Search Results

Search found 7494 results on 300 pages for 'unused variables'.

Page 281/300 | < Previous Page | 277 278 279 280 281 282 283 284 285 286 287 288  | Next Page >

  • PHP-OOP extending two classes?

    - by user1292810
    I am very beginner to OOP and now I am trying to write some PHP class to connect with FTP server. class ftpConnect { private $server; private $user; private $password; private $connection_id; private $connection_correct = false; public function __construct($server, $user = "anonymous", $password = "[email protected]") { $this->server = $server; $this->user = $user; $this->password = $password; $this->connection_id = ftp_connect($this->server); $this->connection_correct = ftp_login($this->connection_id, $this->user, $this->password); if ( (!$this->connection_id) || (!$this->connection_correct) ){ echo "Error! Couldn't connect to $this->server"; var_dump($this->connection_id); var_dump($this->connection_correct); return false; } else { echo "Successfully connected to $this->server, user: $this->user"; $this->connection_correct = true; return true; } } } I reckon that body of the class is insignificant at the moment. Main issue is that I have some problems with understanding OOP idea. I wanted to add sending emails every time, when the code is run. I have downloaded PHPMailer Class and extended my class with it: class ftpConnect extends PHPMailer {...} I have added some variables and methods and everything works as expected to that point. I thought: why not to add storing everything in database. Everytime user runs above code, proper information should be stored in database. I could edit my ftpConnect class and add database connecting to the constructor, and some other methods to updating tables. But database connecting and all that stuff could be used by other classes in the future, so it definitely should be implemented in seperate class. But my "main" ftpConnect class already extends one class and could not extend not a single one more. I have no idea how can I resolve this problem. Maybe my ftpConnect class is to complex and I should somehow divide it into couple smaller classes? Any help is much appreciated.

    Read the article

  • Why the only hidden field that is being filled from GET action is not being passed in model?

    - by user1807954
    Sorry for the long title, I didn't know how to make it any shorter. My code: My model: public class CarFilter { public String carMake { get; set; } public String carModel { get; set; } public String carEdition { get; set; } . . . public String SortBy { get; set; } } public class CarSearch : CarFilter { public List<Car> Car { get; set; } } My controller: public ActionResult SearchResult(CarSearch search) { var cars = from d in db.Cars select d; if (Request.HttpMethod == "POST") { search.SortBy = "Price"; } search.Car = new List<Car>(); search.Car.AddRange(cars); var temp = new List<CarSearch>(); temp.Add(search); return View(temp); } My Index view (where user filters results): @model IEnumerable<Cars.Models.CarSearch> @using (Html.BeginForm("SearchResult", "Home", FormMethod.Post)){..forms and other stuff..} My SearchResult view (where user sees the results of filtration): @model IEnumerable<Cars.Models.CarSearch> @using (Html.BeginForm("SearchResult", "Home", FormMethod.Get)) { @Html.Hidden("carMake") @Html.Hidden("carModel") @Html.Hidden("carEdition") . . . @Html.Hidden("SortBy", temp.SortBy) <input name="SortBy" class="buttons" type="submit" value="Make"/> My goal What I'm trying to do is when user clicked on sort by Make it will have to GET back all the variables in hidden field back to the SearchResult action in order to sort the result (same filtered results). Result Is: <input id="SortBy" name="SortBy" type="hidden" value=""/>. The value is null and it's not being passed but all the other hidden fields such as carMake and etc have value. But when I use foreach it works perfect. Question Why is this like this? the SortBy is in the same model class as other fields in the view. The only difference is that SortBy is not being filled in the Index view with other fields, instead it's being filled in controller action. What is the explanation for this? Am I missing any C# definition or something such as dynamic objects or something?

    Read the article

  • Encapsulating a Windows.Forms.Button

    - by devoured elysium
    I want to define a special kind of button that only allows two possible labels: "ON" and "OFF". I decided to inherit from a Windows.Forms.Button to implement this but now I don't know I how should enforce this rule. Should I just override the Text property like this? public override string Text { set { throw new InvalidOperationException("Invalid operation on StartStopButton!"); } } The problem I see with this is that I am breaking the contract that all buttons should have. If any code tries something like foreach (Button button in myForm) { button.Text = "123"; } they will get an Exception if I have any of my special buttons on the form, which is something that isn't expectable. First, because people think of properties just as "public" variables, not methods, second, because they are used to using and setting whatever they want to buttons without having to worry with Exceptions. Should I instead just make the set property do nothing? That could also lead to awkward results: myButton.Text = "abc"; MessageBox.Show(abc); //not "abc"! The general idea from the OO world is to in this kind of cases use Composition instead of inheritance. public class MySpecialButton : <Some class from System.Windows.Forms that already knows how to draw itself on forms> private Button button = new Button(); //I'd just draw this button on this class //and I'd then only show the fields I consider //relevant to the outside world. ... } But to make the Button "live" on a form it must inherit from some special class. I've looked on Control, but it seems to already have the Text property defined. I guess the ideal situation would be to inherit from some kind of class that wouldn't even have the Text property defined, but that'd have position, size, etc properties available. Upper in the hierarchy, after Control, we have Component, but that looks like a really raw class. Any clue about how to achieve this? I know this was a long post :( Thanks

    Read the article

  • Is it possible to start (and stop) a thread inside a DLL?

    - by Jerry Dodge
    I'm pondering some ideas for building a DLL for some common stuff I do. One thing I'd like to check if it's possible is running a thread inside of a DLL. I'm sure I would be able to at least start it, and have it automatically free on terminate (and make it forcefully terminate its self) - that I can see wouldn't be much of a problem. But once I start it, I don't see how I can continue communicating with it (especially to stop it) mainly because each call to the DLL is unique (as far as my knowledge tells me) but I also know very little of the subject. I've seen how in some occasions, a DLL can be loaded at the beginning and released at the end when it's not needed anymore. I have 0 knowledge or experience with this method, other than just seeing something related to it, couldn't even tell you what or how, I don't remember. But is this even possible? I know about ActiveX/COM but that is not what I want - I'd like just a basic DLL that can be used across languages (specifically C#). Also, if it is possible, then how would I go about doing callbacks from the DLL to the app? For example, when I start the thread, I most probably will assign a function (which is inside the EXE) to be the handler for the events (which are triggered from the DLL). So I guess what I'm asking is - how to load a DLL for continuous work and release it when I'm done - as opposed to the simple method of calling individual functions in the DLL as needed. In the same case - I might assign variables or create objects inside the DLL. How can I assure that once I assign that variable (or create the object), how can I make sure that variable or object will still be available the next time I call the DLL? Obviously it would require a mechanism to Initialize/Finalize the DLL (I.E. create the objects inside the DLL when the DLL is loaded, and free the objects when the DLL is unloaded). EDIT: In the end, I will wrap the DLL inside of a component, so when an instance of the component is created, DLL will be loaded and a corresponding thread will be created inside the DLL, then when the component is free'd, the DLL is unloaded. Also need to make sure that if there are for example 2 of these components, that there will be 2 instances of the DLL loaded for each component. Is this in any way related to the use of an IInterface? Because I also have 0 experience with this. No need to answer it directly with sample source code - a link to a good tutorial would be great.

    Read the article

  • Declare Ajax-webservicecall OnSuccess method anonymous.

    - by user333113
    I write a lot of ajax javascript code and have a little design problem which I'm not totally satisfied with. A lot of times I end up with writing something like this: var typeOfPopup; function RetrievePopupContent(_typeOfPopup) { switch (_typeOfPopup) { case Popup1: WebService.RetrievePopup1Content(param1, param2, DisplayPopup, OnError); break; case Popup2: WebService.RetrievePopup2Content(param1, param2, DisplayPopup, OnError); break; } typeOfPopup = _typeOfPopup; } function DisplayPopup(result) { switch (typeOfPopup) { case Popup1: $get('Popup1').innerHTML = result; break; case Popup2: $get('Popup2').innerHTML = result; break; } Allright. This is a simplified example of what I mean. Often I end up with a lot worse code I believe. What I don't like is the global state variabel outside the functions. One solution I wasn't thinking about when writing this code is to send a context object. I believe you could write something like this: function RetrievePopupContent(typeOfPopup) { switch (typeOfPopup) { case Popup1: WebService.RetrievePopup1Content(param1, param2, DisplayPopup, OnError, typeOfPopup); break; case Popup2: WebService.RetrievePopup2Content(param1, param2, DisplayPopup, OnError, typeOfPopup); break; } } function DisplayPopup(result, typeOfPopup) { switch (typeOfPopup) { case Popup1: $get('Popup1').innerHTML = result; break; case Popup2: $get('Popup2').innerHTML = result; break; } Is this the recommended way? What I also want to do is to be able to write something like this: function RetrievePopupContent(typeOfPopup) { switch (typeOfPopup) { case Popup1: WebService.RetrievePopup1Content(param1, param2, new function(result) { $get('Popup1').innerHTML = result; }, OnError); break; case Popup2: WebService.RetrievePopup2Content(param1, param2, new function(result) { $get('Popup2').innerHTML = result; }, OnError); break; } } Is this possible at all? To declare the callback function anonymous? I am grateful for all opinions on the two options I mentioned myself and also new alternatives to get rid of my global variables I have used this way.

    Read the article

  • JS Split ( ) to check if substring exists in Array

    - by Javacadabra
    I have an array of products that are stored as Strings in this format productname:quantity. The issue I am running into is that if a user adds one product with a quantity of x it is inserted into the array as it should. However, if they then decide to add more of a particular product a new entry is made into the array instead of checking if the product already exists and adjusting the quantity to the new value. oldQty + newQty. For example this is my array: ["CBL202659/A:1","OUTER9:1","PALLET CARDS:1"] If I add another PALLET CARDS product it creates a new entry rather than updating the quantity of the existing item to 2. New array ["CBL202659/A:1","OUTER9:1","PALLET CARDS:1","PALLET CARDS:1"] I would like the array to end up like this: - updating the quantity ["CBL202659/A:1","OUTER9:1","PALLET CARDS:2"] Currently this is my code: I use the split() method to seperate the String where a colon occurs and store the product name and quantity in two seperate variables. $(".orderBtn").click(function(event){ //Show the order Box $(".order-alert").show(); event.preventDefault(); //Create the Array var productArray = []; //Get reference to the product clicked var stockCode = $(this).closest('li').find('.stock_code').html(); //Get reference to the quantity selected var quantity = $(this).closest('li').find('.order_amount').val(); var item = stockCode + ":" + quantity; var itemCheck = stockCode + ":"; if(quantity == 0){ console.log("Quantity must be greater than 0") }else{ //If no Cookie exists, create one and add the Array if ($.cookie('order_cookie') === undefined) { console.log("CREATE NEW COOKIE"); //Add items to Array productArray.push(item); //Add Array to Cookie $.cookie('order_cookie', JSON.stringify(productArray), { expires: 1, path: '/' }); //If the Cookie already exists do this } else { productArray = JSON.parse($.cookie('order_cookie'));//get ref to array if(productArray.indexOf(itemCheck)!= -1){//It exists so update qty console.log("EXISTS... updating item: " + itemCheck); //var index = productArray.indexOf(item); //var update = productArray[index].split(":"); //var name = update[0]; //var oldQty = update[1]; //console.log(name + ":" + oldQty); //productArray[index] = item; }else{//It does not exist, so add to array console.log("Does not exist... adding new item: " + item); //Append items onto the Array productArray.push(item); } //Update the Cookie $.cookie('order_cookie', JSON.stringify(productArray), { expires: 1, path: '/' }); console.log($.cookie('order_cookie')); } //Display the number of items in the Array in the Order Box $('#order_counter').html(productArray.length); } }); I suppose the real question I am asking here, is if it is possible to search the array for a subString - containing productname: ??

    Read the article

  • Terminating a long-executing thread and then starting a new one in response to user changing parameters via UI in an applet

    - by user1817170
    I have an applet which creates music using the JFugue API and plays it for the user. It allows the user to input a music phrase which the piece will be based on, or lets them choose to have a phrase generated randomly. I had been using the following method (successfully) to simply stop and start the music, which runs in a thread using the Player class from JFugue. I generate the music using my classes and user input from the applet GUI...then... private playerThread pthread; private Thread threadPlyr; private Player player; (from variables declaration) public void startMusic(Pattern p) // pattern is a JFugue object which holds the generated music { if (pthread == null) { pthread = new playerThread(); } else { pthread = null; pthread = new playerThread(); } if (threadPlyr == null) { threadPlyr = new Thread(pthread); } else { threadPlyr = null; threadPlyr = new Thread(pthread); } pthread.setPattern(p); threadPlyr.start(); } class playerThread implements Runnable // plays midi using jfugue Player { private Pattern pt; public void setPattern(Pattern p) { pt = p; } @Override public void run() { try { player.play(pt); // takes a couple mins or more to execute resetGUI(); } catch (Exception exception) { } } } And the following to stop music when user presses the stop/start button while Player.isPlaying() is true: public void stopMusic() { threadPlyr.interrupt(); threadPlyr = null; pthread = null; player.stop(); } Now I want to implement a feature which will allow the user to change parameters while the music is playing, create an updated music pattern, and then play THAT pattern. Basically, the idea is to make it simulate "real time" adjustments to the generated music for the user. Well, I have been beating my head against the wall on this for a couple of weeks. I've read all the standard java documentation, researched, read, and searched forums, and I have tried many different ideas, none of which have succeeded. The problem I've run into with all approaches I've tried is that when I start the new thread with the new, updated musical pattern, all the old threads ALSO start, and there is a cacophony of unintelligible noise instead of my desired output. From what I've gathered, the issue seems to be that all the methods I've come across require that the thread is able to periodically check the value of a "flag" variable and then shut itself down from within its "run" block in response to that variable. However, since my thread makes a call that takes several minutes minimum to execute (playing the music), and I need to terminate it WHILE it is executing this, there is really no safe way to do so. So, I'm wondering if there is something I'm missing when it comes to threads, or if perhaps I can accomplish my goal using a totally different approach. Any ideas or guidance is greatly appreciated! Thank you!

    Read the article

  • jQuery.post not working when using data type json

    - by swift
    I have been trying to utilize json in this jQuery.post because I need to return two values from my executed php. The code was working when I was not implementing json. I need to see if a promo code entered is valid for a particular broker. The two variables I need back are the instant message whether or not it's valid (this is displayed to the user) and I need to update a hidden field that will be used later while updating the database. The jQuery.post does not seem to be firing at all, but the code directly above it (the ajax-loader.gif) is working. I did re-write the whole thing at one point using jQuery.ajax, and had issues there too. Granted, I have probably been looking at this too long and have tried to re-write too many times, but any help is greatly appreciated!! Here's the jQuery.post <!-- Below Script is for Checking Promo Code Against Database--> <script type="text/javascript"> jQuery(document).ready(function() { jQuery("#promocode").keyup(function (e) { //removes spaces from PromoCode jQuery(this).val(jQuery(this).val().replace(/\s/g, '')); var promocode = jQuery(this).val(); var brokerdealerid = document.getElementById("BrokerDealerId").value; if(promocode.length > 0 ){ jQuery("#promo-result").html('<img src="../imgs/ajax-loader.gif" />'); jQuery.post( '../check_promocode.php', {promocode:promocode, brokerdealerid:brokerdealerid}, function(data) { $("#promo-result").html(data.promoresult); $("#promo-result-valid").html(data.promovalid); }, "json"); } }); }); </script> <!-- End Script is for Checking Promo Code Against Database--> Here's relevant code from check_promocode.php: //sanitize incoming parameters if (isset($_POST['brokerdealerid'])) $brokerdealerid = sanitizeMySQL($_POST['brokerdealerid']); $promocode = sanitizeMySQL($promocode); //check promocode in db $results = mysql_query("SELECT PromotionCodeIdentifier FROM PromotionCode WHERE PromotionCodeIdentifier='$promocode' AND BrokerDealerId='$brokerdealerid' AND PromotionCodStrtDte <= CURDATE() AND PromotionCodExpDte >= CURDATE()"); //return total count $PromoCode_exist = mysql_num_rows($results); //total records //if value is more than 0, promocode is valid if($PromoCode_exist) { echo json_encode(array("promoresult"=>"Promotion Code Valid", "promovalid"=>"Y")); exit(); }else{ echo json_encode(array("promoresult"=>"Invalid Promotion Code", "promovalid"=>"N")); exit(); }

    Read the article

  • Boost MultiIndex - objects or pointers (and how to use them?)?

    - by Sarah
    I'm programming an agent-based simulation and have decided that Boost's MultiIndex is probably the most efficient container for my agents. I'm not a professional programmer, and my background is very spotty. I've two questions: Is it better to have the container contain the agents (of class Host) themselves, or is it more efficient for the container to hold Host *? Hosts will sometimes be deleted from memory (that's my plan, anyway... need to read up on new and delete). Hosts' private variables will get updated occasionally, which I hope to do through the modify function in MultiIndex. There will be no other copies of Hosts in the simulation, i.e., they will not be used in any other containers. If I use pointers to Hosts, how do I set up the key extraction properly? My code below doesn't compile. // main.cpp - ATTEMPTED POINTER VERSION ... #include <boost/multi_index_container.hpp> #include <boost/multi_index/hashed_index.hpp> #include <boost/multi_index/member.hpp> #include <boost/multi_index/ordered_index.hpp> #include <boost/multi_index/mem_fun.hpp> #include <boost/tokenizer.hpp> typedef multi_index_container< Host *, indexed_by< // hash by Host::id hashed_unique< BOOST_MULTI_INDEX_MEM_FUN(Host,int,Host::getID) > // arg errors here > // end indexed_by > HostContainer; ... int main() { ... HostContainer testHosts; Host * newHostPtr; newHostPtr = new Host( t, DOB, idCtr, 0, currentEvents ); testHosts.insert( newHostPtr ); ... } I can't find a precisely analogous example in the Boost documentation, and my knowledge of C++ syntax is still very weak. The code does appear to work when I replace all the pointer references with the class objects themselves. As best I can read it, the Boost documentation (see summary table at bottom) implies I should be able to use member functions with pointer elements.

    Read the article

  • having an issue about the output in c programming ..

    - by user2985811
    i'm having a problem on running the output after putting the input.. the output doesn't show after i put the variables and i don't know how to set the code .. so if you guys could help me with this, that would be grateful.. #include <stdio.h> #include <conio.h> int read_temps (float temps[]); int hot_days (int numOfTemp, float temps[]); int printf_temps (int numOfTemp, float temps[], int numOfHotDays); int main (void) { int index = 0; float tempVal; float temps[31]; int numOfTemp, numOfHotDays; do { printf ("Enter the temperature:"); scanf ("%f", &tempVal); if (tempVal!=-500.0) { temps[index] = tempVal; index++; } } while (tempVal != -500.0); return ; { int i; int count = 0; for (i = 0; i < numOfTemp; i++) { if (temps[i] > 32.0) count++; } return count; } { float sum = 0.0; int i; printf ("\nInput Temperatures:"); printf ("\n-------------------------"); for (i = 0;i < numOfTemp; i++) { printf ("\nDay %d : %.2fF", i+1, temps[i]); sum = sum + temps[i]; } printf ("\nNumber of Hot Days : %d", numOfHotDays); printf ("\nAverage Temperature: %.2f", sum/numOfTemp); } { clrscr (); numOfTemp = read_temps (temps); numOfHotDays = hot_days (numOfTemp, temps); clrscr (); printf_temps (numOfTemp, temps, numOfHotDays); getch (); } }

    Read the article

  • WiX 3 Tutorial: Generating file/directory fragments with Heat.exe

    - by Mladen Prajdic
    In previous posts I’ve shown you our SuperForm test application solution structure and how the main wxs and wxi include file look like. In this post I’ll show you how to automate inclusion of files to install into your build process. For our SuperForm application we have a single exe to install. But in the real world we have 10s or 100s of different files from dll’s to resource files like pictures. It all depends on what kind of application you’re building. Writing a directory structure for so many files by hand is out of the question. What we need is an automated way to create this structure. Enter Heat.exe. Heat is a command line utility to harvest a file, directory, Visual Studio project, IIS website or performance counters. You might ask what harvesting means? Harvesting is converting a source (file, directory, …) into a component structure saved in a WiX fragment (a wxs) file. There are 2 options you can use: Create a static wxs fragment with Heat and include it in your project. The pro of this is that you can add or remove components by hand. The con is that you have to do the pro part by hand. Automation always beats manual labor. Run heat command line utility in a pre-build event of your WiX project. I prefer this way. By always recreating the whole fragment you don’t have to worry about missing any new files you add. The con of this is that you’ll include files that you otherwise might not want to. There is no perfect solution so pick one and deal with it. I prefer using the second way. A neat way of overcoming the con of the second option is to have a post-build event on your main application project (SuperForm.MainApp in our case) to copy the files needed to be installed in a special location and have the Heat.exe read them from there. I haven’t set this up for this tutorial and I’m simply including all files from the default SuperForm.MainApp \bin directory. Remember how we created a System Environment variable called SuperFormFilesDir? This is where we’ll use it for the first time. The command line text that you have to put into the pre-build event of your WiX project looks like this: "$(WIX)bin\heat.exe" dir "$(SuperFormFilesDir)" -cg SuperFormFiles -gg -scom -sreg -sfrag -srd -dr INSTALLLOCATION -var env.SuperFormFilesDir -out "$(ProjectDir)Fragments\FilesFragment.wxs" After you install WiX you’ll get the WIX environment variable. In the pre/post-build events environment variables are referenced like this: $(WIX). By using this you don’t have to think about the installation path of the WiX. Remember: for 32 bit applications Program files folder is named differently between 32 and 64 bit systems. $(ProjectDir) is obviously the path to your project and is a Visual Studio built in variable. You can view all Heat.exe options by running it without parameters but I’ll explain some that stick out the most. dir "$(SuperFormFilesDir)": tell Heat to harvest the whole directory at the set location. That is the location we’ve set in our System Environment variable. –cg SuperFormFiles: the name of the Component group that will be created. This name is included in out Feature tag as is seen in the previous post. -dr INSTALLLOCATION: the directory reference this fragment will fall under. You can see the top level directory structure in the previous post. -var env.SuperFormFilesDir: the name of the variable that will replace the SourceDir text that would otherwise appear in the fragment file. -out "$(ProjectDir)Fragments\FilesFragment.wxs": the full path and name under which the fragment file will be saved. If you have source control you have to include the FilesFragment.wxs into your project but remove its source control binding. The auto generated FilesFragment.wxs for our test app looks like this: <?xml version="1.0" encoding="utf-8"?><Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"> <Fragment> <ComponentGroup Id="SuperFormFiles"> <ComponentRef Id="cmp5BB40DB822CAA7C5295227894A07502E" /> <ComponentRef Id="cmpCFD331F5E0E471FC42A1334A1098E144" /> <ComponentRef Id="cmp4614DD03D8974B7C1FC39E7B82F19574" /> <ComponentRef Id="cmpDF166522884E2454382277128BD866EC" /> </ComponentGroup> </Fragment> <Fragment> <DirectoryRef Id="INSTALLLOCATION"> <Component Id="cmp5BB40DB822CAA7C5295227894A07502E" Guid="{117E3352-2F0C-4E19-AD96-03D354751B8D}"> <File Id="filDCA561ABF8964292B6BC0D0726E8EFAD" KeyPath="yes" Source="$(env.SuperFormFilesDir)\SuperForm.MainApp.exe" /> </Component> <Component Id="cmpCFD331F5E0E471FC42A1334A1098E144" Guid="{369A2347-97DD-45CA-A4D1-62BB706EA329}"> <File Id="filA9BE65B2AB60F3CE41105364EDE33D27" KeyPath="yes" Source="$(env.SuperFormFilesDir)\SuperForm.MainApp.pdb" /> </Component> <Component Id="cmp4614DD03D8974B7C1FC39E7B82F19574" Guid="{3443EBE2-168F-4380-BC41-26D71A0DB1C7}"> <File Id="fil5102E75B91F3DAFA6F70DA57F4C126ED" KeyPath="yes" Source="$(env.SuperFormFilesDir)\SuperForm.MainApp.vshost.exe" /> </Component> <Component Id="cmpDF166522884E2454382277128BD866EC" Guid="{0C0F3D18-56EB-41FE-B0BD-FD2C131572DB}"> <File Id="filF7CA5083B4997E1DEC435554423E675C" KeyPath="yes" Source="$(env.SuperFormFilesDir)\SuperForm.MainApp.vshost.exe.manifest" /> </Component> </DirectoryRef> </Fragment></Wix> The $(env.SuperFormFilesDir) will be replaced at build time with the directory where the files to be installed are located. There is nothing too complicated about this. In the end it turns out that this sort of automation is great! There are a few other ways that Heat.exe can compose the wxs file but this is the one I prefer. It just seems the clearest. Play with its options to see what can it do. It’s one awesome little tool.   WiX 3 tutorial by Mladen Prajdic navigation WiX 3 Tutorial: Solution/Project structure and Dev resources WiX 3 Tutorial: Understanding main wxs and wxi file WiX 3 Tutorial: Generating file/directory fragments with Heat.exe

    Read the article

  • This task is currently locked by a running workflow and cannot be edited. Limitation to both Nintex and SPD workflow

    - by ybbest
    Note, this post is from Nintex Forum here. These limitations apply to both SharePoint designer Workflow and Nintex Workflow as Nintex using the SharePoint workflow engine. The common cause that I experience is that ‘parent’ workflow is generating more than one task at once. This is common as you can have multiple approvers for certain approval process. You could also have workflow running when the task is created, one of the common scenario is you would like to set a custom column value in your approval task. For me this is huge limitation, as Nintex lover I really hope Nintex could solve this problem with Microsoft going forward. Introduction “This task is currently locked by a running workflow and cannot be edited” is a common message that is seen when an error occurs while the SharePoint workflow engine is processing a task item associated with a workflow. When a workflow processes a task normally, the following sequence of events is expected to occur: 1.       The process begins. 2.       The workflow places a ‘lock’ on the task so nothing else can change the values while the workflow is processing. 3.       The workflow processes the task. 4.       The lock is released when the task processing is finished. When the message is encountered, it usually indicates that an error occurred between step 2 and 4. As a result, the lock is never released. Therefore, the ‘task locked’ message is not an error itself, rather a symptom of another error – the ‘task locked’ message does not indicate what went wrong. In most cases, once this message is encountered, the workflow cannot be made to continue and must be terminated and started again. The following is a guide that can help troubleshoot the cause of these messages.  Some initial observations to narrow down the potential causes are: Is the error consistent or intermittent? When the error is consistent, it will happen every time the workflow is run. When it is intermittent, it may happen regularly, but not every time. Does the error occur the first time the user tries to respond to a task, or do they respond and notice the workflow does not continue, and when they respond again the error occurs? If the message is present when the user first responds to the task, the issue would have occurred when the task was created. Otherwise, it would have occurred when the user attempted to respond to the task. Causes Modifying the task list A cause of this error appearing consistently the first time a user tries to respond to a task is a modification to the default task list schema. For example, changing the ‘Assigned to’ field in a task list to be a multiple selection will cause the behaviour. Deleting the workflow task then restoring it from the Recycle bin If you start a workflow, delete the workflow task then restore it from the Recycle Bin in SharePoint, the workflow will fail with the ‘task locked’ error.  This is confirmed behaviour whether using a SharePoint Designer or a Nintex workflow.  You will need to terminate the workflow and start it again. Parallel simultaneous responses A cause of this error appearing inconsistently is multiple users responding to tasks in parallel at the same time. In this scenario, one task will complete correctly and the other will not process. When the user tries again, the ‘task locked’ message will display. Nintex included a workaround for this issue in build 11000. In build 11000 and later, one of the users will receive a message on the task form when they attempt to respond, stating that they need to try again in a few moments. Additional processing on the task A cause of this error appearing consistently and inconsistently is having an additional system running on the items in the task list. Some examples include: a workflow running on the task list, an event receiver running on the task list or another automated process querying and updating workflow tasks. Note: This Microsoft help article (http://office.microsoft.com/en-us/sharepointdesigner/HA102376561033.aspx#5) explains creating a workflow that runs on the task list to update a field on the task. Our experience shows that this causes the ‘Task Locked’ issues when the ‘parent’ workflow is generating more than one task at once. Isolated system error If the error is a rare event, or a ‘one off’ event, then an isolated system error may have occurred. For example, if there is a database connectivity issue while the workflow is processing the task response, the task will lock. In this case, the user will respond to a task but the workflow will not continue. When they respond again, the ‘task locked’ message will display. In this case, there will be an error in the SharePoint ULS Logs at the time that the user originally responded. Temporary delay while workflow processes If the workflow is taking a long time to process after a user submits a task, they may notice and try to respond to the task again. They will see the task locked error, but after a number of attempts (or after waiting some time) the task response page eventually indicates the task has been responded to. In this case, nothing actually went wrong, and the error message gives an accurate indication of what is happening – the workflow temporarily locked the task while it was processing. This scenario may occur in a very large workflow, or after the SharePoint application pool has just started. Modifying the task via a web service with an invalid url If the Nintex Workflow web service is used to respond to or delegate a task, the site context part of the url must be a valid alternative access mapping url. For example, if you access the web service via the IP address of the SharePoint server, and the IP address is not a valid AAM, the task can become locked. The workflow has become stuck without any apparent errors This behaviour can occur as a result of a bug in the SharePoint 2010 workflow engine.  If you do not have the August 2010 Cumulative Update (or later) for SharePoint, and your workflow uses delays, “Flexi-task”, State machine”, “Task Reminder” actions or variables, you could be affected. Check the SharePoint 2010 Updates site here: http://technet.microsoft.com/en-us/sharepoint/ff800847.  The October CU is recommended http://support.microsoft.com/kb/2553031.   The fix is described as “Consider the following scenario. You add a Delay activity to a workflow. Then, you set the duration for the Delay activity. You deploy the workflow in SharePoint Foundation 2010. In this scenario, the workflow is not resumed after the duration of the Delay activity”. If you find this is occurring in your environment, install the October CU, terminate all the running workflows affected and run them afresh. Investigative steps The first step to isolate the issue is to create a new task list on the site and configure the workflow to use it.  Any customizations that were made to the original task list should not be made to the new task list. If the new task list eliminates the issue, then the cause can be attributed to the original task list or a change that was made to it. To change the task list that the workflow uses: In Workflow Designer select Settings -> Startup Options Then configure the task list as required If any of the scenarios above do not help, check the SharePoint logs for any messages with a category of ‘Workflow Infrastructure’. Conclusion The information in this article has been gathered from observations and investigations by Nintex. The sources of these issues are the underlying SharePoint workflow engine. This article will be updated if further causes are discovered. From <http://connect.nintex.com/forums/thread/6503.aspx>

    Read the article

  • NLog Exception Details Renderer

    - by jtimperley
    Originally posted on: http://geekswithblogs.net/jtimperley/archive/2013/07/28/nlog-exception-details-renderer.aspxI recently switch from Microsoft's Enterprise Library Logging block to NLog.  In my opinion, NLog offers a simpler and much cleaner configuration section with better use of placeholders, complemented by custom variables. Despite this, I found one deficiency in my migration; I had lost the ability to simply render all details of an exception into our logs and notification emails. This is easily remedied by implementing a custom layout renderer. Start by extending 'NLog.LayoutRenderers.LayoutRenderer' and overriding the 'Append' method. using System.Text; using NLog; using NLog.Config; using NLog.LayoutRenderers;   [ThreadAgnostic] [LayoutRenderer(Name)] public class ExceptionDetailsRenderer : LayoutRenderer { public const string Name = "exceptiondetails";   protected override void Append(StringBuilder builder, LogEventInfo logEvent) { // Todo: Append details to StringBuilder } }   Now that we have a base layout renderer, we simply need to add the formatting logic to add exception details as well as inner exception details. This is done using reflection with some simple filtering for the properties that are already being rendered. I have added an additional 'Register' method, allowing the definition to be registered in code, rather than in configuration files. This complements by 'LogWrapper' class which standardizes writing log entries throughout my applications. using System; using System.Collections.Generic; using System.Linq; using System.Reflection; using System.Text; using NLog; using NLog.Config; using NLog.LayoutRenderers;   [ThreadAgnostic] [LayoutRenderer(Name)] public sealed class ExceptionDetailsRenderer : LayoutRenderer { public const string Name = "exceptiondetails"; private const string _Spacer = "======================================"; private List<string> _FilteredProperties;   private List<string> FilteredProperties { get { if (_FilteredProperties == null) { _FilteredProperties = new List<string> { "StackTrace", "HResult", "InnerException", "Data" }; }   return _FilteredProperties; } }   public bool LogNulls { get; set; }   protected override void Append(StringBuilder builder, LogEventInfo logEvent) { Append(builder, logEvent.Exception, false); }   private void Append(StringBuilder builder, Exception exception, bool isInnerException) { if (exception == null) { return; }   builder.AppendLine();   var type = exception.GetType(); if (isInnerException) { builder.Append("Inner "); }   builder.AppendLine("Exception Details:") .AppendLine(_Spacer) .Append("Exception Type: ") .AppendLine(type.ToString());   var bindingFlags = BindingFlags.Instance | BindingFlags.Public; var properties = type.GetProperties(bindingFlags); foreach (var property in properties) { var propertyName = property.Name; var isFiltered = FilteredProperties.Any(filter => String.Equals(propertyName, filter, StringComparison.InvariantCultureIgnoreCase)); if (isFiltered) { continue; }   var propertyValue = property.GetValue(exception, bindingFlags, null, null, null); if (propertyValue == null && !LogNulls) { continue; }   var valueText = propertyValue != null ? propertyValue.ToString() : "NULL"; builder.Append(propertyName) .Append(": ") .AppendLine(valueText); }   AppendStackTrace(builder, exception.StackTrace, isInnerException); Append(builder, exception.InnerException, true); }   private void AppendStackTrace(StringBuilder builder, string stackTrace, bool isInnerException) { if (String.IsNullOrEmpty(stackTrace)) { return; }   builder.AppendLine();   if (isInnerException) { builder.Append("Inner "); }   builder.AppendLine("Exception StackTrace:") .AppendLine(_Spacer) .AppendLine(stackTrace); }   public static void Register() { Type definitionType; var layoutRenderers = ConfigurationItemFactory.Default.LayoutRenderers; if (layoutRenderers.TryGetDefinition(Name, out definitionType)) { return; }   layoutRenderers.RegisterDefinition(Name, typeof(ExceptionDetailsRenderer)); LogManager.ReconfigExistingLoggers(); } } For brevity I have removed the Trace, Debug, Warn, and Fatal methods. They are modelled after the Info methods. As mentioned above, note how the log wrapper automatically registers our custom layout renderer reducing the amount of application configuration required. using System; using NLog;   public static class LogWrapper { static LogWrapper() { ExceptionDetailsRenderer.Register(); }   #region Log Methods   public static void Info(object toLog) { Log(toLog, LogLevel.Info); }   public static void Info(string messageFormat, params object[] parameters) { Log(messageFormat, parameters, LogLevel.Info); }   public static void Error(object toLog) { Log(toLog, LogLevel.Error); }   public static void Error(string message, Exception exception) { Log(message, exception, LogLevel.Error); }   private static void Log(string messageFormat, object[] parameters, LogLevel logLevel) { string message = parameters.Length == 0 ? messageFormat : string.Format(messageFormat, parameters); Log(message, (Exception)null, logLevel); }   private static void Log(object toLog, LogLevel logLevel, LogType logType = LogType.General) { if (toLog == null) { throw new ArgumentNullException("toLog"); }   if (toLog is Exception) { var exception = toLog as Exception; Log(exception.Message, exception, logLevel, logType); } else { var message = toLog.ToString(); Log(message, null, logLevel, logType); } }   private static void Log(string message, Exception exception, LogLevel logLevel, LogType logType = LogType.General) { if (exception == null && String.IsNullOrEmpty(message)) { return; }   var logger = GetLogger(logType); // Note: Using the default constructor doesn't set the current date/time var logInfo = new LogEventInfo(logLevel, logger.Name, message); logInfo.Exception = exception; logger.Log(logInfo); }   private static Logger GetLogger(LogType logType) { var loggerName = logType.ToString(); return LogManager.GetLogger(loggerName); }   #endregion   #region LogType private enum LogType { General } #endregion } The following configuration is similar to what is provided for each of my applications. The 'application' variable is all that differentiates the various applications in all of my environments, the rest has been standardized. Depending on your needs to tweak this configuration while developing and debugging, this section could easily be pushed back into code similar to the registering of our custom layout renderer.   <?xml version="1.0"?>   <configuration> <configSections> <section name="nlog" type="NLog.Config.ConfigSectionHandler, NLog"/> </configSections> <nlog xmlns="http://www.nlog-project.org/schemas/NLog.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <variable name="application" value="Example"/> <targets> <target type="EventLog" name="EventLog" source="${application}" log="${application}" layout="${message}${onexception: ${newline}${exceptiondetails}}"/> <target type="Mail" name="Email" smtpServer="smtp.example.local" from="[email protected]" to="[email protected]" subject="(${machinename}) ${application}: ${level}" body="Machine: ${machinename}${newline}Timestamp: ${longdate}${newline}Level: ${level}${newline}Message: ${message}${onexception: ${newline}${exceptiondetails}}"/> </targets> <rules> <logger name="*" minlevel="Debug" writeTo="EventLog" /> <logger name="*" minlevel="Error" writeTo="Email" /> </rules> </nlog> </configuration>   Now go forward, create your custom exceptions without concern for including their custom properties in your exception logs and notifications.

    Read the article

  • Parallelism in .NET – Part 6, Declarative Data Parallelism

    - by Reed
    When working with a problem that can be decomposed by data, we have a collection, and some operation being performed upon the collection.  I’ve demonstrated how this can be parallelized using the Task Parallel Library and imperative programming using imperative data parallelism via the Parallel class.  While this provides a huge step forward in terms of power and capabilities, in many cases, special care must still be given for relative common scenarios. C# 3.0 and Visual Basic 9.0 introduced a new, declarative programming model to .NET via the LINQ Project.  When working with collections, we can now write software that describes what we want to occur without having to explicitly state how the program should accomplish the task.  By taking advantage of LINQ, many operations become much shorter, more elegant, and easier to understand and maintain.  Version 4.0 of the .NET framework extends this concept into the parallel computation space by introducing Parallel LINQ. Before we delve into PLINQ, let’s begin with a short discussion of LINQ.  LINQ, the extensions to the .NET Framework which implement language integrated query, set, and transform operations, is implemented in many flavors.  For our purposes, we are interested in LINQ to Objects.  When dealing with parallelizing a routine, we typically are dealing with in-memory data storage.  More data-access oriented LINQ variants, such as LINQ to SQL and LINQ to Entities in the Entity Framework fall outside of our concern, since the parallelism there is the concern of the data base engine processing the query itself. LINQ (LINQ to Objects in particular) works by implementing a series of extension methods, most of which work on IEnumerable<T>.  The language enhancements use these extension methods to create a very concise, readable alternative to using traditional foreach statement.  For example, let’s revisit our minimum aggregation routine we wrote in Part 4: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re doing a very simple computation, but writing this in an imperative style.  This can be loosely translated to English as: Create a very large number, and save it in min Loop through each item in the collection. For every item: Perform some computation, and save the result If the computation is less than min, set min to the computation Although this is fairly easy to follow, it’s quite a few lines of code, and it requires us to read through the code, step by step, line by line, in order to understand the intention of the developer. We can rework this same statement, using LINQ: double min = collection.Min(item => item.PerformComputation()); Here, we’re after the same information.  However, this is written using a declarative programming style.  When we see this code, we’d naturally translate this to English as: Save the Min value of collection, determined via calling item.PerformComputation() That’s it – instead of multiple logical steps, we have one single, declarative request.  This makes the developer’s intentions very clear, and very easy to follow.  The system is free to implement this using whatever method required. Parallel LINQ (PLINQ) extends LINQ to Objects to support parallel operations.  This is a perfect fit in many cases when you have a problem that can be decomposed by data.  To show this, let’s again refer to our minimum aggregation routine from Part 4, but this time, let’s review our final, parallelized version: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Here, we’re doing the same computation as above, but fully parallelized.  Describing this in English becomes quite a feat: Create a very large number, and save it in min Create a temporary object we can use for locking Call Parallel.ForEach, specifying three delegates For the first delegate: Initialize a local variable to hold the local state to a very large number For the second delegate: For each item in the collection, perform some computation, save the result If the result is less than our local state, save the result in local state For the final delegate: Take a lock on our temporary object to protect our min variable Save the min of our min and local state variables Although this solves our problem, and does it in a very efficient way, we’ve created a set of code that is quite a bit more difficult to understand and maintain. PLINQ provides us with a very nice alternative.  In order to use PLINQ, we need to learn one new extension method that works on IEnumerable<T> – ParallelEnumerable.AsParallel(). That’s all we need to learn in order to use PLINQ: one single method.  We can write our minimum aggregation in PLINQ very simply: double min = collection.AsParallel().Min(item => item.PerformComputation()); By simply adding “.AsParallel()” to our LINQ to Objects query, we converted this to using PLINQ and running this computation in parallel!  This can be loosely translated into English easily, as well: Process the collection in parallel Get the Minimum value, determined by calling PerformComputation on each item Here, our intention is very clear and easy to understand.  We just want to perform the same operation we did in serial, but run it “as parallel”.  PLINQ completely extends LINQ to Objects: the entire functionality of LINQ to Objects is available.  By simply adding a call to AsParallel(), we can specify that a collection should be processed in parallel.  This is simple, safe, and incredibly useful.

    Read the article

  • 17 new features in Visual Studio 2010

    - by vik20000in
    Visual studio 2010 has been released to RTM a few days back. This release of Visual studio 2010 comes with a big number of improvements on many fronts. In this post I will try and point out some of the major improvements in Visual Studio 2010. 1)      Visual studio IDE Improvement. Visual studio IDE has been rewritten in WPF. The look and feel of the studio has been improved for improved readability. Start page has been redesigned and template so that anyone can change the start page as they wish. 2)      Multiple Monitor - Support for Multiple Monitor was already there in Visual studio. But in this edition it has been improved as much that we can now place the document, design and code window outside the IDE in another monitor. 3)      ZOOM in Code Editor – Making the editors in WPF has made significant improvement for them. The best one that I like is the ZOOM feature. We can now zoom in the code editor with the help of the ctrl + Mouse scroll. The zoom feature does not work on the Design surface or windows with icon like solution view and toolbox. 4)      Box Selection - Another Important improvement in the Visual studio 2010 is the box selection. We can select a rectangular by holding down the Alt Key and selecting with mouse.  Now in the rectangular selection we can insert text, Paste same code in different line etc. This is helpful if you want to convert a number of variables from public to private etc… 5)      New Improved Search – One of the best productivity improvements in Visual studio 2010 is its new search as you type support. This has been done in the Navigate To window which can be brought up by pressing (Ctrl + ,). The navigate To windows also take help of the Camel casing and will be able to search with the help of camel casing when character is entered in upper case. For example we can search AOH for AddOrederHeader. 6)      Call Hierarchy – This feature is only available to the Visual C# and Visual C++ editor. The call hierarchy windows displays the calls made to and from (yes both to and from) a selected method property or a constructor. The call hierarchy also shows the implementation of interface and the overrides of virtual or abstract methods. This window is very helpful in understanding the code flow, and evaluating the effect of making changes. The best part is it is available at design time and not at runtime only like a debugger. 7)      Highlighting references – One of the very cool stuff in Visual Studio 2010 is the fact if you select a variable then all the use of that variable will be highlighted alongside. This should work for all the result of symbols returned by Find all reference. This also works for Name of class, objects variable, properties and methods. We can also use the Ctrl + Shift + Down Arrow or Up Arror to move through them. 8)      Generate from usage - The Generate from usage feature lets you use classes and members before you define them. You can generate a stub for any undefined class, constructor, method, property, field, or enum that you want to use but have not yet defined. You can generate new types and members without leaving your current location in code, This minimizes interruption to your workflow.9)      IntelliSense Suggestion Mode - IntelliSense now provides two alternatives for IntelliSense statement completion, completion mode and suggestion mode. Use suggestion mode for situations where classes and members are used before they are defined. In suggestion mode, when you type in the editor and then commit the entry, the text you typed is inserted into the code. When you commit an entry in completion mode, the editor shows the entry that is highlighted on the members list. When an IntelliSense window is open, you can press CTRL+ALT+SPACEBAR to toggle between completion mode and suggestion mode. 10)   Application Lifecycle Management – A client application for management of application lifecycle like version control, work item tracking, build automation, team portal etc is available for free (this is not available for express edition.). 11)   Start Page – The start page has been redesigned with WPF for new functionality and look. Tabbed areas are provided for content from different source including MSDN. Once you open some project the start page closes automatically. The list of recent project also lets you remove project from the list. And above all the start page is customizable enough to be changed as per individual requirement. 12)   Extension Manager – Visual Studio 2010 has provided good ways to be extended. We can also use MEF to extend most of the features of Visual Studio. The new extension manager now can go the visual studio gallery and install the extension without even opening any explorer. 13)   Code snippets – Visual studio 2010 for HTML, Jscript and Asp.net also. 14)   Improved Intelligence for JavaScript has been improved vastly (around 2-5 times). Intelligence now also shows the XML documentation comment on the go. 15)   Web Deployment – Web Deployment has been vastly improved. We can package and publish the web application in one click. Three major supported deployment scenarios are Web packages, one click deployment and Web configuration Transformation. 16)   SharePoint - Visual Studio 2010 also brings vastly improved development experience for SharePoint. We can create, edit, debug, package, deploy and activate SharePoint project from within Visual Studio. Deployment of Site is as easy as hitting F5. 17)   Azure – Visual Studio 2010 also comes with handy improvement for developing on windows Azure environment. Vikram

    Read the article

  • How can I get penetration depth from Minkowski Portal Refinement / Xenocollide?

    - by Raven Dreamer
    I recently got an implementation of Minkowski Portal Refinement (MPR) successfully detecting collision. Even better, my implementation returns a good estimate (local minimum) direction for the minimum penetration depth. So I took a stab at adjusting the algorithm to return the penetration depth in an arbitrary direction, and was modestly successful - my altered method works splendidly for face-edge collision resolution! What it doesn't currently do, is correctly provide the minimum penetration depth for edge-edge scenarios, such as the case on the right: What I perceive to be happening, is that my current method returns the minimum penetration depth to the nearest vertex - which works fine when the collision is actually occurring on the plane of that vertex, but not when the collision happens along an edge. Is there a way I can alter my method to return the penetration depth to the point of collision, rather than the nearest vertex? Here's the method that's supposed to return the minimum penetration distance along a specific direction: public static Vector3 CalcMinDistance(List<Vector3> shape1, List<Vector3> shape2, Vector3 dir) { //holding variables Vector3 n = Vector3.zero; Vector3 swap = Vector3.zero; // v0 = center of Minkowski sum v0 = Vector3.zero; // Avoid case where centers overlap -- any direction is fine in this case //if (v0 == Vector3.zero) return Vector3.zero; //always pass in a valid direction. // v1 = support in direction of origin n = -dir; //get the differnce of the minkowski sum Vector3 v11 = GetSupport(shape1, -n); Vector3 v12 = GetSupport(shape2, n); v1 = v12 - v11; //if the support point is not in the direction of the origin if (v1.Dot(n) <= 0) { //Debug.Log("Could find no points this direction"); return Vector3.zero; } // v2 - support perpendicular to v1,v0 n = v1.Cross(v0); if (n == Vector3.zero) { //v1 and v0 are parallel, which means //the direction leads directly to an endpoint n = v1 - v0; //shortest distance is just n //Debug.Log("2 point return"); return n; } //get the new support point Vector3 v21 = GetSupport(shape1, -n); Vector3 v22 = GetSupport(shape2, n); v2 = v22 - v21; if (v2.Dot(n) <= 0) { //can't reach the origin in this direction, ergo, no collision //Debug.Log("Could not reach edge?"); return Vector2.zero; } // Determine whether origin is on + or - side of plane (v1,v0,v2) //tests linesegments v0v1 and v0v2 n = (v1 - v0).Cross(v2 - v0); float dist = n.Dot(v0); // If the origin is on the - side of the plane, reverse the direction of the plane if (dist > 0) { //swap the winding order of v1 and v2 swap = v1; v1 = v2; v2 = swap; //swap the winding order of v11 and v12 swap = v12; v12 = v11; v11 = swap; //swap the winding order of v11 and v12 swap = v22; v22 = v21; v21 = swap; //and swap the plane normal n = -n; } /// // Phase One: Identify a portal while (true) { // Obtain the support point in a direction perpendicular to the existing plane // Note: This point is guaranteed to lie off the plane Vector3 v31 = GetSupport(shape1, -n); Vector3 v32 = GetSupport(shape2, n); v3 = v32 - v31; if (v3.Dot(n) <= 0) { //can't enclose the origin within our tetrahedron //Debug.Log("Could not reach edge after portal?"); return Vector3.zero; } // If origin is outside (v1,v0,v3), then eliminate v2 and loop if (v1.Cross(v3).Dot(v0) < 0) { //failed to enclose the origin, adjust points; v2 = v3; v21 = v31; v22 = v32; n = (v1 - v0).Cross(v3 - v0); continue; } // If origin is outside (v3,v0,v2), then eliminate v1 and loop if (v3.Cross(v2).Dot(v0) < 0) { //failed to enclose the origin, adjust points; v1 = v3; v11 = v31; v12 = v32; n = (v3 - v0).Cross(v2 - v0); continue; } bool hit = false; /// // Phase Two: Refine the portal int phase2 = 0; // We are now inside of a wedge... while (phase2 < 20) { phase2++; // Compute normal of the wedge face n = (v2 - v1).Cross(v3 - v1); n.Normalize(); // Compute distance from origin to wedge face float d = n.Dot(v1); // If the origin is inside the wedge, we have a hit if (d > 0 ) { //Debug.Log("Do plane test here"); float T = n.Dot(v2) / n.Dot(dir); Vector3 pointInPlane = (dir * T); return pointInPlane; } // Find the support point in the direction of the wedge face Vector3 v41 = GetSupport(shape1, -n); Vector3 v42 = GetSupport(shape2, n); v4 = v42 - v41; float delta = (v4 - v3).Dot(n); float separation = -(v4.Dot(n)); if (delta <= kCollideEpsilon || separation >= 0) { //Debug.Log("Non-convergance detected"); //Debug.Log("Do plane test here"); return Vector3.zero; } // Compute the tetrahedron dividing face (v4,v0,v1) float d1 = v4.Cross(v1).Dot(v0); // Compute the tetrahedron dividing face (v4,v0,v2) float d2 = v4.Cross(v2).Dot(v0); // Compute the tetrahedron dividing face (v4,v0,v3) float d3 = v4.Cross(v3).Dot(v0); if (d1 < 0) { if (d2 < 0) { // Inside d1 & inside d2 ==> eliminate v1 v1 = v4; v11 = v41; v12 = v42; } else { // Inside d1 & outside d2 ==> eliminate v3 v3 = v4; v31 = v41; v32 = v42; } } else { if (d3 < 0) { // Outside d1 & inside d3 ==> eliminate v2 v2 = v4; v21 = v41; v22 = v42; } else { // Outside d1 & outside d3 ==> eliminate v1 v1 = v4; v11 = v41; v12 = v42; } } } return Vector3.zero; } }

    Read the article

  • Interesting articles and blogs on SPARC T4

    - by mv
    Interesting articles and blogs on SPARC T4 processor   I have consolidated all the interesting information I could get on SPARC T4 processor and its hardware cryptographic capabilities.  Hope its useful. 1. Advantages of SPARC T4 processor  Most important points in this T4 announcement are : "The SPARC T4 processor was designed from the ground up for high speed security and has a cryptographic stream processing unit (SPU) integrated directly into each processor core. These accelerators support 16 industry standard security ciphers and enable high speed encryption at rates 3 to 5 times that of competing processors. By integrating encryption capabilities directly inside the instruction pipeline, the SPARC T4 processor eliminates the performance and cost barriers typically associated with secure computing and makes it possible to deliver high security levels without impacting the user experience." Data Sheet has more details on these  : "New on-chip Encryption Instruction Accelerators with direct non-privileged support for 16 industry-standard cryptographic algorithms plus random number generation in each of the eight cores: AES, Camellia, CRC32c, DES, 3DES, DH, DSA, ECC, Kasumi, MD5, RSA, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512" I ran "isainfo -v" command on Solaris 11 Sparc T4-1 system. It shows the new instructions as expected  : $ isainfo -v 64-bit sparcv9 applications crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc 32-bit sparc applications crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc v8plus div32 mul32  2.  Dan Anderson's Blog have some interesting points about how these can be used : "New T4 crypto instructions include: aes_kexpand0, aes_kexpand1, aes_kexpand2,         aes_eround01, aes_eround23, aes_eround01_l, aes_eround_23_l, aes_dround01, aes_dround23, aes_dround01_l, aes_dround_23_l.       Having SPARC T4 hardware crypto instructions is all well and good, but how do we access it ?      The software is available with Solaris 11 and is used automatically if you are running Solaris a SPARC T4.  It is used internally in the kernel through kernel crypto modules.  It is available in user space through the PKCS#11 library." 3.   Dans' Blog on Where's the Crypto Libraries? Although this was written in 2009 but still is very useful  "Here's a brief tour of the major crypto libraries shown in the digraph:   The libpkcs11 library contains the PKCS#11 API (C_\*() functions, such as C_Initialize()). That in turn calls library pkcs11_softtoken or pkcs11_kernel, for userland or kernel crypto providers. The latter is used mostly for hardware-assisted cryptography (such as n2cp for Niagara2 SPARC processors), as that is performed more efficiently in kernel space with the "kCF" module (Kernel Crypto Framework). Additionally, for Solaris 10, strong crypto algorithms were split off in separate libraries, pkcs11_softtoken_extra libcryptoutil contains low-level utility functions to help implement cryptography. libsoftcrypto (OpenSolaris and Solaris Nevada only) implements several symmetric-key crypto algorithms in software, such as AES, RC4, and DES3, and the bignum library (used for RSA). libmd implements MD5, SHA, and SHA2 message digest algorithms" 4. Difference in T3 and T4 Diagram in this blog is good and self explanatory. Jeff's blog also highlights the differences  "The T4 servers have improved crypto acceleration, described at https://blogs.oracle.com/DanX/entry/sparc_t4_openssl_engine. It is "just built in" so administrators no longer have to assign crypto accelerator units to domains - it "just happens". Every physical or virtual CPU on a SPARC-T4 has full access to hardware based crypto acceleration at all times. .... For completeness sake, it's worth noting that the T4 adds more crypto algorithms, and accelerates Camelia, CRC32c, and more SHA-x." 5. About performance counters In this blog, performance counters are explained : "Note that unlike T3 and before, T4 crypto doesn't require kernel modules like ncp or n2cp, there is no visibility of crypto hardware with kstats or cryptoadm. T4 does provide hardware counters for crypto operations.  You can see these using cpustat: cpustat -c pic0=Instr_FGU_crypto 5 You can check the general crypto support of the hardware and OS with the command "isainfo -v". Since T4 crypto's implementation now allows direct userland access, there are no "crypto units" visible to cryptoadm.  " For more details refer Martin's blog as well. 6. How to turn off  SPARC T4 or Intel AES-NI crypto acceleration  I found this interesting blog from Darren about how to turn off  SPARC T4 or Intel AES-NI crypto acceleration. "One of the new Solaris 11 features of the linker/loader is the ability to have a single ELF object that has multiple different implementations of the same functions that are selected at runtime based on the capabilities of the machine.   The alternate to this is having the application coded to call getisax(2) system call and make the choice itself.  We use this functionality of the linker/loader when we build the userland libraries for the Solaris Cryptographic Framework (specifically libmd.so and libsoftcrypto.so) The Solaris linker/loader allows control of a lot of its functionality via environment variables, we can use that to control the version of the cryptographic functions we run.  To do this we simply export the LD_HWCAP environment variable with values that tell ld.so.1 to not select the HWCAP section matching certain features even if isainfo says they are present.  This will work for consumers of the Solaris Cryptographic Framework that use the Solaris PKCS#11 libraries or use libmd.so interfaces directly.  For SPARC T4 : export LD_HWCAP="-aes -des -md5 -sha256 -sha512 -mont -mpul" .. For Intel systems with AES-NI support: export LD_HWCAP="-aes"" Note that LD_HWCAP is explained in  http://docs.oracle.com/cd/E23823_01/html/816-5165/ld.so.1-1.html "LD_HWCAP, LD_HWCAP_32, and LD_HWCAP_64 -  Identifies an alternative hardware capabilities value... A “-” prefix results in the capabilities that follow being removed from the alternative capabilities." 7. Whitepaper on SPARC T4 Servers—Optimized for End-to-End Data Center Computing This Whitepaper on SPARC T4 Servers—Optimized for End-to-End Data Center Computing explains more details.  It has DTrace scripts which may come in handy : "To ensure the hardware-assisted cryptographic acceleration is configured to use and working with the security scenarios, it is recommended to use the following Solaris DTrace script. #!/usr/sbin/dtrace -s pid$1:libsoftcrypto:yf*:entry, pid$target:libsoftcrypto:rsa*:entry, pid$1:libmd:yf*:entry { @[probefunc] = count(); } tick-1sec { printa(@ops); trunc(@ops); }" Note that I have slightly modified the D Script to have RSA "libsoftcrypto:rsa*:entry" as well as per recommendations from Chi-Chang Lin. 8. References http://www.oracle.com/us/corporate/features/sparc-t4-announcement-494846.html http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t4-1-ds-487858.pdf https://blogs.oracle.com/DanX/entry/sparc_t4_openssl_engine https://blogs.oracle.com/DanX/entry/where_s_the_crypto_libraries https://blogs.oracle.com/darren/entry/howto_turn_off_sparc_t4 http://docs.oracle.com/cd/E23823_01/html/816-5165/ld.so.1-1.html   https://blogs.oracle.com/hardware/entry/unleash_the_power_of_cryptography https://blogs.oracle.com/cmt/entry/t4_crypto_cheat_sheet https://blogs.oracle.com/martinm/entry/t4_performance_counters_explained  https://blogs.oracle.com/jsavit/entry/no_mau_required_on_a http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t4-business-wp-524472.pdf

    Read the article

  • T4 Template error - Assembly Directive cannot locate referenced assembly in Visual Studio 2010 proje

    - by CodeSniper
    I ran into the following error recently in Visual Studio 2010 while trying to port Phil Haack’s excellent T4CSS template which was originally built for Visual Studio 2008.   The Problem Error Compiling transformation: Metadata file 'dotless.Core' could not be found In “T4 speak”, this simply means that you have an Assembly directive in your T4 template but the T4 engine was not able to locate or load the referenced assembly. In the case of the T4CSS Template, this was a showstopper for making it work in Visual Studio 2010. On a side note: The T4CSS template is a sweet little wrapper to allow you to use DotLessCss to generate static .css files from .less files rather than using their default HttpHandler or command-line tool.    If you haven't tried DotLessCSS yet, go check it out now!  In short, it is a tool that allows you to templatize and program your CSS files so that you can use variables, expressions, and mixins within your CSS which enables rapid changes and a lot of developer-flexibility as you evolve your CSS and UI. Back to our regularly scheduled program… Anyhow, this post isn't about DotLessCss, its about the T4 Templates and the errors I ran into when converting them from Visual Studio 2008 to Visual Studio 2010. In VS2010, there were quite a few changes to the T4 Template Engine; most were excellent changes, but this one bit me with T4CSS: “Project assemblies are no longer used to resolve template assembly directives.” In VS2008, if you wanted to reference a custom assembly in your T4 Template (.tt file) you would simply right click on your project, choose Add Reference and select that assembly.  Afterwards you were allowed to use the following syntax in your T4 template to tell it to look at the local references: <#@ assembly name="dotless.Core.dll" #> This told the engine to look in the “usual place” for the assembly, which is your project references. However, this is exactly what they changed in VS2010.  They now basically sandbox the T4 Engine to keep your T4 assemblies separate from your project assemblies.  This can come in handy if you want to support different versions of an assembly referenced both by your T4 templates and your project. Who broke the build?  Oh, Microsoft Did! In our case, this change causes a problem since the templates are no longer compatible when upgrading to VS 2010 – thus its a breaking change.  So, how do we make this work in VS 2010? Luckily, Microsoft now offers several options for referencing assemblies from T4 Templates: GAC your assemblies and use Namespace Reference or Fully Qualified Type Name Use a hard-coded Fully Qualified UNC path Copy assembly to Visual Studio "Public Assemblies Folder" and use Namespace Reference or Fully Qualified Type Name.  Use or Define a Windows Environment Variable to build a Fully Qualified UNC path. Use a Visual Studio Macro to build a Fully Qualified UNC path. Option #1 & 2 were already supported in Visual Studio 2008, so if you want to keep your templates compatible with both Visual Studio versions, then you would have to adopt one of these approaches. Yakkety Yak, use the GAC! Option #1 requires an additional pre-build step to GAC the referenced assembly, which could be a pain.  But, if you go that route, then after you GAC, all you need is a simple type name or namespace reference such as: <#@ assembly name="dotless.Core" #> Hard Coding aint that hard! The other option of using hard-coded paths in Option #2 is pretty impractical in most situations since each developer would have to use the same local project folder paths, or modify this setting each time for their local machines as well as for production deployment.  However, if you want to go that route, simply use the following assembly directive style: <#@ assembly name="C:\Code\Lib\dotless.Core.dll" #> Lets go Public! Option #3, the Visual Studio Public Assemblies Folder, is the recommended place to put commonly used tools and libraries that are only needed for Visual Studio.  Think of it like a VS-only GAC.  This is likely the best place for something like dotLessCSS and is my preferred solution.  However, you will need to either use an installer or a pre-build action to copy the assembly to the right folder location.   Normally this is located at:  C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\PublicAssemblies Once you have copied your assembly there, you use the type name or namespace syntax again: <#@ assembly name="dotless.Core" #> Save the Environment! Option #4, using a Windows Environment Variable, is interesting for enterprise use where you may have standard locations for files, but less useful for demo-code, frameworks, and products where you don't have control over the local system.  The syntax for including a environment variable in your assembly directive looks like the following, just as you would expect: <#@ assembly name="%mypath%\dotless.Core.dll" #> “mypath” is a Windows environment variable you setup that points to some fully qualified UNC path on your system.  In the right situation this can be a great solution such as one where you use a msi installer for deployment, or where you have a pre-existing environment variable you can re-use. OMG Macros! Finally, Option #5 is a very nice option if you want to keep your T4 template’s assembly reference local and relative to the project or solution without muddying-up your dev environment or GAC with extra deployments.  An example looks like this: <#@ assembly name="$(SolutionDir)lib\dotless.Core.dll" #> In this example, I’m using the “SolutionDir” VS macro so I can reference an assembly in a “/lib” folder at the root of the solution.   This is just one of the many macros you can use.  If you are familiar with creating Pre/Post-build Event scripts, you can use its dialog to look at all of the different VS macros available. This option gives the best solution for local assemblies without the hassle of extra installers or other setup before the build.   However, its still not compatible with Visual Studio 2008, so if you have a T4 Template you want to use with both, then you may have to create multiple .tt files, one for each IDE version, or require the developer to set a value in the .tt file manually.   I’m not sure if T4 Templates support any form of compiler switches like “#if (VS2010)”  statements, but it would definitely be nice in this case to switch between this option and one of the ones more compatible with VS 2008. Conclusion As you can see, we went from 3 options with Visual Studio 2008, to 5 options (plus one problem) with Visual Studio 2010.  As a whole, I think the changes are great, but the short-term growing pains during the migration may be annoying until we get used to our new found power. Hopefully this all made sense and was helpful to you.  If nothing else, I’ll just use it as a reference the next time I need to port a T4 template to Visual Studio 2010.  Happy T4 templating, and “May the fourth be with you!”

    Read the article

  • ParallelWork: Feature rich multithreaded fluent task execution library for WPF

    - by oazabir
    ParallelWork is an open source free helper class that lets you run multiple work in parallel threads, get success, failure and progress update on the WPF UI thread, wait for work to complete, abort all work (in case of shutdown), queue work to run after certain time, chain parallel work one after another. It’s more convenient than using .NET’s BackgroundWorker because you don’t have to declare one component per work, nor do you need to declare event handlers to receive notification and carry additional data through private variables. You can safely pass objects produced from different thread to the success callback. Moreover, you can wait for work to complete before you do certain operation and you can abort all parallel work while they are in-flight. If you are building highly responsive WPF UI where you have to carry out multiple job in parallel yet want full control over those parallel jobs completion and cancellation, then the ParallelWork library is the right solution for you. I am using the ParallelWork library in my PlantUmlEditor project, which is a free open source UML editor built on WPF. You can see some realistic use of the ParallelWork library there. Moreover, the test project comes with 400 lines of Behavior Driven Development flavored tests, that confirms it really does what it says it does. The source code of the library is part of the “Utilities” project in PlantUmlEditor source code hosted at Google Code. The library comes in two flavors, one is the ParallelWork static class, which has a collection of static methods that you can call. Another is the Start class, which is a fluent wrapper over the ParallelWork class to make it more readable and aesthetically pleasing code. ParallelWork allows you to start work immediately on separate thread or you can queue a work to start after some duration. You can start an immediate work in a new thread using the following methods: void StartNow(Action doWork, Action onComplete) void StartNow(Action doWork, Action onComplete, Action<Exception> failed) For example, ParallelWork.StartNow(() => { workStartedAt = DateTime.Now; Thread.Sleep(howLongWorkTakes); }, () => { workEndedAt = DateTime.Now; }); Or you can use the fluent way Start.Work: Start.Work(() => { workStartedAt = DateTime.Now; Thread.Sleep(howLongWorkTakes); }) .OnComplete(() => { workCompletedAt = DateTime.Now; }) .Run(); Besides simple execution of work on a parallel thread, you can have the parallel thread produce some object and then pass it to the success callback by using these overloads: void StartNow<T>(Func<T> doWork, Action<T> onComplete) void StartNow<T>(Func<T> doWork, Action<T> onComplete, Action<Exception> fail) For example, ParallelWork.StartNow<Dictionary<string, string>>( () => { test = new Dictionary<string,string>(); test.Add("test", "test"); return test; }, (result) => { Assert.True(result.ContainsKey("test")); }); Or, the fluent way: Start<Dictionary<string, string>>.Work(() => { test = new Dictionary<string, string>(); test.Add("test", "test"); return test; }) .OnComplete((result) => { Assert.True(result.ContainsKey("test")); }) .Run(); You can also start a work to happen after some time using these methods: DispatcherTimer StartAfter(Action onComplete, TimeSpan duration) DispatcherTimer StartAfter(Action doWork,Action onComplete,TimeSpan duration) You can use this to perform some timed operation on the UI thread, as well as perform some operation in separate thread after some time. ParallelWork.StartAfter( () => { workStartedAt = DateTime.Now; Thread.Sleep(howLongWorkTakes); }, () => { workCompletedAt = DateTime.Now; }, waitDuration); Or, the fluent way: Start.Work(() => { workStartedAt = DateTime.Now; Thread.Sleep(howLongWorkTakes); }) .OnComplete(() => { workCompletedAt = DateTime.Now; }) .RunAfter(waitDuration);   There are several overloads of these functions to have a exception callback for handling exceptions or get progress update from background thread while work is in progress. For example, I use it in my PlantUmlEditor to perform background update of the application. // Check if there's a newer version of the app Start<bool>.Work(() => { return UpdateChecker.HasUpdate(Settings.Default.DownloadUrl); }) .OnComplete((hasUpdate) => { if (hasUpdate) { if (MessageBox.Show(Window.GetWindow(me), "There's a newer version available. Do you want to download and install?", "New version available", MessageBoxButton.YesNo, MessageBoxImage.Information) == MessageBoxResult.Yes) { ParallelWork.StartNow(() => { var tempPath = System.IO.Path.Combine( Environment.GetFolderPath(Environment.SpecialFolder.ApplicationData), Settings.Default.SetupExeName); UpdateChecker.DownloadLatestUpdate(Settings.Default.DownloadUrl, tempPath); }, () => { }, (x) => { MessageBox.Show(Window.GetWindow(me), "Download failed. When you run next time, it will try downloading again.", "Download failed", MessageBoxButton.OK, MessageBoxImage.Warning); }); } } }) .OnException((x) => { MessageBox.Show(Window.GetWindow(me), x.Message, "Download failed", MessageBoxButton.OK, MessageBoxImage.Exclamation); }); The above code shows you how to get exception callbacks on the UI thread so that you can take necessary actions on the UI. Moreover, it shows how you can chain two parallel works to happen one after another. Sometimes you want to do some parallel work when user does some activity on the UI. For example, you might want to save file in an editor while user is typing every 10 second. In such case, you need to make sure you don’t start another parallel work every 10 seconds while a work is already queued. You need to make sure you start a new work only when there’s no other background work going on. Here’s how you can do it: private void ContentEditor_TextChanged(object sender, EventArgs e) { if (!ParallelWork.IsAnyWorkRunning()) { ParallelWork.StartAfter(SaveAndRefreshDiagram, TimeSpan.FromSeconds(10)); } } If you want to shutdown your application and want to make sure no parallel work is going on, then you can call the StopAll() method. ParallelWork.StopAll(); If you want to wait for parallel works to complete without a timeout, then you can call the WaitForAllWork(TimeSpan timeout). It will block the current thread until the all parallel work completes or the timeout period elapses. result = ParallelWork.WaitForAllWork(TimeSpan.FromSeconds(1)); The result is true, if all parallel work completed. If it’s false, then the timeout period elapsed and all parallel work did not complete. For details how this library is built and how it works, please read the following codeproject article: ParallelWork: Feature rich multithreaded fluent task execution library for WPF http://www.codeproject.com/KB/WPF/parallelwork.aspx If you like the article, please vote for me.

    Read the article

  • C# in Depth, Third Edition by Jon Skeet, Manning Publications Co. Book Review

    - by Compudicted
    Originally posted on: http://geekswithblogs.net/Compudicted/archive/2013/10/24/c-in-depth-third-edition-by-jon-skeet-manning-publications.aspx I started reading this ebook on September 28, 2013, the same day it was sent my way by Manning Publications Co. for review while it still being fresh off the press. So 1st thing – thanks to Manning for this opportunity and a free copy of this must have on every C# developer’s desk book! Several hours ago I finished reading this book (well, except a for a large portion of its quite lengthy appendix). I jumped writing this review right away while still being full of emotions and impressions from reading it thoroughly and running code examples. Before I go any further I would like say that I used to program on various platforms using various languages starting with the Mainframe and ending on Windows, and I gradually shifted toward dealing with databases more than anything, however it happened with me to program in C# 1 a lot when it was first released and then some C# 2 with a big leap in between to C# 5. So my perception and experience reading this book may differ from yours. Also what I want to tell is somewhat funny that back then, knowing some Java and seeing C# 1 released, initially made me drawing a parallel that it is a copycat language, how wrong was I… Interestingly, Jon programs in Java full time, but how little it was mentioned in the book! So more on the book: Be informed, this is not a typical “Recipes”, “Cookbook” or any set of ready solutions, it is rather targeting mature, advanced developers who do not only know how to use a number of features, but are willing to understand how the language is operating “under the hood”. I must state immediately, at the same time I am glad the author did not go into the murky depths of the MSIL, so this is a very welcome decision on covering a modern language as C# for me, thank you Jon! Frankly, not all was that rosy regarding the tone and structure of the book, especially the the first half or so filled me with several negative and positive emotions overpowering each other. To expand more on that, some statements in the book appeared to be bias to me, or filled with pre-justice, it started to look like it had some PR-sole in it, but thankfully this was all gone toward the end of the 1st third of the book. Specifically, the mention on the C# language popularity, Java is the #1 language as per https://sites.google.com/site/pydatalog/pypl/PyPL-PopularitY-of-Programming-Language (many other sources put C at the top which I highly doubt), also many interesting functional languages as Clojure and Groovy appeared and gained huge traction which run on top of Java/JVM whereas C# does not enjoy such a situation. If we want to discuss the popularity in general and say how fast a developer can find a new job that pays well it would be indeed the very Java, C++ or PHP, never C#. Or that phrase on language preference as a personal issue? We choose where to work or we are chosen because of a technology used at a given software shop, not vice versa. The book though it technically very accurate with valid code, concise examples, but I wish the author would give more concrete, real-life examples on where each feature should be used, not how. Another point to realize before you get the book is that it is almost a live book which started to be written when even C# 3 wasn’t around so a lot of ground is covered (nearly half of the book) on the pre-C# 3 feature releases so if you already have a solid background in the previous releases and do not plan to upgrade, perhaps half of the book can be skipped, otherwise this book is surely highly recommended. Alas, for me it was a hard read, most of it. It was not boring (well, only may be two times), it was just hard to grasp some concepts, but do not get me wrong, it did made me pause, on several occasions, and made me read and re-read a page or two. At times I even wondered if I have any IQ at all (LOL). Be prepared to read A LOT on generics, not that they are widely used in the field (I happen to work as a consultant and went thru a lot of code at many places) I can tell my impression is the developers today in best case program using examples found at OpenStack.com. Also unlike the Java world where having the most recent version is nearly mandated by the OSS most companies on the Microsoft platform almost never tempted to upgrade the .Net version very soon and very often. As a side note, I was glad to see code recently that included a nullable variable (myvariable? notation) and this made me smile, besides, I recommended that person this book to expand her knowledge. The good things about this book is that Jon maintains an active forum, prepared code snippets and even a small program (Snippy) that is happy to run the sample code saving you from writing any plumbing code. A tad now on the C# language itself – it sure enjoyed a wonderful road toward perfection and a very high adoption, especially for ASP development. But to me all the recent features that made this statically typed language more dynamic look strange. Don’t we have F#? Which supposed to be the dynamic language? Why do we need to have a hybrid language? Now the developers live their lives in dualism of the static and dynamic variables! And LINQ to SQL, it is covered in depth, but wasn’t it supposed to be dropped? Also it seems that very little is being added, and at a slower pace, e.g. Roslyn will come in late 2014 perhaps, and will be probably the only main feature. Again, it is quite hard to read this book as various chapters, C# versions mentioned every so often only if I only could remember what was covered exactly where! So the fact it has so many jumps/links back and forth I recommend the ebook format to make the navigations easier to perform and I do recommend using software that allows bookmarking, also make sure you have access to plenty of coffee and pizza (hey, you probably know this joke – who a programmer is) ! In terms of closing, if you stuck at C# 1 or 2 level, it is time to embrace the power of C# 5! Finally, to compliment Manning, this book unlike from any other publisher so far, was the only one as well readable (put it formatted) on my tablet as in Adobe Reader on a laptop.

    Read the article

  • How to pass XML to DB using XMLTYPE

    - by James Taylor
    Probably not a common use case but I have seen it pop up from time to time. The question how do I pass XML from a queue or web service and insert it into a DB table using XMLTYPE.In this example I create a basic table with the field PAYLOAD of type XMLTYPE. I then take the full XML payload of the web service and insert it into that database for auditing purposes.I use SOA Suite 11.1.1.2 using composite and mediator to link the web service with the DB adapter.1. Insert Database Objects Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} --Create XML_EXAMPLE_TBL Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} CREATE TABLE XML_EXAMPLE_TBL (PAYLOAD XMLTYPE); Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} --Create procedure LOAD_TEST_XML Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} CREATE or REPLACE PROCEDURE load_test_xml (xmlFile in CLOB) IS   BEGIN     INSERT INTO xml_example_tbl (payload) VALUES (XMLTYPE(xmlFile));   --Handle the exceptions EXCEPTION   WHEN OTHERS THEN     raise_application_error(-20101, 'Exception occurred in loadPurchaseOrder procedure :'||SQLERRM || ' **** ' || xmlFile ); END load_test_xml; / 2. Creating New SOA Project TestXMLTYPE in JDeveloperIn JDeveloper either create a new Application or open an existing Application you want to put this work.Under File -> New -> SOA Tier -> SOA Project   Provide a name for the Project, e.g. TestXMLType Choose Empty Composite When selected Empty Composite click Finish.3. Create Database Connection to Stored ProcedureA Blank composite will be displayed. From the Component Palette drag a Database Adapter to the  External References panel. and configure the Database Adapter Wizard to connect to the DB procedure created above.Provide a service name InsertXML Select a Database connection where you installed the table and procedure above. If it doesn't exist create a new one. Select Call a Stored Procedure or Function then click NextChoose the schema you installed your Procedure in step 1 and query for the LOAD_TEST_XML procedure.Click Next for the remaining screens until you get to the end, then click Finish to complete the database adapter wizard.4. Create the Web Service InterfaceDownload this sample schema that will be used as the input for the web service. It does not matter what schema you use this solution will work with any. Feel free to use your own if required. singleString.xsd Drag from the component palette the Web Service to the Exposed Services panel on the component.Provide a name InvokeXMLLoad for the service, and click the cog icon.Click the magnify glass for the URL to browse to the location where you downloaded the xml schema above.  Import the schema file by selecting the import schema iconBrowse to the location to where you downloaded the singleString.xsd above.Click OK for the Import Schema File, then select the singleString node of the imported schema.Accept all the defaults until you get back to the Web Service wizard screen. The click OK. This step has created a WSDL based on the schema we downloaded earlier.Your composite should now look something like this now.5. Create the Mediator Routing Rules Drag a Mediator component into the middle of the Composite called ComponentsGive the name of Route, and accept the defaultsLink the services up to the Mediator by connecting the reference points so your Composite looks like this.6. Perform Translations between Web Service and the Database Adapter.From the Composite double click the Route Mediator to show the Map Plan. Select the transformation icon to create the XSLT translation file.Choose Create New Mapper File and accept the defaults.From the Component Palette drag the get-content-as-string component into the middle of the translation file.Your translation file should look something like thisNow we need to map the root element of the source 'singleString' to the XMLTYPE of the database adapter, applying the function get-content-as-string.To do this drag the element singleString to the left side of the function get-content-as-string and drag the right side of the get-content-as-string to the XMLFILE element of the database adapter so the mapping looks like this. You have now completed the SOA Component you can now save your work, deploy and test.When you deploy I have assumed that you have the correct database configurations in the WebLogic Console based on the connection you setup connecting to the Stored Procedure. 7. Testing the ApplicationOpen Enterprise Manager and navigate to the TestXMLTYPE Composite and click the Test button. Load some dummy variables in the Input Arguments and click the 'Test Web Service' buttonOnce completed you can run a SQL statement to check the install. In this instance I have just used JDeveloper and opened a SQL WorksheetSQL Statement Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} select * from xml_example_tbl; Result, you should see the full payload in the result.

    Read the article

  • Enhanced REST Support in Oracle Service Bus 11gR1

    - by jeff.x.davies
    In a previous entry on REST and Oracle Service Bus (see http://blogs.oracle.com/jeffdavies/2009/06/restful_services_with_oracle_s_1.html) I encoded the REST query string really as part of the relative URL. For example, consider the following URI: http://localhost:7001/SimpleREST/Products/id=1234 Now, technically there is nothing wrong with this approach. However, it is generally more common to encode the search parameters into the query string. Take a look at the following URI that shows this principle http://localhost:7001/SimpleREST/Products?id=1234 At first blush this appears to be a trivial change. However, this approach is more intuitive, especially if you are passing in multiple parameters. For example: http://localhost:7001/SimpleREST/Products?cat=electronics&subcat=television&mfg=sony The above URI is obviously used to retrieve a list of televisions made by Sony. In prior versions of OSB (before 11gR1PS3), parsing the query string of a URI was more difficult than in the current release. In 11gR1PS3 it is now much easier to parse the query strings, which in turn makes developing REST services in OSB even easier. In this blog entry, we will re-implement the REST-ful Products services using query strings for passing parameter information. Lets begin with the implementation of the Products REST service. This service is implemented in the Products.proxy file of the project. Lets begin with the overall structure of the service, as shown in the following screenshot. This is a common pattern for REST services in the Oracle Service Bus. You implement different flows for each of the HTTP verbs that you want your service to support. Lets take a look at how the GET verb is implemented. This is the path that is taken of you were to point your browser to: http://localhost:7001/SimpleREST/Products/id=1234 There is an Assign action in the request pipeline that shows how to extract a query parameter. Here is the expression that is used to extract the id parameter: $inbound/ctx:transport/ctx:request/http:query-parameters/http:parameter[@name="id"]/@value The Assign action that stores the value into an OSB variable named id. Using this type of XPath statement you can query for any variables by name, without regard to their order in the parameter list. The Log statement is there simply to provided some debugging info in the OSB server console. The response pipeline contains a Replace action that constructs the response document for our rest service. Most of the response data is static, but the ID field that is returned is set based upon the query-parameter that was passed into the REST proxy. Testing the REST service with a browser is very simple. Just point it to the URL I showed you earlier. However, the browser is really only good for testing simple GET services. The OSB Test Console provides a much more robust environment for testing REST services, no matter which HTTP verb is used. Lets see how to use the Test Console to test this GET service. Open the OSB we console (http://localhost:7001/sbconsole) and log in as the administrator. Click on the Test Console icon (the little "bug") next to the Products proxy service in the SimpleREST project. This will bring up the Test Console browser window. Unlike SOAP services, we don't need to do much work in the request document because all of our request information will be encoded into the URI of the service itself. Belore the Request Document section of the Test Console is the Transport section. Expand that section and modify the query-parameters and http-method fields as shown in the next screenshot. By default, the query-parameters field will have the tags already defined. You just need to add a tag for each parameter you want to pass into the service. For out purposes with this particular call, you'd set the quer-parameters field as follows: <tp:parameter name="id" value="1234" /> </tp:query-parameters> Now you are ready to push the Execute button to see the results of the call. That covers the process for parsing query parameters using OSB. However, what if you have an OSB proxy service that needs to consume a REST-ful service? How do you tell OSB to pass the query parameters to the external service? In the sample code you will see a 2nd proxy service called CallREST. It invokes the Products proxy service in exactly the same way it would invoke any REST service. Our CallREST proxy service is defined as a SOAP service. This help to demonstrate OSBs ability to mediate between service consumers and service providers, decreasing the level of coupling between them. If you examine the message flow for the CallREST proxy service, you'll see that it uses an Operational branch to isolate processing logic for each operation that is defined by the SOAP service. We will focus on the getProductDetail branch, that calls the Products REST service using the HTTP GET verb. Expand the getProduct pipeline and the stage node that it contains. There is a single Assign statement that simply extracts the productID from the SOA request and stores it in a local OSB variable. Nothing suprising here. The real work (and the real learning) occurs in the Route node below the pipeline. The first thing to learn is that you need to use a route node when calling REST services, not a Service Callout or a Publish action. That's because only the Routing action has access to the $oubound variable, especially when invoking a business service. The Routing action contains 3 Insert actions. The first Insert action shows how to specify the HTTP verb as a GET. The second insert action simply inserts the XML node into the request. This element does not exist in the request by default, so we need to add it manually. Now that we have the element defined in our outbound request, we can fill it with the parameters that we want to send to the REST service. In the following screenshot you can see how we define the id parameter based on the productID value we extracted earlier from the SOAP request document. That expression will look for the parameter that has the name id and extract its value. That's all there is to it. You now know how to take full advantage of the query parameter parsing capability of the Oracle Service Bus 11gR1PS2. Download the sample source code here: rest2_sbconfig.jar Ubuntu and the OSB Test Console You will get an error when you try to use the Test Console with the Oracle Service Bus, using Ubuntu (or likely a number of other Linux distros also). The error (shown below) will state that the Test Console service is not running. The fix for this problem is quite simple. Open up the WebLogic Server administrator console (usually running at http://localhost:7001/console). In the Domain Structure window on the left side of the console, select the Servers entry under the Environment heading. The select the Admin Server entry in the main window of the console. By default, you should be viewing the Configuration tabe and the General sub tab in the main window. Look for the Listen Address field. By default it is blank, which means it is listening on all interfaces. For some reason Ubuntu doesn't like this. So enter a value like localhost or the specific IP address or DNS name for your server (usually its just localhost in development envirionments). Save your changes and restart the server. Your Test Console will now work correctly.

    Read the article

  • Transparency and AlphaBlending

    - by TechTwaddle
    In this post we'll look at the AlphaBlend() api and how it can be used for semi-transparent blitting. AlphaBlend() takes a source device context and a destination device context (DC) and combines the bits in such a way that it gives a transparent effect. Follow the links for the msdn documentation. So lets take a image like, and AlphaBlend() it on our window. The code to do so is below, (under the WM_PAINT message of WndProc) HBITMAP hBitmap=NULL, hBitmapOld=NULL; HDC hMemDC=NULL; BLENDFUNCTION bf; hdc = BeginPaint(hWnd, &ps); hMemDC = CreateCompatibleDC(hdc); hBitmap = LoadBitmap(g_hInst, MAKEINTRESOURCE(IDB_BITMAP1)); hBitmapOld = SelectObject(hMemDC, hBitmap); bf.BlendOp = AC_SRC_OVER; bf.BlendFlags = 0; bf.SourceConstantAlpha = 80; //transparency value between 0-255 bf.AlphaFormat = 0;    AlphaBlend(hdc, 0, 25, 240, 100, hMemDC, 0, 0, 240, 100, bf); SelectObject(hMemDC, hBitmapOld); DeleteDC(hMemDC); DeleteObject(hBitmap); EndPaint(hWnd, &ps);   The code above creates a memory DC (hMemDC) using CreateCompatibleDC(), loads a bitmap onto the memory DC and AlphaBlends it on the device DC (hdc), with a transparency value of 80. The result is: Pretty simple till now. Now lets try to do something a little more exciting. Lets get two images involved, each overlapping the other, giving a better demonstration of transparency. I am also going to add a few buttons so that the user can increase or decrease the transparency by clicking on the buttons. Since this is the first time I played around with GDI apis, I ran into something that everybody runs into sometime or the other, flickering. When clicking the buttons the images would flicker a lot, I figured out why and used something called double buffering to avoid flickering. We will look at both my first implementation and the second implementation just to give the concept a little more depth and perspective. A few pre-conditions before I dive into the code: - hBitmap and hBitmap2 are handles to the two images obtained using LoadBitmap(), these variables are global and are initialized under WM_CREATE - The two buttons in the application are labeled Opaque++ (make more opaque, less transparent) and Opaque-- (make less opaque, more transparent) - DrawPics(HWND hWnd, int step=0); is the function called to draw the images on the screen. This is called from under WM_PAINT and also when the buttons are clicked. When Opaque++ is clicked the 'step' value passed to DrawPics() is +20 and when Opaque-- is clicked the 'step' value is -20. The default value of 'step' is 0 Now lets take a look at my first implementation: //this funciton causes flicker, cos it draws directly to screen several times void DrawPics(HWND hWnd, int step) {     HDC hdc=NULL, hMemDC=NULL;     BLENDFUNCTION bf;     static UINT32 transparency = 100;     //no point in drawing when transparency is 0 and user clicks Opaque--     if (transparency == 0 && step < 0)         return;     //no point in drawing when transparency is 240 (opaque) and user clicks Opaque++     if (transparency == 240 && step > 0)         return;         hdc = GetDC(hWnd);     if (!hdc)         return;     //create a memory DC     hMemDC = CreateCompatibleDC(hdc);     if (!hMemDC)     {         ReleaseDC(hWnd, hdc);         return;     }     //while increasing transparency, clear the contents of screen     if (step < 0)     {         RECT rect = {0, 0, 240, 200};         FillRect(hdc, &rect, (HBRUSH)GetStockObject(WHITE_BRUSH));     }     SelectObject(hMemDC, hBitmap2);     BitBlt(hdc, 0, 25, 240, 100, hMemDC, 0, 0, SRCCOPY);         SelectObject(hMemDC, hBitmap);     transparency += step;     if (transparency >= 240)         transparency = 240;     if (transparency <= 0)         transparency = 0;     bf.BlendOp = AC_SRC_OVER;     bf.BlendFlags = 0;     bf.SourceConstantAlpha = transparency;     bf.AlphaFormat = 0;            AlphaBlend(hdc, 0, 75, 240, 100, hMemDC, 0, 0, 240, 100, bf);     DeleteDC(hMemDC);     ReleaseDC(hWnd, hdc); }   In the code above, we first get the window DC using GetDC() and create a memory DC using CreateCompatibleDC(). Then we select hBitmap2 onto the memory DC and Blt it on the window DC (hdc). Next, we select the other image, hBitmap, onto memory DC and AlphaBlend() it over window DC. As I told you before, this implementation causes flickering because it draws directly on the screen (hdc) several times. The video below shows what happens when the buttons were clicked rapidly: Well, the video recording tool I use captures only 15 frames per second and so the flickering is not visible in the video. So you're gonna have to trust me on this, it flickers (; To solve this problem we make sure that the drawing to the screen happens only once and to do that we create an additional memory DC, hTempDC. We perform all our drawing on this memory DC and finally when it is ready we Blt hTempDC on hdc, and the images are displayed in one go. Here is the code for our new DrawPics() function: //no flicker void DrawPics(HWND hWnd, int step) {     HDC hdc=NULL, hMemDC=NULL, hTempDC=NULL;     BLENDFUNCTION bf;     HBITMAP hBitmapTemp=NULL, hBitmapOld=NULL;     static UINT32 transparency = 100;     //no point in drawing when transparency is 0 and user clicks Opaque--     if (transparency == 0 && step < 0)         return;     //no point in drawing when transparency is 240 (opaque) and user clicks Opaque++     if (transparency == 240 && step > 0)         return;         hdc = GetDC(hWnd);     if (!hdc)         return;     hMemDC = CreateCompatibleDC(hdc);     hTempDC = CreateCompatibleDC(hdc);     hBitmapTemp = CreateCompatibleBitmap(hdc, 240, 150);     hBitmapOld = (HBITMAP)SelectObject(hTempDC, hBitmapTemp);     if (!hMemDC)     {         ReleaseDC(hWnd, hdc);         return;     }     //while increasing transparency, clear the contents     if (step < 0)     {         RECT rect = {0, 0, 240, 150};         FillRect(hTempDC, &rect, (HBRUSH)GetStockObject(WHITE_BRUSH));     }     SelectObject(hMemDC, hBitmap2);     //Blt hBitmap2 directly to hTempDC     BitBlt(hTempDC, 0, 0, 240, 100, hMemDC, 0, 0, SRCCOPY);         SelectObject(hMemDC, hBitmap);     transparency += step;     if (transparency >= 240)         transparency = 240;     if (transparency <= 0)         transparency = 0;     bf.BlendOp = AC_SRC_OVER;     bf.BlendFlags = 0;     bf.SourceConstantAlpha = transparency;     bf.AlphaFormat = 0;            AlphaBlend(hTempDC, 0, 50, 240, 100, hMemDC, 0, 0, 240, 100, bf);     //now hTempDC is ready, blt it directly on hdc     BitBlt(hdc, 0, 25, 240, 150, hTempDC, 0, 0, SRCCOPY);     SelectObject(hTempDC, hBitmapOld);     DeleteObject(hBitmapTemp);     DeleteDC(hMemDC);     DeleteDC(hTempDC);     ReleaseDC(hWnd, hdc); }   This function is very similar to the first version, except for the use of hTempDC. Another point to note is the use of CreateCompatibleBitmap(). When a memory device context is created using CreateCompatibleDC(), the context is exactly one monochrome pixel high and one monochrome pixel wide. So in order for us to draw anything onto hTempDC, we first have to set a bitmap on it. We use CreateCompatibleBitmap() to create a bitmap of required dimension (240x150 above), and then select this bitmap onto hTempDC. Think of it as utilizing an extra canvas, drawing everything on the canvas and finally transferring the contents to the display in one scoop. And with this version the flickering is gone, video follows:   If you want the entire solutions source code then leave a message, I will share the code over SkyDrive.

    Read the article

  • Using delegates in C# (Part 2)

    - by rajbk
    Part 1 of this post can be read here. We are now about to see the different syntaxes for invoking a delegate and some c# syntactic sugar which allows you to code faster. We have the following console application. 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: Operation op1 = new Operation(Division); 9: double result = op1.Invoke(10, 5); 10: 11: Console.WriteLine(result); 12: Console.ReadLine(); 13: } 14: 15: static double Division(double x, double y) { 16: return x / y; 17: } 18: } Line 1 defines a delegate type called Operation with input parameters (double x, double y) and a return type of double. On Line 8, we create an instance of this delegate and set the target to be a static method called Division (Line 15) On Line 9, we invoke the delegate (one entry in the invocation list). The program outputs 5 when run. The language provides shortcuts for creating a delegate and invoking it (see line 9 and 11). Line 9 is a syntactical shortcut for creating an instance of the Delegate. The C# compiler will infer on its own what the delegate type is and produces intermediate language that creates a new instance of that delegate. Line 11 uses a a syntactical shortcut for invoking the delegate by removing the Invoke method. The compiler sees the line and generates intermediate language which invokes the delegate. When this code is compiled, the generated IL will look exactly like the IL of the compiled code above. 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: //shortcut constructor syntax 9: Operation op1 = Division; 10: //shortcut invoke syntax 11: double result = op1(10, 2); 12: 13: Console.WriteLine(result); 14: Console.ReadLine(); 15: } 16: 17: static double Division(double x, double y) { 18: return x / y; 19: } 20: } C# 2.0 introduced Anonymous Methods. Anonymous methods avoid the need to create a separate method that contains the same signature as the delegate type. Instead you write the method body in-line. There is an interesting fact about Anonymous methods and closures which won’t be covered here. Use your favorite search engine ;-)We rewrite our code to use anonymous methods (see line 9): 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: //Anonymous method 9: Operation op1 = delegate(double x, double y) { 10: return x / y; 11: }; 12: double result = op1(10, 2); 13: 14: Console.WriteLine(result); 15: Console.ReadLine(); 16: } 17: 18: static double Division(double x, double y) { 19: return x / y; 20: } 21: } We could rewrite our delegate to be of a generic type like so (see line 2 and line 9). You will see why soon. 1: //Generic delegate 2: public delegate T Operation<T>(T x, T y); 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: Operation<double> op1 = delegate(double x, double y) { 10: return x / y; 11: }; 12: double result = op1(10, 2); 13: 14: Console.WriteLine(result); 15: Console.ReadLine(); 16: } 17: 18: static double Division(double x, double y) { 19: return x / y; 20: } 21: } The .NET 3.5 framework introduced a whole set of predefined delegates for us including public delegate TResult Func<T1, T2, TResult>(T1 arg1, T2 arg2); Our code can be modified to use this delegate instead of the one we declared. Our delegate declaration has been removed and line 7 has been changed to use the Func delegate type. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //Func is a delegate defined in the .NET 3.5 framework 7: Func<double, double, double> op1 = delegate (double x, double y) { 8: return x / y; 9: }; 10: double result = op1(10, 2); 11: 12: Console.WriteLine(result); 13: Console.ReadLine(); 14: } 15: 16: static double Division(double x, double y) { 17: return x / y; 18: } 19: } .NET 3.5 also introduced lambda expressions. A lambda expression is an anonymous function that can contain expressions and statements, and can be used to create delegates or expression tree types. We change our code to use lambda expressions. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //lambda expression 7: Func<double, double, double> op1 = (x, y) => x / y; 8: double result = op1(10, 2); 9: 10: Console.WriteLine(result); 11: Console.ReadLine(); 12: } 13: 14: static double Division(double x, double y) { 15: return x / y; 16: } 17: } C# 3.0 introduced the keyword var (implicitly typed local variable) where the type of the variable is inferred based on the type of the associated initializer expression. We can rewrite our code to use var as shown below (line 7).  The implicitly typed local variable op1 is inferred to be a delegate of type Func<double, double, double> at compile time. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //implicitly typed local variable 7: var op1 = (x, y) => x / y; 8: double result = op1(10, 2); 9: 10: Console.WriteLine(result); 11: Console.ReadLine(); 12: } 13: 14: static double Division(double x, double y) { 15: return x / y; 16: } 17: } You have seen how we can write code in fewer lines by using a combination of the Func delegate type, implicitly typed local variables and lambda expressions.

    Read the article

  • JMX Based Monitoring - Part Four - Business App Server Monitoring

    - by Anthony Shorten
    In the last blog entry I talked about the Oracle Utilities Application Framework V4 feature for monitoring and managing aspects of the Web Application Server using JMX. In this blog entry I am going to discuss a similar new feature that allows JMX to be used for management and monitoring the Oracle Utilities business application server component. This feature is primarily focussed on performance tracking of the product. In first release of Oracle Utilities Customer Care And Billing (V1.x I am talking about), we used to use Oracle Tuxedo as part of the architecture. In Oracle Utilities Application Framework V2.0 and above, we removed Tuxedo from the architecture. One of the features that some customers used within Tuxedo was the performance tracking ability. The idea was that you enabled performance logging on the individual Tuxedo servers and then used a utility named txrpt to produce a performance report. This report would list every service called, the number of times it was called and the average response time. When I worked a performance consultant, I used this report to identify badly performing services and also gauge the overall performance characteristics of a site. When Tuxedo was removed from the architecture this information was also lost. While you can get some information from access.log and some Mbeans supplied by the Web Application Server it was not at the same granularity as txrpt or as useful. I am happy to say we have not only reintroduced this facility in Oracle Utilities Application Framework but it is now accessible via JMX and also we have added more detail into the performance tracking. Most of this new design was working with customers around the world to make sure we introduced a new feature that not only satisfied their performance tracking needs but allowed for finer grained performance analysis. As with the Web Application Server, the Business Application Server JMX monitoring is enabled by specifying a JMX port number in RMI Port number for JMX Business and initial credentials in the JMX Enablement System User ID and JMX Enablement System Password configuration options. These options are available using the configureEnv[.sh] -a utility. These credentials are shared across the Web Application Server and Business Application Server for authorization purposes. Once this is information is supplied a number of configuration files are built (by the initialSetup[.sh] utility) to configure the facility: spl.properties - contains the JMX URL, the security configuration and the mbeans that are enabled. For example, on my demonstration machine: spl.runtime.management.rmi.port=6750 spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi://localhost:6750/oracle/ouaf/ejbAppConnector jmx.remote.x.password.file=scripts/ouaf.jmx.password.file jmx.remote.x.access.file=scripts/ouaf.jmx.access.file ouaf.jmx.com.splwg.ejb.service.management.PerformanceStatistics=enabled ouaf.jmx.* files - contain the userid and password. The default configuration uses the JMX default configuration. You can use additional security features by altering the spl.properties file manually or using a custom template. For more security options see JMX Security for more details. Once it has been configured and the changes reflected in the product using the initialSetup[.sh] utility the JMX facility can be used. For illustrative purposes I will use jconsole but any JSR160 complaint browser or client can be used (with the appropriate configuration). Once you start jconsole (ensure that splenviron[.sh] is executed prior to execution to set the environment variables or for remote connection, ensure java is in your path and jconsole.jar in your classpath) you specify the URL in the spl.runtime.management.connnector.url.default entry. For example: You are then able to track performance of the product using the PerformanceStatistics Mbean. The attributes of the PerformanceStatistics Mbean are counts of each object type. This is where this facility differs from txrpt. The information that is collected includes the following: The Service Type is captured so you can filter the results in terms of the type of service. For maintenance type services you can even see the transaction type (ADD, CHANGE etc) so you can see the performance of updates against read transactions. The Minimum and Maximum are also collected to give you an idea of the spread of performance. The last call is recorded. The date, time and user of the last call are recorded to give you an idea of the timeliness of the data. The Mbean maintains a set of counters per Service Type to give you a summary of the types of transactions being executed. This gives you an overall picture of the types of transactions and volumes at your site. There are a number of interesting operations that can also be performed: reset - This resets the statistics back to zero. This is an important operation. For example, txrpt is restricted to collecting statistics per hour, which is ok for most people. But what if you wanted to be more granular? This operation allows to set the collection period to anything you wish. The statistics collected will represent values since the last restart or last reset. completeExecutionDump - This is the operation that produces a CSV in memory to allow extraction of the data. All the statistics are extracted (see the Server Administration Guide for a full list). This can be then loaded into a database, a tool or simply into your favourite spreadsheet for analysis. Here is an extract of an execution dump from my demonstration environment to give you an idea of the format: ServiceName, ServiceType, MinTime, MaxTime, Avg Time, # of Calls, Latest Time, Latest Date, Latest User ... CFLZLOUL, EXECUTE_LIST, 15.0, 64.0, 22.2, 10, 16.0, 2009-12-16::11-25-36-932, ASHORTEN CILBBLLP, READ, 106.0, 1184.0, 466.3333333333333, 6, 106.0, 2009-12-16::11-39-01-645, BOBAMA CILBBLLP, DELETE, 70.0, 146.0, 108.0, 2, 70.0, 2009-12-15::12-53-58-280, BPAYS CILBBLLP, ADD, 860.0, 4903.0, 2243.5, 8, 860.0, 2009-12-16::17-54-23-862, LELLISON CILBBLLP, CHANGE, 112.0, 3410.0, 815.1666666666666, 12, 112.0, 2009-12-16::11-40-01-103, ASHORTEN CILBCBAL, EXECUTE_LIST, 8.0, 84.0, 26.0, 22, 23.0, 2009-12-16::17-54-01-643, LJACKMAN InitializeUserInfoService, READ_SYSTEM, 49.0, 962.0, 70.83777777777777, 450, 63.0, 2010-02-25::11-21-21-667, ASHORTEN InitializeUserService, READ_SYSTEM, 130.0, 2835.0, 234.85777777777778, 450, 216.0, 2010-02-25::11-21-21-446, ASHORTEN MenuLoginService, READ_SYSTEM, 530.0, 1186.0, 703.3333333333334, 9, 530.0, 2009-12-16::16-39-31-172, ASHORTEN NavigationOptionDescriptionService, READ_SYSTEM, 2.0, 7.0, 4.0, 8, 2.0, 2009-12-21::09-46-46-892, ASHORTEN ... There are other operations and attributes available. Refer to the Server Administration Guide provided with your product to understand the full et of operations and attributes. This is one of the many features I am proud that we implemented as it allows flexible monitoring of the performance of the product.

    Read the article

< Previous Page | 277 278 279 280 281 282 283 284 285 286 287 288  | Next Page >