Search Results

Search found 2178 results on 88 pages for 'handles'.

Page 28/88 | < Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >

  • Redirect websockets to port?

    - by DigitalMan
    So, I've got a WebSocket server in C++, that is a completely stand-alone entity - handles header parsing, receiving, sending, all of it on its own, listening directly to the port. Problem is, it needs to run on a server alongside Apache, and that's a bit of a problem. Now, there was a solution here to a similar issue involving mod_proxy, but I'm hoping I can intercept and redirect WebSocket communication before Apache even knows about it, possibly with iptables. So the question is, is it possible to direct traffic bound for chat.mysite.net to a WebSocket server on, say, port 8080, while anything else headed to mysite.net proceeds as expected to Apache?

    Read the article

  • How can I set `less` or `more` max lines (scrollable height) limit/boundary in linux?

    - by Rudie
    (Sorry for the title. Any suggestions?) I've set my commandline PS1 to cover 3 lines: white space user, server and pwd $ or # to input I think less (or more?) is configured to break after window's height - 1, because when I do a $ git log, the first two lines are invisible at the top of the window and the rest is scrollable. I'm not sure who handles this scrolling and its configuration, but I assume GIT uses less/more. Where can I configure that my scrollable window is window height - 3 lines and not window height - 1? More info: If I cat lines.txt | less with a 23 line file, it shows the entire file and no scrolling. If I do the same with a 24 line file, it doesn't show line 1 (and no scrolling). With 25 lines: doesn't show lines 1 and 2 (and no scrolling). With 26 lines: shows line 1 and scrolling! The less breakpoint is at the wrong height...

    Read the article

  • How to tell Mercurial to never create hard links

    - by scrapdog
    I am planning to use Mercurial in the near future on some projects. These projects will normally reside in a directory on my Windows machine, but I will be sharing these directories using VirtualBox so I can work on them directly from within Linux. I understand that Mercurial will sometimes create hard links when cloning repositories. I'm not sure how a VirtualBox shared directory handles these hard links (or if it even can), so I'd rather just tell Mercurial to never attempt to make hard links and always make a copy. My question: how do I globally disable Mercurial from hard linking? (Although if someone has gotten Mercurial and VirtualBox shared folders to work nicely with hard linking, I'd like to hear about it!)

    Read the article

  • Need help configuring NAT

    - by QuinnFTW
    First of all, the router I am using is a Cisco WRVS4400N. My company runs a software which handles the MySQL database of all of their products. The software now has an e-commerce module, so I have to set up a secure tunnel from our network to the server that will be hosting our e-commerce site so that when the database is updated, the site will also be updated. The technician completeing the job said there is an IP conflict, and has asked me to NAT 192.168.0.0/24 to 192.168.115.0/24. I am not really sure how to do this, and they want to charge $150 an hour to do it for me. Can anyone help?

    Read the article

  • backup util for binary/media files. (to use with source control)

    - by acidzombie24
    I am using git for my source control. I dont backup media such as gifs, pngs, etc. I am thinking everytime i tag a release it would be a good idea to backup the media files as well. But i dont want to make several copies of the same file each time i create a tag. I'd like an app to handle checking if the file already exists and handles restoring everything to a version i like What util might i use to do this? I'm using windows 7.

    Read the article

  • WPF Layout algorithm woes - control will resize, but not below some arbitrary value.

    - by Quantumplation
    I'm working on an application for a client, and one of the requirements is the ability to make appointments, and display the current week's appointments in a visual format, much like in Google Calender's or Microsoft Office. I found a great (3 part) article on codeproject, in which he builds a "RangePanel", and composes one for each "period" (for example, the work day.) You can find part 1 here: http://www.codeproject.com/KB/WPF/OutlookWpfCalendarPart1.aspx The code presents, but seems to choose an arbitrary height value overall (440.04), and won't resize below that without clipping. What I mean to say, is that the window/container will resize, but it just cuts off the bottom of the control, instead of recalculating the height of the range panels, and the controls in the range panels representing the appointment. It will resize and recalculate for greater values, but not less. Code-wise, what's happening is that when you resize below that value, first the "MeasureOverride" is called with the correct "new height". However, by the time the "ArrangeOverride" method is called, it's passing the same 440.04 value as the height to arrange to. I need to find a solution/workaround, but any information that you can provide that might direct me for things to look into would also be greatly appreciated ( I understand how frustrating it is to debug code when you don't have the codebase in front of you. :) ) The code for the various Arrange and Measure functions are provided below. The "CalendarView" control has a "CalendarViewContentPresenter", which handles several periods. Then, the periods have a "CalendarPeriodContentPresenter", which handles each "block" of appointments. Finally, the "RangePanel" has it's own implementation. (To be honest, i'm still a bit hazy on how the control works, so if my explanations are a bit hazy, the article I linked probably has a more cogent explanation. :) ) CalendarViewContentPresenter: protected override Size ArrangeOverride(Size finalSize) { int columnCount = this.CalendarView.Periods.Count; Size columnSize = new Size(finalSize.Width / columnCount, finalSize.Height); double elementX = 0; foreach (UIElement element in this.visualChildren) { element.Arrange(new Rect(new Point(elementX, 0), columnSize)); elementX = elementX + columnSize.Width; } return finalSize; } protected override Size MeasureOverride(Size constraint) { this.GenerateVisualChildren(); this.GenerateListViewItemVisuals(); // If it's coming back infinity, just return some value. if (constraint.Width == Double.PositiveInfinity) constraint.Width = 10; if (constraint.Height == Double.PositiveInfinity) constraint.Height = 10; return constraint; } CalendarViewPeriodPersenter: protected override Size ArrangeOverride(Size finalSize) { foreach (UIElement element in this.visualChildren) { element.Arrange(new Rect(new Point(0, 0), finalSize)); } return finalSize; } protected override Size MeasureOverride(Size constraint) { this.GenerateVisualChildren(); return constraint; } RangePanel: protected override Size ArrangeOverride(Size finalSize) { double containerRange = (this.Maximum - this.Minimum); foreach (UIElement element in this.Children) { double begin = (double)element.GetValue(RangePanel.BeginProperty); double end = (double)element.GetValue(RangePanel.EndProperty); double elementRange = end - begin; Size size = new Size(); size.Width = (Orientation == Orientation.Vertical) ? finalSize.Width : elementRange / containerRange * finalSize.Width; size.Height = (Orientation == Orientation.Vertical) ? elementRange / containerRange * finalSize.Height : finalSize.Height; Point location = new Point(); location.X = (Orientation == Orientation.Vertical) ? 0 : (begin - this.Minimum) / containerRange * finalSize.Width; location.Y = (Orientation == Orientation.Vertical) ? (begin - this.Minimum) / containerRange * finalSize.Height : 0; element.Arrange(new Rect(location, size)); } return finalSize; } protected override Size MeasureOverride(Size availableSize) { foreach (UIElement element in this.Children) { element.Measure(availableSize); } // Constrain infinities if (availableSize.Width == double.PositiveInfinity) availableSize.Width = 10; if (availableSize.Height == double.PositiveInfinity) availableSize.Height = 10; return availableSize; }

