Search Results

Search found 47870 results on 1915 pages for 'add column'.

Page 281/1915 | < Previous Page | 277 278 279 280 281 282 283 284 285 286 287 288  | Next Page >

  • Why does my TextBox with custom control template not have a visible text cursor?

    - by Philipp Schmid
    I have a custom control template which is set via the style property on a TextBox. The visual poperties are set correctly, even typing to the textbox works, but there is no insertion cursor (the | symbol) visible which makes editing challenging for our users. How does the control template need changing to get the traditional TextBox behavior back? <Style x:Key="DemandEditStyle" TargetType="TextBox"> <EventSetter Event="LostFocus" Handler="DemandLostFocus" /> <Setter Property="HorizontalAlignment" Value="Stretch" /> <Setter Property="VerticalAlignment" Value="Stretch" /> <Setter Property="Template"> <Setter.Value> <ControlTemplate> <Grid HorizontalAlignment="Stretch" VerticalAlignment="Stretch"> <Grid.ColumnDefinitions> <ColumnDefinition Width="*" /> <ColumnDefinition Width="1" /> </Grid.ColumnDefinitions> <Grid.RowDefinitions> <RowDefinition Height="*" /> <RowDefinition Height="1" /> </Grid.RowDefinitions> <Grid.Background> <LinearGradientBrush StartPoint="0,0" EndPoint="0,1"> <GradientStop Color="White" Offset="0" /> <GradientStop Color="White" Offset="0.15" /> <GradientStop Color="#EEE" Offset="1" /> </LinearGradientBrush> </Grid.Background> <Border Grid.Row="1" Grid.Column="0" Grid.ColumnSpan="2" Background="Black" /> <Border Grid.Row="0" Grid.Column="1" Grid.RowSpan="2" Background="Black" /> <Grid Grid.Row="0" Grid.Column="0" Margin="2"> <Grid.ColumnDefinitions> <ColumnDefinition Width="1" /> <ColumnDefinition Width="*" /> <ColumnDefinition Width="1" /> </Grid.ColumnDefinitions> <Grid.RowDefinitions> <RowDefinition Height="1" /> <RowDefinition Height="*" /> <RowDefinition Height="1" /> </Grid.RowDefinitions> <Border Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="3" Background="Black" /> <Border Grid.Row="0" Grid.Column="0" Grid.RowSpan="3" Background="Black" /> <Border Grid.Row="2" Grid.Column="0" Grid.ColumnSpan="3" Background="#CCC" /> <Border Grid.Row="0" Grid.Column="2" Grid.RowSpan="3" Background="#CCC" /> <TextBlock Grid.Row="1" Grid.Column="1" TextAlignment="Right" HorizontalAlignment="Center" VerticalAlignment="Center" Padding="3 0 3 0" Background="Yellow" Text="{Binding RelativeSource={RelativeSource TemplatedParent}, Path=Text}" Width="{Binding RelativeSource={RelativeSource FindAncestor, AncestorType={x:Type Grid}, AncestorLevel=1}, Path=ActualWidth}" /> </Grid> </Grid> </ControlTemplate> </Setter.Value> </Setter> </Style> Update: Replacing the inner-most TextBox with a ScrollViewer and naming it PART_ContentHost indeed shows the text insertion cursor. Trying to right-align the text in the TextBox by either setting the HorizontalContentAlignment in the Style or as a property on the ScrollViewer were unsuccessful. Suggestions?

    Read the article

  • Can't get Jacobi algorithm to work in Objective-C

    - by Chris Long
    Hi, For some reason, I can't get this program to work. I've had other CS majors look at it and they can't figure it out either. This program performs the Jacobi algorithm (you can see step-by-step instructions and a MATLAB implementation here). BTW, it's different from the Wikipedia article of the same name. Since NSArray is one-dimensional, I added a method that makes it act like a two-dimensional C array. After running the Jacobi algorithm many times, the diagonal entries in the NSArray (i[0][0], i[1][1], etc.) are supposed to get bigger and the others approach 0. For some reason though, they all increase exponentially. For instance, i[2][4] should equal 0.0000009, not 9999999, while i[2][2] should be big. Thanks in advance, Chris NSArray+Matrix.m @implementation NSArray (Matrix) @dynamic offValue, transposed; - (double)offValue { double sum = 0.0; for ( MatrixItem *item in self ) if ( item.nonDiagonal ) sum += pow( item.value, 2.0 ); return sum; } - (NSMutableArray *)transposed { NSMutableArray *transpose = [[[NSMutableArray alloc] init] autorelease]; int i, j; for ( i = 0; i < 5; i++ ) { for ( j = 0; j < 5; j++ ) { [transpose addObject:[self objectAtRow:j andColumn:i]]; } } return transpose; } - (id)objectAtRow:(NSUInteger)row andColumn:(NSUInteger)column { NSUInteger index = 5 * row + column; return [self objectAtIndex:index]; } - (NSMutableArray *)multiplyWithMatrix:(NSArray *)array { NSMutableArray *result = [[NSMutableArray alloc] init]; int i = 0, j = 0, k = 0; double value; for ( i = 0; i < 5; i++ ) { value = 0.0; for ( j = 0; j < 5; j++ ) { for ( k = 0; k < 5; k++ ) { MatrixItem *firstItem = [self objectAtRow:i andColumn:k]; MatrixItem *secondItem = [array objectAtRow:k andColumn:j]; value += firstItem.value * secondItem.value; } MatrixItem *item = [[MatrixItem alloc] initWithValue:value]; item.row = i; item.column = j; [result addObject:item]; } } return result; } @end Jacobi_AlgorithmAppDelegate.m // ... - (void)jacobiAlgorithmWithEntry:(MatrixItem *)entry { MatrixItem *b11 = [matrix objectAtRow:entry.row andColumn:entry.row]; MatrixItem *b22 = [matrix objectAtRow:entry.column andColumn:entry.column]; double muPlus = ( b22.value + b11.value ) / 2.0; muPlus += sqrt( pow((b22.value - b11.value), 2.0) + 4.0 * pow(entry.value, 2.0) ); Vector *u1 = [[[Vector alloc] initWithX:(-1.0 * entry.value) andY:(b11.value - muPlus)] autorelease]; [u1 normalize]; Vector *u2 = [[[Vector alloc] initWithX:-u1.y andY:u1.x] autorelease]; NSMutableArray *g = [[[NSMutableArray alloc] init] autorelease]; for ( int i = 0; i <= 24; i++ ) { MatrixItem *item = [[[MatrixItem alloc] init] autorelease]; if ( i == 6*entry.row ) item.value = u1.x; else if ( i == 6*entry.column ) item.value = u2.y; else if ( i == ( 5*entry.row + entry.column ) || i == ( 5*entry.column + entry.row ) ) item.value = u1.y; else if ( i % 6 == 0 ) item.value = 1.0; else item.value = 0.0; [g addObject:item]; } NSMutableArray *firstResult = [[g.transposed multiplyWithMatrix:matrix] autorelease]; matrix = [firstResult multiplyWithMatrix:g]; } // ...

    Read the article

  • NHibernate child deletion problem.

    - by JMSA
    Suppose, I have saved some permissions in the database by using this code: RoleRepository roleRep = new RoleRepository(); Role role = new Role(); role.PermissionItems = Permission.GetList(); roleRep .SaveOrUpdate(role); Now, I need this code to delete the PermissionItem(s) associated with a Role when role.PermissionItems == null. Here is the code: RoleRepository roleRep = new RoleRepository(); Role role = roleRep.Get(roleId); role.PermissionItems = null; roleRep .SaveOrUpdate(role); But this is not happening. What should be the correct way to cope with this situation? What/how should I change, hbm-file or persistance code? Role.cs public class Role { public virtual string RoleName { get; set; } public virtual bool IsActive { get; set; } public virtual IList<Permission> PermissionItems { get; set; } } Role.hbm.xml <?xml version="1.0" encoding="utf-8" ?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" assembly="POCO" namespace="POCO"> <class name="Role" table="Role"> <id name="ID" column="ID"> <generator class="native" /> </id> <property name="RoleName" column="RoleName" /> <property name="IsActive" column="IsActive" type="System.Boolean" /> <bag name="PermissionItems" table="Permission" cascade="all" inverse="true"> <key column="RoleID"/> <one-to-many class="Permission" /> </bag> </class> </hibernate-mapping> Permission.cs public class Permission { public virtual string MenuItemKey { get; set; } public virtual int RoleID { get; set; } public virtual Role Role { get; set; } } Permission.hbm.xml <?xml version="1.0" encoding="utf-8" ?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" assembly="POCO" namespace="POCO"> <class name="Permission" table="Permission"> <id name="ID" column="ID"> <generator class="native"/> </id> <property name="MenuItemKey" column="MenuItemKey" /> <property name="RoleID" column="RoleID" /> <many-to-one name="Role" column="RoleID" not-null="true" cascade="all"> </many-to-one> </class> </hibernate-mapping>

