Search Results

Search found 19412 results on 777 pages for 'multiple resultsets'.

Page 285/777 | < Previous Page | 281 282 283 284 285 286 287 288 289 290 291 292  | Next Page >

  • Database design and performance impact

    - by Craige
    I have a database design issue that I'm not quite sure how to approach, nor if the benefits out weigh the costs. I'm hoping some P.SE members can give some feedback on my suggested design, as well as any similar experiences they may have came across. As it goes, I am building an application that has large reporting demands. Speed is an important issue, as there will be peak usages throughout the year. This application/database has a multiple-level, many-to-many relationship. eg object a object b object c object d object b has relationship to object a object c has relationship to object b, a object d has relationship to object c, b, a Theoretically, this could go on for unlimited levels, though logic dictates it could only go so far. My idea here, to speed up reporting, would be to create a syndicate table that acts as a global many-to-many join table. In this table (with the given example), one might see: +----------+-----------+---------+ | child_id | parent_id | type_id | +----------+-----------+---------+ | b | a | 1 | | c | b | 2 | | c | a | 3 | | d | c | 4 | | d | b | 5 | | d | a | 6 | +----------+-----------+---------+ Where a, b, c and d would translate to their respective ID's in their respective tables. So, for ease of reporting all of a which exist on object d, one could query SELECT * FROM `syndicates` ... JOINS TO child and parent tables ... WHERE parent_id=a and type_id=6; rather than having a query with a join to each level up the chain. The Problem This table grows exponentially, and in a given year, could easily grow past 20,000 records for one client. Given multiple clients over multiple years, this table will VERY quickly explode to millions of records and beyond. Now, the database will, in time, be partitioned across multiple servers, but I would like (as most would) to keep the number of servers as low as possible while still offering flexibility. Also writes and updates would be exponentially longer (though possibly not noticeable to the end user) as there would be multiple inserts/updates/scans on this table to keep it in sync. Am I going in the right direction here, or am I way off track. What would you do in a similar situation? This solution seems overly complex, but allows the greatest flexibility and fastest read-operations. Sidenote 1 - This structure allows me to add new levels to the tree easily. Sidenote 2 - The database querying for this database is done through an ORM framework.

    Read the article

  • Cloud Infrastructure has a new standard

    - by macoracle
    I have been working for more than two years now in the DMTF working group tasked with creating a Cloud Management standard. That work has culminated in the release today of the Cloud Infrastructure Management Interface (CIMI) version 1.0 by the DMTF. CIMI is a single interface that a cloud consumer can use to manage their cloud infrastructure in multiple clouds. As CIMI is adopted by the cloud vendors, no more will you need to adapt client code to each of the proprietary interfaces from these multiple vendors. Unlike a de facto standard where typically one vendor has change control over the interface, and everyone else has to reverse engineer the inner workings of it, CIMI is a de jure standard that is under change control of a standards body. One reason the standard took two years to create is that we factored in use cases, requirements and contributed APIs from multiple vendors. These vendors have products shipping today and as a result CIMI has a strong foundation in real world experience. What does CIMI allow? CIMI is both a model for the resources (computing, storage networking) in the cloud as well as a RESTful protocol binding to HTTP. This means that to create a Machine (guest VM) for example, the client creates a “document” that represents the Machine resource and sends it to the server using HTTP. CIMI allows the resources to be encoded in either JavaScript Object Notation (JSON) or the eXentsible Markup Language (XML). CIMI provides a model for the resources that can be mapped to any existing cloud infrastructure offering on the market. There are some features in CIMI that may not be supported by every cloud, but CIMI also supports the discovery of which features are implemented. This means that you can still have a client that works across multiple clouds and is able to take full advantage of the features in each of them. Isn’t it too early for a standard? A key feature of a successful standard is that it allows for compatible extensions to occur within the core framework of the interface itself. CIMI’s feature discovery (through metadata) is used to convey to the client that additional features that may be vendor specific have been implemented. As multiple vendors implement such features, they become candidates to add the future versions of CIMI. Thus innovation can continue in the cloud space without being slowed down by a lowest common denominator type of specification. Since CIMI was developed in the open by dozens of stakeholders who are already implementing infrastructure clouds, I expect to CIMI being adopted by these same companies and others over the next year or two. Cloud Customers who can see the benefit of this standard should start to ask their cloud vendors to show a CIMI implementation in their roadmap.  For more information on CIMI and the DMTF's other cloud efforts, go to: http://dmtf.org/cloud

    Read the article

  • How to get the height of an iframe with javascript from inside the iframe? What about pages with multiple iframes?

