Search Results

Search found 4176 results on 168 pages for 'graph algorithms'.

Page 29/168 | < Previous Page | 25 26 27 28 29 30 31 32 33 34 35 36  | Next Page >

  • Algorithm for grouping friends at the cinema [closed]

    - by Tim Skauge
    I got a brain teaser for you - it's not as simple as it sounds so please read and try to solve the issue. Before you ask if it's homework - it's not! I just wish to see if there's an elegant way of solving this. Here's the issue: X-number of friends want's to go to the cinema and wish to be seated in the best available groups. Best case is that everyone sits together and worst case is that everyone sits alone. Fewer groups are preferred over more groups. Sitting alone is least preferred. Input is the number of people going to the cinema and output should be an array of integer arrays that contains: Ordered combinations (most preferred are first) Number of people in each group Below are some examples of number of people going to the cinema and a list of preferred combinations these people can be seated: 1 person: 1 2 persons: 2, 1+1 3 persons: 3, 2+1, 1+1+1 4 persons: 4, 2+2, 3+1, 2+1+1, 1+1+1+1 5 persons: 5, 3+2, 4+1, 2+2+1, 3+1+1, 2+1+1+1, 1+1+1+1+1 6 persons: 6, 3+3, 4+2, 2+2+2, 5+1, 3+2+1, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1 Example with more than 7 persons explodes in combinations but I think you get the point by now. Question is: What does an algorithm look like that solves this problem? My language by choice is C# so if you could give an answer in C# it would be fantastic!

    Read the article

  • Algorithm for optimal combination of two variables

    - by AlanChavez
    I'm looking for an algorithm that would be able to determine the optimal combination of two variables, but I'm not sure where to start looking. For example, if I have 10,000 rows in a database and each row contains price, and square feet is there any algorithm out there that will be able to determine what combination of price and sq ft is optimal. I know this is vague, but I assume is along the lines of Fuzzy logic and fuzzy sets, but I'm not sure and I'd like to start digging in the right field to see if I can come up with something that solves my problem.

    Read the article

  • Approach to Authenticate Clients to TCP Server

    - by dab
    I'm writing a Server/Client application where clients will connect to the server. What I want to do, is make sure that the client connecting to the server is actually using my protocol and I can "trust" the data being sent from the client to the server. What I thought about doing is creating a sort of hash on the client's machine that follows a particular algorithm. What I did in a previous version was took their IP address, the client version, and a few other attributes of the client and sent it as a calculated hash to the server, who then took their IP, and the version of the protocol the client claimed to be using, and calculated that number to see if they matched. This works ok until you get clients that connect from within a router environment where their internal IP is different from their external IP. My fix for this was to pass the client's internal IP used to calculate this hash with the authentication protocol. My fear is this approach is not secure enough. Since I'm passing the data used to create the "auth hash". Here's an example of what I'm talking about: Client IP: 192.168.1.10, Version: 2.4.5.2 hash = 2*4*5*1 * (1+9+2) * (1+6+8) * (1) * (1+0) Client Connects to Server client sends: auth hash ip version Server calculates that info, and accepts or denies the hash. Before I go and come up with another algorithm to prove a client can provide data a server (or use this existing algorithm), I was wondering if there are any existing, proven, and secure systems out there for generating a hash that both sides can generate with general knowledge. The server won't know about the client until the very first connection is established. The protocol's intent is to manage a network of clients who will be contributing data to the server periodically. New clients will be added simply by connecting the client to the server and "registering" with the server. So a client connects to the server for the first time, and registers their info (mac address or some other kind of unique computer identifier), then when they connect again, the server will recognize that client as a previous person and associate them with their data in the database.

    Read the article

  • Is the Leptonica implementation of 'Modified Median Cut' not using the median at all?

    - by TheCodeJunkie
    I'm playing around a bit with image processing and decided to read up on how color quantization worked and after a bit of reading I found the Modified Median Cut Quantization algorithm. I've been reading the code of the C implementation in Leptonica library and came across something I thought was a bit odd. Now I want to stress that I am far from an expert in this area, not am I a math-head, so I am predicting that this all comes down to me not understanding all of it and not that the implementation of the algorithm is wrong at all. The algorithm states that the vbox should be split along the lagest axis and that it should be split using the following logic The largest axis is divided by locating the bin with the median pixel (by population), selecting the longer side, and dividing in the center of that side. We could have simply put the bin with the median pixel in the shorter side, but in the early stages of subdivision, this tends to put low density clusters (that are not considered in the subdivision) in the same vbox as part of a high density cluster that will outvote it in median vbox color, even with future median-based subdivisions. The algorithm used here is particularly important in early subdivisions, and 3is useful for giving visible but low population color clusters their own vbox. This has little effect on the subdivision of high density clusters, which ultimately will have roughly equal population in their vboxes. For the sake of the argument, let's assume that we have a vbox that we are in the process of splitting and that the red axis is the largest. In the Leptonica algorithm, on line 01297, the code appears to do the following Iterate over all the possible green and blue variations of the red color For each iteration it adds to the total number of pixels (population) it's found along the red axis For each red color it sum up the population of the current red and the previous ones, thus storing an accumulated value, for each red note: when I say 'red' I mean each point along the axis that is covered by the iteration, the actual color may not be red but contains a certain amount of red So for the sake of illustration, assume we have 9 "bins" along the red axis and that they have the following populations 4 8 20 16 1 9 12 8 8 After the iteration of all red bins, the partialsum array will contain the following count for the bins mentioned above 4 12 32 48 49 58 70 78 86 And total would have a value of 86 Once that's done it's time to perform the actual median cut and for the red axis this is performed on line 01346 It iterates over bins and check they accumulated sum. And here's the part that throws me of from the description of the algorithm. It looks for the first bin that has a value that is greater than total/2 Wouldn't total/2 mean that it is looking for a bin that has a value that is greater than the average value and not the median ? The median for the above bins would be 49 The use of 43 or 49 could potentially have a huge impact on how the boxes are split, even though the algorithm then proceeds by moving to the center of the larger side of where the matched value was.. Another thing that puzzles me a bit is that the paper specified that the bin with the median value should be located, but does not mention how to proceed if there are an even number of bins.. the median would be the result of (a+b)/2 and it's not guaranteed that any of the bins contains that population count. So this is what makes me thing that there are some approximations going on that are negligible because of how the split actually takes part at the center of the larger side of the selected bin. Sorry if it got a bit long winded, but I wanted to be as thoroughas I could because it's been driving me nuts for a couple of days now ;)

    Read the article

  • Efficient Bus Loading

    - by System Down
    This is something I did for a bus travel company a long time ago, and I was never happy with the results. I was thinking about that old project recently and thought I'd revisit that problem. Problem: Bus travel company has several buses with different passenger capacities (e.g. 15 50-passenger buses, 25 30-passenger buses ... etc). They specialized in offering transportation to very large groups (300+ passengers per group). Since each group needs to travel together they needed to manage their fleet efficiently to reduce waste. For instance, 88 passengers are better served by three 30-passenger buses (2 empty seats) than by two 50-passenger buses (12 empty seats). Another example, 75 passengers would be better served by one 50-passenger bus and one 30-passenger bus, a mix of types. What's a good algorithm to do this?

    Read the article

  • How to identify a PDF classification problem?

    - by burtonic
    We are crawling and downloading lots of companies' PDFs and trying to pick out the ones that are Annual Reports. Such reports can be downloaded from most companies' investor-relations pages. The PDFs are scanned and the database is populated with, among other things, the: Title Contents (full text) Page count Word count Orientation First line Using this data we are checking for the obvious phrases such as: Annual report Financial statement Quarterly report Interim report Then recording the frequency of these phrases and others. So far we have around 350,000 PDFs to scan and a training set of 4,000 documents that have been manually classified as either a report or not. We are experimenting with a number of different approaches including Bayesian classifiers and weighting the different factors available. We are building the classifier in Ruby. My question is: if you were thinking about this problem, where would you start?

    Read the article

  • Is there a phrase or word to describe an algorithim or program is complete in that given any value for its arguments there is a defined outcome?

    - by Mrk Mnl
    Is there a phrase or word to describe an algorithim or programme is complete in that given any value for its arguments there is a defined outcome? i.e. all the ramifications have been considered whatever the context? A simple example would be the below function: function returns string get_item_type(int type_no) { if(type_no < 10) return "hockey stick" else if (type_no < 20) return "bulldozer" else return "unknown" } (excuse the dismal pseudo code) No matter what number is supplied all possibiblites are catered for. My question is: is there a word to fill the blank here: "get_item_type() is ______ complete" ? (The answer is not Turing Complete - that is something quite different - but I annoyingly always think of something as "Turing Complete" when I am thinking of the above).

    Read the article

  • An algorithm for finding subset matching criteria?

    - by Macin
    I recently came up with a problem which I would like to share some thoughts about with someone on this forum. This relates to finding a subset. In reality it is more complicated, but I tried to present it here using some simpler concepts. To make things easier, I created this conceptual DB model: Let's assume this is a DB for storing recipes. Recipe can have many instructions steps and many ingredients. Ingredients are stored in a cupboard and we know how much of each ingredient we have. Now, when we create a recipe, we have to define how much of each ingredient we need. When we want to use a recipe, we would just check if required amount is less than available amount for each product and then decide if we can cook a dinner - if amount required for at least one ingredient is less than available amount - recipe cannot be cooked. Simple sql query to get the result. This is straightforward, but I'm wondering, how should I work when the problem is stated the other way round, i.e. how to find recipies which can be cooked only from ingredients that are available? I hope my explanation is clear, but if you need any more clarification, please ask.

    Read the article

  • Slides and Code from “Using C#’s Async Effectively”

    - by Reed
    The slides and code from my talk on the new async language features in C# and VB.Net are now available on https://github.com/ReedCopsey/Effective-Async This includes the complete slide deck, and all 4 projects, including: FakeService: Simple WCF service to run locally and simulate network service calls. AsyncService: Simple WCF service which wraps FakeService to demonstrate converting sync to async SimpleWPFExample: Simplest example of converting a method call to async from a synchronous version AsyncExamples: Windows Store application demonstrating main concepts, pitfalls, tips, and tricks from the slide deck

    Read the article

  • Algorithm for Learning development

    - by user9057
    Hi all, This is a fairly general question. I know a bit of Perl and Python and I am looking to learn programming in more depth so that once I get the hang of it I can start developing applications and then websites. I would like to know of an algorithm (sequence of steps :)) that could describe my approach towards learning programming in general. I have posted small questions on Perl/Python and I have recieved great help from everyone. Note:- I am not in a hurry to learn. I know it takes time and that's fine. Please give any suggestions you think are valid. Also, please don't push me to learn Lisp, Haskell etc - I am a beginner.

    Read the article

  • Algorithm to generate N random numbers between A and B which sum up to X

    - by Shaamaan
    This problem seemed like something which should be solvable with but a few lines of code. Unfortunately, once I actually started to write the thing, I've realized it's not as simple as it sounds. What I need is a set of X random numbers, each of which is between A and B and they all add up to X. The exact variables for the problem I'm facing seem to be even simpler: I need 5 numbers, between -1 and 1 (note: these are decimal numbers), which add up to 1. My initial "few lines of code, should be easy" approach was to randomize 4 numbers between -1 and 1 (which is simple enough), and then make the last one 1-(sum of previous numbers). This quickly proved wrong, as the last number could just as well be larger than 1 or smaller than -1. What would be the best way to approach this problem? PS. Just for reference: I'm using C#, but I don't think it matters. I'm actually having trouble creating a good enough solution for the problem in my head.

    Read the article

  • Algorithm for Learning development

    - by user9057
    This is a fairly general question. I know a bit of Perl and Python and I am looking to learn programming in more depth so that once I get the hang of it I can start developing applications and then websites. I would like to know of an algorithm (sequence of steps :)) that could describe my approach towards learning programming in general. I have posted small questions on Perl/Python and I have recieved great help from everyone. Note:- I am not in a hurry to learn. I know it takes time and that's fine. Please give any suggestions you think are valid. Also, please don't push me to learn Lisp, Haskell etc - I am a beginner.

    Read the article

  • Improving python code

    - by cobie
    I just answered the question on project euler about finding circular primes below 1 million using python. My solution is below. I was able to reduce the running time of the solution from 9 seconds to about 3 seconds. I would like to see what else can be done to the code to reduce its running time further. This is strictly for educational purposes and for fun. import math import time def getPrimes(n): """returns set of all primes below n""" non_primes = [j for j in range(4, n, 2)] # 2 covers all even numbers for i in range(3, n, 2): non_primes.extend([j for j in range(i*2, n, i)]) return set([i for i in range(2, n)]) - set(non_primes) def getCircularPrimes(n): primes = getPrimes(n) is_circ = [] for prime in primes: prime_str = str(prime) iter_count = len(prime_str) - 1 rotated_num = [] while iter_count > 0: prime_str = prime_str[1:] + prime_str[:1] rotated_num.append(int(prime_str)) iter_count -= 1 if primes >= set(rotated_num): is_circ.append(prime) return len(is_circ)

    Read the article

  • Logic - Time measurement

    - by user73384
    To measure the following for tasks- Last execution time and maximum execution time for each task. CPU load/time consumed by each task over a defined period informed by application at run time. Maximum CPU load consumed by each task. Tasks have following characteristics- First task runs as background – Event information for entering only Second task - periodic – Event information for entering and exiting from task Third task is interrupt , can start any time – no information available from this task Forth task highest priority interrupt , can start any time – Event information for entering and exiting from task Should use least possible execution time and memory. 32bit increment timer available for time counting. Lets prepare and discuss the logic, It’s OK to have limitations …! Questions on understanding problem statement are welcome

    Read the article

  • Labeling algorithm for points

    - by Qwertie
    I need an algorithm to place horizontal text labels for multiple series of points on the screen (basically I need to show timestamps and other information for a history of moving objects on a map; in general there are multiple data points per object). The text labels should appear close to their points--above, below, or on the right side--but should not overlap other points or text labels. Does anyone know an algorithm/heuristic for this?

    Read the article

  • Matching users based on a series of questions

    - by SeanWM
    I'm trying to figure out a way to match users based on specific personality traits. Each trait will have its own category. I figure in my user table I'll add a column for each category: id name cat1 cat2 cat3 1 Sean ? ? ? 2 Other ? ? ? Let's say I ask each user 3 questions in each category. For each question, you can answer one of the following: No, Maybe, Yes How would I calculate one number based off the answers in those 3 questions that would hold a value I can compare other users to? I was thinking having some sort of weight. Like: No -> 0 Maybe -> 1 Yes -> 2 Then doing some sort of meaningful calculation. I want to end up with something like this so I can query the users and find who matches close: id name cat1 cat2 cat3 1 Sean 4 5 1 2 Other 1 2 5 In the situation above, the users don't really match. I'd want to match with someone with a +1 or -1 of my score in each category. I'm not a math guy so I'm just looking for some ideas to get me started.

    Read the article

  • Algorithm for determining grid based on variably sized "blocks"?

    - by Lite Byte
    I'm trying to convert a set of "blocks" in to a grid-like layout. The blocks have a width of either 25%, 33%, 50%, 66%, or 75% of their container and each row of the grid should try to fit as many blocks as possible, up to a total width of 100%. I've discovered that trying to do this while leaving no remaining blocks in the original set is very hard. Eventually, I think my solution will be to upgrade/downgrade various block sizes (based on their priority or something) so they all fit in to a row. Either case, before I do that, I thought I'd check if someone has some code (or a paper) demonstrating a solution to this problem already? And bonus points if the solution incorporates varying block heights in to its calculations :) Thanks!

    Read the article

  • Resolving equivalence relations

    - by Luca Cerone
    I am writing a function to label the connected component in an image (I know there are several libraries outside, I just wanted to play with the algorithm). To do this I label the connected regions with different labels and create an equivalence table that contain information on the labels belonging to the same connected component. As an example if my equivalence table (vector of vector) looks something like: 1: 1,3 2: 2,3 3: 1,2,3 4: 4 It means that in the image there are 2 different regions, one made of elements that are labelled 1,2,3 and an other made of elements labelled 4. What is an easy and efficient way to resolve the equivalences and end up with something that looks like: 1: 1,2,3 2: 4 that I can use to "merge" the different connected regions belonging to the same connected component? Thanks a lot for the help!

    Read the article

  • High-level strategy for distinguishing a regular string from invalid JSON (ie. JSON-like string detection)

    - by Jonline
    Disclaimer On Absence of Code: I have no code to post because I haven't started writing; was looking for more theoretical guidance as I doubt I'll have trouble coding it but am pretty befuddled on what approach(es) would yield best results. I'm not seeking any code, either, though; just direction. Dilemma I'm toying with adding a "magic method"-style feature to a UI I'm building for a client, and it would require intelligently detecting whether or not a string was meant to be JSON as against a simple string. I had considered these general ideas: Look for a sort of arbitrarily-determined acceptable ratio of the frequency of JSON-like syntax (ie. regex to find strings separated by colons; look for colons between curly-braces, etc.) to the number of quote-encapsulated strings + nulls, bools and ints/floats. But the smaller the data set, the more fickle this would get look for key identifiers like opening and closing curly braces... not sure if there even are more easy identifiers, and this doesn't appeal anyway because it's so prescriptive about the kinds of mistakes it could find try incrementally parsing chunks, as those between curly braces, and seeing what proportion of these fractional statements turn out to be valid JSON; this seems like it would suffer less than (1) from smaller datasets, but would probably be much more processing-intensive, and very susceptible to a missing or inverted brace Just curious if the computational folks or algorithm pros out there had any approaches in mind that my semantics-oriented brain might have missed. PS: It occurs to me that natural language processing, about which I am totally ignorant, might be a cool approach; but, if NLP is a good strategy here, it sort of doesn't matter because I have zero experience with it and don't have time to learn & then implement/ this feature isn't worth it to the client.

    Read the article

  • Even distribution through a chain of resources

    - by ClosetGeek
    I'm working on an algorithm which routes tasks through a chain of distributed resources based on a hash (or random number). For example, say you have 10 gateways into a service which distribute tasks to 1000 handlers through 100 queues. 10,000 connected clients are expected to be connected to gateways at any given time (numbers are very general to keep it simple). Thats 10,000 clients 10 gateways (producers) 100 queues 1000 workers/handlers (consumers) The flow of each task is client-gateway-queue-worker Each client will have it's own hash/number which is used to route each task from the client to the same worker each time, with each task going through the same gateway and queue each time. Yet the algorithm handles distribution evenly, meaning each gateway, queue, and worker will have an even workload. My question is what exactly would this be called? Does such a thing already exist? This started off as a DHT, but I realized that DHTs can't do exactly what I need, so I started from scratch.

    Read the article

  • What is an efficient algorithm for randomly assigning a pool of objects to a parent using specific rules

    - by maple_shaft
    I need some expert answers to help me determine the most efficient algorithm in this scenario. Consider the following data structures: type B { A parent; } type A { set<B> children; integer minimumChildrenAllowed; integer maximumChildrenAllowed; } I have a situation where I need to fetch all the orphan children (there could be hundreds of thousands of these) and assign them RANDOMLY to A type parents based on the following rules. At the end of the job, there should be no orphans left At the end of the job, no object A should have less children than its predesignated minimum. At the end of the job, no object A should have more children than its predesignated maximum. If we run out of A objects then we should create a new A with default values for minimum and maximum and assign remaining orphans to these objects. The distribution of children should be as evenly distributed as possible. There may already be some children assigned to A before the job starts. I was toying with how to do this but I am afraid that I would just end up looping across the parents sorted from smallest to largest, and then grab an orphan for each parent. I was wondering if there is a more efficient way to handle this?

    Read the article

  • What is a good algorithm to distribute items with specific requirements?

    - by user66160
    I have to programmatically distribute a set of items to some entities, but there are rules both on the items and on the entities like so: Item one: 100 units, only entities from Foo Item two: 200 units, no restrictions Item three: 100 units, only entities that have Bar Entity one: Only items that have Baz Entity one hundred: No items that have Fubar I only need to be pointed in the right direction, I'll research and learn the suggested methods.

    Read the article

  • Developing a search algorithm

    - by Richart Bremer
    I want to create a basic search engine, and I want you to give me some ideas how to filter out the best results for my visitors. I have three fields regarding a product the user can search in: Title Category Description I came up with these ideas and I ask you to either competently criticize them or add to them. If the search term occurs in all three fields it should be among the first results. If it is in two of the fields it is below the results of 1. Combine the amount of occurences and output a value in per cent. For instance if in all fields together the term clock appeared 50 times and in all fields together there are 200 words, then the per cent value is 50/200*100 = 25%. Another product entry amounts to say 20% so product one having 25% is listed before product two having 20%.

    Read the article

  • How would you tackle a pattern-finding program?

    - by Neil
    Just to be clear, I don't think this should be question better suited for stackoverflow.com simply because there's not a single answer but a wide range of possible solutions, making this question far more subjective in nature. I was curious how you guys would tackle a pattern-finding program, which is to say I'd do the following operations: I enter in some input. Program predicts my next input based on all previous inputs. Rinse. Repeat. Since the amount of input I could provide is so varied, including empty strings, conventional means such as switches or regular expressions are out, since it would require you to have an inkling of information about what to expect. I was thinking about some form of genetic algorithm, yet even then I don't have a clue as to how to approach a problem of this caliber. I think some feedback mechanism would be necessary as well as to let the program know how close it was. Anyone had to do a similar type program before?

    Read the article

  • How to create distinct set from other sets?

    - by shyam_baidya
    While solving the problems on Techgig.com, I got struck with one one of the problem. The problem is like this: A company organizes two trips for their employees in a year. They want to know whether all the employees can be sent on the trip or not. The condition is like, no employee can go on both the trips. Also to determine which employee can go together the constraint is that the employees who have worked together in past won't be in the same group. Examples of the problems: Suppose the work history is given as follows: {(1,2),(2,3),(3,4)}; then it is possible to accommodate all the four employees in two trips (one trip consisting of employees 1& 3 and other having employees 2 & 4). Neither of the two employees in the same trip have worked together in past. Suppose the work history is given as {(1,2),(1,3),(2,3)} then there is no way possible to have two trips satisfying the company rule and accommodating all the employees. Can anyone tell me how to proceed on this problem?

    Read the article

< Previous Page | 25 26 27 28 29 30 31 32 33 34 35 36  | Next Page >