Search Results

Search found 47324 results on 1893 pages for 'end users'.

Page 288/1893 | < Previous Page | 284 285 286 287 288 289 290 291 292 293 294 295  | Next Page >

  • HTG Explains: What You Can (and Can’t) Do on the Desktop in Windows RT

    - by Chris Hoffman
    Windows RT and Windows 8 aren’t the same thing. While Windows RT has a desktop that looks just like Windows 8’s, Windows RT’s desktop is very limited. The difference doesn’t just matter to geeks; it matters to all Windows users. We’ve explained the difference between Windows RT and Windows 8 before. Unlike Windows RT, Windows 8 includes a fully functional desktop (although there’s no Start menu by default.) 6 Ways Windows 8 Is More Secure Than Windows 7 HTG Explains: Why It’s Good That Your Computer’s RAM Is Full 10 Awesome Improvements For Desktop Users in Windows 8

    Read the article

  • Oracle Unveils Industry’s Broadest Cloud Strategy

    - by kellsey.ruppel
    Oracle Unveils Industry’s Broadest Cloud Strategy Adds Social Cloud and Showcases early customers Redwood Shores, Calif. – June 6, 2012 “Almost seven years of relentless engineering and innovation plus key strategic acquisitions. An investment of billions. We are now announcing the most comprehensive Cloud on the planet Earth,” said Oracle CEO, Larry Ellison. “Most cloud vendors only have niche assets. They don’t have platforms to extend. Oracle is the only vendor that offers a complete suite of modern, socially-enabled applications, all based on a standards-based platform.” News Facts In a major strategy update today, Larry Ellison announced the industry’s broadest and most advanced Cloud strategy and introduced Oracle Cloud Social Services, a broad Enterprise Social Platform offering. Oracle Cloud delivers a broad set of industry-standards based, integrated services that provide customers with subscription-based access to Oracle Platform Services, Application Services, and Social Services, all completely managed, hosted and supported by Oracle. Offering a wide range of business applications and platform services, the Oracle Cloud is the only cloud to enable customers to avoid the data and business process fragmentation that occurs when using multiple, siloed public clouds. Oracle Cloud is powered by leading enterprise-grade infrastructure, including Oracle Exadata and Oracle Exalogic, providing customers and partners with a high-performance, reliable, and secure infrastructure for running critical business applications. Oracle Cloud enables easy self-service for both business users and developers. Business users can order, configure, extend, and monitor their applications. Developers and administrators can easily develop, deploy, monitor and manage their applications. As part of the event, Oracle also showcased several early Oracle Cloud customers and partners including system integrators and independent software vendors. Oracle Cloud Platform Services Built on a common, complete, standards-based and enterprise-grade set of infrastructure components, Oracle Cloud Platform Services enable customers to speed time to market and lower costs by quickly building, deploying and managing bespoke applications. Oracle Cloud Platform Services will include: Database Services to manage data and build database applications with the Oracle Database. Java Services to develop, deploy and manage Java applications with Oracle WebLogic. Developer Services to allow application developers to collaboratively build applications. Web Services to build Web applications rapidly using PHP, Ruby, and Python. Mobile Services to allow developers to build cross-platform native and HTML5 mobile applications for leading smartphones and tablets. Documents Services to allow project teams to collaborate and share documents through online workspaces and portals. Sites Services to allow business users to develop and maintain visually engaging .com sites Analytics Services to allow business users to quickly build and share analytic dashboards and reports through the Cloud. Oracle Cloud Application Services Oracle Cloud Application Services provides customers access to the industry’s broadest range of enterprise applications available in the cloud today, with built-in business intelligence, social and mobile capabilities. Easy to setup, configure, extend, use and administer, Oracle Cloud Application Services will include: ERP Services: A complete set of Financial Accounting, Project Management, Procurement, Sourcing, and Governance, Risk & Compliance solutions. HCM Services: A complete Human Capital Management solution including Global HR, Workforce Lifecycle Management, Compensation, Benefits, Payroll and other solutions. Talent Management Services: A complete Talent Management solution including Recruiting, Sourcing, Performance Management, and Learning. Sales and Marketing Services: A complete Sales and Marketing solution including Sales Planning, Territory Management, Leads & Opportunity Management, and Forecasting. Customer Experience Services: A complete Customer Service solution including Web Self-Service, Contact Centers, Knowledge Management, Chat, and e-mail Management. Oracle Cloud Social Services Oracle Cloud Social Services provides the most broad and complete enterprise social platform available in the cloud today.  With Oracle Cloud Social Services, enterprises can engage with their customers on a range of social media properties in a comprehensive and meaningful fashion including social marketing, commerce, service and listening. The platform also provides enterprises with a rich social networking solution for their employees to collaborate effectively inside the enterprise. Oracle’s integrated social platform will include: Oracle Social Network to enable secure enterprise collaboration and purposeful social networking for business. Oracle Social Data Services to aggregate data from social networks and enterprise data sources to enrich business applications. Oracle Social Marketing and Engagement Services to enable marketers to centrally create, publish, moderate, manage, measure and report on their social marketing campaigns. Oracle Social Intelligence Services to enable marketers to analyze social media interactions and to enable customer service and sales teams to engage with customers and prospects effectively. Supporting Resources Oracle Cloud – learn more cloud.oracle.com – sign up now Webcast – watch the replay About Oracle Oracle engineers hardware and software to work together in the cloud and in your data center. For more information about Oracle (NASDAQ:ORCL), visit www.oracle.com. TrademarksOracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Country selection, when country is not listed

    - by David Balažic
    While this might not 100% match the intent of this site, it was the closest match from Stackexchange sites. So, if a web site (the "entrance" page) offers a choice (a list) of countries, with the text "Chose your country", but the users country is not listed, what should he do? One example is http://www.samsung.com/countryselection.do Addition: I ask this standing in the users position. I encounter a web site and it gives me the above page. What to do? Another issue: What is "my" country? My current location? My permanent residence? The country of my citizenship? Something else?

    Read the article

  • Next Phase of ECM 11g Now Available - New UCM & URM 11g, & Updated I/PM & IRM 11g

    - by michelle.huff
    We're excited to announce that the Oracle Enterprise Content Management Suite 11g is now available! Today, Oracle announced ECM Suite 11g, a part of Fusion Middleware 11gR1 Patchset 2 release, which builds upon the Imaging and Process Management (I/PM) and Information Rights Management (IRM) 11g release earlier this year. Universal Content Management (UCM) and Universal Records Management (URM) 11g are now available with many new features and enhancements. All ECM products are localized into 27 languages, use a single repository, a single installer, centralized administration, and all run on the same Fusion Middleware tech stack. Oracle ECM Suite 11g, is better integrated to fit the way you work, with extreme performance and extreme scalability. Universal Content Management One click Web content management - brings Web content management authoring, design and presentation capabilities directly into how organizations design sites, portals, and custom Web applications. Simply take in the right amount of WCM that meets your needs - all without having to rewrite the application or port it over to a new technology stack or framework. Greater business user empowerment - with next generation desktop integrations and "smart productivity folders", new Web site "design mode" for business users, and enhanced rich media support enabling users to better work with photography, graphics, videos & podcasts created today as well as contribute content within Flash files directly from the Web. Advanced manageability with extreme performance & scalability - centralized system monitoring, installation, logging, performance metrics & diagnostics, with new built in "fast check-in" features, redesigned component management interface - all running on Fusion Middleware infrastructure. Universal Records Management Enhanced user experience: Oracle URM 11g makes records management easier for both business users and records administrators. Simplifications in the end user experience allow the creation of bookmarks into often-used part of the file plan, easy copying of categories and dispositions, and integrated folder and records search. The records management dashboard provides a consolidated view into records administrator tasks and system performance. DoD 5015.02 v3: Oracle URM is fully certified against all part of the US Department of Defense records management standard - baseline, classified, and Freedom of Information and Privacy Act. This enables Federal, state, & local governments & public agencies, as well as private companies, to maintain regulated compliance. Expanded functionality through Oracle integrations: Oracle URM 11g allows for an expanded set of functionality through integration capabilities with other Oracle products. This includes configurable records definition capabilities directly within a UCM instance. An out of the box integration with Oracle BI Publisher provides easily configured and robust reporting. Additionally, 11g offers an out of the box Oracle Secure Enterprise Search integration enabling real time full text discovery across disparate systems in an organization. Read the Press Release Watch the 3 Minute ECM 11g Video Get Up to Speed with the What's New in ECM Suite Datasheet Learn More on OTN with new tutorials, downloads and whitepapers

    Read the article

  • How to Disable Access to the Registry in Windows 7

    - by Mysticgeek
    If you don’t know what your doing in the Registry, you can mess up your computer pretty good. Today we show you how to prevent users from accessing the Registry and making any changes to it. Using Local Group Policy Editor Note: This method uses Group Policy Editor which is not available in Home versions of Windows. First type gpedit.msc into the Search box in the Start menu. When Group Policy Editor opens, navigate to User Configuration \ Administrative Templates then select System. Under Setting in the right panel double-click on Prevent access to registry editing tools. Select the radio button next to Enabled, click OK, then close out of Group Policy Editor. Now if a user tries to access the Registry… They will get the following message advising they cannot access it.   Using Registry Enabler & Disabler 3 If you’re using Home or Starter version of Windows 7, you can use a neat utility called Registry Enabler & Disabler (link below). This app works on XP and Vista as well. There is no installation involved so you can run it from a flash drive, disable the registry, then take the flash drive with you while a the user is on the machine.   Again, if the user tries to access the Registry they will get the following error… Using one of these options will stop users from gaining access to the Registry or running any registry hacks. Of course if you have a shared computer, you may want to set up other users with a Standard Account, as they won’t be able to make changes to the Registry anyway. Download Registry Enabler & Disabler 3 Similar Articles Productive Geek Tips Disable Notification Balloons in XPDisable/Enable Lock Workstation Functionality (Windows + L)Disable Windows Mobility Center in Windows 7 or VistaRegistry Hack to Disable Writing to USB DrivesSpeed Up Disk Access by Disabling Last Access Updating in Windows XP TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows Fun with 47 charts and graphs Tomorrow is Mother’s Day Check the Average Speed of YouTube Videos You’ve Watched OutlookStatView Scans and Displays General Usage Statistics How to Add Exceptions to the Windows Firewall Office 2010 reviewed in depth by Ed Bott

    Read the article

  • SQL SERVER – Solution – Puzzle – Statistics are not Updated but are Created Once

    - by pinaldave
    Earlier I asked puzzle why statistics are not updated. Read the complete details over here: Statistics are not Updated but are Created Once In the question I have demonstrated even though statistics should have been updated after lots of insert in the table are not updated.(Read the details SQL SERVER – When are Statistics Updated – What triggers Statistics to Update) In this example I have created following situation: Create Table Insert 1000 Records Check the Statistics Now insert 10 times more 10,000 indexes Check the Statistics – it will be NOT updated Auto Update Statistics and Auto Create Statistics for database is TRUE Now I have requested two things in the example 1) Why this is happening? 2) How to fix this issue? I have many answers – here is the how I fixed it which has resolved the issue for me. NOTE: There are multiple answers to this problem and I will do my best to list all. Solution: Create nonclustered Index on column City Here is the working example for the same. Let us understand this script and there is added explanation at the end. -- Execution Plans Difference -- Estimated Execution Plan Vs Actual Execution Plan -- Create Sample Database CREATE DATABASE SampleDB GO USE SampleDB GO -- Create Table CREATE TABLE ExecTable (ID INT, FirstName VARCHAR(100), LastName VARCHAR(100), City VARCHAR(100)) GO CREATE NONCLUSTERED INDEX IX_ExecTable1 ON ExecTable (City); GO -- Insert One Thousand Records -- INSERT 1 INSERT INTO ExecTable (ID,FirstName,LastName,City) SELECT TOP 1000 ROW_NUMBER() OVER (ORDER BY a.name) RowID, 'Bob', CASE WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%2 = 1 THEN 'Smith' ELSE 'Brown' END, CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%20 = 1 THEN 'New York' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 5 THEN 'San Marino' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 3 THEN 'Los Angeles' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 7 THEN 'La Cinega' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 13 THEN 'San Diego' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 17 THEN 'Las Vegas' ELSE 'Houston' END FROM sys.all_objects a CROSS JOIN sys.all_objects b GO -- Display statistics of the table sp_helpstats N'ExecTable', 'ALL' GO -- Select Statement SELECT FirstName, LastName, City FROM ExecTable WHERE City  = 'New York' GO -- Display statistics of the table sp_helpstats N'ExecTable', 'ALL' GO -- Replace your Statistics over here DBCC SHOW_STATISTICS('ExecTable', IX_ExecTable1); GO -------------------------------------------------------------- -- Round 2 -- Insert One Thousand Records -- INSERT 2 INSERT INTO ExecTable (ID,FirstName,LastName,City) SELECT TOP 1000 ROW_NUMBER() OVER (ORDER BY a.name) RowID, 'Bob', CASE WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%2 = 1 THEN 'Smith' ELSE 'Brown' END, CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%20 = 1 THEN 'New York' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 5 THEN 'San Marino' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 3 THEN 'Los Angeles' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 7 THEN 'La Cinega' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 13 THEN 'San Diego' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 17 THEN 'Las Vegas' ELSE 'Houston' END FROM sys.all_objects a CROSS JOIN sys.all_objects b GO -- Select Statement SELECT FirstName, LastName, City FROM ExecTable WHERE City  = 'New York' GO -- Display statistics of the table sp_helpstats N'ExecTable', 'ALL' GO -- Replace your Statistics over here DBCC SHOW_STATISTICS('ExecTable', IX_ExecTable1); GO -- Clean up Database DROP TABLE ExecTable GO When I created non clustered index on the column city, it also created statistics on the same column with same name as index. When we populate the data in the column the index is update – resulting execution plan to be invalided – this leads to the statistics to be updated in next execution of SELECT. This behavior does not happen on Heap or column where index is auto created. If you explicitly update the index, often you can see the statistics are updated as well. You can see this is for sure happening if you follow the tell of John Sansom. John Sansom‘s suggestion: That was fun! Although the column statistics are invalidated by the time the second select statement is executed, the query is not compiled/recompiled but instead the existing query plan is reused. It is the “next” compiled query against the column statistics that will see that they are out of date and will then in turn instantiate the action of updating statistics. You can see this in action by forcing the second statement to recompile. SELECT FirstName, LastName, City FROM ExecTable WHERE City = ‘New York’ option(RECOMPILE) GO Kevin Cross also have another suggestion: I agree with John. It is reusing the Execution Plan. Aside from OPTION(RECOMPILE), clearing the Execution Plan Cache before the subsequent tests will also work. i.e., run this before round 2: ————————————————————– – Clear execution plan cache before next test DBCC FREEPROCCACHE WITH NO_INFOMSGS; ————————————————————– Nice puzzle! Kevin As this was puzzle John and Kevin both got the correct answer, there was no condition for answer to be part of best practices. I know John and he is finest DBA around – his tremendous knowledge has always impressed me. John and Kevin both will agree that clearing cache either using DBCC FREEPROCCACHE and recompiling each query every time is for sure not good advice on production server. It is correct answer but not best practice. By the way, if you have better solution or have better suggestion please advise. I am open to change my answer and publish further improvement to this solution. On very separate note, I like to have clustered index on my Primary Key, which I have not mentioned here as it is out of the scope of this puzzle. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, Readers Contribution, Readers Question, SQL, SQL Authority, SQL Index, SQL Puzzle, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Statistics

    Read the article

  • UPK Customer Success Story: The City and County of San Francisco

    - by karen.rihs(at)oracle.com
    The value of UPK during an upgrade is a hot topic and was a primary focus during our latest customer roundtable featuring The City and County of San Francisco: Leveraging UPK to Accelerate Your PeopleSoft Upgrade. As the Change Management Analyst for their PeopleSoft 9.0 HCM project (Project eMerge), Jan Crosbie-Taylor provided a unique perspective on how they're utilizing UPK and UPK pre-built content early on to successfully manage change for thousands of city and county employees and retirees as they move to this new release. With the first phase of the project going live next September, it's important to the City and County of San Francisco to 1) ensure that the various constituents are brought along with the project team, and 2) focus on the end user aspects of the implementation, including training. Here are some highlights on how UPK and UPK pre-built content are helping them accomplish this: As a former documentation manager, Jan really appreciates the power of UPK as a single source content creation tool. It saves them time by streamlining the documentation creation process, enabling them to record content once, then repurpose it multiple times. With regard to change management, UPK has enabled them to educate the project team and gain critical buy in and support by familiarizing users with the application early on through User Experience Workshops and by promoting UPK at meetings whenever possible. UPK has helped create awareness for the project, making the project real to users. They are taking advantage of UPK pre-built content to: Educate the project team and subject matter experts on how PeopleSoft 9.0 works as delivered Create a guide/storyboard for their own recording Save time/effort and create consistency by enhancing their recorded content with text and conceptual information from the pre-built content Create PeopleSoft Help for their development databases by publishing and integrating the UPK pre-built content into the application help menu Look ahead to the next release of PeopleTools, comparing the differences to help the team evaluate which version to use with their implemtentation When it comes time for training, they will be utilizing UPK in the classroom, eliminating the time and cost of maintaining training databases. Instructors will be able to carry all training content on a thumb drive, allowing them to easily provide consistent training at their many locations, regardless of the environment. Post go-live, they will deploy the same UPK content to provide just-in-time, in-application support for the entire system via the PeopleSoft Help menu and their PeopleSoft Enterprise Portal. Users will already be comfortable with UPK as a source of help, having been exposed to it during classroom training. They are also using UPK for a non-Oracle application called JobAps, an online job application solution used by many government organizations. Jan found UPK's object recognition to be excellent, yet it's been incredibly easy for her to change text or a field name if needed. Please take time to listen to this recording. The City and County of San Francisco's UPK story is very exciting, and Jan shared so many great examples of how they're taking advantage of UPK and UPK pre-built content early on in their project. We hope others will be able to incorporate these into their projects. Many thanks to Jan for taking the time to share her experiences and creative uses of UPK with us! - Karen Rihs, Oracle UPK Outbound Product Management

    Read the article

  • Upcoming UPK Events

    - by kathryn.lustenberger(at)oracle.com
    February 15th: UPK: Follow Panduit's Lead and Leverage Oracle's User Productivity Kit To Achieve Your Goals - Join us for a live webcast to learn how Oracle's User Productivity Kit can help you meet and exceed your goals. The webcast will feature Jim Boss, from the Panduit Corporation, who will share how Oracle's User Productivity Kit was used with both Oracle and Non-Oracle applications to helped Panduit to meet their goals. Date: February 15th, 2011 at 12:00 PST / 3:00 EST Evite: http://www.oracle.com/us/dm/65630-naod10046029mpp005c010-se-300908.html March 2nd: Synaptis teams with Oracle to deliver a UPK customer success story - Webinar Offering The Value of UPK (Customer Success Story): How to leverage the value of UPK to streamline processes and maximize end user adoption for a global implementation Join us to learn how the power of UPK can be leveraged to train end users globally in a successful and cost effective manner. A valued Oracle UPK customer will share experiences, successes, challenges, and strategies. The webinar will also include a question and answer session to give the attendees an opportunity to interact directly with the Oracle UPK customer, Synaptis, and the Oracle UPK Team. Date: March 2, 2011 Time: 11:00am - 12:00pm EST Register for this webinar March 27 - 30th: The Alliance 2011 conference is an annual event for all higher education, government, and public sector users of Oracle applications. The Alliance conference is organized and managed by the Higher Education User Group (www.heug.org). This is the 14th annual event for the HEUG. This is your opportunity to join with over 3200 other Higher Education, Federal, State and Local Government users to network, learn and share in our amazing combined experiences. The Alliance conference team is hard at work, putting together the best conference ever for 2011 - so don't delay, make your plans now to be part of Alliance 2011! When: Sunday, March 27th, 2011 - Wednesday, March 30, 2011 Where: The Colorado Convention Center (Denver, Colorado) Registration for Alliance 2011 is Now Open! UPK will be represented at this event offering: Pre-Conference Training Learn the Basics of Oracle User Productivity Kit (UPK) Taking Your UPKs to a Whole New Level, Advanced Use of UPK Demo Pod Staff Sessions: Oracle User Productivity Kit: Creating Value throughout the Project Lifecycle Beyond Basic UPK -- User Tracking and SmartHelp Leveraging Oracle and User Productivity Kit (UPK) to Develop a Comprehensive Training Program Oracle User Productivity Kit Strategy and Roadmap -- Key to User Adoption April 10 - 14th: Registration for COLLABORATE 11 has begun - Don't miss the most comprehensive, user-driven conference devoted to Oracle applications and technology. Collaborate with a global network of more than 5,000 peers and experts to share real-world experiences, solve your challenges and gain insights to validate your technology plans. Read below to discover which group to register with for the best value. UPK will be represented at this event offering: Demo Pod Staff Sessions: Oracle User Productivity Kit: Creating Value throughout the Project Lifecycle Centralize all Project Team assets, AND, Deploy Fully Measurable Training with UPK Pro Oracle User Productivity Kit Strategy and Roadmap - Key to User Adoption Registration is Now Open!

    Read the article

  • Windows Azure Use Case: Fast Acquisitions

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Many organizations absorb, take over or merge with other organizations. In these cases, one of the most difficult parts of the process is the merging or changing of the IT systems that the employees use to do their work, process payments, and even get paid. Normally this means that the two companies have disparate systems, and several approaches can be used to have the two organizations use technology between them. An organization may choose to retain both systems, and manage them separately. The advantage here is speed, and keeping the profit/loss sheets separate. Another choice is to slowly “sunset” or stop using one organization’s system, and cutting to the other system immediately or at a later date. Although a popular choice, one of the most difficult methods is to extract data and processes from one system and import it into the other. Employees at the transitioning system have to be trained on the new one, the data must be examined and cleansed, and there is inevitable disruption when this happens. Still another option is to integrate the systems. This may prove to be as much work as a transitional strategy, but may have less impact on the users or the balance sheet. Implementation: A distributed computing paradigm can be a good strategic solution to most of these strategies. Retaining both systems is made more simple by allowing the users at the second organization immediate access to the new system, because security accounts can be created quickly inside an application. There is no need to set up a VPN or any other connections than just to the Internet. Having the users stop using one system and start with the other is also simple in Windows Azure for the same reason. Extracting data to Azure holds the same limitations as an on-premise system, and may even be more problematic because of the large data transfers that might be required. In a distributed environment, you pay for the data transfer, so a mixed migration strategy is not recommended. However, if the data is slowly migrated over time with a defined cutover, this can be an effective strategy. If done properly, an integration strategy works very well for a distributed computing environment like Windows Azure. If the Azure code is architected as a series of services, then endpoints can expose the service into and out of not only the Azure platform, but internally as well. This is a form of the Hybrid Application use-case documented here. References: Designing for Cloud Optimized Architecture: http://blogs.msdn.com/b/dachou/archive/2011/01/23/designing-for-cloud-optimized-architecture.aspx 5 Enterprise steps for adopting a Platform as a Service: http://blogs.msdn.com/b/davidmcg/archive/2010/12/02/5-enterprise-steps-for-adopting-a-platform-as-a-service.aspx?wa=wsignin1.0

    Read the article

  • How to create Adhoc workflow in UCM

    - by vijaykumar.yenne
    UCM has an inbuilt workflow engine that can handle document centric workflow approval/rejection process to ensure the right set of assets go into the repository. Anybody who has gone through the documentation is aware that there are two types of work flows that can be defined using the Workflow Admin applet in UCM namely Criteria and Basic While criteria is an Automatic workflow  process based on certain metadata attributes (Security Group and One of the Metadata Fields) , basic workflow is a manual workflow that need to be initiated by the admin. Any workflow  that can be put on the white board can be translated into the UCM wokflow process and there are concepts like sub workflows, tokens, events. idoc scripting that be introduced to handle any kind of complex workflows. There is a specific Workflow Implementation guide that explains the concepts in detail. One of the standard queries i come across is how to handle adhoc workflows where at the time of contributing the content, the contributors would like to decide on the workflow to be initiated and the users to be picked for approval in each step, hence this post.This is what i want to acheive, i would like to display on my Checkin Screen on the kind of workflows that a contributor could choose from:Based on the Workflow the contributor chooses, the other metadata fields (Step One, Step Two and Step Three)  need to be filled in and these fields decide who the approvers are going to be.1. Create a criteria workflow called One_Step_Review2.create two tokens StepOne <$wfAddUser(xWorkflowStepOne, "user")$>,  OrginalAuthor  <$wfAddUser(wfGet("OriginalAuthor"), "user")$>View image3.create two steps in the work flow created (One_Step_Review)View image4. Edit Step1 of the Workflow and add the Step One token and select the review permissionView image5. In the exit conditions tab have atleast One reveiwerView image6. In the events tab add an entry event <$wfSet("OriginalAuthor",dDocAuthor)$> to capture the contributor who shall be notified in the second step of the workflowView image7. Add the second step Notify_Author to the workflow8. Add the original author token to the above step9.  Enable the workflow10. Open the configration manager applet and create a Metadata field Workflow with option list enabled and add the list of values as show hereView image11. Create another metadata field WorkflowStepOne with option list configured to the Users View. This shall display all the users registered with UCM, which when selected shall be associated with the tokens associated with the workflow. Refer the above token.View imageAs indicated in the above steps you could create multiple work flows and associate the custom metadata field values to the tokens so that the contributors can decide who can approve their  content.

    Read the article

  • Grontmij|Carl Bro A/S Relies on Telerik Reporting for Data Presentation and Analysis of Critical Bus

    Grontmij | Carl Bro A/S, an international company providing consultancy services in the fields of building, transportation, water, environment, energy and industry is using Telerik Reporting to save coding time and build an expandable  solution with swift performance and rich users interface. The main objective was to design and develop a web application that would provide users with an overview of construction budgets, contacts and all documents related to the properties and buildings they managed....Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Announcing Oracle Enterprise Content Management Suite 11g

    - by [email protected]
    Today Oracle announced Oracle Enterprise Content Management Suite 11g. This is a major release for us, and reinforces our three key themes at Oracle: Complete New in this release - Oracle ECM Suite 11g is built on a single, unified repository. Every piece of content - documents, HTML pages, digital assets, scanned images - is stored and accessbile directly from the repository, whether you are working on websites, creating brand logos, processing accounts payable invoices, or running records and retention functions. It makes complete, end-to-end management of content possible, from the point it enters the organization, through its entire lifecycle. Also new in this release, the installation, access, monitoring and administration of Oracle ECM Suite 11g is centralized. As a complete system, organizations can lower the costs of training and usage by having a centralized source of information that is easily administered. As part of this new unified repository release, Oracle has released a benchmarking white paper that shows the extreme performance and scalability of Oracle ECM Suite. When tested on a two node UCM Server running on Sun Oracle DB Machine Half Rack Hardware with an Exadata storage server, Oracle ECM Suite 11g is able to ingest over 178 million documents per day. Open Oracle ECM Suite 11g is built on a service-oriented architecture. All functions are available through standards-based services calls in Web Services or Java. In this release Oracle unveils Open Web Content Management. Open Web Content Management is a revolutionary approach to web content management that decouples the content management process from the process of creating web applications. One piece of this approach is our one-click web content management. With one click, a web application builder can drag content services into their application, enabling their users to also edit content with just one click. Open Web Content Management is also open because it enables Web developers to add Web content management to new and existing JavaServer Pages (JSP), JavaServer Faces (JSF) and Oracle Application Development Framework (ADF) Faces applications Open content distribution - Oracle ECM Suite 11g offers flexible deployment options with a built-in smart cache so organizations can deliver Web sites or Web applications without requiring Oracle ECM Suite as part of the delivery system Integrated Oracle ECM Suite 11g also offers a series of next generation desktop integrations, providing integrations such as: New MS Office integration with menus to access managed content, insert managed links, and compare managed documents using standard MS Office reviewing tools Automatic identity tagging of documents on download - to help users understand which versions they are viewing and prevent duplicate content items in the content repository. New "smart productivity folders" to show a users workflow inbox, saved searches and checked out content directly from Windows Explorer Drag and drop metadata pop-ups Check in and check out for all file formats with any standard WebDAV server As part of Oracle's Enterprise Application Documents initiative, Oracle Content Management 11g also provides certified application integrations with solution templates You can read the press release here. You can see more assets at the launch center here. You can sign up for the announcement webinar and hear more about the new features here. You can read the benchmarking study here.

    Read the article

  • Tom Cruise: Meet Fusion Apps UX and Feel the Speed

    - by ultan o'broin
    Unfortunately, I am old enough to remember, and now to admit that I really loved, the movie Top Gun. You know the one - Tom Cruise, US Navy F-14 ace pilot, Mr Maverick, crisis of confidence, meets woman, etc., etc. Anyway, one of more memorable lines (there were a few) was: "I feel the need, the need for speed." I was reminded of Tom Cruise recently. Paraphrasing a certain Senior Vice President talking about Oracle Fusion Applications and user experience at an all-hands meeting, I heard that: Applications can never be too easy to use. Performance can never be too fast. Developers, assume that your code is always "on". Perfect. You cannot overstate the user experience importance of application speed to users, or at least their perception of speed. We all want that super speed of execution and performance, and increasingly so as enterprise users bring the expectations of consumer IT into the work environment. Sten Vesterli (@stenvesterli), an Oracle Fusion Applications User Experience Advocate, also addressed the speed point artfully at an Oracle Usability Advisory Board meeting in Geneva. Sten asked us that when we next Googled something, to think about the message we see that Google has found hundreds of thousands or millions of results for us in a split second (for example, About 8,340,000 results (0.23 seconds)). Now, how many results can we see and how many can we use immediately? Yet, this simple message communicating the total results available to us works a special magic about speed, delight, and excitement that Google has made its own in the search space. And, guess what? The Oracle Application Development Framework table component relies on a similar "virtual performance boost", says Sten, when it displays the first 50 records in a table, and uses a scrollbar indicating the total size of the data record set. The user scrolls and the application automatically retrieves more records as needed. Application speed and its perception by users is worth bearing in mind the next time you're at a customer site and the IT Department demands that you retrieve every record from the database. Just think of... Dave Ensor: I'll give you all the rows you ask for in one second. If you promise to use them. (Again, hat tip to Sten.) And then maybe think of... Tom Cruise. And if you want to read about the speed of Oracle Fusion Applications, and what that really means in terms of user productivity for your entire business, then check out the Oracle Applications User Experience Oracle Fusion Applications white papers on the usable apps website.

    Read the article

  • Developing Spring Portlet for use inside Weblogic Portal / Webcenter Portal

    - by Murali Veligeti
    We need to understand the main difference between portlet workflow and servlet workflow.The main difference between portlet workflow and servlet workflow is that, the request to the portlet can have two distinct phases: 1) Action phase 2) Render phase. The Action phase is executed only once and is where any 'backend' changes or actions occur, such as making changes in a database. The Render phase then produces what is displayed to the user each time the display is refreshed. The critical point here is that for a single overall request, the action phase is executed only once, but the render phase may be executed multiple times. This provides a clean separation between the activities that modify the persistent state of your system and the activities that generate what is displayed to the user.The dual phases of portlet requests are one of the real strengths of the JSR-168 specification. For example, dynamic search results can be updated routinely on the display without the user explicitly re-running the search. Most other portlet MVC frameworks attempt to completely hide the two phases from the developer and make it look as much like traditional servlet development as possible - we think this approach removes one of the main benefits of using portlets. So, the separation of the two phases is preserved throughout the Spring Portlet MVC framework. The primary manifestation of this approach is that where the servlet version of the MVC classes will have one method that deals with the request, the portlet version of the MVC classes will have two methods that deal with the request: one for the action phase and one for the render phase. For example, where the servlet version of AbstractController has the handleRequestInternal(..) method, the portlet version of AbstractController has handleActionRequestInternal(..) and handleRenderRequestInternal(..) methods.The Spring Portlet Framework is designed around a DispatcherPortlet that dispatches requests to handlers, with configurable handler mappings and view resolution, just as the DispatcherServlet in the Spring Web Framework does.  Developing portlet.xml Let's start the sample development by creating the portlet.xml file in the /WebContent/WEB-INF/ folder as shown below: <?xml version="1.0" encoding="UTF-8"?> <portlet-app version="2.0" xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <portlet> <portlet-name>SpringPortletName</portlet-name> <portlet-class>org.springframework.web.portlet.DispatcherPortlet</portlet-class> <supports> <mime-type>text/html</mime-type> <portlet-mode>view</portlet-mode> </supports> <portlet-info> <title>SpringPortlet</title> </portlet-info> </portlet> </portlet-app> DispatcherPortlet is responsible for handling every client request. When it receives a request, it finds out which Controller class should be used for handling this request, and then it calls its handleActionRequest() or handleRenderRequest() method based on the request processing phase. The Controller class executes business logic and returns a View name that should be used for rendering markup to the user. The DispatcherPortlet then forwards control to that View for actual markup generation. As you can see, DispatcherPortlet is the central dispatcher for use within Spring Portlet MVC Framework. Note that your portlet application can define more than one DispatcherPortlet. If it does so, then each of these portlets operates its own namespace, loading its application context and handler mapping. The DispatcherPortlet is also responsible for loading application context (Spring configuration file) for this portlet. First, it tries to check the value of the configLocation portlet initialization parameter. If that parameter is not specified, it takes the portlet name (that is, the value of the <portlet-name> element), appends "-portlet.xml" to it, and tries to load that file from the /WEB-INF folder. In the portlet.xml file, we did not specify the configLocation initialization parameter, so let's create SpringPortletName-portlet.xml file in the next section. Developing SpringPortletName-portlet.xml Create the SpringPortletName-portlet.xml file in the /WebContent/WEB-INF folder of your application as shown below: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.0.xsd"> <bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver"> <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/> <property name="prefix" value="/jsp/"/> <property name="suffix" value=".jsp"/> </bean> <bean id="pointManager" class="com.wlp.spring.bo.internal.PointManagerImpl"> <property name="users"> <list> <ref bean="point1"/> <ref bean="point2"/> <ref bean="point3"/> <ref bean="point4"/> </list> </property> </bean> <bean id="point1" class="com.wlp.spring.bean.User"> <property name="name" value="Murali"/> <property name="points" value="6"/> </bean> <bean id="point2" class="com.wlp.spring.bean.User"> <property name="name" value="Sai"/> <property name="points" value="13"/> </bean> <bean id="point3" class="com.wlp.spring.bean.User"> <property name="name" value="Rama"/> <property name="points" value="43"/> </bean> <bean id="point4" class="com.wlp.spring.bean.User"> <property name="name" value="Krishna"/> <property name="points" value="23"/> </bean> <bean id="messageSource" class="org.springframework.context.support.ResourceBundleMessageSource"> <property name="basename" value="messages"/> </bean> <bean name="/users.htm" id="userController" class="com.wlp.spring.controller.UserController"> <property name="pointManager" ref="pointManager"/> </bean> <bean name="/pointincrease.htm" id="pointIncreaseController" class="com.wlp.spring.controller.IncreasePointsFormController"> <property name="sessionForm" value="true"/> <property name="pointManager" ref="pointManager"/> <property name="commandName" value="pointIncrease"/> <property name="commandClass" value="com.wlp.spring.bean.PointIncrease"/> <property name="formView" value="pointincrease"/> <property name="successView" value="users"/> </bean> <bean id="parameterMappingInterceptor" class="org.springframework.web.portlet.handler.ParameterMappingInterceptor" /> <bean id="portletModeParameterHandlerMapping" class="org.springframework.web.portlet.handler.PortletModeParameterHandlerMapping"> <property name="order" value="1" /> <property name="interceptors"> <list> <ref bean="parameterMappingInterceptor" /> </list> </property> <property name="portletModeParameterMap"> <map> <entry key="view"> <map> <entry key="pointincrease"> <ref bean="pointIncreaseController" /> </entry> <entry key="users"> <ref bean="userController" /> </entry> </map> </entry> </map> </property> </bean> <bean id="portletModeHandlerMapping" class="org.springframework.web.portlet.handler.PortletModeHandlerMapping"> <property name="order" value="2" /> <property name="portletModeMap"> <map> <entry key="view"> <ref bean="userController" /> </entry> </map> </property> </bean> </beans> The SpringPortletName-portlet.xml file is an application context file for your MVC portlet. It has a couple of bean definitions: viewController. At this point, remember that the viewController bean definition points to the com.ibm.developerworks.springmvc.ViewController.java class. portletModeHandlerMapping. As we discussed in the last section, whenever DispatcherPortlet gets a client request, it tries to find a suitable Controller class for handling that request. That is where PortletModeHandlerMapping comes into the picture. The PortletModeHandlerMapping class is a simple implementation of the HandlerMapping interface and is used by DispatcherPortlet to find a suitable Controller for every request. The PortletModeHandlerMapping class uses Portlet mode for the current request to find a suitable Controller class to use for handling the request. The portletModeMap property of portletModeHandlerMapping bean is the place where we map the Portlet mode name against the Controller class. In the sample code, we show that viewController is responsible for handling View mode requests. Developing UserController.java In the preceding section, you learned that the viewController bean is responsible for handling all the View mode requests. Your next step is to create the UserController.java class as shown below: public class UserController extends AbstractController { private PointManager pointManager; public void handleActionRequest(ActionRequest request, ActionResponse response) throws Exception { } public ModelAndView handleRenderRequest(RenderRequest request, RenderResponse response) throws ServletException, IOException { String now = (new java.util.Date()).toString(); Map<String, Object> myModel = new HashMap<String, Object>(); myModel.put("now", now); myModel.put("users", this.pointManager.getUsers()); return new ModelAndView("users", "model", myModel); } public void setPointManager(PointManager pointManager) { this.pointManager = pointManager; } } Every controller class in Spring Portlet MVC Framework must implement the org.springframework.web. portlet.mvc.Controller interface directly or indirectly. To make things easier, Spring Framework provides AbstractController class, which is the default implementation of the Controller interface. As a developer, you should always extend your controller from either AbstractController or one of its more specific subclasses. Any implementation of the Controller class should be reusable, thread-safe, and capable of handling multiple requests throughout the lifecycle of the portlet. In the sample code, we create the ViewController class by extending it from AbstractController. Because we don't want to do any action processing in the HelloSpringPortletMVC portlet, we override only the handleRenderRequest() method of AbstractController. Now, the only thing that HelloWorldPortletMVC should do is render the markup of View.jsp to the user when it receives a user request to do so. To do that, return the object of ModelAndView with a value of view equal to View. Developing web.xml According to Portlet Specification 1.0, every portlet application is also a Servlet Specification 2.3-compliant Web application, and it needs a Web application deployment descriptor (that is, web.xml). Let’s create the web.xml file in the /WEB-INF/ folder as shown in listing 4. Follow these steps: Open the existing web.xml file located at /WebContent/WEB-INF/web.xml. Replace the contents of this file with the code as shown below: <servlet> <servlet-name>ViewRendererServlet</servlet-name> <servlet-class>org.springframework.web.servlet.ViewRendererServlet</servlet-class> </servlet> <servlet-mapping> <servlet-name>ViewRendererServlet</servlet-name> <url-pattern>/WEB-INF/servlet/view</url-pattern> </servlet-mapping> <context-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/applicationContext.xml</param-value> </context-param> <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener> The web.xml file for the sample portlet declares two things: ViewRendererServlet. The ViewRendererServlet is the bridge servlet for portlet support. During the render phase, DispatcherPortlet wraps PortletRequest into ServletRequest and forwards control to ViewRendererServlet for actual rendering. This process allows Spring Portlet MVC Framework to use the same View infrastructure as that of its servlet version, that is, Spring Web MVC Framework. ContextLoaderListener. The ContextLoaderListener class takes care of loading Web application context at the time of the Web application startup. The Web application context is shared by all the portlets in the portlet application. In case of duplicate bean definition, the bean definition in the portlet application context takes precedence over the Web application context. The ContextLoader class tries to read the value of the contextConfigLocation Web context parameter to find out the location of the context file. If the contextConfigLocation parameter is not set, then it uses the default value, which is /WEB-INF/applicationContext.xml, to load the context file. The Portlet Controller interface requires two methods that handle the two phases of a portlet request: the action request and the render request. The action phase should be capable of handling an action request and the render phase should be capable of handling a render request and returning an appropriate model and view. While the Controller interface is quite abstract, Spring Portlet MVC offers a lot of controllers that already contain a lot of the functionality you might need – most of these are very similar to controllers from Spring Web MVC. The Controller interface just defines the most common functionality required of every controller - handling an action request, handling a render request, and returning a model and a view. How rendering works As you know, when the user tries to access a page with PointSystemPortletMVC portlet on it or when the user performs some action on any other portlet on that page or tries to refresh that page, a render request is sent to the PointSystemPortletMVC portlet. In the sample code, because DispatcherPortlet is the main portlet class, Weblogic Portal / Webcenter Portal calls its render() method and then the following sequence of events occurs: The render() method of DispatcherPortlet calls the doDispatch() method, which in turn calls the doRender() method. After the doRenderService() method gets control, first it tries to find out the locale of the request by calling the PortletRequest.getLocale() method. This locale is used while making all the locale-related decisions for choices such as which resource bundle should be loaded or which JSP should be displayed to the user based on the locale. After that, the doRenderService() method starts iterating through all the HandlerMapping classes configured for this portlet, calling their getHandler() method to identify the appropriate Controller for handling this request. In the sample code, we have configured only PortletModeHandlerMapping as a HandlerMapping class. The PortletModeHandlerMapping class reads the value of the current portlet mode, and based on that, it finds out, the Controller class that should be used to handle this request. In the sample code, ViewController is configured to handle the View mode request so that the PortletModeHandlerMapping class returns the object of ViewController. After the object of ViewController is returned, the doRenderService() method calls its handleRenderRequestInternal() method. Implementation of the handleRenderRequestInternal() method in ViewController.java is very simple. It logs a message saying that it got control, and then it creates an instance of ModelAndView with a value equal to View and returns it to DispatcherPortlet. After control returns to doRenderService(), the next task is to figure out how to render View. For that, DispatcherPortlet starts iterating through all the ViewResolvers configured in your portlet application, calling their resolveViewName() method. In the sample code we have configured only one ViewResolver, InternalResourceViewResolver. When its resolveViewName() method is called with viewName, it tries to add /WEB-INF/jsp as a prefix to the view name and to add JSP as a suffix. And it checks if /WEB-INF/jsp/View.jsp exists. If it does exist, it returns the object of JstlView wrapping View.jsp. After control is returned to the doRenderService() method, it creates the object PortletRequestDispatcher, which points to /WEB-INF/servlet/view – that is, ViewRendererServlet. Then it sets the object of JstlView in the request and dispatches the request to ViewRendererServlet. After ViewRendererServlet gets control, it reads the JstlView object from the request attribute and creates another RequestDispatcher pointing to the /WEB-INF/jsp/View.jsp URL and passes control to it for actual markup generation. The markup generated by View.jsp is returned to user. At this point, you may question the need for ViewRendererServlet. Why can't DispatcherPortlet directly forward control to View.jsp? Adding ViewRendererServlet in between allows Spring Portlet MVC Framework to reuse the existing View infrastructure. You may appreciate this more when we discuss how easy it is to integrate Apache Tiles Framework with your Spring Portlet MVC Framework. The attached project SpringPortlet.zip should be used to import the project in to your OEPE Workspace. SpringPortlet_Jars.zip contains jar files required for the application. Project is written on Spring 2.5.  The same JSR 168 portlet should work on Webcenter Portal as well.  Downloads: Download WeblogicPotal Project which consists of Spring Portlet. Download Spring Jars In-addition to above you need to download Spring.jar (Spring2.5)

    Read the article

  • NoSQL Memcached API for MySQL: Latest Updates

    - by Mat Keep
    With data volumes exploding, it is vital to be able to ingest and query data at high speed. For this reason, MySQL has implemented NoSQL interfaces directly to the InnoDB and MySQL Cluster (NDB) storage engines, which bypass the SQL layer completely. Without SQL parsing and optimization, Key-Value data can be written directly to MySQL tables up to 9x faster, while maintaining ACID guarantees. In addition, users can continue to run complex queries with SQL across the same data set, providing real-time analytics to the business or anonymizing sensitive data before loading to big data platforms such as Hadoop, while still maintaining all of the advantages of their existing relational database infrastructure. This and more is discussed in the latest Guide to MySQL and NoSQL where you can learn more about using the APIs to scale new generations of web, cloud, mobile and social applications on the world's most widely deployed open source database The native Memcached API is part of the MySQL 5.6 Release Candidate, and is already available in the GA release of MySQL Cluster. By using the ubiquitous Memcached API for writing and reading data, developers can preserve their investments in Memcached infrastructure by re-using existing Memcached clients, while also eliminating the need for application changes. Speed, when combined with flexibility, is essential in the world of growing data volumes and variability. Complementing NoSQL access, support for on-line DDL (Data Definition Language) operations in MySQL 5.6 and MySQL Cluster enables DevOps teams to dynamically update their database schema to accommodate rapidly changing requirements, such as the need to capture additional data generated by their applications. These changes can be made without database downtime. Using the Memcached interface, developers do not need to define a schema at all when using MySQL Cluster. Lets look a little more closely at the Memcached implementations for both InnoDB and MySQL Cluster. Memcached Implementation for InnoDB The Memcached API for InnoDB is previewed as part of the MySQL 5.6 Release Candidate. As illustrated in the following figure, Memcached for InnoDB is implemented via a Memcached daemon plug-in to the mysqld process, with the Memcached protocol mapped to the native InnoDB API. Figure 1: Memcached API Implementation for InnoDB With the Memcached daemon running in the same process space, users get very low latency access to their data while also leveraging the scalability enhancements delivered with InnoDB and a simple deployment and management model. Multiple web / application servers can remotely access the Memcached / InnoDB server to get direct access to a shared data set. With simultaneous SQL access, users can maintain all the advanced functionality offered by InnoDB including support for Foreign Keys, XA transactions and complex JOIN operations. Benchmarks demonstrate that the NoSQL Memcached API for InnoDB delivers up to 9x higher performance than the SQL interface when inserting new key/value pairs, with a single low-end commodity server supporting nearly 70,000 Transactions per Second. Figure 2: Over 9x Faster INSERT Operations The delivered performance demonstrates MySQL with the native Memcached NoSQL interface is well suited for high-speed inserts with the added assurance of transactional guarantees. You can check out the latest Memcached / InnoDB developments and benchmarks here You can learn how to configure the Memcached API for InnoDB here Memcached Implementation for MySQL Cluster Memcached API support for MySQL Cluster was introduced with General Availability (GA) of the 7.2 release, and joins an extensive range of NoSQL interfaces that are already available for MySQL Cluster Like Memcached, MySQL Cluster provides a distributed hash table with in-memory performance. MySQL Cluster extends Memcached functionality by adding support for write-intensive workloads, a full relational model with ACID compliance (including persistence), rich query support, auto-sharding and 99.999% availability, with extensive management and monitoring capabilities. All writes are committed directly to MySQL Cluster, eliminating cache invalidation and the overhead of data consistency checking to ensure complete synchronization between the database and cache. Figure 3: Memcached API Implementation with MySQL Cluster Implementation is simple: 1. The application sends reads and writes to the Memcached process (using the standard Memcached API). 2. This invokes the Memcached Driver for NDB (which is part of the same process) 3. The NDB API is called, providing for very quick access to the data held in MySQL Cluster’s data nodes. The solution has been designed to be very flexible, allowing the application architect to find a configuration that best fits their needs. It is possible to co-locate the Memcached API in either the data nodes or application nodes, or alternatively within a dedicated Memcached layer. The benefit of this flexible approach to deployment is that users can configure behavior on a per-key-prefix basis (through tables in MySQL Cluster) and the application doesn’t have to care – it just uses the Memcached API and relies on the software to store data in the right place(s) and to keep everything synchronized. Using Memcached for Schema-less Data By default, every Key / Value is written to the same table with each Key / Value pair stored in a single row – thus allowing schema-less data storage. Alternatively, the developer can define a key-prefix so that each value is linked to a pre-defined column in a specific table. Of course if the application needs to access the same data through SQL then developers can map key prefixes to existing table columns, enabling Memcached access to schema-structured data already stored in MySQL Cluster. Conclusion Download the Guide to MySQL and NoSQL to learn more about NoSQL APIs and how you can use them to scale new generations of web, cloud, mobile and social applications on the world's most widely deployed open source database See how to build a social app with MySQL Cluster and the Memcached API from our on-demand webinar or take a look at the docs Don't hesitate to use the comments section below for any questions you may have 

    Read the article

  • IBM System x3650 M2: Benchmark of Oracle's JDE 9.0 with Oracle VM

    - by didier.wojciechowski
    The IBM Oracle International Competency Center (ICC) in Denver, Colorado in a joint effort with the Oracle JD Edwards performance team was the first to execute a certified JD Edwards EnterpriseOne benchmark running on the new Intel® Xeon® processor 5500 series (Nehalem). This benchmark configuration included the IBM System x3650 M2, partitioned using Oracle Virtual Machine (VM), and Oracle's robust "Day in the Life" (DIL) test kit. In October, 2009 the benchmark scaled to 700 users with early code. In January 2010, with GA level code, the benchmark scaled successfully to 1000 users with sub-second response time.

    Read the article

  • Site Review: MortgageCalculator.org - Forms Evaluation

    This site allows users to enter basic loan information into a form and when the user clicks the submit button the information is used to calculate a loan summary which includes: monthly payment, total interest paid, and the last payment date. This site uses server side validation and replaces any value not within a normal range with the calculator default for the form field. In addition, they also use server side code to calculate the items on the loan summary which is then displayed to the user. I personally think that by adding client side validation, it would improve the users experience because it would ensure that the data being submitted is within an acceptable norm and if the data entered was not within this range then it would allow the user to adjust the data.

    Read the article

  • The Minimalist Approach to Content Governance - Retire Phase

    - by Kellsey Ruppel
     Originally posted by John Brunswick. Good news - the Retire Phase is actually more fun than the Manage Phase. During the Retire Phase our content management team should not have to track down content creators if the Request Phase of this process was completed successfully. The ownership meta data, success criteria and time stamp that was applied to the original content submission will help to manage content at the end of the content life cycle. The Retire Phase will provide the opportunity for us to prune irrelevant content items through archiving or deletion, keeping the content system clear of irrelevant information, streamlining users ability to browse and search for content.   1. Act on Metrics Established during the Request Phase Why - Some information is only relevant for a given amount of time. In Content Platform Migration Strategy - Artifacts vs Perishable Content we examined two content types - Artifacts and Perishable content. Understanding the differences between Artifacts and Perishable content will allow us to explicitly respect their various lifespans. Additionally, some content may have been part of a project that failed to meet the success criteria outlined in the Request Phase. Any content that did not meet the metrics outlined in the Request Phase should be considered for deletion. How - Thankfully by adhering to to The Minimalist Approach to Content Governance our content should have some level of meta data associated with it that will allow us to quickly sort and understand how to deal with it. Content Management Systems like Oracle's Universal Content Management (UCM) natively allow you to create and save advanced searches that can use content meta data like folders, author, expiration date, security settings and custom meta data to pull back listings of content for examination. Additionally, analytics are available for all content items that allow us to determine if the usage is meeting success criteria that may have been previously outlined during the request phase. The lists that are produced from these approaches can be quickly reviewed for each project with the content owners and based on the nature of the content and success criteria undergo archiving or deletion. Impact - Retiring content that is no longer relevant will allow end users to have fast and relevant access to information across your enterprise. As we mentioned in our first post in this series - it is easy to quickly start producing content, but the challenge is ensuring that the environment is easy to navigate and use on the third week and during the third year. The light level of effort that was placed into the Request Phase of this process will set us up to keep content clean and relevant for a long time to come. With an up-to-date content repository users will be able to quickly find access to the information that is critical to their work processes. You might not get a holiday named in your honor managing the content system, but will appreciate their quick access to quality information.

    Read the article

  • Hello With Oracle Identity Manager Architecture

    - by mustafakaya
    Hi, my name is Mustafa! I'm a Senior Consultant in Fusion Middleware Team and living in Istanbul,Turkey. I worked many various Java based software development projects such as end-to-end web applications, CRM , Telco VAS and integration projects.I want to share my experiences and research about Fusion Middleware Products in this column. Customer always wants best solution from software consultants or developers. Solution will be a code snippet or change complete architecture. We faced different requests according to the case of customer. In my posts i want to discuss Fusion Middleware Products Architecture or how can extend usability with apis or UI customization and more and I look forward to engaging with you on your experiences and thoughts on this.  In my first post, i will be discussing Oracle Identity Manager architecture  and i plan to discuss Oracle Identity Manager 11g features in next posts. Oracle Identity Manager System Architecture Oracle Identity Governance includes Oracle Identity Manager,Oracle Identity Analytics and Oracle Privileged Account Manager. I will discuss Oracle Identity Manager architecture in this post.  In basically, Oracle Identity Manager is a n-tier standard  Java EE application that is deployed on Oracle WebLogic Server and uses  a database .  Oracle Identity Manager presentation tier has three different screen and two different client. Identity Self Service and Identity System Administration are web-based thin client. Design Console is a Java Swing Client that communicates directly with the Business Service Tier.  Identity Self Service provides end-user operations and delegated administration features. System Administration provides system administration functions. And Design Console mostly use for development management operations such as  create and manage adapter and process form,notification , workflow desing, reconciliation rules etc. Business service tier is implemented as an Enterprise JavaBeans(EJB) application. So you can extense Oracle Identity Manager capabilities.  -The SMPL and EJB APIs allow develop custom plug-ins such as management roles or identities.  -Identity Services allow use core business capabilites of Oracle Identity Manager such as The User provisioning or reconciliation service. -Integration Services allow develop custom connectors or adapters for various deployment needs. -Platform Services allow use Entitlement Servers, Scheduler or SOA composites. The Middleware tier allows you using capabilites ADF Faces,SOA Suites, Scheduler, Entitlement Server and BI Publisher Reports. So OIM allows you to configure workflows uses Oracle SOA Suite or define authorization policies use with Oracle Entitlement Server. Also you can customization of OIM UI without need to write code and using ADF Business Editor  you can extend custom attributes to user,role,catalog and other objects. Data tiers; Oracle Identity Manager is driven by data and metadata which provides flexibility and adaptability to Oracle Identity Manager functionlities.  -Database has five schemas these are OIM,SOA,MDS,OPSS and OES. Oracle Identity Manager uses database to store runtime and configuration data. And all of entity, transactional and audit datas are stored in database. -Metadata Store; customizations and personalizations are stored in file-based repository or database-based repository.And Oracle Identity Manager architecture,the metadata is in Oracle Identity Manager database to take advantage of some of the advanced performance and availability features that this mode provides. -Identity Store; Oracle Identity Manager provides the ability to integrate an LDAP-based identity store into Oracle Identity Manager architecture.  Oracle Identity Manager uses the human workflow module of Oracle Service Oriented Architecture Suite. OIM connects to SOA using the T3 URL which is front-end URL for the SOA server.Oracle Identity Manager uses embedded Oracle Entitlement Server for authorization checks in OIM engine.  Several Oracle Identity Manager modules use JMS queues. Each queue is processed by a separate Message Driven Bean (MDB), which is also part of the Oracle Identity Manager application. Message producers are also part of the Oracle Identity Manager application. Oracle Identity Manager uses a scheduled jobs for some activities in the background.Some of scheduled jobs come with Out-Of-Box such as the disable users after the end date of the users or you can define your custom schedule jobs with Oracle Identity Manager APIs. You can use Oracle BI Publisher for reporting Oracle Identity Manager transactions or audit data which are in database. About me: Mustafa Kaya is a Senior Consultant in Oracle Fusion Middleware Team, living in Istanbul. Before coming to Oracle, he worked in teams developing web applications and backend services at a telco company. He is a Java technology enthusiast, software engineer and addicted to learn new technologies,develop new ideas. Follow Mustafa on Twitter,Connect on LinkedIn, and visit his site for Oracle Fusion Middleware related tips.

    Read the article

< Previous Page | 284 285 286 287 288 289 290 291 292 293 294 295  | Next Page >