    Read the article

  • Adding a hyperlink in a client report definition file (RDLC)

    - by rajbk
    This post shows you how to add a hyperlink to your RDLC report. In a previous post, I showed you how to create an RDLC report. We have been given the requirement to the report we created earlier, the Northwind Product report, to add a column that will contain hyperlinks which are unique per row.  The URLs will be RESTful with the ProductID at the end. Clicking on the URL will take them to a website like so: http://localhost/products/3  where 3 is the primary key of the product row clicked on. To start off, open the RDLC and add a new column to the product table.   Add text to the header (Details) and row (Product Website). Right click on the row (not header) and select “TextBox properties” Select Action – Go to URL. You could hard code a URL here but what we need is a URL that changes based on the ProductID.   Click on the expression button (fx) The expression builder gives you access to several functions and constants including the fields in your dataset. See this reference for more details: Common Expressions for ReportViewer Reports. Add the following expression: = "http://localhost/products/" & Fields!ProductID.Value Click OK to exit the Expression Builder. The report will not render because hyperlinks are disabled by default in the ReportViewer control. To enable it, add the following in your page load event (where rvProducts is the ID of your ReportViewerControl): protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { rvProducts.LocalReport.EnableHyperlinks = true; } } We want our links to open in a new window so set the HyperLinkTarget property of the ReportViewer control to “_blank”   We are done adding hyperlinks to our report. Clicking on the links for each product pops open a new windows. The URL has the ProductID added at the end. Enjoy!

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Writing algorithm on 2D data set in plain english

    - by Alexandre P. Levasseur
    I have started an introductory Java class and the material is absolutely horrendous and I have to get excellent grades to be accepted into the master's degree, hence my very beginner question: In my assignment I have to write algorithms (no pseudo-code yet) to solve a board game (Sudoku). Essentially, the notes say that an algorithm is specification of the input(s), the output(s) and the treatments applied to the input to get the output. My question lies on the wording of algorithms because I could probably code it but I can't seem to put it on paper in a coherent way. The game has a 9x9 board and one of the algorithms to write has to find the solution by looking at 3 squares (either horizontal or vertical) and see if one of the three sub-squares match the number you are looking for. If none match then the number you are looking to place is in one of the other 2 set of 3 sub-squares (see image to get a better idea). I really can't get my head around how to formulate the solution into the terms described above or maybe it's just too simple, here's what I was thinking: Input: A 2-dimensional set of data of size 9 by 9 to be solved and a number to search for. Ouput: A 2-dimensional set of data of size 9 by 9 either solved or partially solved. Treatment: Scan each set of 3x9 and 9x3 squares. For each line or column of a 3x3 square check if the number matches a line (or column). If it does then move to the next line (or column). If not then proceed to the next 3x3 square in the same line (or column). Rinse and repeat. Does that make sense as an algorithm written in plain english ? I'm not looking for an answer to the algorithm per se but rather on the formulation of algorithms in plain english.

    Read the article

  • Observable Collections

    - by SGWellens
    I didn't think it was possible, but .NET surprised me yet again with a cool feature I never knew existed: The ObservableCollection. This became available in .NET 3.0. In essence, an ObservableCollection is a collection with an event you can connect to. The event fires when the collection changes. As usual, working with the .NET classes is so ridiculously easy, it feels like cheating. The following is small test program to illustrate how the ObservableCollection works. To start, create an ObservableCollection and then store it in the Session object so it will persist between page post backs. I also added the code to pull it out of Session state when there is a page post back:   public partial class _Default : System.Web.UI.Page{    public ObservableCollection<int> MyInts;     // ---- Page_Load ------------------------------     protected void Page_Load(object sender, EventArgs e)    {        if (IsPostBack == false)        {            MyInts = new ObservableCollection<int>();            MyInts.CollectionChanged += CollectionChangedHandler;             Session["MyInts"] = MyInts;  // store for use between postbacks        }        else        {            MyInts = Session["MyInts"] as ObservableCollection<int>;        }    } Here's the event handler I hooked up to the ObservableCollection, it writes status strings to a ListBox. Note: The event handler fires in a different thread than the IIS process thread.     // ---- CollectionChangedHandler -----------------------------------    //    // Something changed in the Observable collection     public void CollectionChangedHandler(object sender, NotifyCollectionChangedEventArgs e)    {        // need to dig around to get the current page and control to write to:        // (because this is in a separate thread)        Page CurrentPage = System.Web.HttpContext.Current.Handler as Page;        ListBox LB = CurrentPage.FindControl("ListBoxHistory") as ListBox;         switch (e.Action)        {            case NotifyCollectionChangedAction.Add:                LB.Items.Add("Add: " + e.NewItems[0]);                               break;             case NotifyCollectionChangedAction.Remove:                LB.Items.Add("Remove: " + e.OldItems[0]);                break;             case NotifyCollectionChangedAction.Reset:                LB.Items.Add("Reset: ");                break;             default:                LB.Items.Add(e.Action.ToString());                break;                     }    }  Next, add some buttons and code to exercise the ObservableCollection:     <br />    <asp:Button ID="ButtonAdd" runat="server" Text="Add" OnClick="ButtonAdd_Click" />    <asp:Button ID="ButtonRemove" runat="server" Text="Remove" OnClick="ButtonRemove_Click" />    <asp:Button ID="ButtonReset" runat="server" Text="Reset" OnClick="ButtonReset_Click" />    <asp:Button ID="ButtonList" runat="server" Text="List" OnClick="ButtonList_Click" />    <br />    <asp:TextBox ID="TextBoxInt" runat="server" Width="51px"></asp:TextBox>    <br />    <asp:ListBox ID="ListBoxHistory" runat="server" Height="255px" Width="195px">    </asp:ListBox>    // ---- Add Button --------------------------------------     protected void ButtonAdd_Click(object sender, EventArgs e)    {        int Temp;        if (int.TryParse(TextBoxInt.Text, out Temp) == true)            MyInts.Add(Temp);    }     // ---- Remove Button --------------------------------------     protected void ButtonRemove_Click(object sender, EventArgs e)    {        int Temp;        if (int.TryParse(TextBoxInt.Text, out Temp) == true)            MyInts.Remove(Temp);    }     // ---- Button Reset -----------------------------------     protected void ButtonReset_Click(object sender, EventArgs e)    {        MyInts.Clear();    }     // ---- Button List --------------------------------------     protected void ButtonList_Click(object sender, EventArgs e)    {        ListBoxHistory.Items.Add("MyInts:");        foreach (int i in MyInts)        {            // a bit of tweaking to get the text to be indented            ListItem LI = new ListItem("&nbsp;&nbsp;" + i.ToString());            LI.Text = Server.HtmlDecode(LI.Text);            ListBoxHistory.Items.Add(LI);        }    } Here's what it looks like after entering some numbers and clicking some buttons: An interesting note is that I had to use: System.Web.HttpContext.Current.Response to write to a control on the page. As mentioned earlier, this implies that the notification event is in a thread separate from the IIS thread. Another interesting note: From the online help: Any public static (Shared in Visual Basic) members of this type are thread safe. Any instance members are not guaranteed to be thread safe What does that mean to Asp.Net developers? If you are going to share an ObservableCollection among different sessions, you'd better make it a static object. I hope someone finds this useful. Steve Wellens

    Read the article

  • TFS 2010 Server Name Change

    - by PearlFactory
    So I thought I would  change the name of my machine so that the other devs can find the TFS server easily. TFS 2005 would use the cool cmd line util tfsadminutil.....alas he is now gone HERE Are the steps to complete Edit the web.config and is usually located on default install C:\Program Files\Microsoft Team Foundation Server 2010\Application Tier\Web Services\web.config <add key="applicationDatabase" value="Data Source=JUSTIN\SQLI01;Initial Catalog=Tfs_Configuration;Integrated Security=True;" /> Next step is to edit previous Solutions/Projects 1) Open the Solution file i.e ProductApp.sln 2) Edit the SccTeamFoundationServer URL under Global section i.e Change this to new name   If you have DB server on same machine ...you will need to go in and remove existing db user account assigned to the tfs DB Remove old [%machine_name%] value i.e Tuned_Dev_PC_12\Justin user from the above DBs No add the new Justin\Justin user account associated with the new machine name to the TFS & Reporing dbs ... dbo or the TFSADMIN & TFSEXEC roles either will do in this case. (or add both ) Now either ReApply user or add New account (remove old account i.e Tuned_Dev_PC_12\justin) If DB permisions are setup correctyly you will get a screen that looks like this   If it pauses or gets stuck you need to look back at the adding correct DB Perms to the i.e JUSTIN\Justin user account Also if your project is still complaining about old TFS name 1) Team\Connect new Team Foundation Server 2) Add\Remove TFS 3) Add New TFS Name  Once you have connected to the new TFS server Reload your project from TFS..this way it removes a lot of the bugs that hang around in the local project\solution This is similar to a VSS2005 and older fix Cheers ( eta about 60-90 mins so weigh up the the need vs payoff. ) Shutdown restart