    - by VKen
    Hi all, Is there a way to detect the height and width of an iframe, by executing a script from inside the iframe? I need to dynamically position some elements in the iframe according to the different height/width of the iframe. Would there be any difference if there are multiple iframes in the same page? i.e. each iframe wants to find its own dimensions. Javascript or jquery solutions welcomed. Thanks! <iframe src='http://example.com' width='640' height='480' scrolling='no' frameborder='0' longdesc='http://example.com'></iframe>

    Read the article

  • SDL2 sprite batching and texture atlases

    - by jms
    I have been programming a 2D game in C++, using the SDL2 graphics API for rendering. My game concept currently features effects that could result in even tens of thousands of sprites being drawn simultaneously to the screen. I'd like to know what can be done for increasing rendering efficiency if the need arises, preferably using the SDL2 API only. I have previously given a quick look at OpenGL-based 2D rendering, and noticed that SDL2 lacks a command like int SDL_RenderCopyMulti(SDL_Renderer* renderer, SDL_Texture* texture, const SDL_Rect* srcrects, SDL_Rect* dstrects, int count) Which would permit SDL to benefit from two common techniques used for efficient 2D graphics: Texture batching: Sorting sprites by the texture used, and then simultaneously rendering as many sprites that use the same texture as possible, changing only the source area on the texture and the destination area on the render target between sprites. This allows the encapsulation of the whole operation in a single GPU command, reducing the overhead drastically from multiple distinct calls. Texture atlases: Instead of creating one texture for each frame of each animation of each sprite, combining multiple animations and even multiple sprites into a single large texture. This lessens the impact of changing the current texture when switching between sprites, as the correct texture is often ready to be used from the previous draw call. Furthemore the GPU is optimized for handling large textures, in contrast to the many tiny textures typically used for sprites. My question: Would SDL2 still get somewhat faster from any rudimentary sprite sorting or from combining multiple images into one texture thanks to automatic video driver optimizations? If I will encounter performance issues related to 2D rendering in the future, will I be forced to switch to OpenGL for lower level control over the GPU? Edit: Are there any plans to include such functionality in the near future?

    Read the article

  • PHP-FPM and APC for shared hosting?

    - by Tiffany Walker
    We are looking into finding a way to get APC to only create one cache per account / site. This can be done with Fastcgi (last update 2006…) but with Fastcgid APC will have to create multiple caches for multiple processes run by the same account. To get around this problem, we have been looking into PHP-FPM PHP process manager allows multiple PHP processes to share a single APC cache. But from what I have read (I hope I'm wrong) , even if you create a pool per process, all sites accross all pools will share the same APC cache. This brings us back to the same problem as with shared Memcached: it's not secure ! On php-fpm's site I read that you can chroot php-fpm pools and define a specific UID and GID per pool… if this is the case then shouldn't APC have to use this user and not have access to other pools cache ? An article here (in 2011) suggests that you would need to run one process per pool creating multiple launchers on different ports and different config files with one pool per config file : http://groups.drupal.org/node/198168 Is this still neceessary ? If so what would be the impact of running say 800 processes of php-fpm ? Would it be mainly memory ? If so how can I work out what the memory impact would be ? I guess that it would be better to run 800 times php-fpm then to have accounts creating multiple APC caches for a single site ? If on average an account creates a 50MB cache and creates 3 caches per account that makes 150Mb per account which makes 120GB… However if each account uses on average only 50Mb that would make 40GB We will have at least 128GB of ram on our next server so 40GB is acceptable if running 800 x PHP-FPM does not create an overhead of more than 20GB ! What do you think is PHP-FPM the best way to go to provide secure APC cache on shared hosting with a server that has a decent amount of memory ? Or should I be looking at another system ? Thanks !

    Read the article

  • Suggested Web Application Framework and Database for Enterprise, “Big-Data” App?

    - by willOEM
    I have a web application that I have been developing for a small group within my company over the past few years, using Pipeline Pilot (plus jQuery and Python scripting) for web development and back-end computation, and Oracle 10g for my RDBMS. Users upload experimental genomic data, which is parsed into a database, and made available for querying, transformation, and reporting. Experimental data sets are large and have many layers of metadata. A given experimental data record might have a foreign key relationship with a table that describes this data point's assay. Assays can cover multiple genes, which can have multiple transcript, which can have multiple mutations, which can affect multiple signaling pathways, etc. Users need to approach this data from any point in those layers in the metadata. Since all data sets for a given data type can run over a billion rows, this results in some large, dynamic queries that are hard to predict. New data sets are added on a weekly basis (~1GB per set). Experimental data is never updated, but the associated metadata can be updated weekly for a few records and yearly for most others. For every data set insert the system sees, there will be between 10 and 100 selects run against it and associated data. It is okay for updates and inserts to run slow, so long as queries run quick and are as up-to-date as possible. The application continues to grow in size and scope and is already starting to run slower than I like. I am worried that we have about outgrown Pipeline Pilot, and perhaps Oracle (as the sole database). Would a NoSQL database or an OLAP system be appropriate here? What web application frameworks work well with systems like this? I'd like the solution to be something scalable, portable and supportable X-years down the road. Here is the current state of the application: Web Server/Data Processing: Pipeline Pilot on Windows Server + IIS Database: Oracle 10g, ~1TB of data, ~180 tables with several billion-plus row tables Network Storage: Isilon, ~50TB of low-priority raw data

    Read the article

  • Best Way to Archive Digital Photos and Avoid Duplicate File Names

    - by user31575
    This problem pertains to archiving of digital pictures taken from multiple cameras. Answers here covered the general topic of the-mechanics-of-backups: How do you archive digital photos and videos ? I however face another problem. Having multiple cameras (canon) and multiple SD cards (mixed and matched at random), I have found that different SD cards have different photos with the same file name, i.e. two different photos each name IMG_3141.JPG. Additionally, for better or worse, I've backed up the files to multiple places and need to consolidate my backups. I want to eliminate duplicates, but not clobber files. The only way I can think of is to append the code (md5 or sha1) to the file name, i.e. IMG_3141.JPG becomes IMG_3141_KT229QZ31415926ASDF.JPG, then sorting them out Any better ways? (Note "open letter" address the 'duplicate file name' concern): http://photofocus.com/2010/09/13/an-open-letter-to-digital-camera-manufacturers-regarding-camera-file-naming/ )

    Read the article

  • Organizations &amp; Architecture UNISA Studies &ndash; Chap 7

    - by MarkPearl
    Learning Outcomes Name different device categories Discuss the functions and structure of I/.O modules Describe the principles of Programmed I/O Describe the principles of Interrupt-driven I/O Describe the principles of DMA Discuss the evolution characteristic of I/O channels Describe different types of I/O interface Explain the principles of point-to-point and multipoint configurations Discuss the way in which a FireWire serial bus functions Discuss the principles of InfiniBand architecture External Devices An external device attaches to the computer by a link to an I/O module. The link is used to exchange control, status, and data between the I/O module and the external device. External devices can be classified into 3 categories… Human readable – e.g. video display Machine readable – e.g. magnetic disk Communications – e.g. wifi card I/O Modules An I/O module has two major functions… Interface to the processor and memory via the system bus or central switch Interface to one or more peripheral devices by tailored data links Module Functions The major functions or requirements for an I/O module fall into the following categories… Control and timing Processor communication Device communication Data buffering Error detection I/O function includes a control and timing requirement, to coordinate the flow of traffic between internal resources and external devices. Processor communication involves the following… Command decoding Data Status reporting Address recognition The I/O device must be able to perform device communication. This communication involves commands, status information, and data. An essential task of an I/O module is data buffering due to the relative slow speeds of most external devices. An I/O module is often responsible for error detection and for subsequently reporting errors to the processor. I/O Module Structure An I/O module functions to allow the processor to view a wide range of devices in a simple minded way. The I/O module may hide the details of timing, formats, and the electro mechanics of an external device so that the processor can function in terms of simple reads and write commands. An I/O channel/processor is an I/O module that takes on most of the detailed processing burden, presenting a high-level interface to the processor. There are 3 techniques are possible for I/O operations Programmed I/O Interrupt[t I/O DMA Access Programmed I/O When a processor is executing a program and encounters an instruction relating to I/O it executes that instruction by issuing a command to the appropriate I/O module. With programmed I/O, the I/O module will perform the requested action and then set the appropriate bits in the I/O status register. The I/O module takes no further actions to alert the processor. I/O Commands To execute an I/O related instruction, the processor issues an address, specifying the particular I/O module and external device, and an I/O command. There are four types of I/O commands that an I/O module may receive when it is addressed by a processor… Control – used to activate a peripheral and tell it what to do Test – Used to test various status conditions associated with an I/O module and its peripherals Read – Causes the I/O module to obtain an item of data from the peripheral and place it in an internal buffer Write – Causes the I/O module to take an item of data form the data bus and subsequently transmit that data item to the peripheral The main disadvantage of this technique is it is a time consuming process that keeps the processor busy needlessly I/O Instructions With programmed I/O there is a close correspondence between the I/O related instructions that the processor fetches from memory and the I/O commands that the processor issues to an I/O module to execute the instructions. Typically there will be many I/O devices connected through I/O modules to the system – each device is given a unique identifier or address – when the processor issues an I/O command, the command contains the address of the address of the desired device, thus each I/O module must interpret the address lines to determine if the command is for itself. When the processor, main memory and I/O share a common bus, two modes of addressing are possible… Memory mapped I/O Isolated I/O (for a detailed explanation read page 245 of book) The advantage of memory mapped I/O over isolated I/O is that it has a large repertoire of instructions that can be used, allowing more efficient programming. The disadvantage of memory mapped I/O over isolated I/O is that valuable memory address space is sued up. Interrupts driven I/O Interrupt driven I/O works as follows… The processor issues an I/O command to a module and then goes on to do some other useful work The I/O module will then interrupts the processor to request service when is is ready to exchange data with the processor The processor then executes the data transfer and then resumes its former processing Interrupt Processing The occurrence of an interrupt triggers a number of events, both in the processor hardware and in software. When an I/O device completes an I/O operations the following sequence of hardware events occurs… The device issues an interrupt signal to the processor The processor finishes execution of the current instruction before responding to the interrupt The processor tests for an interrupt – determines that there is one – and sends an acknowledgement signal to the device that issues the interrupt. The acknowledgement allows the device to remove its interrupt signal The processor now needs to prepare to transfer control to the interrupt routine. To begin, it needs to save information needed to resume the current program at the point of interrupt. The minimum information required is the status of the processor and the location of the next instruction to be executed. The processor now loads the program counter with the entry location of the interrupt-handling program that will respond to this interrupt. It also saves the values of the process registers because the Interrupt operation may modify these The interrupt handler processes the interrupt – this includes examination of status information relating to the I/O operation or other event that caused an interrupt When interrupt processing is complete, the saved register values are retrieved from the stack and restored to the registers Finally, the PSW and program counter values from the stack are restored. Design Issues Two design issues arise in implementing interrupt I/O Because there will be multiple I/O modules, how does the processor determine which device issued the interrupt? If multiple interrupts have occurred, how does the processor decide which one to process? Addressing device recognition, 4 general categories of techniques are in common use… Multiple interrupt lines Software poll Daisy chain Bus arbitration For a detailed explanation of these approaches read page 250 of the textbook. Interrupt driven I/O while more efficient than simple programmed I/O still requires the active intervention of the processor to transfer data between memory and an I/O module, and any data transfer must traverse a path through the processor. Thus is suffers from two inherent drawbacks… The I/O transfer rate is limited by the speed with which the processor can test and service a device The processor is tied up in managing an I/O transfer; a number of instructions must be executed for each I/O transfer Direct Memory Access When large volumes of data are to be moved, an efficient technique is direct memory access (DMA) DMA Function DMA involves an additional module on the system bus. The DMA module is capable of mimicking the processor and taking over control of the system from the processor. It needs to do this to transfer data to and from memory over the system bus. DMA must the bus only when the processor does not need it, or it must force the processor to suspend operation temporarily (most common – referred to as cycle stealing). When the processor wishes to read or write a block of data, it issues a command to the DMA module by sending to the DMA module the following information… Whether a read or write is requested using the read or write control line between the processor and the DMA module The address of the I/O device involved, communicated on the data lines The starting location in memory to read from or write to, communicated on the data lines and stored by the DMA module in its address register The number of words to be read or written, communicated via the data lines and stored in the data count register The processor then continues with other work, it delegates the I/O operation to the DMA module which transfers the entire block of data, one word at a time, directly to or from memory without going through the processor. When the transfer is complete, the DMA module sends an interrupt signal to the processor, this the processor is involved only at the beginning and end of the transfer. I/O Channels and Processors Characteristics of I/O Channels As one proceeds along the evolutionary path, more and more of the I/O function is performed without CPU involvement. The I/O channel represents an extension of the DMA concept. An I/O channel ahs the ability to execute I/O instructions, which gives it complete control over I/O operations. In a computer system with such devices, the CPU does not execute I/O instructions – such instructions are stored in main memory to be executed by a special purpose processor in the I/O channel itself. Two types of I/O channels are common A selector channel controls multiple high-speed devices. A multiplexor channel can handle I/O with multiple characters as fast as possible to multiple devices. The external interface: FireWire and InfiniBand Types of Interfaces One major characteristic of the interface is whether it is serial or parallel parallel interface – there are multiple lines connecting the I/O module and the peripheral, and multiple bits are transferred simultaneously serial interface – there is only one line used to transmit data, and bits must be transmitted one at a time With new generation serial interfaces, parallel interfaces are becoming less common. In either case, the I/O module must engage in a dialogue with the peripheral. In general terms the dialog may look as follows… The I/O module sends a control signal requesting permission to send data The peripheral acknowledges the request The I/O module transfers data The peripheral acknowledges receipt of data For a detailed explanation of FireWire and InfiniBand technology read page 264 – 270 of the textbook

    Read the article

  • Creating Tables in DokuWiki

    - by Bryan
    I'm trying to create a table in DokuWiki, with a cell that vertically spans, however unlike the examples in the syntax guide, the cell I want to create has more than one row of text. The following is an ASCII version of what I'm trying to achieve +-----------+-----------+ | Heading 1 | Heading 2 | +-----------+-----------+ | | Multiple | | Some text | rows of | | | text | +-----------+-----------+ I've tried the following syntax ^ Heading 1 ^ Heading 2 ^ | Some text | Multiple | | ::: | rows of | | ::: | text | but this generates the output +-----------+-----------+ | Heading 1 | Heading 2 | +-----------+-----------+ | | Multiple | | +-----------+ | Some text | rows of | | +-----------+ | | text | +-----------+-----------+ I can't find anything in the DokuWiki documentation, so I'm hoping I'm missing something fundamentally simple?

    Read the article

  • More Tables or More Databases?

    - by BuckWoody
    I got an e-mail from someone that has an interesting situation. He has 15,000 customers, and he asks if he should have a database for their data per customer. Without a LOT more data it’s impossible to say, of course, but there are some general concepts to keep in mind. Whenever you’re segmenting data, it’s all about boundary choices. You have not only boundaries around how big the data will get, but things like how many objects (tables, stored procedures and so on) that will be involved, if there are any cross-sections of data (do they share location or product information) and – very important – what are the security requirements? From the answer to these types of questions, you now have the choice of making multiple tables in a single database, or using multiple databases. A database carries some overhead – it needs a certain amount of memory for locking and so on. But it has a very clean boundary – everything from objects to security can be kept apart. Having multiple users in the same database is possible as well, using things like a Schema. But keeping 15,000 schemas can be challenging as well. My recommendation in complex situations like this is similar to a post on decisions that I did earlier – I lay out the choices on a spreadsheet in rows, and then my requirements at the top in the columns. I  give each choice a number based on how well it meets each requirement. At the end, the highest number wins. And many times it’s a mix – perhaps this person could segment customers into larger regions or districts or products, in a database. Within that database might be multiple schemas for the customers. Of course, he needs to query across all customers, that becomes another requirement. Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Farseer: Cutting body from texture

    - by Robin Betka
    Is it possible to cut a body from a texture in Farseer 3.0? I have a texture converted to a body with multiple fixtures ( using BayazitDecomposer, CreatePolygon method, ..) and can even do it as a BreakableBody. But when I try to cut it with the cutting tool, the fixture itself gets cutted but it's connections get discarded! So when I have 14 fixtures, and cut fixture 3 for example, fixture 3 gets cutted but 1,2 and 3-14 just go away. Is there a way to do it? It would work already if I could convert the texture into a body with 1 fixture only, but I haven't figured out it that's possible. BayazitDecomposer creates the multiple verticles, but letting it away creates something weird and I get assert messages all the time. I know I couldn't break it that way but I don't need that anyway when I could cut it. The breaking is just the work around I'm using now. Extending the cuttingtool to support multiple fixtures is very hard especially when you consider that in one cut multiple fixtures could be cutted and then connected again.

    Read the article

  • More Tables or More Databases?

    - by BuckWoody
    I got an e-mail from someone that has an interesting situation. He has 15,000 customers, and he asks if he should have a database for their data per customer. Without a LOT more data it’s impossible to say, of course, but there are some general concepts to keep in mind. Whenever you’re segmenting data, it’s all about boundary choices. You have not only boundaries around how big the data will get, but things like how many objects (tables, stored procedures and so on) that will be involved, if there are any cross-sections of data (do they share location or product information) and – very important – what are the security requirements? From the answer to these types of questions, you now have the choice of making multiple tables in a single database, or using multiple databases. A database carries some overhead – it needs a certain amount of memory for locking and so on. But it has a very clean boundary – everything from objects to security can be kept apart. Having multiple users in the same database is possible as well, using things like a Schema. But keeping 15,000 schemas can be challenging as well. My recommendation in complex situations like this is similar to a post on decisions that I did earlier – I lay out the choices on a spreadsheet in rows, and then my requirements at the top in the columns. I  give each choice a number based on how well it meets each requirement. At the end, the highest number wins. And many times it’s a mix – perhaps this person could segment customers into larger regions or districts or products, in a database. Within that database might be multiple schemas for the customers. Of course, he needs to query across all customers, that becomes another requirement. Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Creating Tables in DocuWiki

    - by Bryan
    I'm trying to create a table in DokuWiki, with a cell that vertically spans, however unlike the examples in the syntax guide, the cell I want to create has more than one row of text. The following is an ASCII version of what I'm trying to achieve +-----------+-----------+ | Heading 1 | Heading 2 | +-----------+-----------+ | | Multiple | | Some text | rows of | | | text | +-----------+-----------+ I've tried the following syntax ^ Heading 1 ^ Heading 2 ^ | Some text | Multiple | | ::: | rows of | | ::: | text | but this generates the output +-----------+-----------+ | Heading 1 | Heading 2 | +-----------+-----------+ | | Multiple | | +-----------+ | Some text | rows of | | +-----------+ | | text | +-----------+-----------+ I can't find anything in the DokuWiki documentation, so I'm hoping I'm missing something fundamentally simple?

    Read the article

  • Program that groups windows into tabs

    - by Arithmomaniac
    I recall once stumbling on a program that could take multiple application windows and wrap them inside a large window with a tabbed interface. One use of this, for example, would be to wrap multiple instances of Excel into one window, and thus icon on the taskbar. I couldn't find mention of this program via Google, because of the multiple meanings of the word "window". Does anyone remember, or know of, such a program?

    Read the article

  • Scene or Activity Animation

    - by Siddharth
    My game require an animation when one activity finishes and next started because I have develop game with multiple activity not as multiple scene per game. I have to show animation at the time of activity creation and activity destroy. I have trying to create basic animation that was supported by android. And all that xml file I have to post it into the anim folder but the loading of resource was so much high so any type of animation I provide using android method does not work for me it look weird. If scene class has some functionality for animation that please know me then I try to load different type of animation using scene. I have not create multiple scene because I have no awareness about how to manage multiple scene in andengine though I have a working experience of 8 months in andengine. So this help also provide me a great help. Basically I want to create animation like one activity slide out at the same time the other activity slide in. So at a time user can see the transition of activity. Thanks in advance.

    Read the article

  • Building a generic page "Query Analyzer" like in Asp.net with SMO

    - by Rodrigo
    Hello, I'm build a web page in ASP.net is supposed to work just like Query Analyzer. It has basically a textarea to input the sql command, and an Execute button. I'm using SMO to execute the command in the database, as follows: //Create object SMO Microsoft.SqlServer.Management.Smo.Server server = new Microsoft.SqlServer.Management.Smo.Server(new Microsoft.SqlServer.Management.Common.ServerConnection(oConn)); //To execute the command server.ConnectionContext.ExecuteNonQuery(tbx_cmd.Text); //OR myDataset = server.ConnectionContext.ExecuteWithResults(tbx_cmd.Text); The problem is that the textarea command can contain anything, from a stored procedure (with GO's statements) and any select command that return resultsets, just like Query Analyzer. But, if I have GO statements, I only can perform the query using ExecuteNonQuery method. If I use the ExecuteWithResults method, it raises errors because of the GO statements. And if I want the resultsets to be available, of course I can only use the ExecuteWithResults method. Does anybody knows how can I do to execute the same command texts at the same time? Thank you!

    Read the article

  • SQL Standard Regarding Left Outer Join and Where Conditions

    - by Ryan
    I am getting different results based on a filter condition in a query based on where I place the filter condition. My questions are: Is there a technical difference between these queries? Is there anything in the SQL standard that explains the different resultsets in the queries? Given the simplified scenario: --Table: Parent Columns: ID, Name, Description --Table: Child Columns: ID, ParentID, Name, Description --Query 1 SELECT p.ID, p.Name, p.Description, c.ID, c.Name, c.Description FROM Parent p LEFT OUTER JOIN Child c ON (p.ID = c.ParentID) WHERE c.ID IS NULL OR c.Description = 'FilterCondition' --Query 2 SELECT p.ID, p.Name, p.Description, c.ID, c.Name, c.Description FROM Parent p LEFT OUTER JOIN Child c ON (p.ID = c.ParentID AND c.Description = 'FilterCondition') I assumed the queries would return the same resultsets and I was surprised when they didn't. I am using MS SQL2005 and in the actual queries, query 1 returned ~700 rows and query 2 returned ~1100 rows and I couldn't detect a pattern on which rows were returned and which rows were excluded. There were still many rows in query 1 with child rows with data and NULL data. I prefer the style of query 2 (and I think it is more optimal), but I thought the queries would return the same results.

    Read the article

  • Is DataRow thread safe? How to update a single datarow in a datatable using multiple threads? - .net

    - by NLV
    Hello all I want to update a single datarow in a datatable using multiple threads. Is this actually possible? I've written the following code implementing a simple multi-threading to update a single datarow. I get different results each time. Why is it so? public partial class Form1 : Form { private static DataTable dtMain; private static string threadMsg = string.Empty; public Form1() { InitializeComponent(); } private void Form1_Load(object sender, EventArgs e) { Thread[] thArr = new Thread[5]; dtMain = new DataTable(); dtMain.Columns.Add("SNo"); DataRow dRow; dRow = dtMain.NewRow(); dRow["SNo"] = 5; dtMain.Rows.Add(dRow); dtMain.AcceptChanges(); ThreadStart ts = new ThreadStart(delegate { dtUpdate(); }); thArr[0] = new Thread(ts); thArr[1] = new Thread(ts); thArr[2] = new Thread(ts); thArr[3] = new Thread(ts); thArr[4] = new Thread(ts); thArr[0].Start(); thArr[1].Start(); thArr[2].Start(); thArr[3].Start(); thArr[4].Start(); while (!WaitTillAllThreadsStopped(thArr)) { Thread.Sleep(500); } foreach (Thread thread in thArr) { if (thread != null && thread.IsAlive) { thread.Abort(); } } dgvMain.DataSource = dtMain; } private void dtUpdate() { for (int i = 0; i < 1000; i++) { try { dtMain.Rows[0][0] = Convert.ToInt32(dtMain.Rows[0][0]) + 1; dtMain.AcceptChanges(); } catch { continue; } } } private bool WaitTillAllThreadsStopped(Thread[] threads) { foreach (Thread thread in threads) { if (thread != null && thread.ThreadState == ThreadState.Running) { return false; } } return true; } } Any thoughts on this? Thank you NLV

    Read the article

  • SQL SERVER – Fundamentals of Columnstore Index

    - by pinaldave
    There are two kind of storage in database. Row Store and Column Store. Row store does exactly as the name suggests – stores rows of data on a page – and column store stores all the data in a column on the same page. These columns are much easier to search – instead of a query searching all the data in an entire row whether the data is relevant or not, column store queries need only to search much lesser number of the columns. This means major increases in search speed and hard drive use. Additionally, the column store indexes are heavily compressed, which translates to even greater memory and faster searches. I am sure this looks very exciting and it does not mean that you convert every single index from row store to column store index. One has to understand the proper places where to use row store or column store indexes. Let us understand in this article what is the difference in Columnstore type of index. Column store indexes are run by Microsoft’s VertiPaq technology. However, all you really need to know is that this method of storing data is columns on a single page is much faster and more efficient. Creating a column store index is very easy, and you don’t have to learn new syntax to create them. You just need to specify the keyword “COLUMNSTORE” and enter the data as you normally would. Keep in mind that once you add a column store to a table, though, you cannot delete, insert or update the data – it is READ ONLY. However, since column store will be mainly used for data warehousing, this should not be a big problem. You can always use partitioning to avoid rebuilding the index. A columnstore index stores each column in a separate set of disk pages, rather than storing multiple rows per page as data traditionally has been stored. The difference between column store and row store approaches is illustrated below: In case of the row store indexes multiple pages will contain multiple rows of the columns spanning across multiple pages. In case of column store indexes multiple pages will contain multiple single columns. This will lead only the columns needed to solve a query will be fetched from disk. Additionally there is good chance that there will be redundant data in a single column which will further help to compress the data, this will have positive effect on buffer hit rate as most of the data will be in memory and due to same it will not need to be retrieved. Let us see small example of how columnstore index improves the performance of the query on a large table. As a first step let us create databaseset which is large enough to show performance impact of columnstore index. The time taken to create sample database may vary on different computer based on the resources. USE AdventureWorks GO -- Create New Table CREATE TABLE [dbo].[MySalesOrderDetail]( [SalesOrderID] [int] NOT NULL, [SalesOrderDetailID] [int] NOT NULL, [CarrierTrackingNumber] [nvarchar](25) NULL, [OrderQty] [smallint] NOT NULL, [ProductID] [int] NOT NULL, [SpecialOfferID] [int] NOT NULL, [UnitPrice] [money] NOT NULL, [UnitPriceDiscount] [money] NOT NULL, [LineTotal] [numeric](38, 6) NOT NULL, [rowguid] [uniqueidentifier] NOT NULL, [ModifiedDate] [datetime] NOT NULL ) ON [PRIMARY] GO -- Create clustered index CREATE CLUSTERED INDEX [CL_MySalesOrderDetail] ON [dbo].[MySalesOrderDetail] ( [SalesOrderDetailID]) GO -- Create Sample Data Table -- WARNING: This Query may run upto 2-10 minutes based on your systems resources INSERT INTO [dbo].[MySalesOrderDetail] SELECT S1.* FROM Sales.SalesOrderDetail S1 GO 100 Now let us do quick performance test. I have kept STATISTICS IO ON for measuring how much IO following queries take. In my test first I will run query which will use regular index. We will note the IO usage of the query. After that we will create columnstore index and will measure the IO of the same. -- Performance Test -- Comparing Regular Index with ColumnStore Index USE AdventureWorks GO SET STATISTICS IO ON GO -- Select Table with regular Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID GO -- Table 'MySalesOrderDetail'. Scan count 1, logical reads 342261, physical reads 0, read-ahead reads 0. -- Create ColumnStore Index CREATE NONCLUSTERED COLUMNSTORE INDEX [IX_MySalesOrderDetail_ColumnStore] ON [MySalesOrderDetail] (UnitPrice, OrderQty, ProductID) GO -- Select Table with Columnstore Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID GO It is very clear from the results that query is performance extremely fast after creating ColumnStore Index. The amount of the pages it has to read to run query is drastically reduced as the column which are needed in the query are stored in the same page and query does not have to go through every single page to read those columns. If we enable execution plan and compare we can see that column store index performance way better than regular index in this case. Let us clean up the database. -- Cleanup DROP INDEX [IX_MySalesOrderDetail_ColumnStore] ON [dbo].[MySalesOrderDetail] GO TRUNCATE TABLE dbo.MySalesOrderDetail GO DROP TABLE dbo.MySalesOrderDetail GO In future posts we will see cases where Columnstore index is not appropriate solution as well few other tricks and tips of the columnstore index. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Index, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Best Practices For Database Consolidation On Exadata - New Whitepapers

    - by Javier Puerta
     Best Practices For Database Consolidation On Exadata Database Machine (Nov. 2011) Consolidation can minimize idle resources, maximize efficiency, and lower costs when you host multiple schemas, applications or databases on a target system. Consolidation is a core enabler for deploying Oracle database on public and private clouds.This paper provides the Exadata Database Machine (Exadata) consolidation best practices to setup and manage systems and applications for maximum stability and availability:Download here Oracle Exadata Database Machine Consolidation: Segregating Databases and Roles (Sep. 2011) This paper is focused on the aspects of segregating databases from each other in a platform consolidation environment on an Oracle Exadata Database Machine. Platform consolidation is the consolidation of multiple databases on to a single Oracle Exadata Database Machine. When multiple databases are consolidated on a single Database Machine, it may be necessary to isolate certain database components or functions in order to meet business requirements and provide best practices for a secure consolidation. In this paper we outline the use of Oracle Exadata database-scoped security to securely separate database management and provide a detailed case study that illustrates the best practices. Download here

    Read the article

  • Improve your Application Performance with .NET Framework 4.0

    Nice Article on CodeGuru. This processors we use today are quite different from those of just a few years ago, as most processors today provide multiple cores and/or multiple threads. With multiple cores and/or threads we need to change how we tackle problems in code. Yes we can still continue to write code to perform an action in a top down fashion to complete a task. This apprach will continue to work; however, you are not taking advantage of the extra processing power available. The best way to take advantage of the extra cores prior to .NET Framework 4.0 was to create threads and/or utilize the ThreadPool. For many developers utilizing Threads or the ThreadPool can be a little daunting. The .NET 4.0 Framework drastically simplified the process of utilizing the extra processing power through the Task Parallel Library (TPL). This article talks following topics “Data Parallelism”, “Parallel LINQ (PLINQ)” and “Task Parallelism”. span.fullpost {display:none;}

    Read the article

  • Creating Hosting Accounts in WHM on a Single IP

    - by Daniel Hanly
    I've just purchased a VPS with the hope of transferring multiple shared hosting accounts onto it. The problem is that I've only got 2 IP addresses with my VPS. I can create an account and assign it an IP address, but once I've done this once, I can't do it again. (1 IP address is my main root WHM IP, the other is my new hosting account IP). Can I create multiple hosting accounts and use the same IP? How would I manage multiple hosting accounts in this way? The domain for this hosting account has been purchased by the client, and they hold it (can't transfer for 60 days), so I need to adjust the DNS settings to redirect to my newly created hosting area - how can I do this without a dedicated IP address?

    Read the article

  • Improve your Application Performance with .NET Framework 4.0

    Nice Article on CodeGuru. This processors we use today are quite different from those of just a few years ago, as most processors today provide multiple cores and/or multiple threads. With multiple cores and/or threads we need to change how we tackle problems in code. Yes we can still continue to write code to perform an action in a top down fashion to complete a task. This apprach will continue to work; however, you are not taking advantage of the extra processing power available. The best way to take advantage of the extra cores prior to .NET Framework 4.0 was to create threads and/or utilize the ThreadPool. For many developers utilizing Threads or the ThreadPool can be a little daunting. The .NET 4.0 Framework drastically simplified the process of utilizing the extra processing power through the Task Parallel Library (TPL). This article talks following topics “Data Parallelism”, “Parallel LINQ (PLINQ)” and “Task Parallelism”. span.fullpost {display:none;}

    Read the article

< Previous Page | 281 282 283 284 285 286 287 288 289 290 291 292  | Next Page >