Boggling Direct3D9 dynamic vertex buffer Lock crash/post-lock failure on Intel GMA X3100.
- by nj
Hi,
For starters I'm a fairly seasoned graphics programmer but as wel all know, everyone makes mistakes. Unfortunately the codebase is a bit too large to start throwing sensible snippets here and re-creating the whole situation in an isolated CPP/codebase is too tall an order -- for which I am sorry, do not have the time. I'll do my best to explain.
B.t.w, I will of course supply specific pieces of code if someone wonders how I'm handling this-or-that!
As with all resources in the D3DPOOL_DEFAULT pool, when the device context is taken away from you you'll sooner or later will have to reset your resources. I've built a mechanism to handle this for all relevant resources that's been working for years; but that fact nothingwithstanding I've of course checked, asserted and doubted any assumption since this bug came to light.
What happens is as follows: I have a rather large dynamic vertex buffer, exact size 18874368 bytes. This buffer is locked (and discarded fully using the D3DLOCK_DISCARD flag) each frame prior to generating dynamic geometry (isosurface-related, f.y.i) to it. This works fine, until, of course, I start to reset. It might take 1 time, it might take 2 or it might take 5 resets to set off a bug that causes an access violation either on the pointer returned by the Lock() operation on the renewed resource or a plain crash -- regarding a somewhat similar address, but without the offset that it has tacked on to it in the first case because in that case we're somewhere halfway writing -- iside the D3D9 dll Lock() call.
I've tested this on other hardware, upgraded my GMA X3100 drivers (using a MacBook with BootCamp) to the latest ones, but I can't reproduce it on any other machine and I'm at a loss about what's wrong here. I have tried to reproduce a similar situation with a similar buffer (I've got a large scratch pad of the same type I filled with quads) and beyond a certain amount of bytes it started to behave likewise.
I'm not asking for a solution here but I'm very interested if there are other developers here who have battled with the same foe or maybe some who can point me in some insightful direction, maybe ask some questions that might shed a light on what I may or may not be overlooking.
Another interesting artifact is that the vertex buffer starts to bug if I supply both D3DLOCK_DISCARD and D3DLOCK_NOOVERWRITE together which, even though not very logical (you're not going to overwrite if you've just discarded all), gives graphics glitches.
Thanks and any corrections are more than welcome.
Niels
p.s - A friend of mine raised the valid point that it is a huge buffer for onboard video RAM and it's being at least double or triple buffered internally due to it's dynamic nature. On the other hand, the debug output (D3D9 debug DLL + max. warning output) remains silent.
p.s 2 - Had it tested on more machines and still works -- it's probably a matter of circumstance: the huge dynamic, internally double/trippled buffered buffer, not a lot of memory and drivers that don't complain when they should..
Unless someone has a better suggestion; I'd still love to hear it :)