    Read the article

  • Updating Banshee to 2.4

    - by Lucasguy11
    I have banshee 2.2.1 with Ubuntu 11.10 I have been trying to update banshee to 2.4 (released yesterday) but it just isnt working, I have been using sudo add-apt-repository ppa:banshee-team/ppa in terminal, from the Banshee.fm website. but after running through terminal it says this: sudo add-apt-repository ppa:banshee-team/ppa You are about to add the following PPA to your system: PPA for Banshee Team This PPA contains the latest stable debs of Banshee for Ubuntu. To install Banshee, you must first enable the PPA on your system: 1. Open Software Sources (System->Administration->Software Sources) 2. Navigate to the "Third Party Sources" tab. 3. Click "Add" 4. Enter the APT line below that corresponds to your Ubuntu version that starts with "deb". 5. Click "Add Source" 6. Click "Close" 7. It will prompt you to reload your software cache. Click "Reload". 8. Now install the package "banshee" from Synaptic, or using the command below: sudo apt-get install banshee For those who wish to compile from trunk, add the deb-src line and then run "sudo apt-get build-dep" to install all required dependencies before starting to compile. Unstable (version which have odd minor version numbers) debs of Banshee can be found here: https://launchpad.net/~banshee-team/+archive/banshee-unstable More info: https://launchpad.net/~banshee-team/+archive/ppa Press [ENTER] to continue or ctrl-c to cancel adding it Executing: gpg --ignore-time-conflict --no-options --no-default-keyring --secret-keyring /tmp/tmp.OPAjxemDQr --trustdb-name /etc/apt/trustdb.gpg --keyring /etc/apt/trusted.gpg --primary-keyring /etc/apt/trusted.gpg --keyserver hkp://keyserver.ubuntu.com:80/ --recv 9D2C2E0A3C88DD807EC787D74874D3686E80C6B7 gpg: requesting key 6E80C6B7 from hkp server keyserver.ubuntu.com gpg: key 6E80C6B7: "Launchpad PPA for Banshee Team" not changed gpg: Total number processed: 1 gpg: unchanged: 1 I believe I have the ppa but, im not sure. I need a step by step process to get this, ive been trying to figure it out for quite a while now...

    Read the article

  • Sharing A Stage: JDeveloper/ADF & NetBeans/Java EE 6?

    - by Geertjan
    A highlight for me during last week's Oracle Developer Day in Romania (which I blogged about here) was meeting Jernej Kaše (who is from Slovenia, just like my philosopher hero Slavoj Žižek), who is an Oracle Fusion Middleware evangelist. At the conference, while I was presenting NetBeans and Java EE 6 in one room, Jernej was presenting JDeveloper and ADF in another room. The application he created looks as follows, i.e., a realistic CRUD app, with a master/detail view, a search feature, and validation: In a conversation during a break, we started imagining a scenario where the two of us would be on the same stage, taking turns talking about NetBeans/Java EE and JDeveloper/ADF. In that way, attendees at a conference wouldn't need to choose which of the two topics to attend, because they'd be handled in the same session, with the session possibly being longer so that sufficient time could be spent on the respective technologies. (The JDeveloper/ADF session would then not be competing with the NetBeans/Java EE 6 session, since they'd be handled simultaneously.) The session would focus on the similarities/differences between the two respective tools/solutions, which would be extremely interesting and also unique. The crucial question in making this kind of co-presentation possible is whether (and how quickly) an application such as the one created above with JDeveloper/ADF could be created with NetBeans/Java EE 6. The NetBeans/Java EE 6 story is extremely strong on the model and controler levels, but less strong on the view layer. Though there are choices between using PrimeFaces, RichFaces, and IceFaces, that support is quite limited in the absence of a visual designer or of other specific tools (e.g., code generators to generate snippets of PrimeFaces) connected to JSF component libraries. However, it so happens that in recent months we at NetBeans have established really good connections with the PrimeFaces team (more about that another time). So I asked them what it would take to write the above UI in PrimeFaces. The PrimeFaces team were very helpful. They sent me the following screenshot, which is of the UI they created in PrimeFaces, reproducing the ADF screenshot above: Of course, the above is purely the UI layer, there's no EJB and entity classes and data connection hooked into it yet. However, this is the Facelets file that the PrimeFaces team sent me, i.e., using the PrimeFaces component library, that produces the above result: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:h="http://java.sun.com/jsf/html" xmlns:f="http://java.sun.com/jsf/core" xmlns:p="http://primefaces.org/ui"> <f:view> <h:head> <style type="text/css"> .alignRight { text-align: right; } .alignLeft { text-align: left; } .alignTop { vertical-align: top; } .ui-validation-required { color: red; font-size: 14px; margin-right: 5px; position: relative; vertical-align: top; } .ui-selectonemenu .ui-selectonemenu-trigger .ui-icon { margin-top: 7px !important; } </style> </h:head> <h:body> <h:form prependId="false" id="form"> <p:panel header="Employees"> <h:panelGrid columns="4" id="searchPanel"> Search <p:selectOneMenu> <f:selectItem itemLabel="FirstName" itemValue="FirstName" /> <f:selectItem itemLabel="LastName" itemValue="LastName" /> <f:selectItem itemLabel="Email" itemValue="Email" /> <f:selectItem itemLabel="PhoneNumber" itemValue="PhoneNumber" /> </p:selectOneMenu> <p:inputText /> <p:commandLink process="searchPanel" update="@form"> <h:graphicImage name="next.gif" library="img" /> </p:commandLink> </h:panelGrid> <h:panelGrid columns="3" columnClasses="alignTop,,alignTop" style="width:90%;margin-left:10%"> <h:panelGrid columns="2" columnClasses="alignRight,alignLeft"> <h:outputLabel for="firstName">FirstName</h:outputLabel> <p:inputText id="firstName" /> <h:outputLabel for="lastName"> <sup class="ui-validation-required">*</sup>LastName </h:outputLabel> <p:inputText id="lastName" style="width:250px;" /> <h:outputLabel for="email"> <sup class="ui-validation-required">*</sup>Email </h:outputLabel> <p:inputText id="email" style="width:250px;" /> <h:outputLabel for="phoneNumber" value="PhoneNumber" /> <p:inputMask id="phoneNumber" mask="999.999.9999" /> <h:outputLabel for="hireDate"> <sup class="ui-validation-required">*</sup>HireDate</h:outputLabel> <p:calendar id="hireDate" pattern="MM/dd/yyyy" showOn="button" /> </h:panelGrid> <p:outputPanel style="min-width:40px;" /> <h:panelGrid columns="2" columnClasses="alignRight,alignLeft"> <h:outputLabel for="jobId"> <sup class="ui-validation-required">*</sup>JobId </h:outputLabel> <p:selectOneMenu id="jobId" > <f:selectItem itemLabel="Administration Vice President" itemValue="Administration Vice President" /> <f:selectItem itemLabel="Vice President" itemValue="Vice President" /> </p:selectOneMenu> <h:outputLabel for="salary">Salary</h:outputLabel> <p:inputText id="salary" styleClass="alignRight" /> <h:outputLabel for="commissionPct">CommissionPct</h:outputLabel> <p:inputText id="commissionPct" style="width:30px;" maxlength="3" /> <h:outputLabel for="manager">ManagerId</h:outputLabel> <p:selectOneMenu id="manager"> <f:selectItem itemLabel="Steven King" itemValue="Steven" /> <f:selectItem itemLabel="Michael Cook" itemValue="Michael" /> <f:selectItem itemLabel="John Benjamin" itemValue="John" /> <f:selectItem itemLabel="Dav Glass" itemValue="Dav" /> </p:selectOneMenu> <h:outputLabel for="department">DepartmentId</h:outputLabel> <p:selectOneMenu id="department"> <f:selectItem itemLabel="90" itemValue="90" /> <f:selectItem itemLabel="80" itemValue="80" /> <f:selectItem itemLabel="70" itemValue="70" /> <f:selectItem itemLabel="60" itemValue="60" /> <f:selectItem itemLabel="50" itemValue="50" /> <f:selectItem itemLabel="40" itemValue="40" /> <f:selectItem itemLabel="30" itemValue="30" /> <f:selectItem itemLabel="20" itemValue="20" /> </p:selectOneMenu> </h:panelGrid> </h:panelGrid> <p:outputPanel id="buttonPanel"> <p:commandButton value="First" process="@this" update="@form" /> <p:commandButton value="Previous" process="@this" update="@form" style="margin-left:15px;" /> <p:commandButton value="Next" process="@this" update="@form" style="margin-left:15px;" /> <p:commandButton value="Last" process="@this" update="@form" style="margin-left:15px;" /> </p:outputPanel> <p:tabView style="margin-top:25px"> <p:tab title="Job History"> <p:dataTable var="history"> <p:column headerText="StartDate"> <h:outputText value="#{history.startDate}"> <f:convertDateTime pattern="MM/dd/yyyy" /> </h:outputText> </p:column> <p:column headerText="EndDate"> <h:outputText value="#{history.endDate}"> <f:convertDateTime pattern="MM/dd/yyyy" /> </h:outputText> </p:column> <p:column headerText="JobId"> <h:outputText value="#{history.jobId}" /> </p:column> <p:column headerText="DepartmentId"> <h:outputText value="#{history.departmentIdId}" /> </p:column> </p:dataTable> </p:tab> </p:tabView> </p:panel> </h:form> </h:body> </f:view> </html> Right now, NetBeans IDE only has code completion to create the above. So there's not much help for creating such a UI right now. I don't believe that a visual designer is mandatory to create the above. A few code generators and file templates could do the job too. And I'm looking forward to seeing those kinds of tools for PrimeFaces, as well as other JSF component libraries, appearing in NetBeans IDE in upcoming releases. A related option would be for the NetBeans generated CRUD app to include the option of having a master/detail view, as well as the option of having a search feature, i.e., the application generators would provide the option of having additional features typical in Java enterprise apps. In the absence of such tools, there still is room, I believe, for NetBeans/Java EE and JDeveloper/ADF sharing a stage at a conference. The above file would have been prepared up front and the presenter would state that fact. The UI layer is only one aspect of a Java EE 6 application, so that the presenter would have ample other features to show (i.e., the entity class generation, the tools for working with servlets, with session beans, etc) prior to getting to the point where the statement would be made: "On the UI layer, I have prepared this Facelets file, which I will now show you can be connected to the lower layers of the application as follows." At that point, the session beans could be hooked into the Facelets file, the file would be saved, the browser refreshed, and then the whole application would work exactly as the ADF application does. So, Jernej, let's share a stage soon!

