Search Results

Search found 2993 results on 120 pages for 'distributed transactions'.

Page 28/120 | < Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >

  • SQL SERVER – How to Roll Back SQL Server Database Changes

    - by Pinal Dave
    In a perfect scenario, no unexpected and unplanned changes occur. There are no unpleasant surprises, no inadvertent changes. However, even with all precautions and testing, there is sometimes a need to revert a structure or data change. One of the methods that can be used in this situation is to use an older database backup that has the records or database object structure you want to revert to. For this method, you have to have the adequate full database backup and a tool that will help you with comparison and synchronization is preferred. In this article, we will focus on another method: rolling back the changes. This can be done by using: An option in SQL Server Management Studio T-SQL, or ApexSQL Log The first two solutions have been described in this article The disadvantages of these methods are that you have to know when exactly the change you want to revert happened and that all transactions on the database executed in a specific time range are rolled back – the ones you want to undo and the ones you don’t. How to easily roll back SQL Server database changes using ApexSQL Log? The biggest challenge is to roll back just specific changes, not all changes that happened in a specific time range. While SQL Server Management Studio option and T-SQL read and roll forward all transactions in the transaction log files, I will show you a solution that finds and scripts only the specific changes that match your criteria. Therefore, you don’t need to worry about all other database changes that you don’t want to roll back. ApexSQL Log is a SQL Server disaster recovery tool that reads transaction logs and provides a wide range of filters that enable you to easily rollback only specific data changes. First, connect to the online database where you want to roll back the changes. Once you select the database, ApexSQL Log will show its recovery model. Note that changes can be rolled back even for a database in the Simple recovery model, when no database and transaction log backups are available. However, ApexSQL Log achieves best results when the database is in the Full recovery model and you have a chain of subsequent transaction log backups, back to the moment when the change occurred. In this example, we will use only the online transaction log. In the next step, use filters to read only the transactions that happened in a specific time range. To remove noise, it’s recommended to use as many filters as possible. Besides filtering by the time of the transaction, ApexSQL Log can filter by the operation type: Table name: As well as transaction state (committed, aborted, running, and unknown), name of the user who committed the change, specific field values, server process IDs, and transaction description. You can select only the tables affected by the changes you want to roll back. However, if you’re not certain which tables were affected, you can leave them all selected and once the results are shown in the main grid, analyze them to find the ones you to roll back. When you set the filters, you can select how to present the results. ApexSQL Log can automatically create undo or redo scripts, export the transactions into an XML, HTML, CSV, SQL, or SQL Bulk file, and create a batch file that you can use for unattended transaction log reading. In this example, I will open the results in the grid, as I want to analyze them before rolling back the transactions. The results contain information about the transaction, as well as who and when made it. For UPDATEs, ApexSQL Log shows both old and new values, so you can easily see what has happened. To create an UNDO script that rolls back the changes, select the transactions you want to roll back and click Create undo script in the menu. For the DELETE statement selected in the screenshot above, the undo script is: INSERT INTO [Sales].[PersonCreditCard] ([BusinessEntityID], [CreditCardID], [ModifiedDate]) VALUES (297, 8010, '20050901 00:00:00.000') When it comes to rolling back database changes, ApexSQL Log has a big advantage, as it rolls back only specific transactions, while leaving all other transactions that occurred at the same time range intact. That makes ApexSQL Log a good solution for rolling back inadvertent data and schema changes on your SQL Server databases. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: ApexSQL

    Read the article

  • Ruby on Rails - Primary and Foreign key

    - by Eef
    Hey, I am creating a site in Ruby on Rails, I have two models a User model and a Transaction model. These models both belong to an account so they both have a field called account_id I am trying to setup a association between them like so: class User < ActiveRecord::Base belongs_to :account has_many :transactions end class Transaction < ActiveRecord::Base belongs_to :account belongs_to :user end I am using these associations like so: user = User.find(1) transactions = user.transactions At the moment the application is trying to find the transactions with the user_id, here is the SQL it generates: Mysql::Error: Unknown column 'transactions.user_id' in 'where clause': SELECT * FROM `transactions` WHERE (`transactions`.user_id = 1) This is incorrect as I would like the find the transactions via the account_id, I have tried setting the associations like so: class User < ActiveRecord::Base belongs_to :account has_many :transactions, :primary_key => :account_id, :class_name => "Transaction" end class Transaction < ActiveRecord::Base belongs_to :account belongs_to :user, :foreign_key => :account_id, :class_name => "User" end This almost achieves what I am looking to do and generates the following SQL: Mysql::Error: Unknown column 'transactions.user_id' in 'where clause': SELECT * FROM `transactions` WHERE (`transactions`.user_id = 104) The number 104 is the correct account_id but it is still trying to query the transaction table for a user_id field. Could someone give me some advice on how I setup the associations to query the transaction table for the account_id instead of the user_id resulting in a SQL query like so: SELECT * FROM `transactions` WHERE (`transactions`.account_id = 104) Cheers Eef