    Read the article

  • Using dispatchertimer in combination with an asynchroneous call

    - by Civelle
    Hi. We have an issue in our Silverlight application which uses WCF and Entity Framework, where we need to trap the event whenever a user shuts down the application by closing the web page or the browser instead of closing the silverlight application. This is in order to verify if any changes have been made, in which case we would ask the user if he wants to save before leaving. We were able to accomplish the part which consists in trapping the closing of the web page: we wrote some code in the application object that have the web page call a method in the silverlight application object. The problem starts when in this method, we do an asynchroneous call to the Web Service to verify if changes have occured (IsDirty). We are using a DispatcherTimer to check for the return of the asynchroneous call. The problem is that the asynchroneous call never completes (in debug mode, it never ends up stepping into the _BfrServ_Customer_IsDirtyCompleted method), while it used to work fine before we added this new functionality. You will find belowthe code we are using. I am new to writing timers in combination with asynchroneous call so I may be doing something wrong but I cannot figure out what. I tried other things also but we without any success.. ====================== CODE ============================================== 'Code in the application object Public Sub New() InitializeComponent() RegisterOnBeforeUnload() _DispatcherTimer.Interval = New TimeSpan(0, 0, 0, 0, 500) End Sub Public Sub RegisterOnBeforeUnload() 'Register Silverlight object for availability in Javascript. Const scriptableObjectName As String = "Bridge" HtmlPage.RegisterScriptableObject(scriptableObjectName, Me) 'Start listening to Javascript event. Dim pluginName As String = HtmlPage.Plugin.Id HtmlPage.Window.Eval(String.Format("window.onbeforeunload = function () {{ var slApp = document.getElementById('{0}'); var result = slApp.Content.{1}.OnBeforeUnload(); if(result.length 0)return result;}}", pluginName, scriptableObjectName)) End Sub Public Function OnBeforeUnload() As String Dim userControls As List(Of UserControl) = New List(Of UserControl) Dim test As Boolean = True If CType(Me.RootVisual, StartPage).LayoutRoot.Children.Item(0).GetType().Name = "MainPage" Then If Not CType(CType(Me.RootVisual, StartPage).LayoutRoot.Children.Item(0), MainPage).FindName("Tab") Is Nothing Then If CType(CType(Me.RootVisual, StartPage).LayoutRoot.Children.Item(0), MainPage).FindName("Tab").Items.Count = 1 Then For Each item As TabItem In CType(CType(Me.RootVisual, StartPage).LayoutRoot.Children.Item(0), MainPage).Tab.Items If item.Content.GetType().Name = "CustomerDetailUI" _Item = item WaitHandle = New AutoResetEvent(False) DoAsyncCall() Exit End If Next End If End If End If If _IsDirty = True Then Return "Do you want to save before leaving." Else Return String.Empty End If End Function Private Sub DoAsyncCall() _Item.Content.CheckForIsDirty(WaitHandle) 'This code resides in the CustomerDetailUI UserControl - see below for the code End Sub Private Sub _DispatcherTimer_Tick(ByVal sender As Object, ByVal e As System.EventArgs) Handles _DispatcherTimer.Tick If Not _Item.Content._IsDirtyCompleted = True Then Exit Sub End If _DispatcherTimerRunning = False _DispatcherTimer.Stop() ProcessAsyncCallResult() End Sub Private Sub ProcessAsyncCallResult() _IsDirty = _Item.Content._IsDirty End Sub 'CustomerDetailUI code Public Sub CheckForIsDirty(ByVal myAutoResetEvent As AutoResetEvent) _AutoResetEvent = myAutoResetEvent _BfrServ.Customer_IsDirtyAsync(_Customer) 'This method initiates asynchroneous call to the web service - all the details are not shown here _AutoResetEvent.WaitOne() End Sub Private Sub _BfrServ_Customer_IsDirtyCompleted(ByVal sender As Object, ByVal e As BFRService.Customer_IsDirtyCompletedEventArgs) Handles _BfrServ.Customer_IsDirtyCompleted If _IsDirtyFromRefesh Then _IsDirtyFromRefesh = False If e.Result = True Then Me.Confirm("This customer has been modified. Are you sure you want to refresh your data ? " & vbNewLine & " Your changes will be lost.", "Yes", "No", Message.CheckIsDirtyRefresh) End If Busy.IsBusy = False Else If e.Result = True Then _IsDirty = True Me.Confirm("This customer has been modified. Would you like to save?", "Yes", "No", Message.CheckIsDirty) Else Me.Tab.Items.Remove(Me.Tab.SelectedItem) Busy.IsBusy = False End If End If _IsDirtyCompleted = True _AutoResetEvent.Set() End Sub