    Read the article

  • Creating packages in code - Workflow

    This is just a quick one prompted by a question on the SSIS Forum, how to programmatically add a precedence constraint (aka workflow) between two tasks. To keep the code simple I’ve actually used two Sequence containers which are often used as anchor points for a constraint. Very often this is when you have task that you wish to conditionally execute based on an expression. If it the first or only task in the package you need somewhere to anchor the constraint too, so you can then set the expression on it and control the flow of execution. Anyway, back to my code sample, here’s a quick screenshot of the finished article: Now for the code, which is actually pretty simple and hopefully the comments should explain exactly what is going on. Package package = new Package(); package.Name = "SequenceWorkflow"; // Add the two sequence containers to provide anchor points for the constraint // If you use tasks, it follows exactly the same pattern, they all derive from Executable Sequence sequence1 = package.Executables.Add("STOCK:Sequence") as Sequence; sequence1.Name = "SEQ Start"; Sequence sequence2 = package.Executables.Add("STOCK:Sequence") as Sequence; sequence2.Name = "SEQ End"; // Add the precedence constraint, here we use the package's constraint collection // as it hosts the two objects we want to constrain (link) // The default constraint is a basic On Success constraint just like in the designer PrecedenceConstraint constraint = package.PrecedenceConstraints.Add(sequence1, sequence2); // Change the settings to use a (dummy) expression only constraint.EvalOp = DTSPrecedenceEvalOp.Expression; constraint.Expression = "1 == 1";   The complete code file is available to download below. SequenceWorkflow.cs

    Read the article

  • Aggregating Excel cell contents that match a label [migrated]

    - by Josh
    I'm sure this isn't a terribly difficult thing, but it's not the type of question that easily lends itself to internet searches. I've been assigned a project for work involving a complex spreadsheet. I've done the usual =SUM and other basic Excel formulas, and I've got enough coding background that I'm able to at least fudge my way through VBA, but I'm not certain how to proceed with one part of the task. Simple version: On Sheet 1 I have a list of people (one on each row, person's name in column A), on sheet 2 I have a list of groups (one on each row, group name in column A). Each name in Sheet 1 has its own row, and I have a "Data Validation" dropdown menu where you choose the group each person belongs to. That dropdown is sourced from Sheet 2, where each group has a row. So essentially the data validation source for Sheet 1's "Group" column is just "=Sheet2!$a1:a100" or whatever. The problem is this: I want each group row in Sheet 2 to have a formula which results in a list of all the users which have been assigned to that group on Sheet 1. What I mean is something the equivalent of "select * from PeopleTab where GROUP = ThisGroup". The resulting cell would just stick the names together like "Bob Smith, Joe Jones, Sally Sanderson" I've been Googling for hours but I can't think of a way to phrase my search query to get the results I want. Here's an example of desired result (Dash-delimited. Can't find a way to make it look nice, table tags don't seem to work here): (Sheet 1) Bob Smith - Group 1 (selected from dropdown) Joe Jones - Group 2 (selected from dropdown) Sally Sanderson - Group 1 (selected from dropdown) (Sheet 2) Group 1 - Bob Smith, Sally Sanderson (result of formula) Group 2 - Joe Jones (result of formula) What formula (or even what function) do I use on that second column of sheet 2 to make a flat list out of the members of that group?

    Read the article

  • Checking All Checkboxes in a GridView Using jQuery

    In May 2006 I wrote two articles that showed how to add a column of checkboxes to a GridView and offer the ability for users to check (or uncheck) all checkboxes in the column with a single click of the mouse. The first article, Checking All CheckBoxes in a GridView, showed how to add "Check All" and "Uncheck All" buttons to the page above the GridView that, when clicked, checked or unchecked all of the checkboxes. The second article, Checking All CheckBoxes in a GridView Using Client-Side Script and a Check All CheckBox, detailed how to add a checkbox to the checkbox column in the grid's header row that would check or uncheck all checkboxes in the column. Both articles showed how to implement such functionality on the client-side, thereby removing the need for a postback. The JavaScript presented in these two previous articles still works, but the techniques used are a bit antiquated and hamfisted given the advances made in JavaScript programming over the past few years. For instance, the script presented in the previous articles uses server-side code in the GridView's DataBound event handler to assign a client-side onclick event handler to each checkbox. While this works, it violates the tenets of unobtrusive JavaScript, which is a design guideline for JavaScript programming that encourages a clean separation of functionality from presentation. (Ideally, event handlers for HTML elements are defined in script.) Also, the quantity of JavaScript used in the two previous articles is quite hefty compared to the amount of code that would be needed using modern JavaScript libraries like jQuery. This article presents updated JavaScript for checking (and unchecking) all checkboxes within a GridView. The two examples from the previous articles - checking/unchecking all checkboxes using a button and checking/unchecking all checkboxes using a checkbox in the header row - are reimplemented here using jQuery and unobtrusive JavaScript techniques. Read on to learn more! Read More >

    Read the article

  • Quick Script for Adding Skype Groups

    - by Robert May
    So, I needed to add about 30 people to several different Skype groups today, and I didn’t want to repeat the /add [skypename] thing over and over and over.  Building the list was a pain . . . I couldn’t find a good way to extract all of the users in an existing group.  There’s probably an api or something, but I just did that part by hand. Adding them to the groups was pretty easy with Windows Scripting Host.  Basically, I just ran this: <package>    <job id="vbs">       <script language="VBScript">          set WshShell = WScript.CreateObject("WScript.Shell")          WshShell.AppActivate 4484          WScript.Sleep 100          WshShell.SendKeys "/add user1~"          WScript.Sleep 100 …          WshShell.SendKeys "/add usern~"          WScript.Sleep 100       </script>    </job> </package> Add as many users as you need by copying the sendkeys and sleep lines.  Then, save the script to a .wsf file.  The AppActivate line needs to be changed to have the process id of skype instead of the number there.  To get that, open up Task Manager, click on Processes, then find skype.exe and find it’s PID. Before you double click on the file in windows explorer, you’ll need to have created the groups in skype.  For each group, open the group, and click in the chat window of the group.  Then double click on the WSF file.  If you don’t click in the chat window, you will likely get the add user dialog box instead of just adding the users. Technorati Tags: Skype,Script

    Read the article

  • SQL SERVER – Excel Losing Decimal Values When Value Pasted from SSMS ResultSet

    - by pinaldave
    No! It is not a SQL Server Issue or SSMS issue. It is how things work. There is a simple trick to resolve this issue. It is very common when users are coping the resultset to Excel, the floating point or decimals are missed. The solution is very much simple and it requires a small adjustment in the Excel. By default Excel is very smart and when it detects the value which is getting pasted is numeric it changes the column format to accommodate that. Now as Zero which are training any digit after decimal points have no value, Excel automatically hides it. To prevent this to happen user has to convert columns to text format so it can preserve the formatting. Here is how you can do it. Select the corner between A and 1 and Right Click on it. It will select complete spreadsheet. If you want to change the format of any column you can select an individual column the same way. In the menu Click on Format Cells… It will bring up the following menu. Here by default the selected column will be General, change that to Text. It will change the format of all the cells to Text. Now once again paste the values from SSMS to the Excel. This time it will preserve the decimal values from SSMS. Solved! Any other trick you do you know to preserve the decimal values? Leave a comment please. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Utility, T SQL, Technology Tagged: Excel

    Read the article

  • Big level objects collision system for 2d game

    - by Aristarhys
    I read many variants today and get some knowledge in general, so here is a steps of mine thoughts in pictures (horrible paint.net ones). We need to develop grid system, so we check only thing near, perform simple check to cut out deep check, and at - last deep check like per-pixel collision check. Step 1 - Let p1, p2 are some sprites lets first just check with circle collision - because large distance between p1, p2 this fails and of course so we don't need test more deeply. But if we have not 2, but 20 objects, why we need to even circle test something so far outside of our view. Step 2 - Add basic column system, now we don't bother with p2 if it's in a column far from p1 column, so we even don't do circle test. But p3 is in the same col, so let do circle test, which of course will fail. Step 3 - Lets improve column system to the grid system with grid cell size just like p1, p2, p3 collision boxes, so we cut out things much top or below p1. And this is all great until comes BIG OBJs which is some kind of platforms. They are much bigger then grid cell. Circle test for will be successful, but deep check for whole big obj will fail And that the part I can't get. How do I store the grid position of big object? Like 4 grid coords for big object vertexes? And if one of them close to p1 do circle check for centre of big object then a deep one if succeed? Am I do it wrong? My possible solution:

    Read the article

  • Layout Columns - Equal Height

    - by Kyle
    I remember first starting out using tables for layouts and learned that I should not be doing that. I am working on a new site and can not seem to do equal height columns without using tables. Here is an example of the attempt with div tags. <div class="row"> <div class="column">column1</div> <div class="column">column2</div> <div class="column">column3</div> <div style="clear:both"></div> </div> Now what I tried with that was doing making columns float left and setting their widths to 33% which works fine, I use the clear:both div so that the row would be the size of the biggest column, but the columns will be different sizes based on how much content they have. I have found many fixes which mostly involve css hacks and just making it look like its right but that's not what I want. I thought of just doing it in javascript but then it would look different for those who choose to disable their javascript. The only true way of doing it that I can think of is using tables since the cells all have equal heights in the same row. But I know its bad to use tables. After searching forever I than came across this: http://intangiblestyle.com/lab/equal-height-columns-with-css/ What it seems to do is exactly the same as tables since its just setting its display exactly like tables. Would using that be just as bad as using tables? I honestly can't find anything else that I could do. edit @Su' I have looked into "faux columns" and do not think that is what I want. I think I would be able to implement better designs for my site using the display:table method. I posted this question because I just wasn't sure if I should since I have always heard its bad using tables in website layouts.

    Read the article

  • Which programming language should I choose I want to build this website ...? [closed]

    - by Goma
    Assuming that I will start with just phot sharing website. Every user can add comments to any photo. After that the site will contain news (general news), the admin can add any news and the moderators as well while the users can also add comments on this news. The website will aslo provide photos uploader, so every user will have up to 20 MB ti upload any photos they want. Other users can see these photos or can not depending on the option that the main user chose(if he wants to publish his photos or not). The site should have a small type of forum which provide the ability for admin to ad categories and for user to add topics and replies for each topic in these categoris. These are the things that I can think of now, but the website will add other features as well and services later on. Can you tell me now which programming language can help me to do all that? I need a programming language that provdies the follwing: 1- speed load for pages of the site. 2- easy to add more functions quickly and easy to edit code for any reason. 3- Secure 4- fast in displaying infromation from database.

    Read the article

  • How to Create tree type CVL in Content server(UCM)

    - by rajeev.y.ranjan-oracle
    Steps to create tree choice list:1)Create a table "tblStates" with column "stateID" and "stateName". Click on "ADD Recommended".2) Create another table "tblCities with columns "cityID", "stateID" and "cityName".3)Then create two views on these tables namely "tblstateview" and "tblcityview".3)In "StateView" added two rows with values as JH and MH in stateID column.Jharkhand and Maharastra in stateName.4)Similarly in tblcityview added two rows with values as:BO and RA in cityID column.JH and MH in stateID columnBokaro and Mumbai in cityname column.5)Created relationship with Parentinfo "tblStates" and stateID and  childinfo with tblCities and stateID.6)Created metadata by name "Newtest"Enable option list,go to the configure ,Select use tree,Click on go edit definition 7)Tree Definition at level 1: a)Choose" tblstateView"b)Choose relation "newstatecity"At Level2:a)Choose cityView.Log out of the NativeUI and ContentUI and test the tree created by name "Newtest".

    Read the article

  • Can someone explain the (reasons for the) implications of colum vs row major in multiplication/concatenation?

    - by sebf
    I am trying to learn how to construct view and projection matrices, and keep reaching difficulties in my implementation owing to my confusion about the two standards for matrices. I know how to multiply a matrix, and I can see that transposing before multiplication would completely change the result, hence the need to multiply in a different order. What I don't understand though is whats meant by only 'notational convention' - from the articles here and here the authors appear to assert that it makes no difference to how the matrix is stored, or transferred to the GPU, but on the second page that matrix is clearly not equivalent to how it would be laid out in memory for row-major; and if I look at a populated matrix in my program I see the translation components occupying the 4th, 8th and 12th elements. Given that: "post-multiplying with column-major matrices produces the same result as pre-multiplying with row-major matrices. " Why in the following snippet of code: Matrix4 r = t3 * t2 * t1; Matrix4 r2 = t1.Transpose() * t2.Transpose() * t3.Transpose(); Does r != r2 and why does pos3 != pos for: Vector4 pos = wvpM * new Vector4(0f, 15f, 15f, 1); Vector4 pos3 = wvpM.Transpose() * new Vector4(0f, 15f, 15f, 1); Does the multiplication process change depending on whether the matrices are row or column major, or is it just the order (for an equivalent effect?) One thing that isn't helping this become any clearer, is that when provided to DirectX, my column major WVP matrix is used successfully to transform vertices with the HLSL call: mul(vector,matrix) which should result in the vector being treated as row-major, so how can the column major matrix provided by my math library work?

    Read the article

  • What is the best way to slide a panel in WPF?

    - by Kris Erickson
    I have a fairly simple UserControl that I have made (pardon my Xaml I am just learning WPF) and I want to slide the off the screen. To do so I am animating a translate transform (I also tried making the Panel the child of a canvas and animating the X position with the same results), but the panel moves very jerkily, even on a fairly fast new computer. What is the best way to slide in and out (preferably with KeySplines so that it moves with inertia) without getting the jerkyness. I only have 8 buttons on the panel, so I didn't think it would be too much of a problem. Here is the Xaml I am using, it runs fine in Kaxaml, but it is very jerky and slow (as well as being jerkly and slow when run compiled in a WPF app). <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Width="1002" Height="578"> <UserControl.Resources> <Style TargetType="Button"> <Setter Property="Control.Padding" Value="4"/> <Setter Property="Control.Margin" Value="10"/> <Setter Property="Control.Template"> <Setter.Value> <ControlTemplate TargetType="Button"> <Grid Name="backgroundGrid" Width="210" Height="210" Background="#00FFFFFF"> <Grid.BitmapEffect> <BitmapEffectGroup> <DropShadowBitmapEffect x:Name="buttonDropShadow" ShadowDepth="2"/> <OuterGlowBitmapEffect x:Name="buttonGlow" GlowColor="#A0FEDF00" GlowSize="0"/> </BitmapEffectGroup> </Grid.BitmapEffect> <Border x:Name="background" Margin="1,1,1,1" CornerRadius="15"> <Border.Background> <LinearGradientBrush StartPoint="0,0" EndPoint="0,1"> <LinearGradientBrush.GradientStops> <GradientStop Offset="0" Color="#FF0062B6"/> <GradientStop Offset="1" Color="#FF0089FE"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Border.Background> </Border> <Border Margin="1,1,1,0" BorderBrush="#FF000000" BorderThickness="1.5" CornerRadius="15"/> <ContentPresenter HorizontalAlignment="Center" Margin="{TemplateBinding Control.Padding}" VerticalAlignment="Center" Content="{TemplateBinding ContentControl.Content}" ContentTemplate="{TemplateBinding ContentControl.ContentTemplate}"/> </Grid> </ControlTemplate> </Setter.Value> </Setter> </Style> </UserControl.Resources> <Canvas> <Grid x:Name="Panel1" Height="578" Canvas.Left="0" Canvas.Top="0"> <Grid.RenderTransform> <TransformGroup> <TranslateTransform x:Name="panelTranslate" X="0" Y="0"/> </TransformGroup> </Grid.RenderTransform> <Grid.RowDefinitions> <RowDefinition Height="287"/> <RowDefinition Height="287"/> </Grid.RowDefinitions> <Grid.ColumnDefinitions> <ColumnDefinition x:Name="Panel1Col1"/> <ColumnDefinition x:Name="Panel1Col2"/> <ColumnDefinition x:Name="Panel1Col3"/> <ColumnDefinition x:Name="Panel1Col4"/> <!-- Set width to 0 to hide a column--> </Grid.ColumnDefinitions> <Button x:Name="Panel1Product1" Grid.Column="0" Grid.Row="0" HorizontalAlignment="Center" VerticalAlignment="Center"> <Button.Triggers> <EventTrigger RoutedEvent="Button.Click" SourceName="Panel1Product1"> <EventTrigger.Actions> <BeginStoryboard> <Storyboard> <DoubleAnimation BeginTime="00:00:00.6" Duration="0:0:3" From="0" Storyboard.TargetName="panelTranslate" Storyboard.TargetProperty="X" To="-1000"/> </Storyboard> </BeginStoryboard> </EventTrigger.Actions> </EventTrigger> </Button.Triggers> </Button> <Button x:Name="Panel1Product2" Grid.Column="0" Grid.Row="1" HorizontalAlignment="Center" VerticalAlignment="Center"/> <Button x:Name="Panel1Product3" Grid.Column="1" Grid.Row="0" HorizontalAlignment="Center" VerticalAlignment="Center"/> <Button x:Name="Panel1Product4" Grid.Column="1" Grid.Row="1" HorizontalAlignment="Center" VerticalAlignment="Center"/> <Button x:Name="Panel1Product5" Grid.Column="2" Grid.Row="0" HorizontalAlignment="Center" VerticalAlignment="Center"/> <Button x:Name="Panel1Product6" Grid.Column="2" Grid.Row="1" HorizontalAlignment="Center" VerticalAlignment="Center"/> <Button x:Name="Panel1Product7" Grid.Column="3" Grid.Row="0" HorizontalAlignment="Center" VerticalAlignment="Center"/> <Button x:Name="Panel1Product8" Grid.Column="3" Grid.Row="1" HorizontalAlignment="Center" VerticalAlignment="Center"/> </Grid> </Canvas> </UserControl>

    Read the article

  • CSS issue with elements spanning columns

    - by bigFoot
    Hi folks. Overview: I'm trying to create a relatively simple page layout detailed below and running into problems no matter how I try to approach it. Concept: - A standard-size-block layout. I'll quote unit widths: each content block is 240px square with 5px of margin around it. - A left column of fixed width of 1 unit (245px - 1 block + margin to left). No problems here. - A right column of variable width to fill the remaining space. No problems here either. - In the left column, a number of 1unit x 1unit blocks fixed down the column. Also some blank space at the top - again, not a problem. - In the right column: a number of free-floating blocks of standard unit-sizes which float around and fill the space given to them by the browser window. No problems here. - Lastly, a single element, 2 units wide, which sits half in the left column and half in the right column, and which the blocks in the right column still float around. Here be dragons. Please see here for a diagram: http://is.gd/bPUGI Problem: No matter how I approach this, it goes wrong. Below is code for my existing attempt at a solution. My current problem is that the 1x1 blocks on the right do not respect the 2x1 block, and as a result half of the 2x1 block is overwritten by a 1x1 block in the right-hand column. I'm aware that this is almost certainly an issue with position: absolute taking things out of flow. However, can't really find a way round that which doesn't just throw up another problem instead. Code: <html> <head> <title>wat</title> <style type="text/css"> body { background: #ccc; color: #000; padding: 0px 5px 5px 0px; margin: 0px; } #leftcol { width: 245px; margin-top: 490px; position: absolute; } #rightcol { left: 245px; position: absolute; } #bigblock { float: left; position: relative; margin-top: -240px; background: red; } .cblock { margin: 5px 0px 0px 5px; float: left; overflow: hidden; display: block; background: #fff; } .w1 { width: 240px; } .w2 { width: 485px; } .l1 { height: 240px; } </head> <body> <div class="cblock w2 l1" id="bigblock"> <h1>DRAGONS</h1> <p>Here be they</p> </div> <div id="leftcol"> <div class="cblock w1 l1"> <h1>Left 1</h1> <p>1x1 block</p> </div> </div> <div id="rightcol"> <div class="cblock w1 l1"> <h1>Right 1</h1> <p>1x1 block</p> </div> <div class="cblock w1 l1"> <h1>Right 2</h1> <p>1x1 block</p> </div> <div class="cblock w1 l1"> <h1>Right 3</h1> <p>1x1 block</p> </div> <div class="cblock w1 l1"> <h1>Right 4</h1> <p>1x1 block</p> </div> <div class="cblock w1 l1"> <h1>Right 5</h1> <p>1x1 block</p> </div> <div class="cblock w1 l1"> <h1>Right 6</h1> <p>1x1 block</p> </div> <div class="cblock w1 l1"> <h1>Right 7</h1> <p>1x1 block</p> </div> </div> </body> </html> Constraints: One final note that I need cross-browser compatibility, though I'm more than happy to enforce this with JS if necessary. That said, if a CSS-only solution exists, I'd be extremely happy. Thanks in advance!

    Read the article

  • ASP.NET SQLMembership Provider not logging in

    - by cfdev9
    My web app uses the sql memebership provider. Running it locally all is well, deploying to a dev server it works fine too in firefox, but in IE8 something unexpected is happening. Once a user logs in they're supposed to be redirected to home.aspx. What's happening when I attempt to login is it appears to accept the login credentials but then doesn't redirect to home.aspx. Instead it just redirects me to the login page as though I had attempted to access home.aspx directly without being logged in. The url parameter ReturnUrl is appended, Login.aspx?ReturnUrl=%2fhome.aspx Why is this only happening with IE8? My local PC is IIS7 but the server is IIS6. Using the same web.config Full code behind public partial class Login : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { Session.Abandon(); FormsAuthentication.SignOut(); } } protected void btnSubmit_Click(object sender, EventArgs e) { if (Membership.ValidateUser(tbUsername.Text, tbPassword.Text)) { if (Request.QueryString["ReturnUrl"] != null) { FormsAuthentication.RedirectFromLoginPage(tbUsername.Text, false); } else { FormsAuthentication.SetAuthCookie(tbUsername.Text, false); Response.Redirect("~/Home.aspx"); } } } } Full web.config <?xml version="1.0"?> <configuration> <configSections> <sectionGroup name="system.web.extensions" type="System.Web.Configuration.SystemWebExtensionsSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <sectionGroup name="scripting" type="System.Web.Configuration.ScriptingSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <section name="scriptResourceHandler" type="System.Web.Configuration.ScriptingScriptResourceHandlerSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication"/> <sectionGroup name="webServices" type="System.Web.Configuration.ScriptingWebServicesSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <section name="jsonSerialization" type="System.Web.Configuration.ScriptingJsonSerializationSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="Everywhere"/> <section name="profileService" type="System.Web.Configuration.ScriptingProfileServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication"/> <section name="authenticationService" type="System.Web.Configuration.ScriptingAuthenticationServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication"/> <section name="roleService" type="System.Web.Configuration.ScriptingRoleServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication"/> </sectionGroup> </sectionGroup> </sectionGroup> </configSections> <appSettings/> <connectionStrings> <add name="ASPNET_DB" connectionString="..."/> </connectionStrings> <system.web> <membership defaultProvider="SqlMembershipProvider"> <providers> <add name="SqlMembershipProvider" type="System.Web.Security.SqlMembershipProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" connectionStringName="ASPNET_DB" enablePasswordRetrieval="true" enablePasswordReset="true" requiresQuestionAndAnswer="false" applicationName="/" requiresUniqueEmail="false" passwordFormat="Clear" maxInvalidPasswordAttempts="5" passwordAttemptWindow="10" passwordStrengthRegularExpression="" minRequiredPasswordLength="1" minRequiredNonalphanumericCharacters="0"/> </providers> </membership> <roleManager enabled="true" defaultProvider="SqlRoleManager"> <providers> <add name="SqlRoleManager" type="System.Web.Security.SqlRoleProvider" connectionStringName="ASPNET_DB" applicationName="/"/> </providers> </roleManager> <authentication mode="Forms"> <forms name="CHOUSE.ASPXAUTH" loginUrl="login.aspx" protection="All" path="/"/> </authentication> <authorization> <allow roles="AccountManager"/> <allow roles="Client"/> <deny users="*"/> </authorization> <compilation debug="true"> <assemblies> <add assembly="System.Core, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> <add assembly="System.Data.DataSetExtensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> <add assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add assembly="System.Xml.Linq, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> </assemblies> </compilation> <pages> <controls> <add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add tagPrefix="asp" namespace="System.Web.UI.WebControls" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </controls> </pages> <httpHandlers> <remove verb="*" path="*.asmx"/> <add verb="*" path="*.asmx" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add verb="*" path="*_AppService.axd" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add verb="GET,HEAD" path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" validate="false"/> </httpHandlers> <httpModules> <add name="ScriptModule" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </httpModules> </system.web> <location path="Admin"> <system.web> <authorization> <allow roles="AccountManager"/> <deny users="*"/> </authorization> </system.web> </location> <system.codedom> <compilers> <compiler language="c#;cs;csharp" extension=".cs" warningLevel="4" type="Microsoft.CSharp.CSharpCodeProvider, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> <providerOption name="CompilerVersion" value="v3.5"/> <providerOption name="WarnAsError" value="false"/> </compiler> </compilers> </system.codedom> <system.webServer> <validation validateIntegratedModeConfiguration="false"/> <modules> <remove name="ScriptModule"/> <add name="ScriptModule" preCondition="managedHandler" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </modules> <handlers> <remove name="WebServiceHandlerFactory-Integrated"/> <remove name="ScriptHandlerFactory"/> <remove name="ScriptHandlerFactoryAppServices"/> <remove name="ScriptResource"/> <add name="ScriptHandlerFactory" verb="*" path="*.asmx" preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add name="ScriptHandlerFactoryAppServices" verb="*" path="*_AppService.axd" preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add name="ScriptResource" preCondition="integratedMode" verb="GET,HEAD" path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </handlers> </system.webServer> <runtime> <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1"> <dependentAssembly> <assemblyIdentity name="System.Web.Extensions" publicKeyToken="31bf3856ad364e35"/> <bindingRedirect oldVersion="1.0.0.0-1.1.0.0" newVersion="3.5.0.0"/> </dependentAssembly> <dependentAssembly> <assemblyIdentity name="System.Web.Extensions.Design" publicKeyToken="31bf3856ad364e35"/> <bindingRedirect oldVersion="1.0.0.0-1.1.0.0" newVersion="3.5.0.0"/> </dependentAssembly> </assemblyBinding> </runtime>

    Read the article

  • text-aling:left align:left in google android browser is making the text in column around %20 of the page how this can be fixed?

    - by user981220
    Hello I have a problem with text-align: left or align: left no matter what I put the text get's stuck on the left side of the page in a big column how this can be fixed ? example of the code: <div class="maintext02"><span><p>text</p> .maintext02 { font-family:Georgia, "Times New Roman", Times, serif; color:#545454; line-height:25px; font-size:12px; width:943px; padding-top:15px; padding-bottom:15px; text-align:left; }

    Read the article

  • Using JSON.NET for dynamic JSON parsing

    - by Rick Strahl
    With the release of ASP.NET Web API as part of .NET 4.5 and MVC 4.0, JSON.NET has effectively pushed out the .NET native serializers to become the default serializer for Web API. JSON.NET is vastly more flexible than the built in DataContractJsonSerializer or the older JavaScript serializer. The DataContractSerializer in particular has been very problematic in the past because it can't deal with untyped objects for serialization - like values of type object, or anonymous types which are quite common these days. The JavaScript Serializer that came before it actually does support non-typed objects for serialization but it can't do anything with untyped data coming in from JavaScript and it's overall model of extensibility was pretty limited (JavaScript Serializer is what MVC uses for JSON responses). JSON.NET provides a robust JSON serializer that has both high level and low level components, supports binary JSON, JSON contracts, Xml to JSON conversion, LINQ to JSON and many, many more features than either of the built in serializers. ASP.NET Web API now uses JSON.NET as its default serializer and is now pulled in as a NuGet dependency into Web API projects, which is great. Dynamic JSON Parsing One of the features that I think is getting ever more important is the ability to serialize and deserialize arbitrary JSON content dynamically - that is without mapping the JSON captured directly into a .NET type as DataContractSerializer or the JavaScript Serializers do. Sometimes it isn't possible to map types due to the differences in languages (think collections, dictionaries etc), and other times you simply don't have the structures in place or don't want to create them to actually import the data. If this topic sounds familiar - you're right! I wrote about dynamic JSON parsing a few months back before JSON.NET was added to Web API and when Web API and the System.Net HttpClient libraries included the System.Json classes like JsonObject and JsonArray. With the inclusion of JSON.NET in Web API these classes are now obsolete and didn't ship with Web API or the client libraries. I re-linked my original post to this one. In this post I'll discus JToken, JObject and JArray which are the dynamic JSON objects that make it very easy to create and retrieve JSON content on the fly without underlying types. Why Dynamic JSON? So, why Dynamic JSON parsing rather than strongly typed parsing? Since applications are interacting more and more with third party services it becomes ever more important to have easy access to those services with easy JSON parsing. Sometimes it just makes lot of sense to pull just a small amount of data out of large JSON document received from a service, because the third party service isn't directly related to your application's logic most of the time - and it makes little sense to map the entire service structure in your application. For example, recently I worked with the Google Maps Places API to return information about businesses close to me (or rather the app's) location. The Google API returns a ton of information that my application had no interest in - all I needed was few values out of the data. Dynamic JSON parsing makes it possible to map this data, without having to map the entire API to a C# data structure. Instead I could pull out the three or four values I needed from the API and directly store it on my business entities that needed to receive the data - no need to map the entire Maps API structure. Getting JSON.NET The easiest way to use JSON.NET is to grab it via NuGet and add it as a reference to your project. You can add it to your project with: PM> Install-Package Newtonsoft.Json From the Package Manager Console or by using Manage NuGet Packages in your project References. As mentioned if you're using ASP.NET Web API or MVC 4 JSON.NET will be automatically added to your project. Alternately you can also go to the CodePlex site and download the latest version including source code: http://json.codeplex.com/ Creating JSON on the fly with JObject and JArray Let's start with creating some JSON on the fly. It's super easy to create a dynamic object structure with any of the JToken derived JSON.NET objects. The most common JToken derived classes you are likely to use are JObject and JArray. JToken implements IDynamicMetaProvider and so uses the dynamic  keyword extensively to make it intuitive to create object structures and turn them into JSON via dynamic object syntax. Here's an example of creating a music album structure with child songs using JObject for the base object and songs and JArray for the actual collection of songs:[TestMethod] public void JObjectOutputTest() { // strong typed instance var jsonObject = new JObject(); // you can explicitly add values here using class interface jsonObject.Add("Entered", DateTime.Now); // or cast to dynamic to dynamically add/read properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; album.Artist = "AC/DC"; album.YearReleased = 1976; album.Songs = new JArray() as dynamic; dynamic song = new JObject(); song.SongName = "Dirty Deeds Done Dirt Cheap"; song.SongLength = "4:11"; album.Songs.Add(song); song = new JObject(); song.SongName = "Love at First Feel"; song.SongLength = "3:10"; album.Songs.Add(song); Console.WriteLine(album.ToString()); } This produces a complete JSON structure: { "Entered": "2012-08-18T13:26:37.7137482-10:00", "AlbumName": "Dirty Deeds Done Dirt Cheap", "Artist": "AC/DC", "YearReleased": 1976, "Songs": [ { "SongName": "Dirty Deeds Done Dirt Cheap", "SongLength": "4:11" }, { "SongName": "Love at First Feel", "SongLength": "3:10" } ] } Notice that JSON.NET does a nice job formatting the JSON, so it's easy to read and paste into blog posts :-). JSON.NET includes a bunch of configuration options that control how JSON is generated. Typically the defaults are just fine, but you can override with the JsonSettings object for most operations. The important thing about this code is that there's no explicit type used for holding the values to serialize to JSON. Rather the JSON.NET objects are the containers that receive the data as I build up my JSON structure dynamically, simply by adding properties. This means this code can be entirely driven at runtime without compile time restraints of structure for the JSON output. Here I use JObject to create a album 'object' and immediately cast it to dynamic. JObject() is kind of similar in behavior to ExpandoObject in that it allows you to add properties by simply assigning to them. Internally, JObject values are stored in pseudo collections of key value pairs that are exposed as properties through the IDynamicMetaObject interface exposed in JSON.NET's JToken base class. For objects the syntax is very clean - you add simple typed values as properties. For objects and arrays you have to explicitly create new JObject or JArray, cast them to dynamic and then add properties and items to them. Always remember though these values are dynamic - which means no Intellisense and no compiler type checking. It's up to you to ensure that the names and values you create are accessed consistently and without typos in your code. Note that you can also access the JObject instance directly (not as dynamic) and get access to the underlying JObject type. This means you can assign properties by string, which can be useful for fully data driven JSON generation from other structures. Below you can see both styles of access next to each other:// strong type instance var jsonObject = new JObject(); // you can explicitly add values here jsonObject.Add("Entered", DateTime.Now); // expando style instance you can just 'use' properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; JContainer (the base class for JObject and JArray) is a collection so you can also iterate over the properties at runtime easily:foreach (var item in jsonObject) { Console.WriteLine(item.Key + " " + item.Value.ToString()); } The functionality of the JSON objects are very similar to .NET's ExpandObject and if you used it before, you're already familiar with how the dynamic interfaces to the JSON objects works. Importing JSON with JObject.Parse() and JArray.Parse() The JValue structure supports importing JSON via the Parse() and Load() methods which can read JSON data from a string or various streams respectively. Essentially JValue includes the core JSON parsing to turn a JSON string into a collection of JsonValue objects that can be then referenced using familiar dynamic object syntax. Here's a simple example:public void JValueParsingTest() { var jsonString = @"{""Name"":""Rick"",""Company"":""West Wind"", ""Entered"":""2012-03-16T00:03:33.245-10:00""}"; dynamic json = JValue.Parse(jsonString); // values require casting string name = json.Name; string company = json.Company; DateTime entered = json.Entered; Assert.AreEqual(name, "Rick"); Assert.AreEqual(company, "West Wind"); } The JSON string represents an object with three properties which is parsed into a JObject class and cast to dynamic. Once cast to dynamic I can then go ahead and access the object using familiar object syntax. Note that the actual values - json.Name, json.Company, json.Entered - are actually of type JToken and I have to cast them to their appropriate types first before I can do type comparisons as in the Asserts at the end of the test method. This is required because of the way that dynamic types work which can't determine the type based on the method signature of the Assert.AreEqual(object,object) method. I have to either assign the dynamic value to a variable as I did above, or explicitly cast ( (string) json.Name) in the actual method call. The JSON structure can be much more complex than this simple example. Here's another example of an array of albums serialized to JSON and then parsed through with JsonValue():[TestMethod] public void JsonArrayParsingTest() { var jsonString = @"[ { ""Id"": ""b3ec4e5c"", ""AlbumName"": ""Dirty Deeds Done Dirt Cheap"", ""Artist"": ""AC/DC"", ""YearReleased"": 1976, ""Entered"": ""2012-03-16T00:13:12.2810521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/61kTaH-uZBL._AA115_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/gp/product/…ASIN=B00008BXJ4"", ""Songs"": [ { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Dirty Deeds Done Dirt Cheap"", ""SongLength"": ""4:11"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Love at First Feel"", ""SongLength"": ""3:10"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Big Balls"", ""SongLength"": ""2:38"" } ] }, { ""Id"": ""7b919432"", ""AlbumName"": ""End of the Silence"", ""Artist"": ""Henry Rollins Band"", ""YearReleased"": 1992, ""Entered"": ""2012-03-16T00:13:12.2800521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/51FO3rb1tuL._SL160_AA160_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/End-Silence-Rollins-Band/dp/B0000040OX/ref=sr_1_5?ie=UTF8&qid=1302232195&sr=8-5"", ""Songs"": [ { ""AlbumId"": ""7b919432"", ""SongName"": ""Low Self Opinion"", ""SongLength"": ""5:24"" }, { ""AlbumId"": ""7b919432"", ""SongName"": ""Grip"", ""SongLength"": ""4:51"" } ] } ]"; JArray jsonVal = JArray.Parse(jsonString) as JArray; dynamic albums = jsonVal; foreach (dynamic album in albums) { Console.WriteLine(album.AlbumName + " (" + album.YearReleased.ToString() + ")"); foreach (dynamic song in album.Songs) { Console.WriteLine("\t" + song.SongName); } } Console.WriteLine(albums[0].AlbumName); Console.WriteLine(albums[0].Songs[1].SongName); } JObject and JArray in ASP.NET Web API Of course these types also work in ASP.NET Web API controller methods. If you want you can accept parameters using these object or return them back to the server. The following contrived example receives dynamic JSON input, and then creates a new dynamic JSON object and returns it based on data from the first:[HttpPost] public JObject PostAlbumJObject(JObject jAlbum) { // dynamic input from inbound JSON dynamic album = jAlbum; // create a new JSON object to write out dynamic newAlbum = new JObject(); // Create properties on the new instance // with values from the first newAlbum.AlbumName = album.AlbumName + " New"; newAlbum.NewProperty = "something new"; newAlbum.Songs = new JArray(); foreach (dynamic song in album.Songs) { song.SongName = song.SongName + " New"; newAlbum.Songs.Add(song); } return newAlbum; } The raw POST request to the server looks something like this: POST http://localhost/aspnetwebapi/samples/PostAlbumJObject HTTP/1.1User-Agent: FiddlerContent-type: application/jsonHost: localhostContent-Length: 88 {AlbumName: "Dirty Deeds",Songs:[ { SongName: "Problem Child"},{ SongName: "Squealer"}]} and the output that comes back looks like this: {  "AlbumName": "Dirty Deeds New",  "NewProperty": "something new",  "Songs": [    {      "SongName": "Problem Child New"    },    {      "SongName": "Squealer New"    }  ]} The original values are echoed back with something extra appended to demonstrate that we're working with a new object. When you receive or return a JObject, JValue, JToken or JArray instance in a Web API method, Web API ignores normal content negotiation and assumes your content is going to be received and returned as JSON, so effectively the parameter and result type explicitly determines the input and output format which is nice. Dynamic to Strong Type Mapping You can also map JObject and JArray instances to a strongly typed object, so you can mix dynamic and static typing in the same piece of code. Using the 2 Album jsonString shown earlier, the code below takes an array of albums and picks out only a single album and casts that album to a static Album instance.[TestMethod] public void JsonParseToStrongTypeTest() { JArray albums = JArray.Parse(jsonString) as JArray; // pick out one album JObject jalbum = albums[0] as JObject; // Copy to a static Album instance Album album = jalbum.ToObject<Album>(); Assert.IsNotNull(album); Assert.AreEqual(album.AlbumName,jalbum.Value<string>("AlbumName")); Assert.IsTrue(album.Songs.Count > 0); } This is pretty damn useful for the scenario I mentioned earlier - you can read a large chunk of JSON and dynamically walk the property hierarchy down to the item you want to access, and then either access the specific item dynamically (as shown earlier) or map a part of the JSON to a strongly typed object. That's very powerful if you think about it - it leaves you in total control to decide what's dynamic and what's static. Strongly typed JSON Parsing With all this talk of dynamic let's not forget that JSON.NET of course also does strongly typed serialization which is drop dead easy. Here's a simple example on how to serialize and deserialize an object with JSON.NET:[TestMethod] public void StronglyTypedSerializationTest() { // Demonstrate deserialization from a raw string var album = new Album() { AlbumName = "Dirty Deeds Done Dirt Cheap", Artist = "AC/DC", Entered = DateTime.Now, YearReleased = 1976, Songs = new List<Song>() { new Song() { SongName = "Dirty Deeds Done Dirt Cheap", SongLength = "4:11" }, new Song() { SongName = "Love at First Feel", SongLength = "3:10" } } }; // serialize to string string json2 = JsonConvert.SerializeObject(album,Formatting.Indented); Console.WriteLine(json2); // make sure we can serialize back var album2 = JsonConvert.DeserializeObject<Album>(json2); Assert.IsNotNull(album2); Assert.IsTrue(album2.AlbumName == "Dirty Deeds Done Dirt Cheap"); Assert.IsTrue(album2.Songs.Count == 2); } JsonConvert is a high level static class that wraps lower level functionality, but you can also use the JsonSerializer class, which allows you to serialize/parse to and from streams. It's a little more work, but gives you a bit more control. The functionality available is easy to discover with Intellisense, and that's good because there's not a lot in the way of documentation that's actually useful. Summary JSON.NET is a pretty complete JSON implementation with lots of different choices for JSON parsing from dynamic parsing to static serialization, to complex querying of JSON objects using LINQ. It's good to see this open source library getting integrated into .NET, and pushing out the old and tired stock .NET parsers so that we finally have a bit more flexibility - and extensibility - in our JSON parsing. Good to go! Resources Sample Test Project http://json.codeplex.com/© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  Web Api  AJAX   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

< Previous Page | 277 278 279 280 281 282 283 284 285 286 287 288  | Next Page >