    Read the article

  • Combining two-part SQL query into one query

    - by user332523
    Hello, I have a SQL query that I'm currently solving by doing two queries. I am wondering if there is a way to do it in a single query that makes it more efficient. Consider two tables: Transaction_Entries table and Transactions, each one defined below: Transactions - id - reference_number (varchar) Transaction_Entries - id - account_id - transaction_id (references Transactions table) Notes: There are multiple transaction entries per transaction. Some transactions are related, and will have the same reference_number string. To get all transaction entries for Account X, then I would do SELECT E.*, T.reference_number FROM Transaction_Entries E JOIN Transactions T ON (E.transaction_id=T.id) where E.account_id = X The next part is the hard part. I want to find all related transactions, regardless of the account id. First I make a list of all the unique reference numbers I found in the previous result set. Then for each one, I can query all the transactions that have that reference number. Assume that I hold all the rows from the previous query in PreviousResultSet UniqueReferenceNumbers = GetUniqueReferenceNumbers(PreviousResultSet) // in Java foreach R in UniqueReferenceNumbers // in Java SELECT * FROM Transaction_Entries where transaction_id IN (SELECT * FROM Transactions WHERE reference_number=R Any suggestions how I can put this into a single efficient query?

    Read the article

  • BackgroundWorker Help needed

    - by ChrisMuench
    I have code that does a web-service request. While doing this request I need a progress-bar to be moving independently. My problem is that I just need to say run a progress update every 1 or 2 seconds and check to see if progress of the request has been completed. NetBasisServicesSoapClient client = new NetBasisServicesSoapClient(); TransactionDetails[] transactions = new TransactionDetails[dataGridView1.Rows.Count - 1]; for (int i = 0; i < dataGridView1.Rows.Count - 1; i++) { transactions[i] = new TransactionDetails(); transactions[i].TransactionDate = (string)dataGridView1.Rows[i].Cells[2].Value; transactions[i].TransactionType = (string)dataGridView1.Rows[i].Cells[3].Value; transactions[i].Shares = (string)dataGridView1.Rows[i].Cells[4].Value; transactions[i].Pershare = (string)dataGridView1.Rows[i].Cells[5].Value; transactions[i].TotalAmount = (string)dataGridView1.Rows[i].Cells[6].Value; } CostbasisResult result = client.Costbasis(dataGridView1.Rows[0].Cells[0].Value.ToString(), dataGridView1.Rows[0].Cells[1].Value.ToString(), transactions, false, "", "", "FIFO", true); string result1 = ConvertStringArrayToString(result.Details);

    Read the article

  • How do I fix a permissions problem with MS Distributed File System?

    - by charlesrandall
    I have a computer that is new, Windows 7, that is supposed to have access to particular network resources on a Distributed File System. However, despite all permissions being set correctly, I have consistent trouble accessing them. For instance, I'm supposed to be able to reach \company.org\main\subdir. All the permissions have been granted, only when I try to access it by name, it tells me I don't have permission to access \main. This is where the fun starts. If I ping company.org, get the IP, replace company.org by the IP, I can then access \IP\main\subdir without any problems at all. However we have a ton of scripts and build tools that access the network resource by name. My sysadmin has found that using MS's dfsutil.exe, we can fix it temporary using this sequence of commands: C:\dfsutil.exe /pktinfo C:\dfsutil.exe /PktFlush C:\dfsutil.exe /SpcFlush C:\dfsutil.exe /PurgeMupCache C:\dfsutil.exe /pktinfo After that, everything is great... until I reboot, or until some unspecified time later where suddenly I don't have access to \main\ anymore. Hoping to find a more permanent solution than waiting for it to break and running a batch file.