    Read the article

  • Code that Worked with MultiView fails with Wizard ASP.NET

    - by davemackey
    I originally created a process that occurred by transitioning between views in a multiview and it worked fine. Now, I've moved this same code into a ASP.NET Wizard and it keeps throwing an error at the second step. The error is: Method 'System.Object AndObject(System.Object, System.Object)' has no supported translation to SQL. Any ideas why this would occur when moving the code into the wizard? I'm sure its something stupid, but I've checked over the code 3-4 times now and it appears identical operationally. Here is the code: ' Make sure we have the LDAP portion of the .NET Framework available. Imports System.DirectoryServices ' Allows us to interface with LDAP. Imports System.Data.Linq.SqlClient ' Allows us to use LINQ SQL Methods. Partial Public Class buildit Inherits System.Web.UI.Page Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load ' ******* Grab the LDAP info. for current user. Dim ID As FormsIdentity = DirectCast(User.Identity, FormsIdentity) Dim ticket As FormsAuthenticationTicket = ID.Ticket Dim adDirectory As New DirectoryEntry("LDAP://OU=[info],DC=[info],DC=[info],DC=[info]") ' We need to strip off @email.address from the ticket name, so we'll use substring to grab the first ' five characters. Dim adTicketID As String = ticket.Name.Substring(0, 5) Dim adEmployeeID As String adEmployeeID = adDirectory.Children.Find("CN=" & adTicketID).Properties("employeeID").Value ' ******* Lets make sure they have signed the housing contract and the community covenant. Dim dbContractSigs As New pcRoomOccupantsDataContext Dim pcContractSigs = From p In dbContractSigs.webContractSigs _ Where p.people_id = adEmployeeID _ Select p.res_contract, p.comm_life If pcContractSigs.Count.Equals(0) Then Response.Redirect("signcontract.aspx") Else Dim cs As String = pcContractSigs.First.res_contract.ToString Dim cos As String = pcContractSigs.First.comm_life.ToString If cs = "Y" And cos = "Y" Then ' We don't need to do anything. ' We use the else statement b/c there are multiple conditions that could occur besides "N" ' that would cause us to redirect to the signature page, whereas there is only one valid response - "Y". Else ' Redirect the individual to our contracts page. Response.Redirect("signcontract.aspx") End If End If ' ******* Now lets find out what gender that individual is. Dim dbIndividual As New pcPeopleDataContext Dim pcIndividual = From p In dbIndividual.PEOPLEs _ Join d In dbIndividual.DEMOGRAPHICs On p.PEOPLE_CODE_ID Equals d.PEOPLE_CODE_ID _ Where p.PEOPLE_ID = adEmployeeID _ Select p, d ' Make a session variable that will carry with the user throughout the session delineating gender. Session("sgender") = pcIndividual.First.d.GENDER.ToString ' Debug Code. ' Put a stop at end sub to get these values. ' Response.Write(adEmployeeID) End Sub Sub LinqDataSource1_Selecting(ByVal sender As Object, ByVal e As LinqDataSourceSelectEventArgs) ' Lets get a list of the dorms that are available for user's gender. Dim pcDorms As New pcDormsDataContext Dim selectedDorms = (From sd In pcDorms.PBU_WEB_DORMs _ Where IIf(Session("sgender").ToString = "M", sd.description = "Male", sd.description = "Female") _ Select sd.dorm_building).Distinct() e.Result = selectedDorms End Sub Public Sub Button_ItemCommand(ByVal Sender As Object, ByVal e As RepeaterCommandEventArgs) ' ******** Lets pass on the results of our query in LinqDataSource1_Selecting. Session("sdorm") = RTrim(e.CommandName) ' ******** Debug code. ' Response.Write(sDorm) End Sub Sub LinqDataSource2_Selecting(ByVal sender As Object, ByVal e As LinqDataSourceSelectEventArgs) ' ******** Get a list of rooms available in the dorm for user's gender. Dim pcDorms As New pcDormsDataContext Dim selectedDorm = (From sd In pcDorms.PBU_WEB_DORMs _ Where IIf(Session("sgender").ToString = "M", sd.description = "Male", sd.description = "Female") _ And sd.dorm_building = CStr(Session("sdorm")) _ Select sd.dorm_room) e.Result = selectedDorm End Sub Public Sub Button2_ItemCommand(ByVal Sender As Object, ByVal e As RepeaterCommandEventArgs) ' ******** Lets pass on the results of our query in LinqDataSource2_Selecting. Session("sroom") = RTrim(e.CommandName) End Sub Sub LinqDataSource3_Selecting(ByVal sender As Object, ByVal e As LinqDataSourceSelectEventArgs) ' ******** Grabs the individuals currently listed as residing in this room and displays them. Note the use of SqlMethods.Like ' for dorm_building, this is due to legacy issues where dorms sometimes have leading or trailing blank spaces. We could have ' also used Trim. Dim pcOccupants As New pcRoomOccupantsDataContext Dim roomOccupants = (From ro In pcOccupants.webResidents _ Where SqlMethods.Like(ro.dorm_building, "%" & CStr(Session("sdorm")) & "%") _ And ro.dorm_room = CStr(Session("sroom")) _ Select ro.person_name) e.Result = roomOccupants ' ******** Debug code. 'Response.Write(CStr(Session("sdorm"))) 'Response.Write(CStr(Session("sroom"))) End Sub Protected Sub Button4_Click(ByVal sender As Object, ByVal e As EventArgs) Handles Button4.Click ' ******** Reserve the room for a student. End Sub End Class

    Read the article

  • JQuery SelectToUISlider Issues

    - by David Savage
    Hopefully this hasn't been asked before as just a slider question, but I couldn't find an answer when already browsing questions. So, here goes: I have a SelectToUISlider (http://www.filamentgroup.com/lab/update_jquery_ui_slider_from_a_select_element_now_with_aria_support/) which is basically a modified JQuery UI Slider, and I'm using a range value. So, I start with one handle at 60, and another at 100 (scale from 0 to 100). What I want to do is click a radio button so that the 100 changes to a 0, and be able to change back to 100. I have been unsuccessful at changing it via JQuery selectors/javascript. However, when changing the selects to move the handles, this works, but the range appears not to follow if the second handle (at 100) moves to 0 behind the first handle (at 60). I'm thinking I might have to destroy the slider and rebuild it with the second handle (that starts as 100) become the first handle at 0 in this scenario (although I've tried destroying it and it doesn't seem to respond to that either.) Here's what I've tried so far that doesn't work: <script type="text/javascript"> {literal} $(function(){ $('select').selectToUISlider({ labels: 10 }); }); function event_occurs(does) { if (does == 1) { $('.ui-slider').slider('option', 'values', [60,100]); } else { $('.ui-slider').slider('option', 'values', [0,60]); } } </script> <style type="text/css"> form {font-size: 62.5%; font-family:"Segoe UI","Helvetica Neue",Helvetica,Arial,sans-serif; } fieldset { border:0; margin: 1em; height: 12em;} label {font-weight: normal; float: left; margin-right: .5em; font-size: 1.1em;} select {margin-right: 1em; float: left;} .ui-slider {clear: both; top: 5em;} .ui-slider-tooltip {white-space: nowrap;} </style> {/literal} <form action="#"> <fieldset> <select name="valueA" id="my_estimate"> {section name="estimates" loop=101} <option value="{$smarty.section.estimates.index}"{if $smarty.section.estimates.index == 60} selected{/if}>{$smarty.section.estimates.index}</option> {/section} </select> <select name="valueB" id="payout"> {section name="estimates" loop=101} <option value="{$smarty.section.estimates.index}"{if $smarty.section.estimates.index == 100} selected{/if}>{$smarty.section.estimates.index}</option> {/section} </select> </fieldset> </form> <input type="radio" onclick="event_occurs(1)" name="Event" checked="checked"> Event Occurs<br /> <input type="radio" onclick="event_occurs(0)" name="Event"> Event Does Not Occur As it is now, nothing happens when clicking the radio buttons, but I'm also not getting any Javascript errors. After I get this working, I would also like to find some way to disable one of the handles through changing the slider property. Ie leave the handle where its at but not allow it to be dragged. Any help is greatly appreciated.

    Read the article

  • boost::serialization with mutable members

    - by redmoskito
    Using boost::serialization, what's the "best" way to serialize an object that contains cached, derived values in mutable members, such that cached members aren't serialized, but on deserialization, they are initialized the their appropriate default. A definition of "best" follows later, but first an example: class Example { public: Example(float n) : num(n), sqrt_num(-1.0) {} float get_num() const { return num; } // compute and cache sqrt on first read float get_sqrt() const { if(sqrt_num < 0) sqrt_num = sqrt(num); return sqrt_num; } template <class Archive> void serialize(Archive& ar, unsigned int version) { ... } private: float num; mutable float sqrt_num; }; On serialization, only the "num" member should be saved. On deserialization, the sqrt_num member must be initialized to its sentinel value indicating it needs to be computed. What is the most elegant way to implement this? In my mind, an elegant solution would avoid splitting serialize() into separate save() and load() methods (which introduces maintenance problems). One possible implementation of serialize: template <class Archive> void serialize(Archive& ar, unsigned int version) { ar & num; sqrt_num = -1.0; } This handles the deserialization case, but in the serialization case, the cached value is killed and must be recomputed. Also, I've never seen an example of boost::serialize that explicitly sets members inside of serialize(), so I wonder if this is generally not recommended. Some might suggest that the default constructor handles this, for example: int main() { Example e; { std::ifstream ifs("filename"); boost::archive::text_iarchive ia(ifs); ia >> e; } cout << e.get_sqrt() << endl; return 0; } which works in this case, but I think fails if the object receiving the deserialized data has already been initialized, as in the example below: int main() { Example ex1(4); Example ex2(9); cout << ex1.get_sqrt() << endl; // outputs 2; cout << ex2.get_sqrt() << endl; // outputs 3; // the following two blocks should implement ex2 = ex1; // save ex1 to archive { std::ofstream ofs("filename"); boost::archive::text_oarchive oa(ofs); oa << ex1; } // read it back into ex2 { std::ifstream ifs("filename"); boost::archive::text_iarchive ia(ifs); ia >> ex2; } // these should be equal now, but aren't, // since Example::serialize() doesn't modify num_sqrt cout << ex1.get_sqrt() << endl; // outputs 2; cout << ex2.get_sqrt() << endl; // outputs 3; return 0; } I'm sure this issue has come up with others, but I have struggled to find any documentation on this particular scenario. Thanks!

