Search Results

Search found 9103 results on 365 pages for 'tab groups'.

Page 284/365 | < Previous Page | 280 281 282 283 284 285 286 287 288 289 290 291  | Next Page >

  • Play/pause HTML 5 video using JQuery

    - by Barny83
    I am trying to control HTML5 videos using JQuery. I have two clips in a tabbed interface, there are six tabs in total, the others just have images. I am trying to make the video clips play when their tab is clicked and then stop when any of the others are clicked. This must be a simple thing to do but I cant seem to get it to work, the code I am using to play the video is: $('#playMovie1').click(function(){ $('#movie1').play(); }); I have read that the video element needs to be exposed in a function to be able to control it but can't find an example. I am able to make it work using JS: document.getElementById('movie1').play(); Any advice would be great. Thanks

    Read the article

  • ASP.Net aspx markup

    - by Batuta
    I am working on some old web forms application. When I changed from design to view source of the aspx page, the aspx markup becomes disarranged. For example, a label is written as follows: <asp:label id="Label20" style="Z-INDEX: 119; LEFT: 16px; POSITION: absolute; TOP: 424px" runat="server" Height="24px" Width="72px">Instructions:</asp:label> It suddenly becomes like this (when I toggle from design to source) <asp:label id="Label20" style="Z-INDEX: 119; LEFT: 16px; POSITION: absolute; TOP: 424px" runat="server" Height="24px" Width="72px">Instructions:</asp:label> Notice that the alignment and margins, tab stops are changed. Any idea how to prevent VS from doing this? Thanks.

    Read the article

  • Refreshing the asp.net web page after validation

    - by user279521
    Hi, I have an asp.net web page (C# 2008) where the user would enter an EmployeeID, and when they tab out of the textbox, they get a messagebox prompting them to select one of two values from a dropdown listbox. The code for the message prompt in the codebehind is : Response.Write("<script>window.alert('Please select Alpha or Beta')</script>"); After the prompt is displayed, and the user clicks "ok" and returns to the page, the text on the page appears distorted (the text in labels are a size larger, the labels get wrapped to another line etc) I tried putting a Response.Redirect("UserProfileMaint.aspx"); after the messagebox in the codebehind, but now, the messagebox does not appear; I want to display the messagebox validation, and ensure the appearance of the text on the page is not distorted. How can I do this?

    Read the article

  • How to set the background color of new activity after clicking tabs

    - by androidProgrammer
    Hi, I am switching activities on tab clicks and successful at this. But, in one of my Activity class I am doing the following: ` public void onCreate(Bundle savedInstanceState){ super.onCreate(savedInstanceState); setContentView(R.layout.main); } main.xml has the following: android:layout_width="fill_parent" android:layout_height="fill_parent" android:background="#BDBDBD" > I want to change the background of this layout only and I want tabs to their as it is. But with the currentandroid:layout_height="fill_parent"in main.xml my background is overwriting the tabs which means I am unable to see tabs. and If I makeandroid:layout_height="wrap_content"` I cannot see any change taking and tabs are still their. Please help.

    Read the article

  • [jQuery] Improving click/toggle function

    - by Nimbuz
    $('.tabs a ').click(function () { var a = $(this).attr('href'); if (a == '#tab-1') { $('.btn-buy').hide(); $('.btn-sell').show(); } else { $('.btn-sell').hide(); $('.btn-buy').show(); } return false; }); ... it works, but the code is ugly, too many lines. Can it be reduced any further? Thanks in advance for your help!

    Read the article

  • Ubuntu 10.10, taskbar

    - by Alex
    I launched system monitor to kill one program, which didn't responded on any mouse clicks, etc. But i occasionally killed another process. so, taskbar was killed. (it was in the bottom of the screen, in the top all is good) reboot didnt help o_O. Now I use Alt-Tab and alt-controll-arrows to switch between programs and desktops (it works). How to launch taskbar again? its very strange that reboot didnt help me.

    Read the article

  • Get div and the correct close tag preg

    - by Barkermn01
    hi all, Now preg has always been a tool to me that i like but i cant figure out for the life if me if what i want to do is possible let and how to do it is going over my head What i want is preg_match to be able to return me a div's innerHTML the problem is the div im tring to read has more divs in it and my preg keeps closing on the first tag it find Here is my Actual code $scrape_address = "http://isohunt.com/torrent_details/133831593/98e034bd6382e0f4ecaa9fe2b5eac01614edc3c6?tab=summary"; $ch = curl_init($scrape_address); curl_setopt ($ch, CURLOPT_RETURNTRANSFER, '1'); curl_setopt($ch, CURLOPT_HEADER, 0); curl_setopt($ch, CURLOPT_ENCODING, ""); $data = curl_exec($ch); preg_match('% <div id="torrent_details">(.*)</div> %six', $data, $match); print_r($match); This has been updated for TomcatExodus's help Live at :: http://megatorrentz.com/beta/details.php?hash=98e034bd6382e0f4ecaa9fe2b5eac01614edc3c6

    Read the article

  • JQuery input hidden bug

    - by Abude
    this is the code: Jsfiddle when you clear the url filed and leave it empty the input is hidden and disappear , need to return to the input tag wit h display if the value is empty by click or tab. i have a form with inputs the url input is edited by clicking on the link double click or click next to the link that means in the div area when it's done editing it converts the text to link the Problem: when you leave the input empty it make the attribute of the code and the input attribute hidden so no info is show neither can type an info. how can i make if that input with the id url0/url1 is empty to return to the input option to make it visible and can type?

    Read the article

  • Iphone Distribution error

    - by thinzar
    I am new in iPhone Distribution . I created Apple ID U765UXW88D.com.edwincs.*. and provisioning profile name is MobileHealthGuide. I made these in Distribution tab. My xcode version is 3.2.4 While uploading application with application loader , I got this error Application failed codesign verification. The signature was invalid, or it was not signed with an Apple submission certificate. My project name is MobileHealthGuide too. I have tried revoking the certificate and provisioning profile, but the error persists. How can I solve this problem?

    Read the article

  • Custom Header Menu in Android App (How To)

    - by masterkrang
    I'm trying to implement a custom header menu in my Android application and I'm wondering what the standard or best practice for creating a header menu. I'm thinking something like the facebook app that displays a log and has some action items like triggering a search and possibly return back to the main activity. Tab Layout doesn't seem to be what I'm looking for. I found a tutorial here that might be close to what I'm looking for but not sure. It seems a bit redundant to instantiate a menu in every Activity. Seems like there would be a way to decouple the Activity from the menu, or at least more loosely couple it. Perhaps I need to implement something with Fragments but I'm sort of new, so I'm not sure yet. Looking forward to your suggestions or hearing how you've implemented something like this. Thanks!

    Read the article

  • How do programs handle file "opened with..." them?

    - by hmind
    I am wondering if someone could point me in the right direction. You know how for example, in most IDEs, if you open a source file with "open with", it runs the program and opens it up? and then if you open another one, it opens it in a new tab in the same process? My question is NOT how to add a program to the shell commands, but rather: How would a C# application "receive" a PDF file for example? How would the application open the file in the same process when another file is run with it (not having to instances of the program)?

    Read the article

  • Why are cookies unrecognized when a link is clicked from an external source (i.e. Excel, Word, etc..

    - by Nick
    I noticed that when a link is clicked externally from the web browser, such as from Excel or Word, that my session cookie is initially unrecognized, even if the link opens up in a new tab of the same browser window. The browser ends up recognizing its cookie eventually, but I am puzzled as to why that initial link from Excel or Word doesn't work. To make it even more challenging, clicking a link works fine from Outlook. Does anybody know why this might be happening? I'm using the Zend Framework with PHP 5.3.