    Read the article

  • Windows Azure Use Case: Hybrid Applications

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Organizations see the need for computing infrastructures that they can “rent” or pay for only when they need them. They also understand the benefits of distributed computing, but do not want to create this infrastructure themselves. However, they may have considerations that prevent them from moving all of their current IT investment to a distributed environment: Private data (do not want to send or store sensitive data off-site) High dollar investment in current infrastructure Applications currently running well, but may need additional periodic capacity Current applications not designed in a stateless fashion In these situations, a “hybrid” approach works best. In fact, with Windows Azure, a hybrid approach is an optimal way to implement distributed computing even when the stipulations above do not apply. Keeping a majority of the computing function in an organization local while exploring and expanding that footprint into Windows and SQL Azure is a good migration or expansion strategy. A “hybrid” architecture merely means that part of a computing cycle is shared between two architectures. For instance, some level of computing might be done in a Windows Azure web-based application, while the data is stored locally at the organization. Implementation: There are multiple methods for implementing a hybrid architecture, in a spectrum from very little interaction from the local infrastructure to Windows or SQL Azure. The patterns fall into two broad schemas, and even these can be mixed. 1. Client-Centric Hybrid Patterns In this pattern, programs are coded such that the client system sends queries or compute requests to multiple systems. The “client” in this case might be a web-based codeset actually stored on another system (which acts as a client, the user’s device serving as the presentation layer) or a compiled program. In either case, the code on the client requestor carries the burden of defining the layout of the requests. While this pattern is often the easiest to code, it’s the most brittle. Any change in the architecture must be reflected on each client, but this can be mitigated by using a centralized system as the client such as in the web scenario. 2. System-Centric Hybrid Patterns Another approach is to create a distributed architecture by turning on-site systems into “services” that can be called from Windows Azure using the service Bus or the Access Control Services (ACS) capabilities. Code calls from a series of in-process client application. In this pattern you move the “client” interface into the server application logic. If you do not wish to change the application itself, you can “layer” the results of the code return using a product (such as Microsoft BizTalk) that exposes a Web Services Definition Language (WSDL) endpoint to Windows Azure using the Application Fabric. In effect, this is similar to creating a Service Oriented Architecture (SOA) environment, and has the advantage of de-coupling your computing architecture. If each system offers a “service” of the results of some software processing, the operating system or platform becomes immaterial, assuming it adheres to a service contract. There are important considerations when you federate a system, whether to Windows or SQL Azure or any other distributed architecture. While these considerations are consistent with coding any application for distributed computing, they are especially important for a hybrid application. Connection resiliency - Applications on-premise normally have low-latency and good connection properties, something you’re not always guaranteed in a distributed and hybrid application. Whether a centralized client or a distributed one, the code should be able to handle extended retry logic. Authorization and Access - In a single authorization environment like a Active Directory domain, security is handled at a user-password level. In a distributed computing environment, you have more options. You can mitigate this with  using The Windows Azure Application Fabric feature of ACS to make the Azure application aware of the App Fabric as an ADFS provider. However, a claims-based authentication structure is often a superior choice.  Consistency and Concurrency - When you have a Relational Database Management System (RDBMS), Consistency and Concurrency are part of the design. In a Service Architecture, you need to plan for sequential message handling and lifecycle. Resources: How to Build a Hybrid On-Premise/In Cloud Application: http://blogs.msdn.com/b/ignitionshowcase/archive/2010/11/09/how-to-build-a-hybrid-on-premise-in-cloud-application.aspx  General Architecture guidance: http://blogs.msdn.com/b/buckwoody/archive/2010/12/21/windows-azure-learning-plan-architecture.aspx   

    Read the article

  • Can I create support multiple database transactions on a single connection?

    - by draezal
    I have created a HyperSQL Database. I was just wondering whether I could run multiple transactions on a single connection. I didn't want to spawn a new connection for each transaction due to the overhead associated with this. Looking at some similar questions the suggestion appeared to be to create a pool of database connections and then block waiting for one to become available. This is a workable, but not desirable solution. Background Info (if this is relevant to the answer). My application will create a new thread when some request comes in. This request will require a database transaction. Then some not insignificant time later this transaction will be committed. Any advice appreciated :)

    Read the article

  • How to implement nested SQL transactions with ADO.NET?

    - by manza_jurjur
    I need to implement nested transactions in .NET using ADO.NET. The situation is as follows: --> Start Process (Begin Transaction) --> Begin Transaction for step 1 --> Step 1 --> Commit transaction for step 1 --> Begin transaction for step 2 --> Step 2 --> Rollback transaction for step 2 --> etc ... --> End Process (Commit or Rollback ALL commited steps) Can that be done with transaction scopes? Could anyone post an example? In addition I'd need the prcoess to work for SQL Server 2005 AND Oracle 10g databases... will transaction scopes work with both database engines?