    Read the article

  • Error Handling without Exceptions

    - by James
    While searching SO for approaches to error handling related to business rule validation , all I encounter are examples of structured exception handling. MSDN and many other reputable development resources are very clear that exceptions are not to be used to handle routine error cases. They are only to be used for exceptional circumstances and unexpected errors that may occur from improper use by the programmer (but not the user.) In many cases, user errors such as fields that are left blank are common, and things which our program should expect, and therefore are not exceptional and not candidates for use of exceptions. QUOTE: Remember that the use of the term exception in programming has to do with the thinking that an exception should represent an exceptional condition. Exceptional conditions, by their very nature, do not normally occur; so your code should not throw exceptions as part of its everyday operations. Do not throw exceptions to signal commonly occurring events. Consider using alternate methods to communicate to a caller the occurrence of those events and leave the exception throwing for when something truly out of the ordinary happens. For example, proper use: private void DoSomething(string requiredParameter) { if (requiredParameter == null) throw new ArgumentExpcetion("requiredParameter cannot be null"); // Remainder of method body... } Improper use: // Renames item to a name supplied by the user. Name must begin with an "F". public void RenameItem(string newName) { // Items must have names that begin with "F" if (!newName.StartsWith("F")) throw new RenameException("New name must begin with /"F/""); // Remainder of method body... } In the above case, according to best practices, it would have been better to pass the error up to the UI without involving/requiring .NET's exception handling mechanisms. Using the same example above, suppose one were to need to enforce a set of naming rules against items. What approach would be best? Having the method return a enumerated result? RenameResult.Success, RenameResult.TooShort, RenameResult.TooLong, RenameResult.InvalidCharacters, etc. Using an event in a controller class to report to the UI class? The UI calls the controller's RenameItem method, and then handles an AfterRename event that the controller raises and that has rename status as part of the event args? The controlling class directly references and calls a method from the UI class that handles the error, e.g. ReportError(string text). Something else... ? Essentially, I want to know how to perform complex validation in classes that may not be the Form class itself, and pass the errors back to the Form class for display -- but I do not want to involve exception handling where it should not be used (even though it seems much easier!) Based on responses to the question, I feel that I'll have to state the problem in terms that are more concrete: UI = User Interface, BLL = Business Logic Layer (in this case, just a different class) User enters value within UI. UI reports value to BLL. BLL performs routine validation of the value. BLL discovers rule violation. BLL returns rule violation to UI. UI recieves return from BLL and reports error to user. Since it is routine for a user to enter invalid values, exceptions should not be used. What is the right way to do this without exceptions?

    Read the article

  • Help needed with Flash AS2 to AS3 conversion, having major problems...

    - by Mat
    Hi all, I have a project i need to update form AS2 to AS3 as i need some of the new functions available for vertical centering of text. My current AS2 code on the time line is as follows. var dataField = _root.dataField; var dataType = _root.dataType; var dataPage = _root.dataPage; var dataVar = _root.dataVar; _root.mc.onRelease = function() { getURL("index.php?page="+dataPage+"&num="+dataNum+"&"+dataType+"="+dataVar, "_self"); }; And my external AS file is as follows. import mx.transitions.Tween; /** * * StandardKey is attached to a movieclip in the library. * It handles the basic button behavior of the keyboard keys. * When each button is placed on the stage, it's instance name * will be the unique ID of the key. * */ class StandardKey extends MovieClip { /////////////////////////////////////// //Stage Elements var highlight:MovieClip; //End Stage Elements var highlightTween:Tween; function StandardKey(Void) { //Repaint the key with 0 alpha highlight._alpha = 0; } function onPress(Void):Void { //Do the highlight animation highlightTween.stop(); highlightTween = new Tween(highlight, "_alpha", mx.transitions.easing.Regular.easeInOut, 100, 0, 10, false); } } Here is my attempt at moving timeline and external AS2 to AS3 Timeline i now have : var dataField = this.dataField; var dataType = this.dataType; var dataPage = this.dataPage; var dataVar = this.dataVar; var dataNum = this.dataNum; _root.mc.onRelease = function() { navigateToURL(new URLRequest("index.php?page="+dataPage+"&num="+dataNum+"&"+dataType+"="+dataVar, "_self")); }; External AS3 i have package { import fl.transitions.Tween; import fl.transitions.easing.*; import flash.display.MovieClip; /** * * StandardKey is attached to a movieclip in the library. * It handles the basic button behavior of the keyboard keys. * When each button is placed on the stage, it's instance name * will be the unique ID of the key. * */ public class StandardKey extends MovieClip { /////////////////////////////////////// //Stage Elements var highlight:MovieClip; //End Stage Elements var highlightTween:Tween; public function StandardKey(Void) { //Repaint the key with 0 alpha highlight._alpha = 0; } public function onPress(Void):void { //Do the highlight animation highlightTween.stop(); highlightTween = new Tween(highlight, "_alpha", fl.transitions.easing.Regular.easeInOut, 100, 0, 10, false); } } } The errors i am currently getting are : Scene 1, Layer 'Label', Frame 1, Line 6 1120: Access of undefined property _root. Scene 1, Layer 'Label', Frame 1, Line 7 1137: Incorrect number of arguments. Expected no more than 1. If any one could help me work this out i would appreciate it very much. Kind regards Mat.

    Read the article

  • Page_load event firing twice. User control not properly loading

    - by Phil
    Here is the code I am using to pull my usercontrol (content.ascx): Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load 'load module If TheModule = "content" Then Dim control As UserControl = LoadControl("~\Modules\Content.ascx") Controls.Add(control) End If End Sub Within the usercontrol is the following code (data access taken care of by DAAB and ive replaced sql statements with 'sql'): Imports System.Data.SqlClient Imports System.Data Imports System.Web.Configuration Imports Microsoft.Practices.EnterpriseLibrary.Common Imports Microsoft.Practices.EnterpriseLibrary.Data Partial Class Modules_WebUserControl Inherits System.Web.UI.UserControl Dim db As Database = DatabaseFactory.CreateDatabase() Dim command As SqlCommand 'database Dim reader As IDataReader 'general vars Dim pageid As Integer Dim did As Integer Dim contentid As Integer Dim dotpos As String Dim ext As String Dim content As String Dim folder As String Dim downloadstring As String Function getimage(ByVal strin As String) As String If strin > "" Then dotpos = InStrRev(strin, ".") ext = Right(strin, Len(strin) - dotpos) getimage = ext & ".gif" Else getimage = String.Empty End If Return getimage End Function Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles MyBase.Load, Me.Load 'test Response.Write("(1 Test from within page_load)") 'get session vars folder = Session("folder") pageid = Session("pageid") did = Session("did") 'main content command = db.GetSqlStringCommand("sql") db.AddInParameter(command, "@pageid", DbType.Int32, pageid) reader = db.ExecuteReader(command) While reader.Read If reader("content") IsNot DBNull.Value Then content = Replace(reader("content"), Chr(38) + Chr(97) + Chr(109) + Chr(112) + Chr(59) + Chr(98) + Chr(104) + Chr(99) + Chr(112) + Chr(61) + Chr(49), "") If reader("id") IsNot DBNull.Value Then contentid = reader("id") End If Else contentid = -1 content = String.Empty End If End While Outputcontent.Text = content 'contacts info If did = 0 Then command = db.GetSqlStringCommand("sql") db.AddInParameter(command, "@contentid", DbType.Int32, contentid) reader = db.ExecuteReader(command) While reader.Read() Contactinforepeater.DataSource = reader Contactinforepeater.DataBind() End While End If If Not did = 0 Then command = (db.GetSqlStringCommand("sql") db.AddInParameter(command, "@contentid", DbType.Int32, contentid) db.AddInParameter(command, "@did", DbType.Int32, did) reader = db.ExecuteReader(command) While reader.Read Contactinforepeater.DataSource = reader Contactinforepeater.DataBind() End While End If 'downloads box command = db.GetSqlStringCommand("sql") db.AddInParameter(command, "@contentid", DbType.Int32, contentid) reader = db.ExecuteReader(command) While reader.Read If reader("filename") IsNot DBNull.Value Then downloadstring += "<a href='/documents/" & folder & "/" & reader("filename") & "'>" downloadstring += "<img src=images/" & getimage(reader("filename")) & " border=0 align=absmiddle />" End If If reader("filesize") IsNot DBNull.Value Then downloadstring += Convert.ToInt32((reader("filesize") / 1000)) & "kb - " End If If reader("filename") IsNot DBNull.Value Then downloadstring += "<a href='/documents/" & Session("folder") & "/" & reader("filename") & "'>" & reader("description") & "</a><br />" End If End While Dim downloadsarray As ArrayList downloadsarray = New ArrayList If downloadstring IsNot Nothing Then downloadsarray.Add(downloadstring) End If If downloadsarray.Count > 0 Then DownloadsRepeater.DataSource = downloadsarray DownloadsRepeater.DataBind() End If 'get links command = db.GetSqlStringCommand("sql") db.AddInParameter(command, "@contentid", DbType.Int32, contentid) reader = db.ExecuteReader(command) While reader.Read Linksrepeater.DataSource = reader Linksrepeater.DataBind() End While End Sub End Class Now instead of seeing my page content and what should be within the repeaters on the page all I get is 2 x the output of Response.Write("(1 Test from within page_load)") (1 Test from within page_load)(1 Test from within page_load) This leads me to believe the page_load is firing twice, but not properly displaying all the information. Please can one of you willing experts help me to get this working? Thanks a lot in advance

    Read the article

  • onCommand on button not firing inside gridView??

    - by sah302
    This is really driving me crazy. I've got a button inside a gridview to remove that item from the gridview (its datasource is a list). I've got the list being saved to session anytime a change is being made to it, and on page_load check if that session variable is empty, if not, then set that list to bind to the gridview. Code Behind: Public accomplishmentTypeDao As New AccomplishmentTypeDao() Public accomplishmentDao As New AccomplishmentDao() Public userDao As New UserDao() Public facultyDictionary As New Dictionary(Of Guid, String) Public facultyList As New List(Of User) Public associatedFaculty As New List(Of User) Public facultyId As New Guid Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load 'If Not Session("associatedFaculty") Is Nothing Then' ' Dim associatedFacultyArray As User() = DirectCast(Session("associatedFaculty"), User())' ' associatedFaculty = associatedFacultyArray.ToList()' 'End If' Page.Title = "Add a New Faculty Accomplishment" ddlAccomplishmentType.DataSource = accomplishmentTypeDao.getEntireTable() ddlAccomplishmentType.DataTextField = "Name" ddlAccomplishmentType.DataValueField = "Id" ddlAccomplishmentType.DataBind() facultyList = userDao.getListOfUsersByUserGroupName("Faculty") For Each faculty As User In facultyList facultyDictionary.Add(faculty.Id, faculty.LastName & ", " & faculty.FirstName) Next If Not Page.IsPostBack Then ddlFacultyList.DataSource = facultyDictionary ddlFacultyList.DataTextField = "Value" ddlFacultyList.DataValueField = "Key" ddlFacultyList.DataBind() End If gvAssociatedUsers.DataSource = associatedFaculty gvAssociatedUsers.DataBind() End Sub Protected Sub deleteUser(ByVal sender As Object, ByVal e As System.Web.UI.WebControls.CommandEventArgs) facultyId = New Guid(e.CommandArgument.ToString()) associatedFaculty.Remove(associatedFaculty.Find(Function(user) user.Id = facultyId)) Session("associatedFaculty") = associatedFaculty.ToArray() gvAssociatedUsers.DataBind() upAssociatedFaculty.Update() End Sub Protected Sub btnAddUser_Click(ByVal sender As Object, ByVal e As EventArgs) Handles btnAddUser.Click facultyId = New Guid(ddlFacultyList.SelectedValue) associatedFaculty.Add(facultyList.Find(Function(user) user.Id = facultyId)) Session.Add("associatedFaculty", associatedFaculty.ToArray()) gvAssociatedUsers.DataBind() upAssociatedFaculty.Update() End Sub Protected Sub Delete(ByVal sender As Object, ByVal e As System.Web.UI.WebControls.CommandEventArgs) End Sub End Class Markup: <asp:UpdatePanel ID="upAssociatedFaculty" runat="server" UpdateMode="Conditional"> <ContentTemplate> <p><b>Created By:</b> <asp:Label ID="lblCreatedBy" runat="server"></asp:Label></p> <p><b>Accomplishment Type: </b><asp:DropDownList ID="ddlAccomplishmentType" runat="server"></asp:DropDownList></p> <p><b>Accomplishment Applies To: </b><asp:DropDownList ID="ddlFacultyList" runat="server"></asp:DropDownList> &nbsp;<asp:Button ID="btnAddUser" runat="server" Text="Add Faculty" OnClientClick="incrementCounter();" /></p> <p> <asp:GridView ID="gvAssociatedUsers" runat="server" AutoGenerateColumns="false" GridLines="None" ShowHeader="false"> <Columns> <asp:BoundField DataField="Id" HeaderText="Id" Visible="False" /> <asp:TemplateField ShowHeader="False"> <ItemTemplate> <span style="margin-left: 15px;"> <p><%#Eval("LastName")%>, <%#Eval("FirstName")%> <asp:Button ID="btnUnassignUser" runat="server" CausesValidation="false" CommandArgument='<%# Eval("Id") %>' CommandName="Delete" OnCommand="deleteUser" Text='Remove' /></p> </span> </ItemTemplate> </asp:TemplateField> </Columns> <EmptyDataTemplate> <em>There are currently no faculty associated with this accomplishment.</em> </EmptyDataTemplate> </asp:GridView> </p> </ContentTemplate> </asp:UpdatePanel> Now here is the crazy part I am simply boggled by, if I uncomment the If Not Session... block of page_load, then deleteUser will never fire when btnUnassignUser is clicked. If I keep it commented out...it fires no problem, but then of course my list can never have more than one item since I am not loading the saved list from session into the gridview but just a fresh one. But the button click is being registered, because page_load is being stepped through again when I am viewing in debug mode, just deleteUser never fires. Why is this happening?? And how can I fix it??

    Read the article

  • Sending XML to Servlet from Action Script

    - by John Doe
    I am only getting empty arrays on output. Anyone know what Exactly I'm doing wrong? package myDungeonAccessor; /* * To change this template, choose Tools | Templates * and open the template in the editor. */ import java.io.IOException; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import java.io.PrintWriter; import javax.servlet.ServletException; import javax.servlet.http.HttpServlet; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; public class myDungeonAccessorServlet extends HttpServlet { private myDungeonAccessor dataAccessor; /** * Processes requests for both HTTP <code>GET</code> and <code>POST</code> methods. * @param request servlet request * @param response servlet response * @throws ServletException if a servlet-specific error occurs * @throws IOException if an I/O error occurs */ protected void processRequest(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { response.setContentType("text/html;charset=UTF-8"); PrintWriter out = response.getWriter(); try { /* TODO output your page here out.println("<html>"); out.println("<head>"); out.println("<title>Servlet myDungeonAccessorServlet</title>"); out.println("</head>"); out.println("<body>"); out.println("<h1>Servlet myDungeonAccessorServlet at " + request.getContextPath () + "</h1>"); out.println("</body>"); out.println("</html>"); */ } finally { out.close(); } } // <editor-fold defaultstate="collapsed" desc="HttpServlet methods. Click on the + sign on the left to edit the code."> /** * Handles the HTTP <code>GET</code> method. * @param request servlet request * @param response servlet response * @throws ServletException if a servlet-specific error occurs * @throws IOException if an I/O error occurs */ @Override protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { processRequest(request, response); // PrintWriter out = response.getWriter(); System.out.println("yo mom"); } /** * Handles the HTTP <code>POST</code> method. * @param request servlet request * @param response servlet response * @throws ServletException if a servlet-specific error occurs * @throws IOException if an I/O error occurs */ @Override protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { //System.out.println("heppo"); //dataAccessor = new myDungeonAccessor(); System.out.println("Hello"); try { System.out.println("HEADERS: " + request.getHeaderNames()); ObjectInputStream in = new ObjectInputStream(request.getInputStream()); ObjectOutputStream out = new ObjectOutputStream(response.getOutputStream()); } catch(Exception e) { e.printStackTrace(); } System.out.println("WAZZUP"); byte [] buffer = new byte[4096]; //in.read(buffer); System.out.println("TEST!"); String s = new String(buffer); System.out.println("Update S:" + s); } /** * Returns a short description of the servlet. * @return a String containing servlet description */ @Override public String getServletInfo() { return "Short description"; } }

    Read the article

  • MVVM for Dummies

    - by Martin Hinshelwood
    I think that I have found one of the best articles on MVVM that I have ever read: http://jmorrill.hjtcentral.com/Home/tabid/428/EntryId/432/MVVM-for-Tarded-Folks-Like-Me-or-MVVM-and-What-it-Means-to-Me.aspx This article sums up what is in MVVM and what is outside of MVVM. Note, when I and most other people say MVVM, they really mean MVVM, Commanding, Dependency Injection + any other Patterns you need to create your application. In WPF a lot of use is made of the Decorator and Behaviour pattern as well. The goal of all of this is to have pure separation of concerns. This is what every code behind file of every Control / Window / Page  should look like if you are engineering your WPF and Silverlight correctly: C# – Ideal public partial class IdealView : UserControl { public IdealView() { InitializeComponent(); } } Figure: This is the ideal code behind for a Control / Window / Page when using MVVM. C# – Compromise, but works public partial class IdealView : UserControl { public IdealView() { InitializeComponent(); this.DataContext = new IdealViewModel(); } } Figure: This is a compromise, but the best you can do without Dependency Injection VB.NET – Ideal Partial Public Class ServerExplorerConnectView End Class Figure: This is the ideal code behind for a Control / Window / Page when using MVVM. VB.NET – Compromise, but works Partial Public Class ServerExplorerConnectView Private Sub ServerExplorerConnectView_Loaded(ByVal sender As Object, ByVal e As System.Windows.RoutedEventArgs) Handles Me.Loaded Me.DataContext = New ServerExplorerConnectViewModel End Sub End Class Figure: This is a compromise, but the best you can do without Dependency Injection Technorati Tags: MVVM,.NET,WPF,Silverlight

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • Platform Builder: Cloning – the Linker is your Friend

    - by Bruce Eitman
    I was tasked this week with making a minor change to NetMsgBox() behavior. NetMsgBox() is a little function in NETUI that handles MessageBox() for the Network User Interface.  The obvious solution is to clone the entire NETUI directory from Public\Common\Oak\Drivers (see Platform Builder: Clone Public Code for more on cloning). If you haven’t already, take a minute to look in that folder. There are a lot of files in the folder, but I only needed to modify one function in one of those files. There must be a better way. Enter the linker. Instead of cloning the entire folder, here is what I did: Create a new folder in my Platform named NETUI (but the name isn’t important) Copy the C file that I needed to modify to the new folder, in this case netui.c Copy a makefile from one of the other folder (really they are all the same) Run Sysgen_capture Open a build window (see Platform Builder: Build Tools, Opening a Build Window) Change directories to the new folder Run “Sysgen_capture netui” Rename sources.netui to sources Add the C file to sources as SOURCES=netui.c Modify the code Build the code Done That is it, the functions from my new folder now replace the functions from the Public code and link with the rest to create NETUI.dll. There is a catches. If you remove any of the functions from the C file, linking will fail because the remaining functions will be found twice.   Copyright © 2010 – Bruce Eitman All Rights Reserved

    Read the article

  • No Preview Images in File Open Dialogs on Windows 7

    - by Rick Strahl
    I’ve been updating some file uploader code in my photoalbum today and while I was working with the uploader I noticed that the File Open dialog using Silverlight that handles the file selections didn’t allow me to ever see an image preview for image files. It sure would be nice if I could preview the images I’m about to upload before selecting them from a list. Here’s what my list looked like: This is the Medium Icon view, but regardless of the views available including Content view only icons are showing up. Silverlight uses the standard Windows File Open Dialog so it uses all the same settings that apply to Explorer when displaying content. It turns out that the Customization options in particular are the problem here. Specifically the Always show icons, never thumbnails option: I had this option checked initially, because it’s one of the defenses against runaway random Explorer views that never stay set at my preferences. Alas, while this setting affects Explorer views apparently it also affects all dialog based views in the same way. Unchecking the option above brings back full thumbnailing for all content and icon views. Here’s the same Medium Icon view after turning the option off: which obviously works a whole lot better for selection of images. The bummer of this is that it’s not controllable at the dialog level – at least not in Silverlight. Dialogs obviously have different requirements than what you see in Explorer so the global configuration is a bit extreme especially when there are no overrides on the dialog interface. Certainly for Silverlight the ability to have previews is a key feature for many applications since it will be dealing with lots of media content most likely. Hope this helps somebody out. Thanks to Tim Heuer who helped me track this down on Twitter.© Rick Strahl, West Wind Technologies, 2005-2010Posted in Silverlight  Windows  

    Read the article

  • Step by Step Install of MAAS and JUJU

    - by John S
    I am working on understanding the pieces that I am missing in being able to deploy Juju across the other MAAS nodes. I don't know If I have a step out of place, or missing a few. The server owns the router which handles the DHCP and DNS. Any assistance is greatly appreciated. When I am at the end I will either get a 409 error, or arbitrary pick tools 1.16.0 error. It is worth mentioning that local, and aws works fine. Hopefully with all of these steps spelled out it will help someone else along the way too. Steps Setting Up MAAS and JUJU - 12.04 LTS Clean install SSH only from the package selection during install sudo apt-get install software-properties-common sudo apt-get install python-software-properties sudo add-apt-repository ppa:maas-maintainers/stable sudo add-apt-repository ppa:juju/stable sudo apt-get update sudo apt-get dist-upgrade sudo reboot sudo apt-get install maas maas-dns maas-dhcp sudo ufw disable sudo reboot - edit /etc/dhcp/dhcpd.conf authoritive subnet 10.0.0.0 netmask 255.255.255.0 { next-server 10.0.0.2; filename "pxelinux.0"; } sudo maas createsuperuser sudo maas-import-pxe-files Login to MAAS http://10.x.x.x/MAAS cluster controller configuration for eth0 manage dhcp and dns IP 10.0.0.2 subnet 255.255.255.0 broadcast 10.0.0.0 routerip 10.0.0.1 ip low 10.0.0.5 ip high 10.0.0.180 Commissioning default and distro is set at 12.04 default domain is at local sudo maas-cli login maas http://10.x.x.x/MAAS/api/1.0 api-key ssh-keygen -t rsa -b 2048 - enter - no password - cat id_rsa.pub and enter key into MAAS ssh sudo maas-cli maas nodes accept-all (interestingly enough I only get back [] when executing this ) PXE one machine, accept and commision, start and deploy. sudo apt-get install juju-core juju-local MAAS config: maas: type: maas maas-server: '://10.x.x.x:80/MAAS' maas-oauth: 'MAAS_API_KEY' admin-secret: 'nothing' default-series: 'precise' juju switch maas sudo juju bootstrap --show-log

    Read the article

  • Don’t Sleep Keeps Your Windows Machine Awake

    - by ETC
    Don’t Sleep is an ultra lightweight and portable application that fills a niche need perfect: sometimes you need to temporarily keep your Windows machine from shutting down or power saving without making any permanent changes to your power profile. Fire up portable Don’t Sleep and tell it how long you want it to stop your computer from shutting down, going to sleep (standby/hibernation), and/or keeping the monitor on. At the end of the monitoring period you can have it turn itself off, stay on but stop blocking, or shut down your computer. It’s a great application for those times you need to alter how your computer handles hibernation mode, activating the screensaver, or other automated tasks without making any permanent changes to your power profile or other settings. Hit up the link below to read more and grab a copy. Don’t Sleep is freeware, Windows only. Don’t Sleep [via The Portable Freeware Collection] Latest Features How-To Geek ETC Have You Ever Wondered How Your Operating System Got Its Name? Should You Delete Windows 7 Service Pack Backup Files to Save Space? What Can Super Mario Teach Us About Graphics Technology? Windows 7 Service Pack 1 is Released: But Should You Install It? How To Make Hundreds of Complex Photo Edits in Seconds With Photoshop Actions How to Enable User-Specific Wireless Networks in Windows 7 Access the Options for Your Favorite Extensions Easier in Firefox Don’t Sleep Keeps Your Windows Machine Awake DropSpace Syncs Android Files to Dropbox Field of Poppies Wallpaper The History Of Operating Systems [Infographic] DriveSafe.ly Reads Your Text Messages Aloud