    Read the article

  • Problem setting up Master-Master Replication in MySQL

    - by Andrew
    I am attempting to setup Master-Master Replication on two MySQL database servers. I have followed the steps in this guide, but it fails in the middle of Step 4 with SHOW MASTER STATUS; It simply returns an empty set. I get the same 3 errors in both servers' logs. MySQL errors on SQL1: [ERROR] Failed to open the relay log './sql1-relay-bin.000001' (relay_log_pos 4) [ERROR] Could not find target log during relay log initialization [ERROR] Failed to initialize the master info structure MySQL Errors on SQL2: [ERROR] Failed to open the relay log './sql2-relay-bin.000001' (relay_log_pos 4) [ERROR] Could not find target log during relay log initialization [ERROR] Failed to initialize the master info structure The errors make no sense because I'm not referencing those files in any of my configurations. I'm using Ubuntu Server 10.04 x64 and my configuration files are copied below. I don't know where to go from here or how to troubleshoot this. Please help. Thanks. /etc/mysql/my.cnf on SQL1: # # The MySQL database server configuration file. # # You can copy this to one of: # - "/etc/mysql/my.cnf" to set global options, # - "~/.my.cnf" to set user-specific options. # # One can use all long options that the program supports. # Run program with --help to get a list of available options and with # --print-defaults to see which it would actually understand and use. # # For explanations see # http://dev.mysql.com/doc/mysql/en/server-system-variables.html # This will be passed to all mysql clients # It has been reported that passwords should be enclosed with ticks/quotes # escpecially if they contain "#" chars... # Remember to edit /etc/mysql/debian.cnf when changing the socket location. [client] port = 3306 socket = /var/run/mysqld/mysqld.sock # Here is entries for some specific programs # The following values assume you have at least 32M ram # This was formally known as [safe_mysqld]. Both versions are currently parsed. [mysqld_safe] socket = /var/run/mysqld/mysqld.sock nice = 0 [mysqld] # # * Basic Settings # # # * IMPORTANT # If you make changes to these settings and your system uses apparmor, you may # also need to also adjust /etc/apparmor.d/usr.sbin.mysqld. # user = mysql socket = /var/run/mysqld/mysqld.sock port = 3306 basedir = /usr datadir = /var/lib/mysql tmpdir = /tmp skip-external-locking # # Instead of skip-networking the default is now to listen only on # localhost which is more compatible and is not less secure. bind-address = <SQL1's IP> # # * Fine Tuning # key_buffer = 16M max_allowed_packet = 16M thread_stack = 192K thread_cache_size = 8 # This replaces the startup script and checks MyISAM tables if needed # the first time they are touched myisam-recover = BACKUP #max_connections = 100 #table_cache = 64 #thread_concurrency = 10 # # * Query Cache Configuration # query_cache_limit = 1M query_cache_size = 16M # # * Logging and Replication # # Both location gets rotated by the cronjob. # Be aware that this log type is a performance killer. # As of 5.1 you can enable the log at runtime! #general_log_file = /var/log/mysql/mysql.log #general_log = 1 log_error = /var/log/mysql/error.log # Here you can see queries with especially long duration #log_slow_queries = /var/log/mysql/mysql-slow.log #long_query_time = 2 #log-queries-not-using-indexes # # The following can be used as easy to replay backup logs or for replication. # note: if you are setting up a replication slave, see README.Debian about # other settings you may need to change. server-id = 1 replicate-same-server-id = 0 auto-increment-increment = 2 auto-increment-offset = 1 master-host = <SQL2's IP> master-user = slave_user master-password = "slave_password" master-connect-retry = 60 replicate-do-db = db1 log-bin= /var/log/mysql/mysql-bin.log binlog-do-db = db1 binlog-ignore-db = mysql relay-log = /var/lib/mysql/slave-relay.log relay-log-index = /var/lib/mysql/slave-relay-log.index expire_logs_days = 10 max_binlog_size = 500M # # * InnoDB # # InnoDB is enabled by default with a 10MB datafile in /var/lib/mysql/. # Read the manual for more InnoDB related options. There are many! # # * Security Features # # Read the manual, too, if you want chroot! # chroot = /var/lib/mysql/ # # For generating SSL certificates I recommend the OpenSSL GUI "tinyca". # # ssl-ca=/etc/mysql/cacert.pem # ssl-cert=/etc/mysql/server-cert.pem # ssl-key=/etc/mysql/server-key.pem [mysqldump] quick quote-names max_allowed_packet = 16M [mysql] #no-auto-rehash # faster start of mysql but no tab completition [isamchk] key_buffer = 16M # # * IMPORTANT: Additional settings that can override those from this file! # The files must end with '.cnf', otherwise they'll be ignored. # !includedir /etc/mysql/conf.d/ /etc/mysql/my.cnf on SQL2: # # The MySQL database server configuration file. # # You can copy this to one of: # - "/etc/mysql/my.cnf" to set global options, # - "~/.my.cnf" to set user-specific options. # # One can use all long options that the program supports. # Run program with --help to get a list of available options and with # --print-defaults to see which it would actually understand and use. # # For explanations see # http://dev.mysql.com/doc/mysql/en/server-system-variables.html # This will be passed to all mysql clients # It has been reported that passwords should be enclosed with ticks/quotes # escpecially if they contain "#" chars... # Remember to edit /etc/mysql/debian.cnf when changing the socket location. [client] port = 3306 socket = /var/run/mysqld/mysqld.sock # Here is entries for some specific programs # The following values assume you have at least 32M ram # This was formally known as [safe_mysqld]. Both versions are currently parsed. [mysqld_safe] socket = /var/run/mysqld/mysqld.sock nice = 0 [mysqld] # # * Basic Settings # # # * IMPORTANT # If you make changes to these settings and your system uses apparmor, you may # also need to also adjust /etc/apparmor.d/usr.sbin.mysqld. # user = mysql socket = /var/run/mysqld/mysqld.sock port = 3306 basedir = /usr datadir = /var/lib/mysql tmpdir = /tmp skip-external-locking # # Instead of skip-networking the default is now to listen only on # localhost which is more compatible and is not less secure. bind-address = <SQL2's IP> # # * Fine Tuning # key_buffer = 16M max_allowed_packet = 16M thread_stack = 192K thread_cache_size = 8 # This replaces the startup script and checks MyISAM tables if needed # the first time they are touched myisam-recover = BACKUP #max_connections = 100 #table_cache = 64 #thread_concurrency = 10 # # * Query Cache Configuration # query_cache_limit = 1M query_cache_size = 16M # # * Logging and Replication # # Both location gets rotated by the cronjob. # Be aware that this log type is a performance killer. # As of 5.1 you can enable the log at runtime! #general_log_file = /var/log/mysql/mysql.log #general_log = 1 log_error = /var/log/mysql/error.log # Here you can see queries with especially long duration #log_slow_queries = /var/log/mysql/mysql-slow.log #long_query_time = 2 #log-queries-not-using-indexes # # The following can be used as easy to replay backup logs or for replication. # note: if you are setting up a replication slave, see README.Debian about # other settings you may need to change. server-id = 2 replicate-same-server-id = 0 auto-increment-increment = 2 auto-increment-offset = 2 master-host = <SQL1's IP> master-user = slave_user master-password = "slave_password" master-connect-retry = 60 replicate-do-db = db1 log-bin= /var/log/mysql/mysql-bin.log binlog-do-db = db1 binlog-ignore-db = mysql relay-log = /var/lib/mysql/slave-relay.log relay-log-index = /var/lib/mysql/slave-relay-log.index expire_logs_days = 10 max_binlog_size = 500M # # * InnoDB # # InnoDB is enabled by default with a 10MB datafile in /var/lib/mysql/. # Read the manual for more InnoDB related options. There are many! # # * Security Features # # Read the manual, too, if you want chroot! # chroot = /var/lib/mysql/ # # For generating SSL certificates I recommend the OpenSSL GUI "tinyca". # # ssl-ca=/etc/mysql/cacert.pem # ssl-cert=/etc/mysql/server-cert.pem # ssl-key=/etc/mysql/server-key.pem [mysqldump] quick quote-names max_allowed_packet = 16M [mysql] #no-auto-rehash # faster start of mysql but no tab completition [isamchk] key_buffer = 16M # # * IMPORTANT: Additional settings that can override those from this file! # The files must end with '.cnf', otherwise they'll be ignored. # !includedir /etc/mysql/conf.d/

    Read the article

  • Rails 2 and Ngnix: https pages can't load css or js (but will load graphics)

    - by Max Williams
    ADMISSION: i've posted this same question on stackoverflow, before realising it's probabaly better suited to superuser, but it kind of depends on the answer: If it turns out to be a problem in my nginx config, it's definitely superuser. If it turns out to be a problem in my Rails config (or code) then it's arguably stackoverflow. I'm adding some https pages to my rails site. In order to test it locally, i'm running my site under one mongrel_rails instance (on 3000) and nginx. I've managed to get my nginx config to the point where i can actually go to the https pages, and they load. Except, the javascript and css files all fail to load: looking in the Network tab in chrome web tools, i can see that it is trying to load them via an https url. Eg, one of the non-working file urls is https://cmw-local.co.uk/stylesheets/cmw-logged-out.css?1383759216 I have these set up (or at least think i do) in my nginx config to redirect to the http versions of the static files. This seems to be working for graphics, but not for css and js files. If i click on this in the Network tab, it takes me to the above url, which redirects to the http version. So, the redirect seems to be working in some sense, but not when they're loaded by an https page. Like i say, i thought i had this covered in the second try_files directive in my config below, but maybe not. Can anyone see what i'm doing wrong? thanks, Max Here's my nginx config - sorry it's a bit lengthy! I think the error is likely to be in the first (ssl) server block: server { listen 443 ssl; keepalive_timeout 70; ssl_certificate /home/max/work/charanga/elearn_container/elearn/config/nginx/certs/max-local-server.crt; ssl_certificate_key /home/max/work/charanga/elearn_container/elearn/config/nginx/certs/max-local-server.key; ssl_session_cache shared:SSL:10m; ssl_session_timeout 10m; ssl_protocols SSLv3 TLSv1; ssl_ciphers RC4:HIGH:!aNULL:!MD5; ssl_prefer_server_ciphers on; server_name elearning.dev cmw-dev.co.uk cmw-dev.com cmw-nginx.co.uk cmw-local.co.uk; root /home/max/work/charanga/elearn_container/elearn; # ensure that we serve css, js, other statics when requested # as SSL, but if the files don't exist (i.e. any non /basket controller) # then redirect to the non-https version location / { try_files $uri @non-ssl-redirect; } # securely serve everything under /basket (/basket/checkout etc) # we need general too, because of the email/username checking location ~ ^/(basket|general|cmw/account/check_username_availability) { # make sure cached copies are revalidated once they're stale add_header Cache-Control "public, must-revalidate, proxy-revalidate"; # this serves Rails static files that exist without running # other rewrite tests try_files $uri @rails-ssl; expires 1h; } location @non-ssl-redirect { return 301 http://$host$request_uri; } location @rails-ssl { proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header Host $http_host; proxy_redirect off; proxy_read_timeout 180; proxy_next_upstream off; proxy_pass http://127.0.0.1:3000; expires 0d; } } #upstream elrs { # server 127.0.0.1:3000; #} server { listen 80; server_name elearning.dev cmw-dev.co.uk cmw-dev.com cmw-nginx.co.uk cmw-local.co.uk; root /home/max/work/charanga/elearn_container/elearn; access_log /home/max/work/charanga/elearn_container/elearn/log/access.log; error_log /home/max/work/charanga/elearn_container/elearn/log/error.log debug; client_max_body_size 50M; index index.html index.htm; # gzip html, css & javascript, but don't gzip javascript for pre-SP2 MSIE6 (i.e. those *without* SV1 in their user-agent string) gzip on; gzip_http_version 1.1; gzip_vary on; gzip_comp_level 6; gzip_proxied any; gzip_types text/plain text/css application/json application/x-javascript text/xml application/xml application/xml+rss text/javascript; #text/html # make sure gzip does not lose large gzipped js or css files # see http://blog.leetsoft.com/2007/7/25/nginx-gzip-ssl gzip_buffers 16 8k; # Disable gzip for certain browsers. #gzip_disable "MSIE [1-6].(?!.*SV1)"; gzip_disable "MSIE [1-6]"; # blank gif like it's 1995 location = /images/blank.gif { empty_gif; } # don't serve files beginning with dots location ~ /\. { access_log off; log_not_found off; deny all; } # we don't care if these are missing location = /robots.txt { log_not_found off; } location = /favicon.ico { log_not_found off; } location ~ affiliate.xml { log_not_found off; } location ~ copyright.xml { log_not_found off; } # convert urls with multiple slashes to a single / if ($request ~ /+ ) { rewrite ^(/)+(.*) /$2 break; } # X-Accel-Redirect # Don't tie up mongrels with serving the lesson zips or exes, let Nginx do it instead location /zips { internal; root /var/www/apps/e_learning_resource/shared/assets; } location /tmp { internal; root /; } location /mnt{ root /; } # resource library thumbnails should be served as usual location ~ ^/resource_library/.*/*thumbnail.jpg$ { if (!-f $request_filename) { rewrite ^(.*)$ /images/no-thumb.png break; } expires 1m; } # don't make Rails generate the dynamic routes to the dcr and swf, we'll do it here location ~ "lesson viewer.dcr" { rewrite ^(.*)$ "/assets/players/lesson viewer.dcr" break; } # we need this rule so we don't serve the older lessonviewer when the rule below is matched location = /assets/players/virgin_lesson_viewer/_cha5513/lessonViewer.swf { rewrite ^(.*)$ /assets/players/virgin_lesson_viewer/_cha5513/lessonViewer.swf break; } location ~ v6lessonViewer.swf { rewrite ^(.*)$ /assets/players/v6lessonViewer.swf break; } location ~ lessonViewer.swf { rewrite ^(.*)$ /assets/players/lessonViewer.swf break; } location ~ lgn111.dat { empty_gif; } # try to get autocomplete school names from memcache first, then # fallback to rails when we can't location /schools/autocomplete { set $memcached_key $uri?q=$arg_q; memcached_pass 127.0.0.1:11211; default_type text/html; error_page 404 =200 @rails; # 404 not really! Hand off to rails } location / { # make sure cached copies are revalidated once they're stale add_header Cache-Control "public, must-revalidate, proxy-revalidate"; # this serves Rails static files that exist without running other rewrite tests try_files $uri @rails; expires 1h; } location @rails { proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header Host $http_host; proxy_redirect off; proxy_read_timeout 180; proxy_next_upstream off; proxy_pass http://127.0.0.1:3000; expires 0d; } }