    Read the article

  • Is there a way to use the transactions in TCPDF when extending it with FPDI?

    - by Darryl Hein
    I am using TCPDF with FPDI's bridge. The issue I'm having is that as soon as I use the startTransaction() I get the following error: TCPDF ERROR: Cannot access protected property FPDI:$numpages / Undefined property: FPDI::$numpages and the script ends (because of the die in the TCPDF::Error() method). Here is the code I'm using: $pdf = new FPDI(); // add a page $pdf->AddPage(); $pdf->startTransaction(); $pdf->Cell(0, 0, 'blah blah blah'); $pdf->rollbackTransaction(); $pdf->Output( . time() . '.pdf', 'D'); If I change it to: $pdf = new FPDI(); // add a page $pdf->AddPage(); $pdf->Cell(0, 0, 'blah blah blah'); $pdf->Output( . time() . '.pdf', 'D'); it works fine. Is there anyway to make them work together and use TCPDF's transactions?

    Read the article

  • How to avoid geometric slowdown with large Linq transactions?

    - by Shaul
    I've written some really nice, funky libraries for use in LinqToSql. (Some day when I have time to think about it I might make it open source... :) ) Anyway, I'm not sure if this is related to my libraries or not, but I've discovered that when I have a large number of changed objects in one transaction, and then call DataContext.GetChangeSet(), things start getting reaalllly slooowwwww. When I break into the code, I find that my program is spinning its wheels doing an awful lot of Equals() comparisons between the objects in the change set. I can't guarantee this is true, but I suspect that if there are n objects in the change set, then the call to GetChangeSet() is causing every object to be compared to every other object for equivalence, i.e. at best (n^2-n)/2 calls to Equals()... Yes, of course I could commit each object separately, but that kinda defeats the purpose of transactions. And in the program I'm writing, I could have a batch job containing 100,000 separate items, that all need to be committed together. Around 5 billion comparisons there. So the question is: (1) is my assessment of the situation correct? Do you get this behavior in pure, textbook LinqToSql, or is this something my libraries are doing? And (2) is there a standard/reasonable workaround so that I can create my batch without making the program geometrically slower with every extra object in the change set?

    Read the article

  • Why would my router have different MAC addresses for IP and IPv6 transactions?

    - by user329161
    Today I was using tcpdump and I noticed my computer was having IPv6 traffic with a particular MAC address that I could not match with an IP using nmap or arping. After looking at the tcpdump logs a little more closely, I figured out it was another MAC address my router was using but exclusively for IPv6 traffic. 22:49:01.936830 90:0d:cb:ff:31:91 (oui Unknown) > 33:33:00:00:00:01 (oui Unknown), ethertype IPv6 (0x86dd), length 158: fe80::920d:cbff:feff:3191 > ip6-allnodes: ICMP6, router advertisement, length 104 Why would a router offer a different MAC address for IPv6?

    Read the article

  • Does a Distributed Version Control System really have no centralised repository?

    - by John
    It might seem a silly question, but how do you get a working drectory set up without a server to check out from? And how does a business keep a safe backed up copy of the repo? I assume then there must be a central repo... but then how exactly is it 'distributed'? I always thought of a server-client (SVN) Vs peer-2-peer (GIT) distinction, but I don't believe that can be correct unless tools like GIT are dependent on torrent-style technology?

    Read the article

  • SQL: many-to-many relationship, IN condition

    - by Maarten
    I have a table called transactions with a many-to-many relationship to items through the items_transactions table. I want to do something like this: SELECT "transactions".* FROM "transactions" INNER JOIN "items_transactions" ON "items_transactions".transaction_id = "transactions".id INNER JOIN "items" ON "items".id = "items_transactions".item_id WHERE (items.id IN (<list of items>)) But this gives me all transactions that have one or more of the items in the list associated with it and I only want it to give me the transactions that are associated with all of those items. Any help would be appreciated.

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • How to nest transactions nicely - &quot;begin transaction&quot; vs &quot;save transaction&quot; and SQL Server

    - by Brian Biales
    Do you write stored procedures that might be used by others?  And those others may or may not have already started a transaction?  And your SP does several things, but if any of them fail, you have to undo them all and return with a code indicating it failed? Well, I have written such code, and it wasn’t working right until I finally figured out how to handle the case when we are already in a transaction, as well as the case where the caller did not start a transaction.  When a problem occurred, my “ROLLBACK TRANSACTION” would roll back not just my nested transaction, but the caller’s transaction as well.  So when I tested the procedure stand-alone, it seemed to work fine, but when others used it, it would cause a problem if it had to rollback.  When something went wrong in my procedure, their entire transaction was rolled back.  This was not appreciated. Now, I knew one could "nest" transactions, but the technical documentation was very confusing.  And I still have not found the approach below documented anywhere.  So here is a very brief description of how I got it to work, I hope you find this helpful. My example is a stored procedure that must figure out on its own if the caller has started a transaction or not.  This can be done in SQL Server by checking the @@TRANCOUNT value.  If no BEGIN TRANSACTION has occurred yet, this will have a value of 0.  Any number greater than zero means that a transaction is in progress.  If there is no current transaction, my SP begins a transaction. But if a transaction is already in progress, my SP uses SAVE TRANSACTION and gives it a name.  SAVE TRANSACTION creates a “save point”.  Note that creating a save point has no effect on @@TRANCOUNT.  So my SP starts with something like this: DECLARE @startingTranCount int SET @startingTranCount = @@TRANCOUNT IF @startingTranCount > 0 SAVE TRANSACTION mySavePointName ELSE BEGIN TRANSACTION -- … Then, when ready to commit the changes, you only need to commit if we started the transaction ourselves: IF @startingTranCount = 0 COMMIT TRANSACTION And finally, to roll back just your changes so far: -- Roll back changes... IF @startingTranCount > 0 ROLLBACK TRANSACTION MySavePointName ELSE ROLLBACK TRANSACTION Here is some code that you can try that will demonstrate how the save points work inside a transaction. This sample code creates a temporary table, then executes selects and updates, documenting what is going on, then deletes the temporary table. if running in SQL Management Studio, set Query Results to: Text for best readability of the results. -- Create a temporary table to test with, we'll drop it at the end. CREATE TABLE #ATable( [Column_A] [varchar](5) NULL ) ON [PRIMARY] GO SET NOCOUNT ON -- Ensure just one row - delete all rows, add one DELETE #ATable -- Insert just one row INSERT INTO #ATable VALUES('000') SELECT 'Before TRANSACTION starts, value in table is: ' AS Note, * FROM #ATable SELECT @@trancount AS CurrentTrancount --insert into a values ('abc') UPDATE #ATable SET Column_A = 'abc' SELECT 'UPDATED without a TRANSACTION, value in table is: ' AS Note, * FROM #ATable BEGIN TRANSACTION SELECT 'BEGIN TRANSACTION, trancount is now ' AS Note, @@TRANCOUNT AS TranCount UPDATE #ATable SET Column_A = '123' SELECT 'Row updated inside TRANSACTION, value in table is: ' AS Note, * FROM #ATable SAVE TRANSACTION MySavepoint SELECT 'Save point MySavepoint created, transaction count now:' as Note, @@TRANCOUNT AS TranCount UPDATE #ATable SET Column_A = '456' SELECT 'Updated after MySavepoint created, value in table is: ' AS Note, * FROM #ATable SAVE TRANSACTION point2 SELECT 'Save point point2 created, transaction count now:' as Note, @@TRANCOUNT AS TranCount UPDATE #ATable SET Column_A = '789' SELECT 'Updated after point2 savepoint created, value in table is: ' AS Note, * FROM #ATable ROLLBACK TRANSACTION point2 SELECT 'Just rolled back savepoint "point2", value in table is: ' AS Note, * FROM #ATable ROLLBACK TRANSACTION MySavepoint SELECT 'Just rolled back savepoint "MySavepoint", value in table is: ' AS Note, * FROM #ATable SELECT 'Both save points were rolled back, transaction count still:' as Note, @@TRANCOUNT AS TranCount ROLLBACK TRANSACTION SELECT 'Just rolled back the entire transaction..., value in table is: ' AS Note, * FROM #ATable DROP TABLE #ATable The output should look like this: Note                                           Column_A ---------------------------------------------- -------- Before TRANSACTION starts, value in table is:  000 CurrentTrancount ---------------- 0 Note                                               Column_A -------------------------------------------------- -------- UPDATED without a TRANSACTION, value in table is:  abc Note                                 TranCount ------------------------------------ ----------- BEGIN TRANSACTION, trancount is now  1 Note                                                Column_A --------------------------------------------------- -------- Row updated inside TRANSACTION, value in table is:  123 Note                                                   TranCount ------------------------------------------------------ ----------- Save point MySavepoint created, transaction count now: 1 Note                                                   Column_A ------------------------------------------------------ -------- Updated after MySavepoint created, value in table is:  456 Note                                              TranCount ------------------------------------------------- ----------- Save point point2 created, transaction count now: 1 Note                                                        Column_A ----------------------------------------------------------- -------- Updated after point2 savepoint created, value in table is:  789 Note                                                     Column_A -------------------------------------------------------- -------- Just rolled back savepoint "point2", value in table is:  456 Note                                                          Column_A ------------------------------------------------------------- -------- Just rolled back savepoint "MySavepoint", value in table is:  123 Note                                                        TranCount ----------------------------------------------------------- ----------- Both save points were rolled back, transaction count still: 1 Note                                                            Column_A --------------------------------------------------------------- -------- Just rolled back the entire transaction..., value in table is:  abc

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Is there a distributed VCS that can manage large files?

    - by joelhardi
    Is there a distributed version control system (git, bazaar, mercurial, darcs etc.) that can handle files larger than available RAM? I need to be able to commit large binary files (i.e. datasets, source video/images, archives), but I don't need to be able to diff them, just be able to commit and then update when the file changes. I last looked at this about a year ago, and none of the obvious candidates allowed this, since they're all designed to diff in memory for speed. That left me with a VCS for managing code and something else ("asset management" software or just rsync and scripts) for large files, which is pretty ugly when the directory structures of the two overlap.

    Read the article

  • How to leverage Spring Integration in a real-world JMS distributed architecture?

    - by ngeek
    For the following scenario I am looking for your advices and tips on best practices: In a distributed (mainly Java-based) system with: many (different) client applications (web-app, command-line tools, REST API) a central JMS message broker (currently in favor of using ActiveMQ) multiple stand-alone processing nodes (running on multiple remote machines, computing expensive operations of different types as specified by the JMS message payload) How would one best apply the JMS support provided by the Spring Integration framework to decouple the clients from the worker nodes? When reading through the reference documentation and some very first experiments it looks like the configuration of an JMS inbound adapter inherently require to use a subscriber, which in a decoupled scenario does not exist. Small side note: communication should happen via JMS text messages (using a JSON data structure for future extensibility).

    Read the article

  • EJB3.1 Remote invocation - is it distributed automatically? is it expensive?

    - by Hank
    I'm building a JEE6 application with performance and scalability in the forefront of my mind. Business logic and JPA2-facade is held in stateless session beans (EJB3.1). As of right now, the SLSBs implement only @Remote-interfaces. When a bean needs to access another bean, it does so via RMI. My reasoning behind this is the assumption that, once the application runs on a bunch of clustered application servers, the RMI-part allows the execution to be distributed across the whole cluster automagically. Is that a correct assumption? I'm fine with dealing with the downsides of that (objects lose entityManager session, pass-by-value), at least I think so. But I am wondering if constant remote invocation isn't adding more load then necessary.

    Read the article

  • Java or Python distributed compute job (on a student budget)?

    - by midget_sadhu
    I have a large dataset (c. 40G) that I want to use for some NLP (largely embarrassingly parallel) over a couple of computers in the lab, to which i do not have root access, and only 1G of user space. I experimented with hadoop, but of course this was dead in the water-- the data is stored on an external usb hard drive, and i cant load it on to the dfs because of the 1G user space cap. I have been looking into a couple of python based options (as I'd rather use NLTK instead of Java's lingpipe if I can help it), and it seems distributed compute options look like: Ipython DISCO After my hadoop experience, i am trying to make sure i try and make an informed choice -- any help on what might be more appropriate would be greatly appreciated. Amazon's EC2 etc not really an option, as i have next to no budget.

    Read the article

  • What is the best way to secure a shared git repo for a small distributed team ?

    - by ashy_32bit
    We have a Scala project and we decided to use git. The problem is we are a very small distributed team and we want nobody outside of the team to have even the read only access to our git server (which has a valid IP and is world-accessible in the IP level). I have heard the git-daemon has no authentication mechanism by itself and you should somehow integrate it with ssh or something. What is the best (and easiest) way to make the git server respond only to authorized users ? Or perhaps git-daemon is not for this task ? I may add that I am looking for a simple and straightforward approach. I don't want to compete with github ;-)

    Read the article

  • Can Git push / pull over the internet to distributed repos?

    - by Quigrim
    I understand that Git can be used without a central repository. However, I am starting a project with several other people, and we are geographically distributed. I.e. We will never be on the same LAN to synch repos. So my question: Is it possible to push / pull changes from each others repos over the internet? If so, how do I go about it? Easiest non-fuss way. Thanx in advance.

    Read the article

  • SQL SERVER – Out of the Box – Activty and Performance Reports from SSSMS

    - by pinaldave
    SQL Server management Studio 2008 is wonderful tool and has many different features. Many times, an average user does not use them as they are not aware about these features. Today, we will learn one such feature. SSMS comes with many inbuilt performance and activity reports, but we do not use it to the full potential. Let us see how we can access these standard reports. Connect to SQL Server Node >> Right Click on it >> Go to Reports >> Click on Standard Reports >> Pick Any Report. Click to Enlarge You can see there are many reports, which an average users needs right away, are available there. Let me list all the reports available. Server Dashboard Configuration Changes History Schema Changes History Scheduler Health Memory Consumption Activity – All Blocking Transactions Activity – All Cursors Activity – All Sessions Activity – Top Sessions Activity – Dormant Sessions Activity -  Top Connections Top Transactions by Age Top Transactions by Blocked Transactions Count Top Transactions by Locks Count Performance – Batch Execution Statistics Performance – Object Execution Statistics Performance – Top Queries by Average CPU Time Performance – Top Queries by Average IO Performance – Top Queries by Total CPU Time Performance – Top Queries by Total IO Service Broker Statistics Transactions Log Shipping Status In fact, when you look at the above list, it is fairly clear that they are very thought out and commonly needed reports that are available in SQL Server 2008. Let us run a couple of reports and observe their result. Performance – Top Queries by Total CPU Time Click to Enlarge Memory Consumption Click to Enlarge There are options for custom reports as well, which we can configure. We will learn about them in some other post. Additionally, you can right click on the reports and export in Excel or PDF. I think this tool can really help those who are just looking for some quick details. Does any of you use this feature, or this feature has some limitations and You would like to see more features? Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Fraud Detection with the SQL Server Suite Part 1

    - by Dejan Sarka
    While working on different fraud detection projects, I developed my own approach to the solution for this problem. In my PASS Summit 2013 session I am introducing this approach. I also wrote a whitepaper on the same topic, which was generously reviewed by my friend Matija Lah. In order to spread this knowledge faster, I am starting a series of blog posts which will at the end make the whole whitepaper. Abstract With the massive usage of credit cards and web applications for banking and payment processing, the number of fraudulent transactions is growing rapidly and on a global scale. Several fraud detection algorithms are available within a variety of different products. In this paper, we focus on using the Microsoft SQL Server suite for this purpose. In addition, we will explain our original approach to solving the problem by introducing a continuous learning procedure. Our preferred type of service is mentoring; it allows us to perform the work and consulting together with transferring the knowledge onto the customer, thus making it possible for a customer to continue to learn independently. This paper is based on practical experience with different projects covering online banking and credit card usage. Introduction A fraud is a criminal or deceptive activity with the intention of achieving financial or some other gain. Fraud can appear in multiple business areas. You can find a detailed overview of the business domains where fraud can take place in Sahin Y., & Duman E. (2011), Detecting Credit Card Fraud by Decision Trees and Support Vector Machines, Proceedings of the International MultiConference of Engineers and Computer Scientists 2011 Vol 1. Hong Kong: IMECS. Dealing with frauds includes fraud prevention and fraud detection. Fraud prevention is a proactive mechanism, which tries to disable frauds by using previous knowledge. Fraud detection is a reactive mechanism with the goal of detecting suspicious behavior when a fraudster surpasses the fraud prevention mechanism. A fraud detection mechanism checks every transaction and assigns a weight in terms of probability between 0 and 1 that represents a score for evaluating whether a transaction is fraudulent or not. A fraud detection mechanism cannot detect frauds with a probability of 100%; therefore, manual transaction checking must also be available. With fraud detection, this manual part can focus on the most suspicious transactions. This way, an unchanged number of supervisors can detect significantly more frauds than could be achieved with traditional methods of selecting which transactions to check, for example with random sampling. There are two principal data mining techniques available both in general data mining as well as in specific fraud detection techniques: supervised or directed and unsupervised or undirected. Supervised techniques or data mining models use previous knowledge. Typically, existing transactions are marked with a flag denoting whether a particular transaction is fraudulent or not. Customers at some point in time do report frauds, and the transactional system should be capable of accepting such a flag. Supervised data mining algorithms try to explain the value of this flag by using different input variables. When the patterns and rules that lead to frauds are learned through the model training process, they can be used for prediction of the fraud flag on new incoming transactions. Unsupervised techniques analyze data without prior knowledge, without the fraud flag; they try to find transactions which do not resemble other transactions, i.e. outliers. In both cases, there should be more frauds in the data set selected for checking by using the data mining knowledge compared to selecting the data set with simpler methods; this is known as the lift of a model. Typically, we compare the lift with random sampling. The supervised methods typically give a much better lift than the unsupervised ones. However, we must use the unsupervised ones when we do not have any previous knowledge. Furthermore, unsupervised methods are useful for controlling whether the supervised models are still efficient. Accuracy of the predictions drops over time. Patterns of credit card usage, for example, change over time. In addition, fraudsters continuously learn as well. Therefore, it is important to check the efficiency of the predictive models with the undirected ones. When the difference between the lift of the supervised models and the lift of the unsupervised models drops, it is time to refine the supervised models. However, the unsupervised models can become obsolete as well. It is also important to measure the overall efficiency of both, supervised and unsupervised models, over time. We can compare the number of predicted frauds with the total number of frauds that include predicted and reported occurrences. For measuring behavior across time, specific analytical databases called data warehouses (DW) and on-line analytical processing (OLAP) systems can be employed. By controlling the supervised models with unsupervised ones and by using an OLAP system or DW reports to control both, a continuous learning infrastructure can be established. There are many difficulties in developing a fraud detection system. As has already been mentioned, fraudsters continuously learn, and the patterns change. The exchange of experiences and ideas can be very limited due to privacy concerns. In addition, both data sets and results might be censored, as the companies generally do not want to publically expose actual fraudulent behaviors. Therefore it can be quite difficult if not impossible to cross-evaluate the models using data from different companies and different business areas. This fact stresses the importance of continuous learning even more. Finally, the number of frauds in the total number of transactions is small, typically much less than 1% of transactions is fraudulent. Some predictive data mining algorithms do not give good results when the target state is represented with a very low frequency. Data preparation techniques like oversampling and undersampling can help overcome the shortcomings of many algorithms. SQL Server suite includes all of the software required to create, deploy any maintain a fraud detection infrastructure. The Database Engine is the relational database management system (RDBMS), which supports all activity needed for data preparation and for data warehouses. SQL Server Analysis Services (SSAS) supports OLAP and data mining (in version 2012, you need to install SSAS in multidimensional and data mining mode; this was the only mode in previous versions of SSAS, while SSAS 2012 also supports the tabular mode, which does not include data mining). Additional products from the suite can be useful as well. SQL Server Integration Services (SSIS) is a tool for developing extract transform–load (ETL) applications. SSIS is typically used for loading a DW, and in addition, it can use SSAS data mining models for building intelligent data flows. SQL Server Reporting Services (SSRS) is useful for presenting the results in a variety of reports. Data Quality Services (DQS) mitigate the occasional data cleansing process by maintaining a knowledge base. Master Data Services is an application that helps companies maintaining a central, authoritative source of their master data, i.e. the most important data to any organization. For an overview of the SQL Server business intelligence (BI) part of the suite that includes Database Engine, SSAS and SSRS, please refer to Veerman E., Lachev T., & Sarka D. (2009). MCTS Self-Paced Training Kit (Exam 70-448): Microsoft® SQL Server® 2008 Business Intelligence Development and Maintenance. MS Press. For an overview of the enterprise information management (EIM) part that includes SSIS, DQS and MDS, please refer to Sarka D., Lah M., & Jerkic G. (2012). Training Kit (Exam 70-463): Implementing a Data Warehouse with Microsoft® SQL Server® 2012. O'Reilly. For details about SSAS data mining, please refer to MacLennan J., Tang Z., & Crivat B. (2009). Data Mining with Microsoft SQL Server 2008. Wiley. SQL Server Data Mining Add-ins for Office, a free download for Office versions 2007, 2010 and 2013, bring the power of data mining to Excel, enabling advanced analytics in Excel. Together with PowerPivot for Excel, which is also freely downloadable and can be used in Excel 2010, is already included in Excel 2013. It brings OLAP functionalities directly into Excel, making it possible for an advanced analyst to build a complete learning infrastructure using a familiar tool. This way, many more people, including employees in subsidiaries, can contribute to the learning process by examining local transactions and quickly identifying new patterns.

    Read the article

< Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >