’s run it through the profiler and see what happens! Visual Studio Integration First, let’s look at how the ANTS profilers integrate with Visual Studio’s menu system. Once you install the ANTS profilers, you will get an ANTS menu item with several options: Notice that you can either Profile Performance or Launch ANTS Performance Profiler. These sound similar but achieve two slightly different actions: Profile Performance: this immediately launches the profiler with all defaults selected to profile the active project in Visual Studio. Launch ANTS Performance Profiler: this launches the profiler much the same way as starting it from the Start Menu. The profiler will pre-populate the application and path information, but allow you to change the settings before beginning the profile run. So really, the main difference is that Profile Performance immediately begins profiling with the default selections, where Launch ANTS Performance Profiler allows you to change the defaults and attach to an already-running application. Let’s Fire it Up! So when you fire up ANTS either via Start Menu or Launch ANTS Performance Profiler menu in Visual Studio, you are presented with a very simple dialog to get you started: Notice you can choose from many different options for application type. You can profile executables, services, web applications, or just attach to a running process. In fact, in version 7.4 we see two new options added: ASP.NET Web Application (IIS Express) SharePoint web application (IIS) So this gives us an additional way to profile ASP.NET applications and the ability to profile SharePoint applications as well. You can also choose your level of detail in the Profiling Mode drop down. If you choose Line-Level and method-level timings detail, you will get a lot more detail on the method durations, but this will also slow down profiling somewhat. If you really need the profiler to be as unintrusive as possible, you can change it to Sample method-level timings. This is performing very light profiling, where basically the profiler collects timings of a method by examining the call-stack at given intervals. Which method you choose depends a lot on how much detail you need to find the issue and how sensitive your program issues are to timing. So for our example, let’s just go with the line and method timing detail. So, we check that all the options are correct (if you launch from VS2010, the executable and path are filled in already), and fire it up by clicking the [Start Profiling] button. Profiling the Application Once you start profiling the application, you will see a real-time graph of CPU usage that will indicate how much your application is using the CPU(s) on your system. During this time, you can select segments of the graph and bookmark them, giving them mnemonic names. This can be useful if you want to compare performance in one part of the run to another part of the run. Notice that once you select a block, it will give you the call tree breakdown for that selection only, and the relative performance of those calls. Once you feel you have collected enough information, you can click [Stop Profiling] to stop the application run and information collection and begin a more thorough analysis. Analyzing Method Timings So now that we’ve halted the run, we can look around the GUI and see what we can see. By default, the times are shown in terms of percentage of time of the total run of the application, though you can change it in the View menu item to milliseconds, ticks, or seconds as well. This won’t affect the percentages of methods, it only affects what units the times are shown. Notice also that the major hotspot seems to be in a method without source, ANTS Profiler will filter these out by default, but you can right-click on the line and remove the filter to see more detail. This proves especially handy when a bottleneck is due to a method in the BCL. So now that we’ve removed the filter, we see a bit more detail: In addition, ANTS Performance Profiler gives you the ability to decompile the methods without source so that you can dive even deeper, though typically this isn’t necessary for our purposes. When looking at timings, there are generally two types of timings for each method call: Time: This is the time spent ONLY in this method, not including calls this method makes to other methods. Time With Children: This is the total of time spent in both this method AND including calls this method makes to other methods. In other words, the Time tells you how much work is being done exclusively in this method, and the Time With Children tells you how much work is being done inclusively in this method and everything it calls. You can also choose to display the methods in a tree or in a grid. The tree view is the default and it shows the method calls arranged in terms of the tree representing all method calls and the parent method that called them, etc. This is useful for when you find a hot-spot method, you can see who is calling it to determine if the problem is the method itself, or if it is being called too many times. The grid method represents each method only once with its totals and is useful for quickly seeing what method is the trouble spot. In addition, you can choose to display Methods with source which are generally the methods you wrote (as opposed to native or BCL code), or Any Method which shows not only your methods, but also native calls, JIT overhead, synchronization waits, etc. So these are just two ways of viewing the same data, and you’re free to choose the organization that best suits what information you are after. Analyzing Method Source If we look at the timings above, we see that our AddToList() method (and in particular, it’s call to the List<T>.Sort() method in the BCL) is the hot-spot in this analysis. If ANTS sees a method that is consuming the most time, it will flag it as a hot-spot to help call out potential areas of concern. This doesn’t mean the other statistics aren’t meaningful, but that the hot-spot is most likely going to be your biggest bang-for-the-buck to concentrate on. So let’s select the AddToList() method, and see what it shows in the source window below: Notice the source breakout in the bottom pane when you select a method (from either tree or grid view). This shows you the timings in this method per line of code. This gives you a major indicator of where the trouble-spot in this method is. So in this case, we see that performing a Sort() on the List<T> after every Add() is killing our performance! Of course, this was a very contrived, duh moment, but you’d be surprised how many performance issues become duh moments. Note that this one line is taking up 86% of the execution time of this application! If we eliminate this bottleneck, we should see drastic improvement in the performance. So to fix this, if we still wanted to maintain the List<T> we’d have many options, including: delay Sort() until after all Add() methods, using a SortedSet, SortedList, or SortedDictionary depending on which is most appropriate, or forgoing the sorting all together and using a Dictionary. Rinse, Repeat! So let’s just change all instances of List<string> to SortedSet<string> and run this again through the profiler: Now we see the AddToList() method is no longer our hot-spot, but now the Max() and Min() calls are! This is good because we’ve eliminated one hot-spot and now we can try to correct this one as well. As before, we can then optimize this part of the code (possibly by taking advantage of the fact the list is now sorted and returning the first and last elements). We can then rinse and repeat this process until we have eliminated as many bottlenecks as possible. Calls by Web Request Another feature that was added recently is the ability to view .NET methods grouped by the HTTP requests that caused them to run. This can be helpful in determining which pages, web services, etc. are causing hot spots in your web applications. Summary If you like the other ANTS tools, you’ll like the ANTS Performance Profiler as well. It is extremely easy to use with very little product knowledge required to get up and running. There are profilers built into the higher product lines of Visual Studio, of course, which are also powerful and easy to use. But for quickly jumping in and finding hot spots rapidly, Red Gate’s Performance Profiler 7.4 is an excellent choice. Technorati Tags: Influencers,ANTS,Performance Profiler,Profiler

    Read the article

  • Oracle OpenWorld Preview: Oracle WebCenter Sessions You Won’t Want to Miss

    - by Christie Flanagan
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The beginning of Oracle OpenWorld is only a few short days away. This week on the WebCenter blog, we’ll focus in on the sessions you definitely don’t want to miss while you’re in San Francisco next week.  Monday, October 1 will be a day focused on strategy.  Here are the sessions you want to add to your calendar: CON8268 - Oracle WebCenter Strategy: Engaging Your Customers. Empowering Your Business Monday, Oct 1, 10:45 AM - 11:45 AM - Moscone West – 3001 Start things off with Oracle WebCenter’s Christian Finn, Senior Director of Evangelism and Roel Stalman, VP of Product Management to learn more about the Oracle WebCenter strategy, and to understand where Oracle is taking the platform to help companies engage, customers, empower employees, and enable partners. This session will also feature Richard Backx, Business IT Architect/Consultant, for the Dutch telecom, KPN. Richard has played a key role in the roll-out of WebCenter products for KPN’s multibrand portals with a specific focus on creating the best customer journey platform for all the company’s digital channels. Business success starts with ensuring that everyone is engaged with the right people and the right information and can access what they need through the channel of their choice—web, mobile, or social. Are you giving customers, employees, and partners the best-possible experience? Come learn how you can! Dig deeper into WebCenter’s strategy for its ECM, portal, web experience management and social collaboration in the following sessions: CON8270 - Oracle WebCenter Content Strategy and Vision Monday, Oct 1, 12:15 PM - 1:15 PM - Moscone West – 3001 Oracle WebCenter Content provides a strategic content infrastructure for managing documents, images, e-mails, and rich media files. With a single repository, organizations can address any content use case, such as accounts payable, HR onboarding, document management, compliance, records management, digital asset management, or Website management. In this session, learn about future plans for how Oracle WebCenter will address new use cases as well as new integrations with Oracle Fusion Middleware and Oracle Applications, leveraging your investments by making your users more productive and error-free. CON8269 - Oracle WebCenter Sites Strategy and Vision Monday, Oct 1, 1:45 PM - 2:45 PM - Moscone West - 3009 Oracle’s Web experience management solution, Oracle WebCenter Sites, enables organizations to use the online channel to drive customer acquisition and brand loyalty. It helps marketers and business users easily create and manage contextually relevant, social, interactive online experiences across multiple channels on a global scale. In this session, learn about future plans for how Oracle WebCenter Sites will provide you with the tools, capabilities, and integrations you need in order to continue to address your customers’ evolving requirements for engaging online experiences and keep moving your business forward. CON8271 - Oracle WebCenter Portal Strategy and Vision Monday, Oct 1, 3:15 PM - 4:15 PM - Moscone West - 3001 To innovate and keep a competitive edge, organizations need to leverage the power of agile and responsive Web applications. Oracle WebCenter Portal enables you to do just that, by delivering intuitive user experiences for enterprise applications to drive innovation with composite applications and mashups. Attend this session to learn firsthand from Oracle WebCenter Portal customers like the Los Angeles Department of Water and Power, extend the value of existing enterprise applications, business processes, and content; delivers a superior business user experience; and maximizes limited IT resources. CON8272 - Oracle Social Network Strategy and Vision Monday, Oct 1, 4:45 PM - 5:45 PM - Moscone West - 3001 One key way of increasing employee productivity is by bringing people, processes, and information together—providing new social capabilities to enable business users to quickly correspond and collaborate on business activities. Oracle WebCenter provides a user engagement platform with social and collaborative technologies to empower business users to focus on their key business processes, applications, and content in the context of their role and process. Attend this session to hear how the latest social capabilities in Oracle Social Network are enabling organizations to transform themselves into social businesses.Attention WebCenter Customers: Last Day to RSVP for WebCenter Customer Appreciation Reception Oracle WebCenter partners Fishbowl Solutions, Fujitsu, Keste, Mythics, Redstone Content Solutions, TEAM Informatics, and TekStream invite Oracle WebCenter customers to a private cocktail reception at one of San Francisco's finest hotels. Please join us and fellow Oracle WebCenter customers for hors d'oeuvres and cocktails at this exclusive reception. Don't miss this opportunity to meet and talk with executives from Oracle WebCenter product management and product marketing, and premier Oracle WebCenter partners. We look forward to seeing you! RSVP today.

    Read the article

  • Windows Azure AppFabric: ServiceBus Queue WPF Sample

    - by xamlnotes
    The latest version of the AppFabric ServiceBus now has support for queues and topics. Today I will show you a bit about using queues and also talk about some of the best practices in using them. If you are just getting started, you can check out this site for more info on Windows Azure. One of the 1st things I thought if when Azure was announced back when was how we handle fault tolerance. Web sites hosted in Azure are no much of an issue unless they are using SQL Azure and then you must account for potential fault or latency issues. Today I want to talk a bit about ServiceBus and how to handle fault tolerance.  And theres stuff like connecting to the servicebus and so on you have to take care of. To demonstrate some of the things you can do, let me walk through this sample WPF app that I am posting for you to download. To start off, the application is going to need things like the servicenamespace, issuer details and so forth to make everything work.  To facilitate this I created settings in the wpf app for all of these items. Then I mapped a static class to them and set the values when the program loads like so: StaticElements.ServiceNamespace = Convert.ToString(Properties.Settings.Default["ServiceNamespace"]); StaticElements.IssuerName = Convert.ToString(Properties.Settings.Default["IssuerName"]); StaticElements.IssuerKey = Convert.ToString(Properties.Settings.Default["IssuerKey"]); StaticElements.QueueName = Convert.ToString(Properties.Settings.Default["QueueName"]);   Now I can get to each of these elements plus some other common values or instances directly from the StaticElements class. Now, lets look at the application.  The application looks like this when it starts:   The blue graphic represents the queue we are going to use.  The next figure shows the form after items were added and the queue stats were updated . You can see how the queue has grown: To add an item to the queue, click the Add Order button which displays the following dialog: After you fill in the form and press OK, the order is published to the ServiceBus queue and the form closes. The application also allows you to read the queued items by clicking the Process Orders button. As you can see below, the form shows the queued items in a list and the  queue has disappeared as its now empty. In real practice we normally would use a Windows Service or some other automated process to subscribe to the queue and pull items from it. I created a class named ServiceBusQueueHelper that has the core queue features we need. There are three public methods: * GetOrCreateQueue – Gets an instance of the queue description if the queue exists. if not, it creates the queue and returns a description instance. * SendMessageToQueue = This method takes an order instance and sends it to the queue. The call to the queue is wrapped in the ExecuteAction method from the Transient Fault Tolerance Framework and handles all the retry logic for the queue send process. * GetOrderFromQueue – Grabs an order from the queue and returns a typed order from the queue. It also marks the message complete so the queue can remove it.   Now lets turn to the WPF window code (MainWindow.xaml.cs). The constructor contains the 4 lines shown about to setup the static variables and to perform other initialization tasks. The next few lines setup certain features we need for the ServiceBus: TokenProvider credentials = TokenProvider.CreateSharedSecretTokenProvider(StaticElements.IssuerName, StaticElements.IssuerKey); Uri serviceUri = ServiceBusEnvironment.CreateServiceUri("sb", StaticElements.ServiceNamespace, string.Empty); StaticElements.CurrentNamespaceManager = new NamespaceManager(serviceUri, credentials); StaticElements.CurrentMessagingFactory = MessagingFactory.Create(serviceUri, credentials); The next two lines update the queue name label and also set the timer to 20 seconds.             QueueNameLabel.Content = StaticElements.QueueName;             _timer.Interval = TimeSpan.FromSeconds(20);             Next I call the UpdateQueueStats to initialize the UI for the queue:             UpdateQueueStats();             _timer.Tick += new EventHandler(delegate(object s, EventArgs a)                         {                      UpdateQueueStats();                  });             _timer.Start();         } The UpdateQueueStats method shown below. You can see that it uses the GetOrCreateQueue method mentioned earlier to grab the queue description, then it can get the MessageCount property.         private void UpdateQueueStats()         {             _queueDescription = _serviceBusQueueHelper.GetOrCreateQueue();             QueueCountLabel.Content = "(" + _queueDescription.MessageCount + ")";             long count = _queueDescription.MessageCount;             long queueWidth = count * 20;             QueueRectangle.Width = queueWidth;             QueueTickCount += 1;             TickCountlabel.Content = QueueTickCount.ToString();         }   The ReadQueueItemsButton_Click event handler calls the GetOrderFromQueue method and adds the order to the listbox. If you look at the SendQueueMessageController, you can see the SendMessage method that sends an order to the queue. Its pretty simple as it just creates a new CustomerOrderEntity instance,fills it and then passes it to the SendMessageToQueue. As you can see, all of our interaction with the queue is done through the helper class (ServiceBusQueueHelper). Now lets dig into the helper class. First, before you create anything like this, download the Transient Fault Handling Framework. Microsoft provides this free and they also provide the C# source. Theres a great article that shows how to use this framework with ServiceBus. I included the entire ServiceBusQueueHelper class in List 1. Notice the using statements for TransientFaultHandling: using Microsoft.AzureCAT.Samples.TransientFaultHandling; using Microsoft.AzureCAT.Samples.TransientFaultHandling.ServiceBus; The SendMessageToQueue in Listing 1 shows how to use the async send features of ServiceBus with them wrapped in the Transient Fault Handling Framework.  It is not much different than plain old ServiceBus calls but it sure makes it easy to have the fault tolerance added almost for free. The GetOrderFromQueue uses the standard synchronous methods to access the queue. The best practices article walks through using the async approach for a receive operation also.  Notice that this method makes a call to Receive to get the message then makes a call to GetBody to get a new strongly typed instance of CustomerOrderEntity to return. Listing 1 using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.AzureCAT.Samples.TransientFaultHandling; using Microsoft.AzureCAT.Samples.TransientFaultHandling.ServiceBus; using Microsoft.ServiceBus; using Microsoft.ServiceBus.Messaging; using System.Xml.Serialization; using System.Diagnostics; namespace WPFServicebusPublishSubscribeSample {     class ServiceBusQueueHelper     {         RetryPolicy currentPolicy = new RetryPolicy<ServiceBusTransientErrorDetectionStrategy>(RetryPolicy.DefaultClientRetryCount);         QueueClient currentQueueClient;         public QueueDescription GetOrCreateQueue()         {                        QueueDescription queue = null;             bool createNew = false;             try             {                 // First, let's see if a queue with the specified name already exists.                 queue = currentPolicy.ExecuteAction<QueueDescription>(() => { return StaticElements.CurrentNamespaceManager.GetQueue(StaticElements.QueueName); });                 createNew = (queue == null);             }             catch (MessagingEntityNotFoundException)             {                 // Looks like the queue does not exist. We should create a new one.                 createNew = true;             }             // If a queue with the specified name doesn't exist, it will be auto-created.             if (createNew)             {                 try                 {                     var newqueue = new QueueDescription(StaticElements.QueueName);                     queue = currentPolicy.ExecuteAction<QueueDescription>(() => { return StaticElements.CurrentNamespaceManager.CreateQueue(newqueue); });                 }                 catch (MessagingEntityAlreadyExistsException)                 {                     // A queue under the same name was already created by someone else,                     // perhaps by another instance. Let's just use it.                     queue = currentPolicy.ExecuteAction<QueueDescription>(() => { return StaticElements.CurrentNamespaceManager.GetQueue(StaticElements.QueueName); });                 }             }             currentQueueClient = StaticElements.CurrentMessagingFactory.CreateQueueClient(StaticElements.QueueName);             return queue;         }         public void SendMessageToQueue(CustomerOrderEntity Order)         {             BrokeredMessage msg = null;             GetOrCreateQueue();             // Use a retry policy to execute the Send action in an asynchronous and reliable fashion.             currentPolicy.ExecuteAction             (                 (cb) =>                 {                     // A new BrokeredMessage instance must be created each time we send it. Reusing the original BrokeredMessage instance may not                     // work as the state of its BodyStream cannot be guaranteed to be readable from the beginning.                     msg = new BrokeredMessage(Order);                     // Send the event asynchronously.                     currentQueueClient.BeginSend(msg, cb, null);                 },                 (ar) =>                 {                     try                     {                         // Complete the asynchronous operation.                         // This may throw an exception that will be handled internally by the retry policy.                         currentQueueClient.EndSend(ar);                     }                     finally                     {                         // Ensure that any resources allocated by a BrokeredMessage instance are released.                         if (msg != null)                         {                             msg.Dispose();                             msg = null;                         }                     }                 },                 (ex) =>                 {                     // Always dispose the BrokeredMessage instance even if the send                     // operation has completed unsuccessfully.                     if (msg != null)                     {                         msg.Dispose();                         msg = null;                     }                     // Always log exceptions.                     Trace.TraceError(ex.Message);                 }             );         }                 public CustomerOrderEntity GetOrderFromQueue()         {             CustomerOrderEntity Order = new CustomerOrderEntity();             QueueClient myQueueClient = StaticElements.CurrentMessagingFactory.CreateQueueClient(StaticElements.QueueName, ReceiveMode.PeekLock);             BrokeredMessage message;             ServiceBusQueueHelper serviceBusQueueHelper = new ServiceBusQueueHelper();             QueueDescription queueDescription;             queueDescription = serviceBusQueueHelper.GetOrCreateQueue();             if (queueDescription.MessageCount > 0)             {                 message = myQueueClient.Receive(TimeSpan.FromSeconds(90));                 if (message != null)                 {                     try                     {                         Order = message.GetBody<CustomerOrderEntity>();                         message.Complete();                     }                     catch (Exception ex)                     {                         throw ex;                     }                 }                 else                 {                     throw new Exception("Did not receive the messages");                 }             }             return Order;         }     } } I will post a link to the download demo in a separate post soon.

    Read the article

< Previous Page | 24 25 26 27 28 29 30  | Next Page >