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Part 2&ndash;Load Testing In The Cloud

    - by Tarun Arora
    Welcome to Part 2, In Part 1 we discussed the advantages of creating a Test Rig in the cloud, the Azure edge and the Test Rig Topology we want to get to. In Part 2, Let’s start by understanding the components of Azure we’ll be making use of followed by manually putting them together to create the test rig, so… let’s get down dirty start setting up the Test Rig.  What Components of Azure will I be using for building the Test Rig in the Cloud? To run the Test Agents we’ll make use of Windows Azure Compute and to enable communication between Test Controller and Test Agents we’ll make use of Windows Azure Connect.  Azure Connect The Test Controller is on premise and the Test Agents are in the cloud (How will they talk?). To enable communication between the two, we’ll make use of Windows Azure Connect. With Windows Azure Connect, you can use a simple user interface to configure IPsec protected connections between computers or virtual machines (VMs) in your organization’s network, and roles running in Windows Azure. With this you can now join Windows Azure role instances to your domain, so that you can use your existing methods for domain authentication, name resolution, or other domain-wide maintenance actions. For more details refer to an overview of Windows Azure connect. A very useful video explaining everything you wanted to know about Windows Azure connect.  Azure Compute Windows Azure compute provides developers a platform to host and manage applications in Microsoft’s data centres across the globe. A Windows Azure application is built from one or more components called ‘roles.’ Roles come in three different types: Web role, Worker role, and Virtual Machine (VM) role, we’ll be using the Worker role to set up the Test Agents. A very nice blog post discussing the difference between the 3 role types. Developers are free to use the .NET framework or other software that runs on Windows with the Worker role or Web role. Developers can also create applications using languages such as PHP and Java. More on Windows Azure Compute. Each Windows Azure compute instance represents a virtual server... Virtual Machine Size CPU Cores Memory Cost Per Hour Extra Small Shared 768 MB $0.04 Small 1 1.75 GB $0.12 Medium 2 3.50 GB $0.24 Large 4 7.00 GB $0.48 Extra Large 8 14.00 GB $0.96   You might want to review the Windows Azure Pricing FAQ. Let’s Get Started building the Test Rig… Configuration Machine Role Comments VM – 1 Domain Controller for Playpit.com On Premise VM – 2 TFS, Test Controller On Premise VM – 3 Test Agent Cloud   In this blog post I would assume that you have the domain, Team Foundation Server and Test Controller Installed and set up already. If not, please refer to the TFS 2010 Installation Guide and this walkthrough on MSDN to set up your Test Controller. You can also download a preconfigured TFS 2010 VM from Brian Keller's blog, Brian also has some great hands on Labs on TFS 2010 that you may want to explore. I. Lets start building VM – 3: The Test Agent Download the Windows Azure SDK and Tools Open Visual Studio and create a new Windows Azure Project using the Cloud Template                   Choose the Worker Role for reasons explained in the earlier post         The WorkerRole.cs implements the Run() and OnStart() methods, no code changes required. You should be able to compile the project and run it in the compute emulator (The compute emulator should have been installed as part of the Windows Azure Toolkit) on your local machine.                   We will only be making changes to WindowsAzureProject, open ServiceDefinition.csdef. Ensure that the vmsize is small (remember the cost chart above). Import the “Connect” module. I am importing the Connect module because I need to join the Worker role VM to the Playpit domain. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect"/> </Imports> </WorkerRole> </ServiceDefinition> Go to the ServiceConfiguration.Cloud.cscfg and note that settings with key ‘Microsoft.WindowsAzure.Plugins.Connect.%%%%’ have been added to the configuration file. This is because you decided to import the connect module. See the config below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration>             Let’s go step by step and understand all the highlighted parameters and where you can find the values for them.       osFamily – By default this is set to 1 (Windows Server 2008 SP2). Change this to 2 if you want the Windows Server 2008 R2 operating system. The Advantage of using osFamily = “2” is that you get Powershell 2.0 rather than Powershell 1.0. In Powershell 2.0 you could simply use “powershell -ExecutionPolicy Unrestricted ./myscript.ps1” and it will work while in Powershell 1.0 you will have to change the registry key by including the following in your command file “reg add HKLM\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell /v ExecutionPolicy /d Unrestricted /f” before you can execute any power shell. The other reason you might want to move to os2 is if you wanted IIS 7.5.       Activation Token – To enable communication between the on premise machine and the Windows Azure Worker role VM both need to have the same token. Log on to Windows Azure Management Portal, click on Connect, click on Get Activation Token, this should give you the activation token, copy the activation token to the clipboard and paste it in the configuration file. Note – Later in the blog I’ll be showing you how to install connect on the on premise machine.                       EnableDomainJoin – Set the value to true, ofcourse we want to join the on windows azure worker role VM to the domain.       DomainFQDN, DomainControllerFQDN, DomainAccountName, DomainPassword, DomainOU, Administrators – This information is specific to your domain. I have extracted this information from the ‘service manager’ and ‘Active Directory Users and Computers’. Also, i created a new Domain-OU namely ‘CloudInstances’ so all my cloud instances joined to my domain show up here, this is optional. You can encrypt the DomainPassword – refer to the instructions here. Or hold fire, I’ll be covering that when i come to certificates and encryption in the coming section.       Now once you have filled all this information up, the configuration file should look something like below, <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration> Next we will be enabling the Remote Desktop module in to the ServiceDefinition.csdef, we could make changes manually or allow a beautiful wizard to help us make changes. I prefer the second option. So right click on the Windows Azure project and choose Publish       Now once you get the publish wizard, if you haven’t already you would be asked to import your Windows Azure subscription, this is simply the Msdn subscription activation key xml. Once you have done click Next to go to the Settings page and check ‘Enable Remote Desktop for all roles’.       As soon as you do that you get another pop up asking you the details for the user that you would be logging in with (make sure you enter a reasonable expiry date, you do not want the user account to expire today). Notice the more information tag at the bottom, click that to get access to the certificate section. See screen shot below.       From the drop down select the option to create a new certificate        In the pop up window enter the friendly name for your certificate. In my case I entered ‘WAC – Test Rig’ and click ok. This will create a new certificate for you. Click on the view button to see the certificate details. Do you see the Thumbprint, this is the value that will go in the config file (very important). Now click on the Copy to File button to copy the certificate, we will need to import the certificate to the windows Azure Management portal later. So, make sure you save it a safe location.                                Click Finish and enter details of the user you would like to create with permissions for remote desktop access, once you have entered the details on the ‘Remote desktop configuration’ screen click on Ok. From the Publish Windows Azure Wizard screen press Cancel. Cancel because we don’t want to publish the role just yet and Yes because we want to save all the changes in the config file.       Now if you go to the ServiceDefinition.csdef file you will see that the RemoteAccess and RemoteForwarder roles have been imported for you. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect" /> <Import moduleName="RemoteAccess" /> <Import moduleName="RemoteForwarder" /> </Imports> </WorkerRole> </ServiceDefinition> Now go to the ServiceConfiguration.Cloud.cscfg file and you see a whole bunch for setting “Microsoft.WindowsAzure.Plugins.RemoteAccess.%%%” values added for you. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" value="Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" value="MIIBnQYJKoZIhvcNAQcDoIIBjjCCAYoCAQAxggFOMIIBSgIBADAyMB4xHDAaBgNVBAMME1dpbmRvd 3MgQXp1cmUgVG9vbHMCEGa+B46voeO5T305N7TSG9QwDQYJKoZIhvcNAQEBBQAEggEABg4ol5Xol66Ip6QKLbAPWdmD4ae ADZ7aKj6fg4D+ATr0DXBllZHG5Umwf+84Sj2nsPeCyrg3ZDQuxrfhSbdnJwuChKV6ukXdGjX0hlowJu/4dfH4jTJC7sBWS AKaEFU7CxvqYEAL1Hf9VPL5fW6HZVmq1z+qmm4ecGKSTOJ20Fptb463wcXgR8CWGa+1w9xqJ7UmmfGeGeCHQ4QGW0IDSBU6ccg vzF2ug8/FY60K1vrWaCYOhKkxD3YBs8U9X/kOB0yQm2Git0d5tFlIPCBT2AC57bgsAYncXfHvPesI0qs7VZyghk8LVa9g5IqaM Cp6cQ7rmY/dLsKBMkDcdBHuCTAzBgkqhkiG9w0BBwEwFAYIKoZIhvcNAwcECDRVifSXbA43gBApNrp40L1VTVZ1iGag+3O1" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" value="2012-11-27T23:59:59.0000000+00:00" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteForwarder.Enabled" value="true" /> </ConfigurationSettings> <Certificates> <Certificate name="Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" thumbprint="AA23016CF0BDFC344400B5B82706B608B92E4217" thumbprintAlgorithm="sha1" /> </Certificates> </Role> </ServiceConfiguration>          Okay let’s look at them one at a time,       Enabled - Yes, we would like to enable Remote Access.       AccountUserName – This is the user name you entered while you were on the publish windows azure role screen, as detailed above.       AccountEncrytedPassword – Try and decode that, the certificate is used to encrypt the password you specified for the user account. Remember earlier i said, either use the instructions or wait and i’ll be showing you encryption, now the user account i am using for rdp has the same password as my domain password, so i can simply copy the value of the AccountEncryptedPassword to the DomainPassword as well.       AccountExpiration – This is the expiration as you specified in the wizard earlier, make sure your account does not expire today.       Remote Forwarder – Check out the documentation, below is how I understand it, -- One role in an application that implements a remote desktop connection must import the RemoteForwarder module. The two modules work together to enable the remote desktop connections to role instances. -- If you have multiple roles defined in the service model, it does not matter which role you add the RemoteForwarder module to, but you must add it to only one of the role definitions.       Certificate – Remember the certificate thumbprint from the wizard, the on premise machine and windows azure role machine that need to speak to each other must have the same thumbprint. More on that when we install Windows Azure connect Endpoints on the on premise machine. As i said earlier, in this blog post, I’ll be showing you the manual process so i won’t be scripting any star up tasks to install the test agent or register the test agent with the TFS Server. I’ll be showing you all this cool stuff in the next blog post, that’s because it’s important to understand the manual side of it, it becomes easier for you to troubleshoot in case something fails. Having said that, the changes we have made are sufficient to spin up the Windows Azure Worker Role aka Test Agent VM, have it connected with the play.pit.com domain and have remote access enabled on it. Before we deploy the Test Agent VM we need to set up Windows Azure Connect on the TFS Server. II. Windows Azure Connect: Setting up Connect on VM – 2 i.e. TFS & Test Controller Glad you made it so far, now to enable communication between the on premise TFS/Test Controller and Azure-ed Test Agent we need to enable communication. We have set up the Azure connect module in the Test Agent configuration, now the connect end points need to be enabled on the on premise machines, let’s have a look at how we can do this. Log on to VM – 2 running the TFS Server and Test Controller Log on to the Windows Azure Management Portal and click on Virtual Network Click on Virtual Network, if you already have a subscription you should see the below screen shot, if not, you would be asked to complete the subscription first        Click on Install Local Endpoints from the top left on the panel and you get a url appended with a token id in it, remember the token i showed you earlier, in theory the token you get here should match the token you added to the Test Agent config file.        Copy the url to the clip board and paste it in IE explorer (important, the installation at present only works out of IE and you need to have cookies enabled in order to complete the installation). As stated in the pop up, you can NOT download and run the software later, you need to run it as is, since it contains a token. Once the installation completes you should see the Windows Azure connect icon in the system tray.                         Right click the Azure Connect icon, choose Diagnostics and refer to this link for diagnostic detail terminology. NOTE – Unfortunately I could not see the Windows Azure connect icon in the system tray, a bit of binging with Google revealed that the azure connect icon is only shown when the ‘Windows Azure Connect Endpoint’ Service is started. So go to services.msc and make sure that the service is started, if not start it, unfortunately again, the service did not start for me on a manual start and i realised that one of the dependant services was disabled, you can look at the service dependencies and start them and then start windows azure connect. Bottom line, you need to start Windows Azure connect service before you can proceed. Please refer here on MSDN for more on Troubleshooting Windows Azure connect. (Follow the next step as well)   Now go back to the Windows Azure Management Portal and from Groups and Roles create a new group, lets call it ‘Test Rig’. Make sure you add the VM – 2 (the TFS Server VM where you just installed the endpoint).       Now if you go back to the Azure Connect icon in the system tray and click ‘Refresh Policy’ you will notice that the disconnected status of the icon should change to ready for connection. III. Importing Certificate in to Windows Azure Management Portal But before that you need to import the certificate you created in Step I in to the Windows Azure Management Portal. Log on to the Windows Azure Management Portal and click on ‘Hosted Services, Storage Accounts & CDN’ and then ‘Management Certificates’ followed by Add Certificates as shown in the screen shot below        Browse to the location where you saved the certificate earlier, remember… Refer to Step I in case you forgot.        Now you should be able to see the imported certificate here, make sure the thumbprint of the certificate matches the one you inserted in the config files        IV. Publish Windows Azure Worker Role aka Test Agent Having completed I, II and III, you are ready to publish the Test Agent VM – 3 to the cloud. Go to Visual Studio and right click the Windows Azure project and select Publish. Verify the infomration in the wizard, from the advanced settings tab, you can also enabled capture of intellitrace or profiling information.         Click Next and Click Publish! From the view menu bar select the Windows Azure Activity Log window.       Now you should be able to see the deployment progress in real time.             In the Windows Azure Management Portal, you should also be able to see the progress of creation of a new Worker Role.       Once the deployment is complete you should be able to RDP (go to run prompt type mstsc and in the pop up the machine name) in to the Test Agent Worker Role VM from the Playpit network using the domain admin user account. In case you are unable to log in to the Test Agent using the domain admin user account it means the process of joining the Test Agent to the domain has failed! But the good news is, because you imported the connect module, you can connect to the Test Agent machine using Windows Azure Management Portal and troubleshoot the reason for failure, you will be able to log in with the user name and password you specified in the config file for the keys ‘RemoteAccess.AccountUsername, RemoteAccess.EncryptedPassword (just that enter the password unencrypted)’, fix it or manually join the machine to the domain. Once you have managed to Join the Test Agent VM to the Domain move to the next step.      So, log in to the Test Agent Worker Role VM with the Playpit Domain Administrator and verify that you can log in, the machine is connected to the domain and the connect service is successfully running. If yes, give your self a pat on the back, you are 80% mission accomplished!         Go to the Windows Azure Management Portal and click on Virtual Network, click on Groups and Roles and click on Test Rig, click Edit Group, the edit the Test Rig group you created earlier. In the Connect to section, click on Add to select the worker role you have just deployed. Also, check the ‘Allow connections between endpoints in the group’ with this you will enable to communication between test controller and test agents and test agents/test agents. Click Save.      Now, you are ready to deploy the Test Agent software on the Worker Role Test Agent VM and configure it to work with the Test Controller. V. Configuring VM – 3: Installing Test Agent and Associating Test Agent to Controller Log in to the Worker Role Test Agent VM that you have just successfully deployed, make sure you log in with the domain administrator account. Download the All Agents software from MSDN, ‘en_visual_studio_agents_2010_x86_x64_dvd_509679.iso’, extract the iso and navigate to where you have extracted the iso. In my case, i have extracted the iso to “C:\Resources\Temp\VsAgentSetup”. Open the Test Agent folder and double click on setup.exe. Once you have installed the Test Agent you should reach the configuration window. If you face any issues installing TFS Test Agent on the VM, refer to the walkthrough on MSDN.       Once you have successfully installed the Test Agent software you will need to configure the test agent. Right click the test agent configuration tool and run as a different user. i.e. an Administrator. This is really to run the configuration wizard with elevated privileges (you might have UAC block something's otherwise).        In the run options, you can select ‘service’ you do not need to run the agent as interactive un less you are running coded UI tests. I have specified the domain administrator to connect to the TFS Test Controller. In real life, i would never do that, i would create a separate test user service account for this purpose. But for the blog post, we are using the most powerful user so that any policies or restrictions don’t block you.        Click the Apply Settings button and you should be all green! If not, the summary usually gives helpful error messages that you can resolve and proceed. As per my experience, you may run in to either a permission or a firewall blocking communication issue.        And now the moment of truth! Go to VM –2 open up Visual Studio and from the Test Menu select Manage Test Controller       Mission Accomplished! You should be able to see the Test Agent that you have just configured here,         VI. Creating and Running Load Tests on your brand new Azure-ed Test Rig I have various blog posts on Performance Testing with Visual Studio Ultimate, you can follow the links and videos below, Blog Posts: - Part 1 – Performance Testing using Visual Studio 2010 Ultimate - Part 2 – Performance Testing using Visual Studio 2010 Ultimate - Part 3 – Performance Testing using Visual Studio 2010 Ultimate Videos: - Test Tools Configuration & Settings in Visual Studio - Why & How to Record Web Performance Tests in Visual Studio Ultimate - Goal Driven Load Testing using Visual Studio Ultimate Now that you have created your load tests, there is one last change you need to make before you can run the tests on your Azure Test Rig, create a new Test settings file, and change the Test Execution method to ‘Remote Execution’ and select the test controller you have configured the Worker Role Test Agent against in our case VM – 2 So, go on, fire off a test run and see the results of the test being executed on the Azur-ed Test Rig. Review and What’s next? A quick recap of the benefits of running the Test Rig in the cloud and what i will be covering in the next blog post AND I would love to hear your feedback! Advantages Utilizing the power of Azure compute to run a heavy virtual user load. Benefiting from the Azure flexibility, destroy Test Agents when not in use, takes < 25 minutes to spin up a new Test Agent. Most important test Network Latency, (network latency and speed of connection are two different things – usually network latency is very hard to test), by placing the Test Agents in Microsoft Data centres around the globe, one can actually test the lag in transferring the bytes not because of a slow connection but because the page has been requested from the other side of the globe. Next Steps The process of spinning up the Test Agents in windows Azure is not 100% automated. I am working on the Worker process and power shell scripts to make the role deployment, unattended install of test agent software and registration of the test agent to the test controller automated. In the next blog post I will show you how to make the complete process unattended and automated. Remember to subscribe to http://feeds.feedburner.com/TarunArora. Hope you enjoyed this post, I would love to hear your feedback! If you have any recommendations on things that I should consider or any questions or feedback, feel free to leave a comment. See you in Part III.   Share this post : CodeProject

    Read the article

  • Integrating JavaScript Unit Tests with Visual Studio

    - by Stephen Walther
    Modern ASP.NET web applications take full advantage of client-side JavaScript to provide better interactivity and responsiveness. If you are building an ASP.NET application in the right way, you quickly end up with lots and lots of JavaScript code. When writing server code, you should be writing unit tests. One big advantage of unit tests is that they provide you with a safety net that enable you to safely modify your existing code – for example, fix bugs, add new features, and make performance enhancements -- without breaking your existing code. Every time you modify your code, you can execute your unit tests to verify that you have not broken anything. For the same reason that you should write unit tests for your server code, you should write unit tests for your client code. JavaScript is just as susceptible to bugs as C#. There is no shortage of unit testing frameworks for JavaScript. Each of the major JavaScript libraries has its own unit testing framework. For example, jQuery has QUnit, Prototype has UnitTestJS, YUI has YUI Test, and Dojo has Dojo Objective Harness (DOH). The challenge is integrating a JavaScript unit testing framework with Visual Studio. Visual Studio and Visual Studio ALM provide fantastic support for server-side unit tests. You can easily view the results of running your unit tests in the Visual Studio Test Results window. You can set up a check-in policy which requires that all unit tests pass before your source code can be committed to the source code repository. In addition, you can set up Team Build to execute your unit tests automatically. Unfortunately, Visual Studio does not provide “out-of-the-box” support for JavaScript unit tests. MS Test, the unit testing framework included in Visual Studio, does not support JavaScript unit tests. As soon as you leave the server world, you are left on your own. The goal of this blog entry is to describe one approach to integrating JavaScript unit tests with MS Test so that you can execute your JavaScript unit tests side-by-side with your C# unit tests. The goal is to enable you to execute JavaScript unit tests in exactly the same way as server-side unit tests. You can download the source code described by this project by scrolling to the end of this blog entry. Rejected Approach: Browser Launchers One popular approach to executing JavaScript unit tests is to use a browser as a test-driver. When you use a browser as a test-driver, you open up a browser window to execute and view the results of executing your JavaScript unit tests. For example, QUnit – the unit testing framework for jQuery – takes this approach. The following HTML page illustrates how you can use QUnit to create a unit test for a function named addNumbers(). <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <head> <title>Using QUnit</title> <link rel="stylesheet" href="http://github.com/jquery/qunit/raw/master/qunit/qunit.css" type="text/css" /> </head> <body> <h1 id="qunit-header">QUnit example</h1> <h2 id="qunit-banner"></h2> <div id="qunit-testrunner-toolbar"></div> <h2 id="qunit-userAgent"></h2> <ol id="qunit-tests"></ol> <div id="qunit-fixture">test markup, will be hidden</div> <script type="text/javascript" src="http://code.jquery.com/jquery-latest.js"></script> <script type="text/javascript" src="http://github.com/jquery/qunit/raw/master/qunit/qunit.js"></script> <script type="text/javascript"> // The function to test function addNumbers(a, b) { return a+b; } // The unit test test("Test of addNumbers", function () { equals(4, addNumbers(1,3), "1+3 should be 4"); }); </script> </body> </html> This test verifies that calling addNumbers(1,3) returns the expected value 4. When you open this page in a browser, you can see that this test does, in fact, pass. The idea is that you can quickly refresh this QUnit HTML JavaScript test driver page in your browser whenever you modify your JavaScript code. In other words, you can keep a browser window open and keep refreshing it over and over while you are developing your application. That way, you can know very quickly whenever you have broken your JavaScript code. While easy to setup, there are several big disadvantages to this approach to executing JavaScript unit tests: You must view your JavaScript unit test results in a different location than your server unit test results. The JavaScript unit test results appear in the browser and the server unit test results appear in the Visual Studio Test Results window. Because all of your unit test results don’t appear in a single location, you are more likely to introduce bugs into your code without noticing it. Because your unit tests are not integrated with Visual Studio – in particular, MS Test -- you cannot easily include your JavaScript unit tests when setting up check-in policies or when performing automated builds with Team Build. A more sophisticated approach to using a browser as a test-driver is to automate the web browser. Instead of launching the browser and loading the test code yourself, you use a framework to automate this process. There are several different testing frameworks that support this approach: · Selenium – Selenium is a very powerful framework for automating browser tests. You can create your tests by recording a Firefox session or by writing the test driver code in server code such as C#. You can learn more about Selenium at http://seleniumhq.org/. LTAF – The ASP.NET team uses the Lightweight Test Automation Framework to test JavaScript code in the ASP.NET framework. You can learn more about LTAF by visiting the project home at CodePlex: http://aspnet.codeplex.com/releases/view/35501 jsTestDriver – This framework uses Java to automate the browser. jsTestDriver creates a server which can be used to automate multiple browsers simultaneously. This project is located at http://code.google.com/p/js-test-driver/ TestSwam – This framework, created by John Resig, uses PHP to automate the browser. Like jsTestDriver, the framework creates a test server. You can open multiple browsers that are automated by the test server. Learn more about TestSwarm by visiting the following address: https://github.com/jeresig/testswarm/wiki Yeti – This is the framework introduced by Yahoo for automating browser tests. Yeti uses server-side JavaScript and depends on Node.js. Learn more about Yeti at http://www.yuiblog.com/blog/2010/08/25/introducing-yeti-the-yui-easy-testing-interface/ All of these frameworks are great for integration tests – however, they are not the best frameworks to use for unit tests. In one way or another, all of these frameworks depend on executing tests within the context of a “living and breathing” browser. If you create an ASP.NET Unit Test then Visual Studio will launch a web server before executing the unit test. Why is launching a web server so bad? It is not the worst thing in the world. However, it does introduce dependencies that prevent your code from being tested in isolation. One of the defining features of a unit test -- versus an integration test – is that a unit test tests code in isolation. Another problem with launching a web server when performing unit tests is that launching a web server can be slow. If you cannot execute your unit tests quickly, you are less likely to execute your unit tests each and every time you make a code change. You are much more likely to fall into the pit of failure. Launching a browser when performing a JavaScript unit test has all of the same disadvantages as launching a web server when performing an ASP.NET unit test. Instead of testing a unit of JavaScript code in isolation, you are testing JavaScript code within the context of a particular browser. Using the frameworks listed above for integration tests makes perfect sense. However, I want to consider a different approach for creating unit tests for JavaScript code. Using Server-Side JavaScript for JavaScript Unit Tests A completely different approach to executing JavaScript unit tests is to perform the tests outside of any browser. If you really want to test JavaScript then you should test JavaScript and leave the browser out of the testing process. There are several ways that you can execute JavaScript on the server outside the context of any browser: Rhino – Rhino is an implementation of JavaScript written in Java. The Rhino project is maintained by the Mozilla project. Learn more about Rhino at http://www.mozilla.org/rhino/ V8 – V8 is the open-source Google JavaScript engine written in C++. This is the JavaScript engine used by the Chrome web browser. You can download V8 and embed it in your project by visiting http://code.google.com/p/v8/ JScript – JScript is the JavaScript Script Engine used by Internet Explorer (up to but not including Internet Explorer 9), Windows Script Host, and Active Server Pages. Internet Explorer is still the most popular web browser. Therefore, I decided to focus on using the JScript Script Engine to execute JavaScript unit tests. Using the Microsoft Script Control There are two basic ways that you can pass JavaScript to the JScript Script Engine and execute the code: use the Microsoft Windows Script Interfaces or use the Microsoft Script Control. The difficult and proper way to execute JavaScript using the JScript Script Engine is to use the Microsoft Windows Script Interfaces. You can learn more about the Script Interfaces by visiting http://msdn.microsoft.com/en-us/library/t9d4xf28(VS.85).aspx The main disadvantage of using the Script Interfaces is that they are difficult to use from .NET. There is a great series of articles on using the Script Interfaces from C# located at http://www.drdobbs.com/184406028. I picked the easier alternative and used the Microsoft Script Control. The Microsoft Script Control is an ActiveX control that provides a higher level abstraction over the Window Script Interfaces. You can download the Microsoft Script Control from here: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=d7e31492-2595-49e6-8c02-1426fec693ac After you download the Microsoft Script Control, you need to add a reference to it to your project. Select the Visual Studio menu option Project, Add Reference to open the Add Reference dialog. Select the COM tab and add the Microsoft Script Control 1.0. Using the Script Control is easy. You call the Script Control AddCode() method to add JavaScript code to the Script Engine. Next, you call the Script Control Run() method to run a particular JavaScript function. The reference documentation for the Microsoft Script Control is located at the MSDN website: http://msdn.microsoft.com/en-us/library/aa227633%28v=vs.60%29.aspx Creating the JavaScript Code to Test To keep things simple, let’s imagine that you want to test the following JavaScript function named addNumbers() which simply adds two numbers together: MvcApplication1\Scripts\Math.js function addNumbers(a, b) { return 5; } Notice that the addNumbers() method always returns the value 5. Right-now, it will not pass a good unit test. Create this file and save it in your project with the name Math.js in your MVC project’s Scripts folder (Save the file in your actual MVC application and not your MVC test application). Creating the JavaScript Test Helper Class To make it easier to use the Microsoft Script Control in unit tests, we can create a helper class. This class contains two methods: LoadFile() – Loads a JavaScript file. Use this method to load the JavaScript file being tested or the JavaScript file containing the unit tests. ExecuteTest() – Executes the JavaScript code. Use this method to execute a JavaScript unit test. Here’s the code for the JavaScriptTestHelper class: JavaScriptTestHelper.cs   using System; using System.IO; using Microsoft.VisualStudio.TestTools.UnitTesting; using MSScriptControl; namespace MvcApplication1.Tests { public class JavaScriptTestHelper : IDisposable { private ScriptControl _sc; private TestContext _context; /// <summary> /// You need to use this helper with Unit Tests and not /// Basic Unit Tests because you need a Test Context /// </summary> /// <param name="testContext">Unit Test Test Context</param> public JavaScriptTestHelper(TestContext testContext) { if (testContext == null) { throw new ArgumentNullException("TestContext"); } _context = testContext; _sc = new ScriptControl(); _sc.Language = "JScript"; _sc.AllowUI = false; } /// <summary> /// Load the contents of a JavaScript file into the /// Script Engine. /// </summary> /// <param name="path">Path to JavaScript file</param> public void LoadFile(string path) { var fileContents = File.ReadAllText(path); _sc.AddCode(fileContents); } /// <summary> /// Pass the path of the test that you want to execute. /// </summary> /// <param name="testMethodName">JavaScript function name</param> public void ExecuteTest(string testMethodName) { dynamic result = null; try { result = _sc.Run(testMethodName, new object[] { }); } catch { var error = ((IScriptControl)_sc).Error; if (error != null) { var description = error.Description; var line = error.Line; var column = error.Column; var text = error.Text; var source = error.Source; if (_context != null) { var details = String.Format("{0} \r\nLine: {1} Column: {2}", source, line, column); _context.WriteLine(details); } } throw new AssertFailedException(error.Description); } } public void Dispose() { _sc = null; } } }     Notice that the JavaScriptTestHelper class requires a Test Context to be instantiated. For this reason, you can use the JavaScriptTestHelper only with a Visual Studio Unit Test and not a Basic Unit Test (These are two different types of Visual Studio project items). Add the JavaScriptTestHelper file to your MVC test application (for example, MvcApplication1.Tests). Creating the JavaScript Unit Test Next, we need to create the JavaScript unit test function that we will use to test the addNumbers() function. Create a folder in your MVC test project named JavaScriptTests and add the following JavaScript file to this folder: MvcApplication1.Tests\JavaScriptTests\MathTest.js /// <reference path="JavaScriptUnitTestFramework.js"/> function testAddNumbers() { // Act var result = addNumbers(1, 3); // Assert assert.areEqual(4, result, "addNumbers did not return right value!"); }   The testAddNumbers() function takes advantage of another JavaScript library named JavaScriptUnitTestFramework.js. This library contains all of the code necessary to make assertions. Add the following JavaScriptnitTestFramework.js to the same folder as the MathTest.js file: MvcApplication1.Tests\JavaScriptTests\JavaScriptUnitTestFramework.js var assert = { areEqual: function (expected, actual, message) { if (expected !== actual) { throw new Error("Expected value " + expected + " is not equal to " + actual + ". " + message); } } }; There is only one type of assertion supported by this file: the areEqual() assertion. Most likely, you would want to add additional types of assertions to this file to make it easier to write your JavaScript unit tests. Deploying the JavaScript Test Files This step is non-intuitive. When you use Visual Studio to run unit tests, Visual Studio creates a new folder and executes a copy of the files in your project. After you run your unit tests, your Visual Studio Solution will contain a new folder named TestResults that includes a subfolder for each test run. You need to configure Visual Studio to deploy your JavaScript files to the test run folder or Visual Studio won’t be able to find your JavaScript files when you execute your unit tests. You will get an error that looks something like this when you attempt to execute your unit tests: You can configure Visual Studio to deploy your JavaScript files by adding a Test Settings file to your Visual Studio Solution. It is important to understand that you need to add this file to your Visual Studio Solution and not a particular Visual Studio project. Right-click your Solution in the Solution Explorer window and select the menu option Add, New Item. Select the Test Settings item and click the Add button. After you create a Test Settings file for your solution, you can indicate that you want a particular folder to be deployed whenever you perform a test run. Select the menu option Test, Edit Test Settings to edit your test configuration file. Select the Deployment tab and select your MVC test project’s JavaScriptTest folder to deploy. Click the Apply button and the Close button to save the changes and close the dialog. Creating the Visual Studio Unit Test The very last step is to create the Visual Studio unit test (the MS Test unit test). Add a new unit test to your MVC test project by selecting the menu option Add New Item and selecting the Unit Test project item (Do not select the Basic Unit Test project item): The difference between a Basic Unit Test and a Unit Test is that a Unit Test includes a Test Context. We need this Test Context to use the JavaScriptTestHelper class that we created earlier. Enter the following test method for the new unit test: [TestMethod] public void TestAddNumbers() { var jsHelper = new JavaScriptTestHelper(this.TestContext); // Load JavaScript files jsHelper.LoadFile("JavaScriptUnitTestFramework.js"); jsHelper.LoadFile(@"..\..\..\MvcApplication1\Scripts\Math.js"); jsHelper.LoadFile("MathTest.js"); // Execute JavaScript Test jsHelper.ExecuteTest("testAddNumbers"); } This code uses the JavaScriptTestHelper to load three files: JavaScripUnitTestFramework.js – Contains the assert functions. Math.js – Contains the addNumbers() function from your MVC application which is being tested. MathTest.js – Contains the JavaScript unit test function. Next, the test method calls the JavaScriptTestHelper ExecuteTest() method to execute the testAddNumbers() JavaScript function. Running the Visual Studio JavaScript Unit Test After you complete all of the steps described above, you can execute the JavaScript unit test just like any other unit test. You can use the keyboard combination CTRL-R, CTRL-A to run all of the tests in the current Visual Studio Solution. Alternatively, you can use the buttons in the Visual Studio toolbar to run the tests: (Unfortunately, the Run All Impacted Tests button won’t work correctly because Visual Studio won’t detect that your JavaScript code has changed. Therefore, you should use either the Run Tests in Current Context or Run All Tests in Solution options instead.) The results of running the JavaScript tests appear side-by-side with the results of running the server tests in the Test Results window. For example, if you Run All Tests in Solution then you will get the following results: Notice that the TestAddNumbers() JavaScript test has failed. That is good because our addNumbers() function is hard-coded to always return the value 5. If you double-click the failing JavaScript test, you can view additional details such as the JavaScript error message and the line number of the JavaScript code that failed: Summary The goal of this blog entry was to explain an approach to creating JavaScript unit tests that can be easily integrated with Visual Studio and Visual Studio ALM. I described how you can use the Microsoft Script Control to execute JavaScript on the server. By taking advantage of the Microsoft Script Control, we were able to execute our JavaScript unit tests side-by-side with all of our other unit tests and view the results in the standard Visual Studio Test Results window. You can download the code discussed in this blog entry from here: http://StephenWalther.com/downloads/Blog/JavaScriptUnitTesting/JavaScriptUnitTests.zip Before running this code, you need to first install the Microsoft Script Control which you can download from here: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=d7e31492-2595-49e6-8c02-1426fec693ac

    Read the article

  • SQL SERVER – World Shapefile Download and Upload to Database – Spatial Database

    - by pinaldave
    During my recent, training I was asked by a student if I know a place where he can download spatial files for all the countries around the world, as well as if there is a way to upload shape files to a database. Here is a quick tutorial for it. VDS Technologies has all the spatial files for every location for free. You can download the spatial file from here. If you cannot find the spatial file you are looking for, please leave a comment here, and I will send you the necessary details. Unzip the file to a folder and it will have the following content. Then, download Shape2SQL tool from SharpGIS. This is one of the best tools available to convert shapefiles to SQL tables. Afterwards, run the .exe file. When the file is run for the first time, it will ask for the database properties. Provide your database details. Select the appropriate shape files and the tool will fill up the essential details automatically. If you do not want to create the index on the column, uncheck the box beside it. The screenshot below is simply explains the procedure. You also have to be careful regarding your data, whether that is GEOMETRY or GEOGRAPHY. In this example,  it is GEOMETRY data. Click “Upload to Database”. It will show you the uploading process. Once the shape file is uploaded, close the application and open SQL Server Management Studio (SSMS). Run the following code in SSMS Query Editor. USE Spatial GO SELECT * FROM dbo.world GO This will show the complete map of world after you click on Spatial Results in Spatial Tab. In Spatial Results Set, the Zoom feature is available. From the Select label column, choose the country name in order to show the country name overlaying the country borders. Let me know if this tutorial is helpful enough. I am planning to write a few more posts about this later. Note: Please note that the images displayed here do not reflect the original political boundaries. These data are pretty old and can probably draw incorrect maps as well. I have personally spotted several parts of the map where some countries are located a little bit inaccurately. Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Add-On, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Spatial, SQL Tips and Tricks, SQL Utility, T SQL, Technology

    Read the article

  • Visual Studio 2010 SP1 Beta supports IIS Express

    - by DigiMortal
    Visual Studio 2010 SP1 Beta and ASP.NET MVC 3 RC2 were both announced today. I made a little test on one of my web applications to see how Visual Studio 2010 works with IIS Express. In this posting I will show you how to make your ASP.NET MVC 3 application work with IIS Express. Installing new stuff You can install IIS Express using Web Platform Installer. It is not part of WebMatrix anymore and you can just install IIS Express without WebMatrix. NB! You have to install IIS Express using Web Platform installer because IIS Express is not installed by SP1. After installing Visual Studio 2010 SP1 Beta on my machine (it took a long-long-long time to install) I installed also ASP.NET MVC 3 RC2. If you have Async CTP installed on your machine you have to uninstall it to get ASP.NET MVC 3 RC2 installed and run without problems. Screenshot on right shows what kinf of horrors my old laptop had to survive to get all new stuff installer. Setting IIS Express as server for web application Now, when you right-click on some web project you should see new menu item in context menu – Use IIS Express…. If you click on it you are asked for confirmation and if you say Yes then your web application is reconfigured to use IIS Express. After configuration you will see dialog box like this. And you are done. You can run your application now. Running web application When you run your application it is run on IIS Express. You can see IIS Express icon on taskbar and when you click it you can open IIS Express settings. If you closed your application in browser you can open it again from IIS Express icon. Modifying IIS Express settings for web application You can modify IIS Express settings for your application. Just open your project properties and move to Web tab. IIS and IIS Express are using same settings. The difference is if you make check to Use IIS Express checkbox or not. Switching back to Visual Studio Development Server If you don’t want or you can’t use IIS Express for some reason you can easily switch back to Visual Studio Development Server. Just right-click on your web application project and select Use Visual Studio Development Server from context menu. Conclusion IIS Express is more independent than full version of IIS and it can be also installed and run on machines where are very strict rules (some corporate and academic environments by example). IIS Express was previously part of WebMatrix package but now it is separate product and Visual Studio 2010 has very nice support for it thanks to SP1. You can easily make your web applications use IIS Express and if you want to switch back to development server it is also very easy.

    Read the article

  • Enhance GIMP’s Image Editing Power with Gimp Paint Studio

    - by Asian Angel
    Does your GIMP installation need a little super-charging? Using Gimp Paint Studio you can add a wonderful set of brushes, tools, and more to GIMP and take your work up to the next level. For our example we chose to install the beta version of Gimp Paint Studio on Ubuntu 10.10. Once you download the .zip file and unzip it, all that you need to do is manually transfer the contents shown here to the appropriate GIMP folders on your system. You can see the location of the destination folders here on our system… Note: Make certain to make a back-up copy of the “sessionrc and toolrc files” before you transfer Gimp Paint Studio into your installation (in case you would like to or need to revert back to the originals later). When you finish transferring the files start GIMP up and get ready to have fun. And if your experience is like ours then you should see a noticeable difference in window size and arrangement from the default settings. Here are some samples of the exceptional artwork done by Ramon Miranda and Mozart Couto using Gimp Paint Studio. Really impressive! Artwork by Ramon Miranda & Mozart Couto. Watch the introduction video and see Gimp Paint Studio in action. Download Gimp Paint Studio for Linux, Windows, and Mac [Gimp Paint Studio Homepage] *Keep in mind that there are stable and beta releases available, so choose the version that you are most comfortable with using. View the Installation Guides for Gimp Paint Studio *Page contains wonderful “video and written” versions for adding/installing Gimp Paint Studio to your system. Gimp Paint Studio Video Tutorials Library Visit the Gimp Paint Studio Gallery Latest Features How-To Geek ETC Should You Delete Windows 7 Service Pack Backup Files to Save Space? What Can Super Mario Teach Us About Graphics Technology? Windows 7 Service Pack 1 is Released: But Should You Install It? How To Make Hundreds of Complex Photo Edits in Seconds With Photoshop Actions How to Enable User-Specific Wireless Networks in Windows 7 How to Use Google Chrome as Your Default PDF Reader (the Easy Way) Enhance GIMP’s Image Editing Power with Gimp Paint Studio Reclaim Vertical UI Space by Moving Your Tabs to the Side in Firefox Wind and Water: Puzzle Battles – An Awesome Game for Linux and Windows How Star Wars Changed the World [Infographic] Tabs Visual Manager Adds Thumbnailed Tab Switching to Chrome Daisies and Rye Swaying in the Summer Wind Wallpaper

    Read the article

  • Tulsa SharePoint Interest Group - How SharePoint 2010 Business Connectivity Services could change yo

    - by dmccollough
    Bio: Corey Roth is a consultant at Stonebridge specializing in SharePoint solutions in the Oil & Gas Industry. He has ten plus years of experience delivering solutions in the energy, travel, advertising and consumer electronics verticals. Corey has always focused on rapid adoption of new Microsoft technologies including Visual Studio 2010, SharePoint 2010, .NET Framework 4.0, LINQ, and SilverLight. He also contributed greatly to the beta phases of Visual Studio 2005. For his contributions, he was awarded the Microsoft Award for Customer Excellence (ACE). Corey is a graduate of Oklahoma State University. Corey is a member of the .NET Mafia (www.dotnetmafia.com) where he blogs about the latest technology and SharePoint. Abstract: How SharePoint 2010 Business Connectivity Services could change your life - The New BDC How many hours have your wasted building simple ASP.NET applications to do nothing more than simple CRUD operations against a database.  Many tools have made this easier, but now it's so easy, you'll be up and running in minutes.  This session will show you hot easy it is to get started integrating external data from your line of business systems in SharePoint 2010.  You will learn how to register an external content type using SharePoint Designer based upon a database table or web service and then build an external list.  With external lists, you will see how you can perform CRUD operations on your line of business directly from SharePoint without ever having to do manual configuration in XML files.  Finally, we will walk through how to create custom edit forms for your list using InfoPath 2010. Agenda: 6pm - 6:30 Pizza and Mingle - Sponsored by TekSystems 6:30 - 6:45 Announcements 6:45 - 7:45 Presentation! 7:45 - 8:00 Drawings and Door Prizes Location: TCC (Tulsa Community College) Northeast Campus 3727 East Apache Tulsa, OK 74115 918-594-8000 Campus Map | Live | Yahoo | Google | MapQuest Door Prizes: We will be giving away one of each of these: XBox 360 - Halo 3 ODST Telerik Premium Collection ($1300.00 value) ReSharper ($199.00 value) SQLSets ($149.00 value) 64 bit Windows 7 Introducing Windows 7 for Developers Developing Service-Oriented AJAX Applications on the Microsoft Platform Sponsors: Thanks to our sponsors: TekSystems - Thanks for purchasing the Pizza for our meetings. ISOCentric - Thanks for providing us hosting for the groups web site. Tulsa Community College - Thanks for providing us a place to have our meetings. NEVRON - Thanks for providing us prizes to give away. INETA.org - For allowing us to be a Charter Member and providing awesome Speakers! PERPETUUM Software - Thanks for providing us prizes to give away. Telerik - Thanks for providing us prizes to give away. GrapeCity - Thanks for providing us prizes to give away. SQLSets - Thanks for providing us prizes to give away. K2 - Thanks for providing us prizes to give away. Microsoft - For providing us with a lot of support and product giveaways! Orielly books - For providing us with books and discounts. Wrox books - For providing us with books and discounts. Have any special requests? Let us know at this link: http://tinyurl.com/lg5o38. RSVP for this month's meeting by responding to this thread: http://tinyurl.com/yafkzel . (Must be logged in to the site) Be SURE to RSVP no later than Noon on April 12th and you will get an extra entry for the prize drawings! So, do it now, before you forget and miss out! Show up for the first time or bring a new buddy and you both get TWO extra entries!

    Read the article

  • Deploy ASP.NET Web Applications with Web Deployment Projects

    - by Ben Griswold
    One may quickly build and deploy an ASP.NET web application via the Publish option in Visual Studio.  This option works great for most simple deployment scenarios but it won’t always cut it.  Let’s say you need to automate your deployments. Or you have environment-specific configuration settings. Or you need to execute pre/post build operations when you do your builds.  If so, you should consider using Web Deployment Projects. The Web Deployment Project type doesn’t come out-of-the-box with Visual Studio 2008.  You’ll need to Download Visual Studio® 2008 Web Deployment Projects – RTW and install if you want to follow along with this tutorial. I’ve created a shiny new ASP.NET MVC project.  Web Deployment Projects work with websites, web applications and MVC projects so feel free to go with any web project type you’d like.  Once your web application is in place, it’s time to add the Web Deployment project.  You can hunt and peck around the File > New > New Project… dialogue as long as you’d like, but you aren’t going to find what you need.  Instead, select the web project and then choose the “Add Web Deployment Project…” hiding behind the Build menu option. I prefer to name my projects based on the environment in which I plan to deploy.  In this case, I’ll be rolling to the QA machine. Don’t expect too much to happen at this point.  A seemingly empty project with a funny icon will be added to your solution.  That’s it. I want to take a minute and talk about configuration settings before we continue.  Some of the common settings which might change from environment to environment are appSettings, connectionStrings and mailSettings.  Here’s a look at my updated web.config: <appSettings>   <add key="MvcApplication293.Url" value="http://localhost:50596/" />     </appSettings> <connectionStrings>   <add name="ApplicationServices"        connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;AttachDBFilename=|DataDirectory|aspnetdb.mdf;User Instance=true"        providerName="System.Data.SqlClient"/> </connectionStrings>   <system.net>   <mailSettings>     <smtp from="[email protected]">         <network host="server.com" userName="username" password="password" port="587" defaultCredentials="false"/>     </smtp>   </mailSettings> </system.net> I want to update these values prior to deploying to the QA environment.  There are variations to this approach, but I like to maintain environment-specific settings for each of the web.config sections in the Config/[Environment] project folders.  I’ve provided a screenshot of the QA environment settings below. It may be obvious what one should include in each of the three files.  Basically, it is a copy of the associated web.config section with updated setting values.  For example, the AppSettings.config file may include a reference to the QA web url, the DB.config would include the QA database server and login information and the StmpSettings.config would include a QA Stmp server and user information. <?xml version="1.0" encoding="utf-8" ?> <appSettings>   <add key="MvcApplication293.Url" value="http://qa.MvcApplicatinon293.com/" /> </appSettings> AppSettings.config  <?xml version="1.0" encoding="utf-8" ?> <connectionStrings>   <add name="ApplicationServices"        connectionString="server=QAServer;integrated security=SSPI;database=MvcApplication293"        providerName="System.Data.SqlClient"/>   </connectionStrings> Db.config  <?xml version="1.0" encoding="utf-8" ?> <smtp from="[email protected]">     <network host="qaserver.com" userName="qausername" password="qapassword" port="587" defaultCredentials="false"/> </smtp> SmtpSettings.config  I think our web project is ready to deploy.  Now, it’s time to concentrate on the Web Deployment Project itself.  Right-click on the project file and open the Property Pages. The first thing to call out is the Configuration dropdown.  I only deploy a project which is built in Release Mode so I only setup the Web Deployment Project for this mode.  (This is when you change the Configuration selection to “Release.”)  I typically keep the Output Folder default value – .\Release\.  When the application is built, all artifacts will be dropped in the .\Release\ folder relative to the Web Deployment Project root.  The final option may be up for some debate.  I like to roll out updatable websites so I select the “Allow this precompiled site to be updatable” option.  I really do like to follow standard SDLC processes when I release my software but there are those times when you just have to make a hotfix to production and I like to keep this option open if need be.  If you are strongly opposed to this idea, please, by all means, don’t check the box. The next tab is boring.  I don’t like to deploy a crazy number of DLLs so I merge all outputs to a single assembly.  Again, you may have another option and feel free to change this selection if you so wish. If you follow my lead, take care when choosing a single assembly name.  The Assembly Name can not be the same as the website or any other project in your solution otherwise you’ll receive a circular reference build error.  In other words, I can’t name the assembly MvcApplication293 or my output window would start yelling at me. Remember when we called out our QA configuration files?  Click on the Deployment tab and you’ll see how where going to use them.  Notice the Web.config file section replacements value.  All this does is swap called out web.config sections with the content of the Config\QA\* files.  You can reduce or extend this list as you deem fit.  Did you see the “Use external configuration source file” option?  You know how you can point any of your web.config sections to an external file via the configSource attribute?  This option allows you to leverage that technique and instead of replacing the content of the sections, you will replace the configSource attribute value instead. <appSettings configSource="Config\QA\AppSettings.config" /> Go ahead and Apply your changes.  I’d like to take a look at the project file we just updated.  Right-click on the Web Deployment Project and select “Open Project File.” One of the first configuration blocks reflects core Release build settings.  There are a couple of points I’d like to call out here: DebugSymbols=false ensures the compilation debug attribute in your web.config is flipped to false as part of build process.  There’s some crumby (more likely old) documentation which implies you need a ToggleDebugCompilation task to make this happen.  Nope. Just make sure the DebugSymbols is set to false.  EnableUpdateable implies a single dll for the web application rather than a dll for each object and and empty view file. I think updatable applications are cleaner and include the benefit (or risk based on your perspective) that portions of the application can be updated directly on the server.  I called this out earlier but I wanted to reiterate. <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|AnyCPU' ">     <DebugSymbols>false</DebugSymbols>     <OutputPath>.\Release</OutputPath>     <EnableUpdateable>true</EnableUpdateable>     <UseMerge>true</UseMerge>     <SingleAssemblyName>MvcApplication293</SingleAssemblyName>     <DeleteAppCodeCompiledFiles>true</DeleteAppCodeCompiledFiles>     <UseWebConfigReplacement>true</UseWebConfigReplacement>     <ValidateWebConfigReplacement>true</ValidateWebConfigReplacement>     <DeleteAppDataFolder>true</DeleteAppDataFolder>   </PropertyGroup> The next section is self-explanatory.  The content merely reflects the replacement value you provided via the Property Pages. <ItemGroup Condition="'$(Configuration)|$(Platform)' == 'Release|AnyCPU'">     <WebConfigReplacementFiles Include="Config\QA\AppSettings.config">       <Section>appSettings</Section>     </WebConfigReplacementFiles>     <WebConfigReplacementFiles Include="Config\QA\Db.config">       <Section>connectionStrings</Section>     </WebConfigReplacementFiles>     <WebConfigReplacementFiles Include="Config\QA\SmtpSettings.config">       <Section>system.net/mailSettings/smtp</Section>     </WebConfigReplacementFiles>   </ItemGroup> You’ll want to extend the ItemGroup section to include the files you wish to exclude from the build.  The sample ExcludeFromBuild nodes exclude all obj, svn, csproj, user, pdb artifacts from the build. Enough though they files aren’t included in your web project, you’ll need to exclude them or they’ll show up along with required deployment artifacts.  <ItemGroup Condition="'$(Configuration)|$(Platform)' == 'Release|AnyCPU'">     <WebConfigReplacementFiles Include="Config\QA\AppSettings.config">       <Section>appSettings</Section>     </WebConfigReplacementFiles>     <WebConfigReplacementFiles Include="Config\QA\Db.config">       <Section>connectionStrings</Section>     </WebConfigReplacementFiles>     <WebConfigReplacementFiles Include="Config\QA\SmtpSettings.config">       <Section>system.net/mailSettings/smtp</Section>     </WebConfigReplacementFiles>     <ExcludeFromBuild Include="$(SourceWebPhysicalPath)\obj\**\*.*" />     <ExcludeFromBuild Include="$(SourceWebPhysicalPath)\**\.svn\**\*.*" />     <ExcludeFromBuild Include="$(SourceWebPhysicalPath)\**\.svn\**\*" />     <ExcludeFromBuild Include="$(SourceWebPhysicalPath)\**\*.csproj" />     <ExcludeFromBuild Include="$(SourceWebPhysicalPath)\**\*.user" />     <ExcludeFromBuild Include="$(SourceWebPhysicalPath)\bin\*.pdb" />     <ExcludeFromBuild Include="$(SourceWebPhysicalPath)\Notes.txt" />   </ItemGroup> Pre/post build and Pre/post merge tasks are added to the final code block.  By default, your project file should look like the following – a completely commented out section. <!– To modify your build process, add your task inside one of        the targets below and uncomment it. Other similar extension        points exist, see Microsoft.WebDeployment.targets.   <Target Name="BeforeBuild">   </Target>   <Target Name="BeforeMerge">   </Target>   <Target Name="AfterMerge">   </Target>   <Target Name="AfterBuild">   </Target>   –> Update the section to remove all temporary Config folders and files after the build.  <!– To modify your build process, add your task inside one of        the targets below and uncomment it. Other similar extension        points exist, see Microsoft.WebDeployment.targets.     <Target Name="BeforeMerge">   </Target>   <Target Name="AfterMerge">   </Target>     <Target Name="BeforeBuild">      </Target>       –>   <Target Name="AfterBuild">     <!– WebConfigReplacement requires the Config files. Remove after build. –>     <RemoveDir Directories="$(OutputPath)\Config" />   </Target> That’s it for setup.  Save the project file, flip the solution to Release Mode and build.  If there’s an issue, consult the Output window for details.  If all went well, you will find your deployment artifacts in your Web Deployment Project folder like so. Both the code source and published application will be there. Inside the Release folder you will find your “published files” and you’ll notice the Config folder is no where to be found.  In the Source folder, all project files are found with the exception of the items which were excluded from the build. I’ll wrap up this tutorial by calling out a little Web Deployment pet peeve of mine: there doesn’t appear to be a way to add an existing web deployment project to a solution.  The best I can come up with is create a new web deployment project and then copy and paste the contents of the existing project file into the new project file.  It’s not a big deal but it bugs me. Download the Solution

    Read the article

  • Naming PowerPoint Components With A VSTO Add-In

    - by Tim Murphy
    Note: Cross posted from Coding The Document. Permalink Sometimes in order to work with Open XML we need a little help from other tools.  In this post I am going to describe  a fairly simple solution for marking up PowerPoint presentations so that they can be used as templates and processed using the Open XML SDK. Add-ins are tools which it can be hard to find information on.  I am going to up the obscurity by adding a Ribbon button.  For my example I am using Visual Studio 2008 and creating a PowerPoint 2007 Add-in project.  To that add a Ribbon Visual Designer.  The new ribbon by default will show up on the Add-in tab. Add a button to the ribbon.  Also add a WinForm to collect a new name for the object selected.  Make sure to set the OK button’s DialogResult to OK. In the ribbon button click event add the following code. ObjectNameForm dialog = new ObjectNameForm(); Selection selection = Globals.ThisAddIn.Application.ActiveWindow.Selection;   dialog.objectName = selection.ShapeRange.Name;   if (dialog.ShowDialog() == DialogResult.OK) { selection.ShapeRange.Name = dialog.objectName; } This code will first read the current Name attribute of the Shape object.  If the user clicks OK on the dialog it save the string value back to the same place. Once it is done you can retrieve identify the control through Open XML via the NonVisualDisplayProperties objects.  The only problem is that this object is a child of several different classes.  This means that there isn’t just one way to retrieve the value.  Below are a couple of pieces of code to identify the container that you have named. The first example is if you are naming placeholders in a layout slide. foreach(var slideMasterPart in slideMasterParts) { var layoutParts = slideMasterPart.SlideLayoutParts; foreach(SlideLayoutPart slideLayoutPart in layoutParts) { foreach (assmPresentation.Shape shape in slideLayoutPart.SlideLayout.CommonSlideData.ShapeTree.Descendants<assmPresentation.Shape>()) { var slideMasterProperties = from p in shape.Descendants<assmPresentation.NonVisualDrawingProperties>() where p.Name == TokenText.Text select p;   if (slideMasterProperties.Count() > 0) tokenFound = true; } } } The second example allows you to find charts that you have named with the add-in. foreach(var slidePart in slideParts) { foreach(assmPresentation.Shape slideShape in slidePart.Slide.CommonSlideData.ShapeTree.Descendants<assmPresentation.Shape>()) { var slideProperties = from g in slidePart.Slide.Descendants<GraphicFrame>() where g.NonVisualGraphicFrameProperties.NonVisualDrawingProperties.Name == TokenText.Text select g;   if(slideProperties.Count() > 0) { tokenFound = true; } } } Together the combination of Open XML and VSTO add-ins make a powerful combination in creating a process for maintaining a template and generating documents from the template.

    Read the article

  • Visual Studio 2010 Zooming – Keyboard Commands, Global Zoom

    - by Jon Galloway
    One of my favorite features in Visual Studio 2010 is zoom. It first caught my attention as a useful tool for screencasts and presentations, but after getting used to it I’m finding that it’s really useful when I’m developing – letting me zoom out to see the big picture, then zoom in to concentrate on a few lines of code. Zooming without the scroll wheel The common way you’ll see this feature demonstrated is with the mouse wheel – you hold down the control key and scroll up or down to change font size. However, I’m often using this on my laptop, which doesn’t have a mouse wheel. It turns out that there are other ways to control zooming in Visual Studio 2010. Keyboard commands You can use Control+Shift+Comma to zoom out and Control+Shift+Period to zoom in. I find it’s easier to remember these by the greater-than / less-than signs, so it’s really Control+> to zoom in and Control+< to zoom out. Like most Visual Studio commands, you can change those the keyboard buttons. In the tools menu, select Options / Keyboard, then either scroll down the list to the three View.Zoom commands or filter by typing View.Zoom into the “Show commands containing” textbox. The Scroll Dropdown If you forget the keyboard commands and you don’t have a scroll wheel, there’s a zoom menu in the text editor. I’m mostly pointing it out because I’ve been using Visual Studio 2010 for months and never noticed it until this week. It’s down in the lower left corner. Keeping Zoom In Sync Across All Tabs Zoom setting is per-tab, which is a problem if you’re cranking up your font sizes for a presentation. Fortunately there’s a great new Visual Studio Extension called Presentation Zoom. It’s a nice, simple extension that just does one thing – updates all your editor windows to keep the zoom setting in sync. It’s written by Chris Granger, a Visual Studio Program Manager, in case you’re worried about installing random extensions. See it in action Of course, if you’ve got Visual Studio 2010 installed, you’ve hopefully already been zooming like mad as you read this. If not, you can watch a 2 minute video by the Visual Studio showing it off.

    Read the article

  • [MINI HOW-TO] Change the Default Color Scheme in Office 2010

    - by Mysticgeek
    Like in Office 2007 the default color scheme for 2010 is blue. If you are not a fan of it, here we show you how to change it to silver or black. In this example we are using Microsoft Word, but it works the same way in Excel, Outlook, and PowerPoint as well. Once you change the color scheme in one Office application, it will change it for all of the other apps in the suite. Change Color Scheme To change the color scheme click on the File tab to access Backstage View and click on Options. In Word Options the General section should open by default…use the dropdown menu next to Color Scheme to change it to Silver, Blue, or Black then click OK. Here is what Black looks like…who knows why Microsoft decided to leave the blue around the edges. This is the default Blue color scheme… And finally we take a look at the Silver color scheme in Excel… That is all there is to it! It would be nice if they would incorporate other color schemes to Office 2010, as some of you may not be happy with only three choices. If you’re using Office 2007 check out our article on how to change the color scheme in it. Also, The Geek has a cool article on how to set the Color Scheme of Office 2007 with a quick registry hack. Similar Articles Productive Geek Tips Set the Office 2007 Color Scheme With a Quick Registry HackChange The Default Color Scheme In Office 2007Maximize Space by "Auto-Hiding" the Ribbon in Office 2007How To Personalize the Windows Command PromptOrganize & Group Your Tabs in Firefox the Easy Way TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 2010 World Cup Schedule Boot Snooze – Reboot and then Standby or Hibernate Customize Everything Related to Dates, Times, Currency and Measurement in Windows 7 Google Earth replacement Icon (Icons we like) Build Great Charts in Excel with Chart Advisor tinysong gives a shortened URL for you to post on Twitter (or anywhere)

    Read the article

< Previous Page | 280 281 282 283 284 285 286 287 288 289 290 291  | Next Page >