    Read the article

  • Demystifying Silverlight Dependency Properties

    - by dwahlin
    I have the opportunity to teach a lot of people about Silverlight (amongst other technologies) and one of the topics that definitely confuses people initially is the concept of dependency properties. I confess that when I first heard about them my initial thought was “Why do we need a specialized type of property?” While you can certainly use standard CLR properties in Silverlight applications, Silverlight relies heavily on dependency properties for just about everything it does behind the scenes. In fact, dependency properties are an essential part of the data binding, template, style and animation functionality available in Silverlight. They simply back standard CLR properties. In this post I wanted to put together a (hopefully) simple explanation of dependency properties and why you should care about them if you’re currently working with Silverlight or looking to move to it.   What are Dependency Properties? XAML provides a great way to define layout controls, user input controls, shapes, colors and data binding expressions in a declarative manner. There’s a lot that goes on behind the scenes in order to make XAML work and an important part of that magic is the use of dependency properties. If you want to bind data to a property, style it, animate it or transform it in XAML then the property involved has to be a dependency property to work properly. If you’ve ever positioned a control in a Canvas using Canvas.Left or placed a control in a specific Grid row using Grid.Row then you’ve used an attached property which is a specialized type of dependency property. Dependency properties play a key role in XAML and the overall Silverlight framework. Any property that you bind, style, template, animate or transform must be a dependency property in Silverlight applications. You can programmatically bind values to controls and work with standard CLR properties, but if you want to use the built-in binding expressions available in XAML (one of my favorite features) or the Binding class available through code then dependency properties are a necessity. Dependency properties aren’t needed in every situation, but if you want to customize your application very much you’ll eventually end up needing them. For example, if you create a custom user control and want to expose a property that consumers can use to change the background color, you have to define it as a dependency property if you want bindings, styles and other features to be available for use. Now that the overall purpose of dependency properties has been discussed let’s take a look at how you can create them. Creating Dependency Properties When .NET first came out you had to write backing fields for each property that you defined as shown next: Brush _ScheduleBackground; public Brush ScheduleBackground { get { return _ScheduleBackground; } set { _ScheduleBackground = value; } } Although .NET 2.0 added auto-implemented properties (for example: public Brush ScheduleBackground { get; set; }) where the compiler would automatically generate the backing field used by get and set blocks, the concept is still the same as shown in the above code; a property acts as a wrapper around a field. Silverlight dependency properties replace the _ScheduleBackground field shown in the previous code and act as the backing store for a standard CLR property. The following code shows an example of defining a dependency property named ScheduleBackgroundProperty: public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), null);   Looking through the code the first thing that may stand out is that the definition for ScheduleBackgroundProperty is marked as static and readonly and that the property appears to be of type DependencyProperty. This is a standard pattern that you’ll use when working with dependency properties. You’ll also notice that the property explicitly adds the word “Property” to the name which is another standard you’ll see followed. In addition to defining the property, the code also makes a call to the static DependencyProperty.Register method and passes the name of the property to register (ScheduleBackground in this case) as a string. The type of the property, the type of the class that owns the property and a null value (more on the null value later) are also passed. In this example a class named Scheduler acts as the owner. The code handles registering the property as a dependency property with the call to Register(), but there’s a little more work that has to be done to allow a value to be assigned to and retrieved from the dependency property. The following code shows the complete code that you’ll typically use when creating a dependency property. You can find code snippets that greatly simplify the process of creating dependency properties out on the web. The MVVM Light download available from http://mvvmlight.codeplex.com comes with built-in dependency properties snippets as well. public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), null); public Brush ScheduleBackground { get { return (Brush)GetValue(ScheduleBackgroundProperty); } set { SetValue(ScheduleBackgroundProperty, value); } } The standard CLR property code shown above should look familiar since it simply wraps the dependency property. However, you’ll notice that the get and set blocks call GetValue and SetValue methods respectively to perform the appropriate operation on the dependency property. GetValue and SetValue are members of the DependencyObject class which is another key component of the Silverlight framework. Silverlight controls and classes (TextBox, UserControl, CompositeTransform, DataGrid, etc.) ultimately derive from DependencyObject in their inheritance hierarchy so that they can support dependency properties. Dependency properties defined in Silverlight controls and other classes tend to follow the pattern of registering the property by calling Register() and then wrapping the dependency property in a standard CLR property (as shown above). They have a standard property that wraps a registered dependency property and allows a value to be assigned and retrieved. If you need to expose a new property on a custom control that supports data binding expressions in XAML then you’ll follow this same pattern. Dependency properties are extremely useful once you understand why they’re needed and how they’re defined. Detecting Changes and Setting Defaults When working with dependency properties there will be times when you want to assign a default value or detect when a property changes so that you can keep the user interface in-sync with the property value. Silverlight’s DependencyProperty.Register() method provides a fourth parameter that accepts a PropertyMetadata object instance. PropertyMetadata can be used to hook a callback method to a dependency property. The callback method is called when the property value changes. PropertyMetadata can also be used to assign a default value to the dependency property. By assigning a value of null for the final parameter passed to Register() you’re telling the property that you don’t care about any changes and don’t have a default value to apply. Here are the different constructor overloads available on the PropertyMetadata class: PropertyMetadata Constructor Overload Description PropertyMetadata(Object) Used to assign a default value to a dependency property. PropertyMetadata(PropertyChangedCallback) Used to assign a property changed callback method. PropertyMetadata(Object, PropertyChangedCalback) Used to assign a default property value and a property changed callback.   There are many situations where you need to know when a dependency property changes or where you want to apply a default. Performing either task is easily accomplished by creating a new instance of the PropertyMetadata class and passing the appropriate values to its constructor. The following code shows an enhanced version of the initial dependency property code shown earlier that demonstrates these concepts: public Brush ScheduleBackground { get { return (Brush)GetValue(ScheduleBackgroundProperty); } set { SetValue(ScheduleBackgroundProperty, value); } } public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), new PropertyMetadata(new SolidColorBrush(Colors.LightGray), ScheduleBackgroundChanged)); private static void ScheduleBackgroundChanged(DependencyObject d, DependencyPropertyChangedEventArgs e) { var scheduler = d as Scheduler; scheduler.Background = e.NewValue as Brush; } The code wires ScheduleBackgroundProperty to a property change callback method named ScheduleBackgroundChanged. What’s interesting is that this callback method is static (as is the dependency property) so it gets passed the instance of the object that owns the property that has changed (otherwise we wouldn’t be able to get to the object instance). In this example the dependency object is cast to a Scheduler object and its Background property is assigned to the new value of the dependency property. The code also handles assigning a default value of LightGray to the dependency property by creating a new instance of a SolidColorBrush. To Sum Up In this post you’ve seen the role of dependency properties and how they can be defined in code. They play a big role in XAML and the overall Silverlight framework. You can think of dependency properties as being replacements for fields that you’d normally use with standard CLR properties. In addition to a discussion on how dependency properties are created, you also saw how to use the PropertyMetadata class to define default dependency property values and hook a dependency property to a callback method. The most important thing to understand with dependency properties (especially if you’re new to Silverlight) is that they’re needed if you want a property to support data binding, animations, transformations and styles properly. Any time you create a property on a custom control or user control that has these types of requirements you’ll want to pick a dependency property over of a standard CLR property with a backing field. There’s more that can be covered with dependency properties including a related property called an attached property….more to come.

    Read the article

  • Drupal CMS most Stable for High Traffic

    - by Aditi
    Drupal users have high satisfaction with Drupal compared to the Joomla users, for a number of reasons. If you are thinking of  choosing a high performance platform to run your high traffic website.. Drupal Installation is your forte! Overload Scenario Drupal is scalable high performance CMS and is stable under heavy load. If your server is pushed beyond its capacity, Drupal shuts off gracefully and doesn’t crash. As soon as the server is back within its traffic capability, Drupal handles all requests smoothly again. For example if your dedicated server can handle a maximum of 50,000 visits a day, and on lucky days when your news created the buzz in social media and your traffic rose to 70,000 on one day, then your server will be overloaded and usually it crashes causing permanent damage to your database at times.. But if you have used Drupal CMS it closes down gracefully an as soon as traffic goes down to within the server’s capacity, the Drupal running site accepts all requests again. Extensibility Drupal users know that their add-ons integrate better with the core, and their framework makes it easier to extend their CMS’s capabilities.. which makes an extended version of it quite stable unlike Joomla, which loses its strength if you have plenty of plugins & heavy customizations running. Any CMS with number of plugins makes the content complex and reduces your ability to handle high traffic requests. Accessibility Management or ACL Chances are if you are high traffic website, you may have various users & content contributors. ACL means group roles that is assigning people out of the various registered user levels and allocating many kinds of privileges. The most common example is the ability to see or edit a section or selected pages. This efficient feature of Drupal makes it a class apart than other CMSs out there.

    Read the article

  • Static objects and concurrency in a web application

    - by Ionut
    I'm developing small Java Web Applications on Tomcat server and I'm using MySQL as my database. Up until now I was using a connection singleton for accessing the database but I found out that this will ensure just on connection per Application and there will be problems if multiple users want to access the database in the same time. (They all have to make us of that single Connection object). I created a Connection Pool and I hope that this is the correct way of doing things. Furthermore it seems that I developed the bad habit of creating a lot of static object and static methods (mainly because I was under the wrong impression that every static object will be duplicated for every client which accesses my application). Because of this all the Service Classes ( classes used to handle database data) are static and distributed through a ServiceFactory: public class ServiceFactory { private static final String JDBC = "JDBC"; private static String impl; private static AccountService accountService; private static BoardService boardService; public static AccountService getAccountService(){ initConfig(); if (accountService == null){ if (impl.equalsIgnoreCase(JDBC)){ accountService = new JDBCAccountService(); } } return accountService; } public static BoardService getBoardService(){ initConfig(); if (boardService == null){ if (impl.equalsIgnoreCase(JDBC)){ boardService = new JDBCBoardService(); } } return boardService; } private static void initConfig(){ if (StringUtil.isEmpty(impl)){ impl = ConfigUtil.getProperty("service.implementation"); // If the config failed initialize with standard if (StringUtil.isEmpty(impl)){ impl = JDBC; } } } This was the factory class which, as you can see, allows just one Service to exist at any time. Now, is this a bad practice? What happens if let's say 1k users access AccountService simultaneously? I know that all this questions and bad practices come from a bad understanding of the static attribute in a web application and the way the server handles this attributes. Any help on this topic would be more than welcomed. Thank you for your time!

    Read the article

< Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >