Search Results

Search found 23374 results on 935 pages for 'james may'.

Page 29/935 | < Previous Page | 25 26 27 28 29 30 31 32 33 34 35 36  | Next Page >

  • Real time embeddable http server library required

    - by Howard May
    Having looked at several available http server libraries I have not yet found what I am looking for and am sure I can't be the first to have this set of requirements. I need a library which presents an API which is 'pipelined'. Pipelining is used to describe an HTTP feature where multiple HTTP requests can be sent across a TCP link at a time without waiting for a response. I want a similar feature on the library API where my application can receive all of those request without having to send a response (I will respond but want the ability to process multiple requests at a time to reduce the impact of internal latency). So the web server library will need to support the following flow 1) HTTP Client transmits http request 1 2) HTTP Client transmits http request 2 ... 3) Web Server Library receives request 1 and passes it to My Web Server App 4) My Web Server App receives request 1 and dispatches it to My System 5) Web Server receives request 2 and passes it to My Web Server App 6) My Web Server App receives request 2 and dispatches it to My System 7) My Web Server App receives response to request 1 from My System and passes it to Web Server 8) Web Server transmits HTTP response 1 to HTTP Client 9) My Web Server App receives response to request 2 from My System and passes it to Web Server 10) Web Server transmits HTTP response 2 to HTTP Client Hopefully this illustrates my requirement. There are two key points to recognise. Responses to the Web Server Library are asynchronous and there may be several HTTP requests passed to My Web Server App with responses outstanding. Additional requirements are Embeddable into an existing 'C' application Small footprint; I don't need all the functionality available in Apache etc. Efficient; will need to support thousands of requests a second Allows asynchronous responses to requests; their is a small latency to responses and given the required request throughput a synchronous architecture is not going to work for me. Support persistent TCP connections Support use with Server-Push Comet connections Open Source / GPL support for HTTPS Portable across linux, windows; preferably more. I will be very grateful for any recommendation Best Regards

    Read the article

  • Presentation software requires admin rights to install - any way to remove this requirement?

    - by James F
    I have some wireless presentation software which I use in a meeting room in order to allow end users to hold presentations here and wirelessly have their laptop screens showing on the TV on the wall. Unfortunately the .exe file requires admin rights to install therefore requiring that either the user requests temporary admin rights beforehand, I install it using my admin account or that we use a VGA/HDMI cable. Is there a way to remove the admin right requirement from a .exe or a .msi file so that it can be installed freely by any user? We are using XP for now but will be moving to 7 soon. Thanks James

    Read the article

  • Full-text search locks up database - error 0x8001010e

    - by Stewart May
    Hi We have a full-text catalog that is populated via a job every 15 minutes like so: ALTER FULLTEXT INDEX ON [dbo].[WorkItemLongTexts] START INCREMENTAL POPULATION We have encountered a problem where the database containing this catalog locks up. There are a couple of scenarios, we either see the job execute and the process hang with with a wait type of UNKNOWN TOKEN, or we see another process hang with a wait type of MSSEARCH. Once this happens the job continues to run but informs us that the request to start a full-text index population is ignored because a population is currently active. Looking in the full text log files we see the following error each time these problems occur: 2010-04-21 08:15:00.76 spid21s The full-text catalog health monitor reported a failure for full-text catalog "XXXFullTextCatalog" (5) in database "YYY" (14). Reason code: 0. Error: 0x8001010e(The application called an interface that was marshalled for a different thread.). The system will restart any in-progress population from the previous checkpoint. If this message occurs frequently, consult SQL Server Books Online for troubleshooting assistance. This is an informational message only. No user action is required."'' The only solution is to restart the SQL Server service and then the full text service. This is now occuring on a daily basis now so any help would be appreciated.

    Read the article

  • Unexpected media key behavior on new Acer Aspire

    - by Morgan May
    I'm having weird issues with the media keys (play/pause, previous, next, etc.) on a new Acer Aspire laptop. This is the first Acer I've owned and also my first Windows 7 computer, so I'm not sure whether the behavior is a result of some hidden Acer process that I haven't rooted out yet, or some Windows 7 option that I'm not aware of, or something else. I'm experiencing two issues that I suspect are related. Both problems are intermittent but happen more often than not. The media player I'm using is Winamp. I'm pretty sure I've had the same problem when using other media players, but when I tried to verify that before posting this, I only had the problems with Winamp. Because the problems are intermittent, I'm not sure if that's significant. 1) When I press the Play/Pause media key, in addition to playing or pausing the media player, it brings up a little menu in the center of the screen that lists my removable drives (CD/DVD, USB drives, etc.). To make the menu go away I have to either click away from it or hit Escape. Selecting a drive on the menu doesn't seem to do anything. 2) When I press the Previous or Next media keys, it skips 2+ tracks instead of just one (the exact number seems to vary). I've poked around all the control panel options that I can find, and looked through all the utilities that came with the computer with no luck. There's nothing that I can find in the (very slim) documentation, either. I have a hunch that the problem is caused by whatever utility manages global hotkeys, but I haven't found any way to configure that. Any guidance would be greatly appreciated. UPDATE: It looks like Winamp was the culprit. I did have the problem when using other media players, but when I uninstalled Winamp, the problem went away. I'd like to use Winamp, but I can survive with other players.

    Read the article

  • TGT validation fails, but only for one user

    - by wzzrd
    I'm seeing the weirdest thing here. I have a couple of RHEL3, 4 and 5 machines that validate user credentials through Kerberos with an Active Directoy domain controller as their KDC. This works for all of my users, save one. There is one account that is unable to log into RHEL3 Linux machines and generates the following errors there: May 31 13:53:19 mybox sshd(pam_unix)[7186]: authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=10.0.0.1 user=user May 31 13:53:20 mybox sshd[7186]: pam_krb5: TGT verification failed for `user' May 31 13:53:20 mybox sshd[7186]: pam_krb5: authentication fails for `user' Other accounts, like my own, are fine: May 31 17:25:30 mybox sshd(pam_unix)[12913]: authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=10.0.0.1 user=myuser May 31 17:25:31 mybox sshd[12913]: pam_krb5: TGT for myuser successfully verified May 31 17:25:31 mybox sshd[12913]: pam_krb5: authentication succeeds for `myuser' May 31 17:25:31 mybox sshd(pam_unix)[12915]: session opened for user myuser by (uid=0) As you can see, TGT validation fails. This only happens for this specific account, not for any other. The failing useraccount's password has been reset, I inspected both user objects in Active Directory, but I see nothing out of the ordinary. If I have the failing useraccount log into a RHEL4 or 5 box, there is not problem, so it must be RHEL3 specific, but the fact that only one account suffers from this, alludes me. Maybe someone has seen this before?

    Read the article

  • C#/.NET Little Wonders: The Timeout static class

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. When I started the “Little Wonders” series, I really wanted to pay homage to parts of the .NET Framework that are often small but can help in big ways.  The item I have to discuss today really is a very small item in the .NET BCL, but once again I feel it can help make the intention of code much clearer and thus is worthy of note. The Problem - Magic numbers aren’t very readable or maintainable In my first Little Wonders Post (Five Little Wonders That Make Code Better) I mention the TimeSpan factory methods which, I feel, really help the readability of constructed TimeSpan instances. Just to quickly recap that discussion, ask yourself what the TimeSpan specified in each case below is 1: // Five minutes? Five Seconds? 2: var fiveWhat1 = new TimeSpan(0, 0, 5); 3: var fiveWhat2 = new TimeSpan(0, 0, 5, 0); 4: var fiveWhat3 = new TimeSpan(0, 0, 5, 0, 0); You’d think they’d all be the same unit of time, right?  After all, most overloads tend to tack additional arguments on the end.  But this is not the case with TimeSpan, where the constructor forms are:     TimeSpan(int hours, int minutes, int seconds);     TimeSpan(int days, int hours, int minutes, int seconds);     TimeSpan(int days, int hours, int minutes, int seconds, int milliseconds); Notice how in the 4 and 5 parameter version we suddenly have the parameter days slipping in front of hours?  This can make reading constructors like those above much harder.  Fortunately, there are TimeSpan factory methods to help make your intention crystal clear: 1: // Ah! Much clearer! 2: var fiveSeconds = TimeSpan.FromSeconds(5); These are great because they remove all ambiguity from the reader!  So in short, magic numbers in constructors and methods can be ambiguous, and anything we can do to clean up the intention of the developer will make the code much easier to read and maintain. Timeout – Readable identifiers for infinite timeout values In a similar way to TimeSpan, let’s consider specifying timeouts for some of .NET’s (or our own) many methods that allow you to specify timeout periods. For example, in the TPL Task class, there is a family of Wait() methods that can take TimeSpan or int for timeouts.  Typically, if you want to specify an infinite timeout, you’d just call the version that doesn’t take a timeout parameter at all: 1: myTask.Wait(); // infinite wait But there are versions that take the int or TimeSpan for timeout as well: 1: // Wait for 100 ms 2: myTask.Wait(100); 3:  4: // Wait for 5 seconds 5: myTask.Wait(TimeSpan.FromSeconds(5); Now, if we want to specify an infinite timeout to wait on the Task, we could pass –1 (or a TimeSpan set to –1 ms), which what the .NET BCL methods with timeouts use to represent an infinite timeout: 1: // Also infinite timeouts, but harder to read/maintain 2: myTask.Wait(-1); 3: myTask.Wait(TimeSpan.FromMilliseconds(-1)); However, these are not as readable or maintainable.  If you were writing this code, you might make the mistake of thinking 0 or int.MaxValue was an infinite timeout, and you’d be incorrect.  Also, reading the code above it isn’t as clear that –1 is infinite unless you happen to know that is the specified behavior. To make the code like this easier to read and maintain, there is a static class called Timeout in the System.Threading namespace which contains definition for infinite timeouts specified as both int and TimeSpan forms: Timeout.Infinite An integer constant with a value of –1 Timeout.InfiniteTimeSpan A static readonly TimeSpan which represents –1 ms (only available in .NET 4.5+) This makes our calls to Task.Wait() (or any other calls with timeouts) much more clear: 1: // intention to wait indefinitely is quite clear now 2: myTask.Wait(Timeout.Infinite); 3: myTask.Wait(Timeout.InfiniteTimeSpan); But wait, you may say, why would we care at all?  Why not use the version of Wait() that takes no arguments?  Good question!  When you’re directly calling the method with an infinite timeout that’s what you’d most likely do, but what if you are just passing along a timeout specified by a caller from higher up?  Or perhaps storing a timeout value from a configuration file, and want to default it to infinite? For example, perhaps you are designing a communications module and want to be able to shutdown gracefully, but if you can’t gracefully finish in a specified amount of time you want to force the connection closed.  You could create a Shutdown() method in your class, and take a TimeSpan or an int for the amount of time to wait for a clean shutdown – perhaps waiting for client to acknowledge – before terminating the connection.  So, assume we had a pub/sub system with a class to broadcast messages: 1: // Some class to broadcast messages to connected clients 2: public class Broadcaster 3: { 4: // ... 5:  6: // Shutdown connection to clients, wait for ack back from clients 7: // until all acks received or timeout, whichever happens first 8: public void Shutdown(int timeout) 9: { 10: // Kick off a task here to send shutdown request to clients and wait 11: // for the task to finish below for the specified time... 12:  13: if (!shutdownTask.Wait(timeout)) 14: { 15: // If Wait() returns false, we timed out and task 16: // did not join in time. 17: } 18: } 19: } We could even add an overload to allow us to use TimeSpan instead of int, to give our callers the flexibility to specify timeouts either way: 1: // overload to allow them to specify Timeout in TimeSpan, would 2: // just call the int version passing in the TotalMilliseconds... 3: public void Shutdown(TimeSpan timeout) 4: { 5: Shutdown(timeout.TotalMilliseconds); 6: } Notice in case of this class, we don’t assume the caller wants infinite timeouts, we choose to rely on them to tell us how long to wait.  So now, if they choose an infinite timeout, they could use the –1, which is more cryptic, or use Timeout class to make the intention clear: 1: // shutdown the broadcaster, waiting until all clients ack back 2: // without timing out. 3: myBroadcaster.Shutdown(Timeout.Infinite); We could even add a default argument using the int parameter version so that specifying no arguments to Shutdown() assumes an infinite timeout: 1: // Modified original Shutdown() method to add a default of 2: // Timeout.Infinite, works because Timeout.Infinite is a compile 3: // time constant. 4: public void Shutdown(int timeout = Timeout.Infinite) 5: { 6: // same code as before 7: } Note that you can’t default the ShutDown(TimeSpan) overload with Timeout.InfiniteTimeSpan since it is not a compile-time constant.  The only acceptable default for a TimeSpan parameter would be default(TimeSpan) which is zero milliseconds, which specified no wait, not infinite wait. Summary While Timeout.Infinite and Timeout.InfiniteTimeSpan are not earth-shattering classes in terms of functionality, they do give you very handy and readable constant values that you can use in your programs to help increase readability and maintainability when specifying infinite timeouts for various timeouts in the BCL and your own applications. Technorati Tags: C#,CSharp,.NET,Little Wonders,Timeout,Task

    Read the article

  • C#/.NET Little Wonders: Using &lsquo;default&rsquo; to Get Default Values

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Today’s little wonder is another of those small items that can help a lot in certain situations, especially when writing generics.  In particular, it is useful in determining what the default value of a given type would be. The Problem: what’s the default value for a generic type? There comes a time when you’re writing generic code where you may want to set an item of a given generic type.  Seems simple enough, right?  We’ll let’s see! Let’s say we want to query a Dictionary<TKey, TValue> for a given key and get back the value, but if the key doesn’t exist, we’d like a default value instead of throwing an exception. So, for example, we might have a the following dictionary defined: 1: var lookup = new Dictionary<int, string> 2: { 3: { 1, "Apple" }, 4: { 2, "Orange" }, 5: { 3, "Banana" }, 6: { 4, "Pear" }, 7: { 9, "Peach" } 8: }; And using those definitions, perhaps we want to do something like this: 1: // assume a default 2: string value = "Unknown"; 3:  4: // if the item exists in dictionary, get its value 5: if (lookup.ContainsKey(5)) 6: { 7: value = lookup[5]; 8: } But that’s inefficient, because then we’re double-hashing (once for ContainsKey() and once for the indexer).  Well, to avoid the double-hashing, we could use TryGetValue() instead: 1: string value; 2:  3: // if key exists, value will be put in value, if not default it 4: if (!lookup.TryGetValue(5, out value)) 5: { 6: value = "Unknown"; 7: } But the “flow” of using of TryGetValue() can get clunky at times when you just want to assign either the value or a default to a variable.  Essentially it’s 3-ish lines (depending on formatting) for 1 assignment.  So perhaps instead we’d like to write an extension method to support a cleaner interface that will return a default if the item isn’t found: 1: public static class DictionaryExtensions 2: { 3: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 4: TKey key, TValue defaultIfNotFound) 5: { 6: TValue value; 7:  8: // value will be the result or the default for TValue 9: if (!dict.TryGetValue(key, out value)) 10: { 11: value = defaultIfNotFound; 12: } 13:  14: return value; 15: } 16: } 17:  So this creates an extension method on Dictionary<TKey, TValue> that will attempt to get a value using the given key, and will return the defaultIfNotFound as a stand-in if the key does not exist. This code compiles, fine, but what if we would like to go one step further and allow them to specify a default if not found, or accept the default for the type?  Obviously, we could overload the method to take the default or not, but that would be duplicated code and a bit heavy for just specifying a default.  It seems reasonable that we could set the not found value to be either the default for the type, or the specified value. So what if we defaulted the type to null? 1: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 2: TKey key, TValue defaultIfNotFound = null) // ... No, this won’t work, because only reference types (and Nullable<T> wrapped types due to syntactical sugar) can be assigned to null.  So what about a calling parameterless constructor? 1: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 2: TKey key, TValue defaultIfNotFound = new TValue()) // ... No, this won’t work either for several reasons.  First, we’d expect a reference type to return null, not an “empty” instance.  Secondly, not all reference types have a parameter-less constructor (string for example does not).  And finally, a constructor cannot be determined at compile-time, while default values can. The Solution: default(T) – returns the default value for type T Many of us know the default keyword for its uses in switch statements as the default case.  But it has another use as well: it can return us the default value for a given type.  And since it generates the same defaults that default field initialization uses, it can be determined at compile-time as well. For example: 1: var x = default(int); // x is 0 2:  3: var y = default(bool); // y is false 4:  5: var z = default(string); // z is null 6:  7: var t = default(TimeSpan); // t is a TimeSpan with Ticks == 0 8:  9: var n = default(int?); // n is a Nullable<int> with HasValue == false Notice that for numeric types the default is 0, and for reference types the default is null.  In addition, for struct types, the value is a default-constructed struct – which simply means a struct where every field has their default value (hence 0 Ticks for TimeSpan, etc.). So using this, we could modify our code to this: 1: public static class DictionaryExtensions 2: { 3: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 4: TKey key, TValue defaultIfNotFound = default(TValue)) 5: { 6: TValue value; 7:  8: // value will be the result or the default for TValue 9: if (!dict.TryGetValue(key, out value)) 10: { 11: value = defaultIfNotFound; 12: } 13:  14: return value; 15: } 16: } Now, if defaultIfNotFound is unspecified, it will use default(TValue) which will be the default value for whatever value type the dictionary holds.  So let’s consider how we could use this: 1: lookup.GetValueOrDefault(1); // returns “Apple” 2:  3: lookup.GetValueOrDefault(5); // returns null 4:  5: lookup.GetValueOrDefault(5, “Unknown”); // returns “Unknown” 6:  Again, do not confuse a parameter-less constructor with the default value for a type.  Remember that the default value for any type is the compile-time default for any instance of that type (0 for numeric, false for bool, null for reference types, and struct will all default fields for struct).  Consider the difference: 1: // both zero 2: int i1 = default(int); 3: int i2 = new int(); 4:  5: // both “zeroed” structs 6: var dt1 = default(DateTime); 7: var dt2 = new DateTime(); 8:  9: // sb1 is null, sb2 is an “empty” string builder 10: var sb1 = default(StringBuilder()); 11: var sb2 = new StringBuilder(); So in the above code, notice that the value types all resolve the same whether using default or parameter-less construction.  This is because a value type is never null (even Nullable<T> wrapped types are never “null” in a reference sense), they will just by default contain fields with all default values. However, for reference types, the default is null and not a constructed instance.  Also it should be noted that not all classes have parameter-less constructors (string, for instance, doesn’t have one – and doesn’t need one). Summary Whenever you need to get the default value for a type, especially a generic type, consider using the default keyword.  This handy word will give you the default value for the given type at compile-time, which can then be used for initialization, optional parameters, etc. Technorati Tags: C#,CSharp,.NET,Little Wonders,default

    Read the article

  • "Collection was modified; enumeration operation may not execute." on form disposal.

    - by cyclotis04
    "Collection was modified; enumeration operation may not execute." appears to be a common error with foreach loops, but I can't figure mine out. I have two classes of forms. One is begun on startup, and a button creates new instances of the second form, and displays them. When I close the secondary forms, I get an InvalidOperationException. FirstForm.cs public partial class FirstForm : Form { SecondForm frmSecond; ... private void button1_Click(object sender, EventArgs e) { frmSecond= new SecondForm (); frmSecond.Show(); } } SecondForm.designer.cs partial class SecondForm { ... protected override void Dispose(bool disposing) { if (disposing && (components != null)) { components.Dispose(); } base.Dispose(disposing); // InvalidOperationException thrown here. } }

    Read the article

  • What to Do When Windows Won’t Boot

    - by Chris Hoffman
    You turn on your computer one day and Windows refuses to boot — what do you do? “Windows won’t boot” is a common symptom with a variety of causes, so you’ll need to perform some troubleshooting. Modern versions of Windows are better at recovering from this sort of thing. Where Windows XP might have stopped in its tracks when faced with this problem, modern versions of Windows will try to automatically run Startup Repair. First Things First Be sure to think about changes you’ve made recently — did you recently install a new hardware driver, connect a new hardware component to your computer, or open your computer’s case and do something? It’s possible the hardware driver is buggy, the new hardware is incompatible, or that you accidentally unplugged something while working inside your computer. The Computer Won’t Power On At All If your computer won’t power on at all, ensure it’s plugged into a power outlet and that the power connector isn’t loose. If it’s a desktop PC, ensure the power switch on the back of its case — on the power supply — is set to the On position. If it still won’t power on at all, it’s possible you disconnected a power cable inside its case. If you haven’t been messing around inside the case, it’s possible the power supply is dead. In this case, you’ll have to get your computer’s hardware fixed or get a new computer. Be sure to check your computer monitor — if your computer seems to power on but your screen stays black, ensure your monitor is powered on and that the cable connecting it to your computer’s case is plugged in securely at both ends. The Computer Powers On And Says No Bootable Device If your computer is powering on but you get a black screen that says something like “no bootable device” or another sort of “disk error” message, your computer can’t seem to boot from the hard drive that Windows was installed on. Enter your computer’s BIOS or UEFI firmware setup screen and check its boot order setting, ensuring that it’s set to boot from its hard drive. If the hard drive doesn’t appear in the list at all, it’s possible your hard drive has failed and can no longer be booted from. In this case, you may want to insert Windows installation or recovery media and run the Startup Repair operation. This will attempt to make Windows bootable again. For example, if something overwrote your Windows drive’s boot sector, this will repair the boot sector. If the recovery environment won’t load or doesn’t see your hard drive, you likely have a hardware problem. Be sure to check your BIOS or UEFI’s boot order first if the recovery environment won’t load. You can also attempt to manually fix Windows boot loader problems using the fixmbr and fixboot commands. Modern versions of Windows should be able to fix this problem for you with the Startup Repair wizard, so you shouldn’t actually have to run these commands yourself. Windows Freezes or Crashes During Boot If Windows seems to start booting but fails partway through, you may be facing either a software or hardware problem. If it’s a software problem, you may be able to fix it by performing a Startup Repair operation. If you can’t do this from the boot menu, insert a Windows installation disc or recovery disk and use the startup repair tool from there. If this doesn’t help at all, you may want to reinstall Windows or perform a Refresh or Reset on Windows 8. If the computer encounters errors while attempting to perform startup repair or reinstall Windows, or the reinstall process works properly and you encounter the same errors afterwards, you likely have a hardware problem. Windows Starts and Blue Screens or Freezes If Windows crashes or blue-screens on you every time it boots, you may be facing a hardware or software problem. For example, malware or a buggy driver may be loading at boot and causing the crash, or your computer’s hardware may be malfunctioning. To test this, boot your Windows computer in safe mode. In safe mode, Windows won’t load typical hardware drivers or any software that starts automatically at startup. If the computer is stable in safe mode, try uninstalling any recently installed hardware drivers, performing a system restore, and scanning for malware. If you’re lucky, one of these steps may fix your software problem and allow you to boot Windows normally. If your problem isn’t fixed, try reinstalling Windows or performing a Refresh or Reset on Windows 8. This will reset your computer back to its clean, factory-default state. If you’re still experiencing crashes, your computer likely has a hardware problem. Recover Files When Windows Won’t Boot If you have important files that will be lost and want to back them up before reinstalling Windows, you can use a Windows installer disc or Linux live media to recover the files. These run entirely from a CD, DVD, or USB drive and allow you to copy your files to another external media, such as another USB stick or an external hard drive. If you’re incapable of booting a Windows installer disc or Linux live CD, you may need to go into your BIOS or UEFI and change the boot order setting. If even this doesn’t work — or if you can boot from the devices and your computer freezes or you can’t access your hard drive — you likely have a hardware problem. You can try pulling the computer’s hard drive, inserting it into another computer, and recovering your files that way. Following these steps should fix the vast majority of Windows boot issues — at least the ones that are actually fixable. The dark cloud that always hangs over such issues is the possibility that the hard drive or another component in the computer may be failing. Image Credit: Karl-Ludwig G. Poggemann on Flickr, Tzuhsun Hsu on Flickr     

    Read the article

  • C#/.NET Little Wonders: The Nullable static class

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Today we’re going to look at an interesting Little Wonder that can be used to mitigate what could be considered a Little Pitfall.  The Little Wonder we’ll be examining is the System.Nullable static class.  No, not the System.Nullable<T> class, but a static helper class that has one useful method in particular that we will examine… but first, let’s look at the Little Pitfall that makes this wonder so useful. Little Pitfall: Comparing nullable value types using <, >, <=, >= Examine this piece of code, without examining it too deeply, what’s your gut reaction as to the result? 1: int? x = null; 2:  3: if (x < 100) 4: { 5: Console.WriteLine("True, {0} is less than 100.", 6: x.HasValue ? x.ToString() : "null"); 7: } 8: else 9: { 10: Console.WriteLine("False, {0} is NOT less than 100.", 11: x.HasValue ? x.ToString() : "null"); 12: } Your gut would be to say true right?  It would seem to make sense that a null integer is less than the integer constant 100.  But the result is actually false!  The null value is not less than 100 according to the less-than operator. It looks even more outrageous when you consider this also evaluates to false: 1: int? x = null; 2:  3: if (x < int.MaxValue) 4: { 5: // ... 6: } So, are we saying that null is less than every valid int value?  If that were true, null should be less than int.MinValue, right?  Well… no: 1: int? x = null; 2:  3: // um... hold on here, x is NOT less than min value? 4: if (x < int.MinValue) 5: { 6: // ... 7: } So what’s going on here?  If we use greater than instead of less than, we see the same little dilemma: 1: int? x = null; 2:  3: // once again, null is not greater than anything either... 4: if (x > int.MinValue) 5: { 6: // ... 7: } It turns out that four of the comparison operators (<, <=, >, >=) are designed to return false anytime at least one of the arguments is null when comparing System.Nullable wrapped types that expose the comparison operators (short, int, float, double, DateTime, TimeSpan, etc.).  What’s even odder is that even though the two equality operators (== and !=) work correctly, >= and <= have the same issue as < and > and return false if both System.Nullable wrapped operator comparable types are null! 1: DateTime? x = null; 2: DateTime? y = null; 3:  4: if (x <= y) 5: { 6: Console.WriteLine("You'd think this is true, since both are null, but it's not."); 7: } 8: else 9: { 10: Console.WriteLine("It's false because <=, <, >, >= don't work on null."); 11: } To make matters even more confusing, take for example your usual check to see if something is less than, greater to, or equal: 1: int? x = null; 2: int? y = 100; 3:  4: if (x < y) 5: { 6: Console.WriteLine("X is less than Y"); 7: } 8: else if (x > y) 9: { 10: Console.WriteLine("X is greater than Y"); 11: } 12: else 13: { 14: // We fall into the "equals" assumption, but clearly null != 100! 15: Console.WriteLine("X is equal to Y"); 16: } Yes, this code outputs “X is equal to Y” because both the less-than and greater-than operators return false when a Nullable wrapped operator comparable type is null.  This violates a lot of our assumptions because we assume is something is not less than something, and it’s not greater than something, it must be equal.  So keep in mind, that the only two comparison operators that work on Nullable wrapped types where at least one is null are the equals (==) and not equals (!=) operators: 1: int? x = null; 2: int? y = 100; 3:  4: if (x == y) 5: { 6: Console.WriteLine("False, x is null, y is not."); 7: } 8:  9: if (x != y) 10: { 11: Console.WriteLine("True, x is null, y is not."); 12: } Solution: The Nullable static class So we’ve seen that <, <=, >, and >= have some interesting and perhaps unexpected behaviors that can trip up a novice developer who isn’t expecting the kinks that System.Nullable<T> types with comparison operators can throw.  How can we easily mitigate this? Well, obviously, you could do null checks before each check, but that starts to get ugly: 1: if (x.HasValue) 2: { 3: if (y.HasValue) 4: { 5: if (x < y) 6: { 7: Console.WriteLine("x < y"); 8: } 9: else if (x > y) 10: { 11: Console.WriteLine("x > y"); 12: } 13: else 14: { 15: Console.WriteLine("x == y"); 16: } 17: } 18: else 19: { 20: Console.WriteLine("x > y because y is null and x isn't"); 21: } 22: } 23: else if (y.HasValue) 24: { 25: Console.WriteLine("x < y because x is null and y isn't"); 26: } 27: else 28: { 29: Console.WriteLine("x == y because both are null"); 30: } Yes, we could probably simplify this logic a bit, but it’s still horrendous!  So what do we do if we want to consider null less than everything and be able to properly compare Nullable<T> wrapped value types? The key is the System.Nullable static class.  This class is a companion class to the System.Nullable<T> class and allows you to use a few helper methods for Nullable<T> wrapped types, including a static Compare<T>() method of the. What’s so big about the static Compare<T>() method?  It implements an IComparer compatible comparison on Nullable<T> types.  Why do we care?  Well, if you look at the MSDN description for how IComparer works, you’ll read: Comparing null with any type is allowed and does not generate an exception when using IComparable. When sorting, null is considered to be less than any other object. This is what we probably want!  We want null to be less than everything!  So now we can change our logic to use the Nullable.Compare<T>() static method: 1: int? x = null; 2: int? y = 100; 3:  4: if (Nullable.Compare(x, y) < 0) 5: { 6: // Yes! x is null, y is not, so x is less than y according to Compare(). 7: Console.WriteLine("x < y"); 8: } 9: else if (Nullable.Compare(x, y) > 0) 10: { 11: Console.WriteLine("x > y"); 12: } 13: else 14: { 15: Console.WriteLine("x == y"); 16: } Summary So, when doing math comparisons between two numeric values where one of them may be a null Nullable<T>, consider using the System.Nullable.Compare<T>() method instead of the comparison operators.  It will treat null less than any value, and will avoid logic consistency problems when relying on < returning false to indicate >= is true and so on. Tweet   Technorati Tags: C#,C-Sharp,.NET,Little Wonders,Little Pitfalls,Nulalble

    Read the article

  • C#/.NET Little Wonders: Use Cast() and TypeOf() to Change Sequence Type

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. We’ve seen how the Select() extension method lets you project a sequence from one type to a new type which is handy for getting just parts of items, or building new items.  But what happens when the items in the sequence are already the type you want, but the sequence itself is typed to an interface or super-type instead of the sub-type you need? For example, you may have a sequence of Rectangle stored in an IEnumerable<Shape> and want to consider it an IEnumerable<Rectangle> sequence instead.  Today we’ll look at two handy extension methods, Cast<TResult>() and OfType<TResult>() which help you with this task. Cast<TResult>() – Attempt to cast all items to type TResult So, the first thing we can do would be to attempt to create a sequence of TResult from every item in the source sequence.  Typically we’d do this if we had an IEnumerable<T> where we knew that every item was actually a TResult where TResult inherits/implements T. For example, assume the typical Shape example classes: 1: // abstract base class 2: public abstract class Shape { } 3:  4: // a basic rectangle 5: public class Rectangle : Shape 6: { 7: public int Widtgh { get; set; } 8: public int Height { get; set; } 9: } And let’s assume we have a sequence of Shape where every Shape is a Rectangle… 1: var shapes = new List<Shape> 2: { 3: new Rectangle { Width = 3, Height = 5 }, 4: new Rectangle { Width = 10, Height = 13 }, 5: // ... 6: }; To get the sequence of Shape as a sequence of Rectangle, of course, we could use a Select() clause, such as: 1: // select each Shape, cast it to Rectangle 2: var rectangles = shapes 3: .Select(s => (Rectangle)s) 4: .ToList(); But that’s a bit verbose, and fortunately there is already a facility built in and ready to use in the form of the Cast<TResult>() extension method: 1: // cast each item to Rectangle and store in a List<Rectangle> 2: var rectangles = shapes 3: .Cast<Rectangle>() 4: .ToList(); However, we should note that if anything in the list cannot be cast to a Rectangle, you will get an InvalidCastException thrown at runtime.  Thus, if our Shape sequence had a Circle in it, the call to Cast<Rectangle>() would have failed.  As such, you should only do this when you are reasonably sure of what the sequence actually contains (or are willing to handle an exception if you’re wrong). Another handy use of Cast<TResult>() is using it to convert an IEnumerable to an IEnumerable<T>.  If you look at the signature, you’ll see that the Cast<TResult>() extension method actually extends the older, object-based IEnumerable interface instead of the newer, generic IEnumerable<T>.  This is your gateway method for being able to use LINQ on older, non-generic sequences.  For example, consider the following: 1: // the older, non-generic collections are sequence of object 2: var shapes = new ArrayList 3: { 4: new Rectangle { Width = 3, Height = 13 }, 5: new Rectangle { Width = 10, Height = 20 }, 6: // ... 7: }; Since this is an older, object based collection, we cannot use the LINQ extension methods on it directly.  For example, if I wanted to query the Shape sequence for only those Rectangles whose Width is > 5, I can’t do this: 1: // compiler error, Where() operates on IEnumerable<T>, not IEnumerable 2: var bigRectangles = shapes.Where(r => r.Width > 5); However, I can use Cast<Rectangle>() to treat my ArrayList as an IEnumerable<Rectangle> and then do the query! 1: // ah, that’s better! 2: var bigRectangles = shapes.Cast<Rectangle>().Where(r => r.Width > 5); Or, if you prefer, in LINQ query expression syntax: 1: var bigRectangles = from s in shapes.Cast<Rectangle>() 2: where s.Width > 5 3: select s; One quick warning: Cast<TResult>() only attempts to cast, it won’t perform a cast conversion.  That is, consider this: 1: var intList = new List<int> { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 }; 2:  3: // casting ints to longs, this should work, right? 4: var asLong = intList.Cast<long>().ToList(); Will the code above work?  No, you’ll get a InvalidCastException. Remember that Cast<TResult>() is an extension of IEnumerable, thus it is a sequence of object, which means that it will box every int as an object as it enumerates over it, and there is no cast conversion from object to long, and thus the cast fails.  In other words, a cast from int to long will succeed because there is a conversion from int to long.  But a cast from int to object to long will not, because you can only unbox an item by casting it to its exact type. For more information on why cast-converting boxed values doesn’t work, see this post on The Dangers of Casting Boxed Values (here). OfType<TResult>() – Filter sequence to only items of type TResult So, we’ve seen how we can use Cast<TResult>() to change the type of our sequence, when we expect all the items of the sequence to be of a specific type.  But what do we do when a sequence contains many different types, and we are only concerned with a subset of a given type? For example, what if a sequence of Shape contains Rectangle and Circle instances, and we just want to select all of the Rectangle instances?  Well, let’s say we had this sequence of Shape: 1: var shapes = new List<Shape> 2: { 3: new Rectangle { Width = 3, Height = 5 }, 4: new Rectangle { Width = 10, Height = 13 }, 5: new Circle { Radius = 10 }, 6: new Square { Side = 13 }, 7: // ... 8: }; Well, we could get the rectangles using Select(), like: 1: var onlyRectangles = shapes.Where(s => s is Rectangle).ToList(); But fortunately, an easier way has already been written for us in the form of the OfType<T>() extension method: 1: // returns only a sequence of the shapes that are Rectangles 2: var onlyRectangles = shapes.OfType<Rectangle>().ToList(); Now we have a sequence of only the Rectangles in the original sequence, we can also use this to chain other queries that depend on Rectangles, such as: 1: // select only Rectangles, then filter to only those more than 2: // 5 units wide... 3: var onlyBigRectangles = shapes.OfType<Rectangle>() 4: .Where(r => r.Width > 5) 5: .ToList(); The OfType<Rectangle>() will filter the sequence to only the items that are of type Rectangle (or a subclass of it), and that results in an IEnumerable<Rectangle>, we can then apply the other LINQ extension methods to query that list further. Just as Cast<TResult>() is an extension method on IEnumerable (and not IEnumerable<T>), the same is true for OfType<T>().  This means that you can use OfType<TResult>() on object-based collections as well. For example, given an ArrayList containing Shapes, as below: 1: // object-based collections are a sequence of object 2: var shapes = new ArrayList 3: { 4: new Rectangle { Width = 3, Height = 5 }, 5: new Rectangle { Width = 10, Height = 13 }, 6: new Circle { Radius = 10 }, 7: new Square { Side = 13 }, 8: // ... 9: }; We can use OfType<Rectangle> to filter the sequence to only Rectangle items (and subclasses), and then chain other LINQ expressions, since we will then be of type IEnumerable<Rectangle>: 1: // OfType() converts the sequence of object to a new sequence 2: // containing only Rectangle or sub-types of Rectangle. 3: var onlyBigRectangles = shapes.OfType<Rectangle>() 4: .Where(r => r.Width > 5) 5: .ToList(); Summary So now we’ve seen two different ways to get a sequence of a superclass or interface down to a more specific sequence of a subclass or implementation.  The Cast<TResult>() method casts every item in the source sequence to type TResult, and the OfType<TResult>() method selects only those items in the source sequence that are of type TResult. You can use these to downcast sequences, or adapt older types and sequences that only implement IEnumerable (such as DataTable, ArrayList, etc.). Technorati Tags: C#,CSharp,.NET,LINQ,Little Wonders,TypeOf,Cast,IEnumerable<T>

    Read the article

  • C#/.NET Little Wonders: Skip() and Take()

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. I’ve covered many valuable methods from System.Linq class library before, so you already know it’s packed with extension-method goodness.  Today I’d like to cover two small families I’ve neglected to mention before: Skip() and Take().  While these methods seem so simple, they are an easy way to create sub-sequences for IEnumerable<T>, much the way GetRange() creates sub-lists for List<T>. Skip() and SkipWhile() The Skip() family of methods is used to ignore items in a sequence until either a certain number are passed, or until a certain condition becomes false.  This makes the methods great for starting a sequence at a point possibly other than the first item of the original sequence.   The Skip() family of methods contains the following methods (shown below in extension method syntax): Skip(int count) Ignores the specified number of items and returns a sequence starting at the item after the last skipped item (if any).  SkipWhile(Func<T, bool> predicate) Ignores items as long as the predicate returns true and returns a sequence starting with the first item to invalidate the predicate (if any).  SkipWhile(Func<T, int, bool> predicate) Same as above, but passes not only the item itself to the predicate, but also the index of the item.  For example: 1: var list = new[] { 3.14, 2.72, 42.0, 9.9, 13.0, 101.0 }; 2:  3: // sequence contains { 2.72, 42.0, 9.9, 13.0, 101.0 } 4: var afterSecond = list.Skip(1); 5: Console.WriteLine(string.Join(", ", afterSecond)); 6:  7: // sequence contains { 42.0, 9.9, 13.0, 101.0 } 8: var afterFirstDoubleDigit = list.SkipWhile(v => v < 10.0); 9: Console.WriteLine(string.Join(", ", afterFirstDoubleDigit)); Note that the SkipWhile() stops skipping at the first item that returns false and returns from there to the rest of the sequence, even if further items in that sequence also would satisfy the predicate (otherwise, you’d probably be using Where() instead, of course). If you do use the form of SkipWhile() which also passes an index into the predicate, then you should keep in mind that this is the index of the item in the sequence you are calling SkipWhile() from, not the index in the original collection.  That is, consider the following: 1: var list = new[] { 1.0, 1.1, 1.2, 2.2, 2.3, 2.4 }; 2:  3: // Get all items < 10, then 4: var whatAmI = list 5: .Skip(2) 6: .SkipWhile((i, x) => i > x); For this example the result above is 2.4, and not 1.2, 2.2, 2.3, 2.4 as some might expect.  The key is knowing what the index is that’s passed to the predicate in SkipWhile().  In the code above, because Skip(2) skips 1.0 and 1.1, the sequence passed to SkipWhile() begins at 1.2 and thus it considers the “index” of 1.2 to be 0 and not 2.  This same logic applies when using any of the extension methods that have an overload that allows you to pass an index into the delegate, such as SkipWhile(), TakeWhile(), Select(), Where(), etc.  It should also be noted, that it’s fine to Skip() more items than exist in the sequence (an empty sequence is the result), or even to Skip(0) which results in the full sequence.  So why would it ever be useful to return Skip(0) deliberately?  One reason might be to return a List<T> as an immutable sequence.  Consider this class: 1: public class MyClass 2: { 3: private List<int> _myList = new List<int>(); 4:  5: // works on surface, but one can cast back to List<int> and mutate the original... 6: public IEnumerable<int> OneWay 7: { 8: get { return _myList; } 9: } 10:  11: // works, but still has Add() etc which throw at runtime if accidentally called 12: public ReadOnlyCollection<int> AnotherWay 13: { 14: get { return new ReadOnlyCollection<int>(_myList); } 15: } 16:  17: // immutable, can't be cast back to List<int>, doesn't have methods that throw at runtime 18: public IEnumerable<int> YetAnotherWay 19: { 20: get { return _myList.Skip(0); } 21: } 22: } This code snippet shows three (among many) ways to return an internal sequence in varying levels of immutability.  Obviously if you just try to return as IEnumerable<T> without doing anything more, there’s always the danger the caller could cast back to List<T> and mutate your internal structure.  You could also return a ReadOnlyCollection<T>, but this still has the mutating methods, they just throw at runtime when called instead of giving compiler errors.  Finally, you can return the internal list as a sequence using Skip(0) which skips no items and just runs an iterator through the list.  The result is an iterator, which cannot be cast back to List<T>.  Of course, there’s many ways to do this (including just cloning the list, etc.) but the point is it illustrates a potential use of using an explicit Skip(0). Take() and TakeWhile() The Take() and TakeWhile() methods can be though of as somewhat of the inverse of Skip() and SkipWhile().  That is, while Skip() ignores the first X items and returns the rest, Take() returns a sequence of the first X items and ignores the rest.  Since they are somewhat of an inverse of each other, it makes sense that their calling signatures are identical (beyond the method name obviously): Take(int count) Returns a sequence containing up to the specified number of items. Anything after the count is ignored. TakeWhile(Func<T, bool> predicate) Returns a sequence containing items as long as the predicate returns true.  Anything from the point the predicate returns false and beyond is ignored. TakeWhile(Func<T, int, bool> predicate) Same as above, but passes not only the item itself to the predicate, but also the index of the item. So, for example, we could do the following: 1: var list = new[] { 1.0, 1.1, 1.2, 2.2, 2.3, 2.4 }; 2:  3: // sequence contains 1.0 and 1.1 4: var firstTwo = list.Take(2); 5:  6: // sequence contains 1.0, 1.1, 1.2 7: var underTwo = list.TakeWhile(i => i < 2.0); The same considerations for SkipWhile() with index apply to TakeWhile() with index, of course.  Using Skip() and Take() for sub-sequences A few weeks back, I talked about The List<T> Range Methods and showed how they could be used to get a sub-list of a List<T>.  This works well if you’re dealing with List<T>, or don’t mind converting to List<T>.  But if you have a simple IEnumerable<T> sequence and want to get a sub-sequence, you can also use Skip() and Take() to much the same effect: 1: var list = new List<double> { 1.0, 1.1, 1.2, 2.2, 2.3, 2.4 }; 2:  3: // results in List<T> containing { 1.2, 2.2, 2.3 } 4: var subList = list.GetRange(2, 3); 5:  6: // results in sequence containing { 1.2, 2.2, 2.3 } 7: var subSequence = list.Skip(2).Take(3); I say “much the same effect” because there are some differences.  First of all GetRange() will throw if the starting index or the count are greater than the number of items in the list, but Skip() and Take() do not.  Also GetRange() is a method off of List<T>, thus it can use direct indexing to get to the items much more efficiently, whereas Skip() and Take() operate on sequences and may actually have to walk through the items they skip to create the resulting sequence.  So each has their pros and cons.  My general rule of thumb is if I’m already working with a List<T> I’ll use GetRange(), but for any plain IEnumerable<T> sequence I’ll tend to prefer Skip() and Take() instead. Summary The Skip() and Take() families of LINQ extension methods are handy for producing sub-sequences from any IEnumerable<T> sequence.  Skip() will ignore the specified number of items and return the rest of the sequence, whereas Take() will return the specified number of items and ignore the rest of the sequence.  Similarly, the SkipWhile() and TakeWhile() methods can be used to skip or take items, respectively, until a given predicate returns false.    Technorati Tags: C#, CSharp, .NET, LINQ, IEnumerable<T>, Skip, Take, SkipWhile, TakeWhile

    Read the article

  • How to Kill and Alternate X session via cli

    - by L. D. James
    Can someone tell me how to remove dormant X sessions. This question is similar to Logging out other users from the command line, but more specific to controlling X displays which I find hard to kill. I used the command "who -u" to get the session of the other screens: $ who -u Which gave me: user1 :0 2014-08-18 12:08 ? 2891 (:0) user1 pts/26 2014-08-18 16:11 17:18 3984 (:0) user2 :1 2014-08-18 18:21 ? 25745 (:1) user1 pts/27 2014-08-18 23:10 00:27 3984 (:0) user1 pts/32 2014-08-18 23:10 10:42 3984 (:0) user1 pts/46 2014-08-18 23:14 00:04 3984 (:0) user1 pts/48 2014-08-19 04:10 . 3984 (:0) The kill -9 25745 doesn't appear to do anything. I have a workshop where a number of users will use the computer under their own login. After the workshop is over there are a number of logins that are left open. I would prefer to kill the open sessions rather than try to log into each users' screen. Again, this question isn't just about logging users' out. I'm hoping to get clarity also for killing/removing stuck processes that are hard to kill. New Info While still pondering how to kill the process I wrote the following script, which did it: #!/bin/bash results=1 while [[ $results > 0 ]] do sudo kill -9 25745 results=$? echo -ne "Response:$results..." sleep 20 done After a graceful waiting period, if there isn't a better answer I'll mark this as answered with this resolution. This may resolve the problem with other stuck processes I have had in the past.

    Read the article

  • UEFI Boot Failure - Hang after Printing USB Information

    - by James
    I'm experiencing a really weird boot problem. With both 12.10 and 12.04LTS, the vast majority of kernels (and initrds) that I've tried boot, but hang immediately after printing out information about USB devices. This isn't exactly a full "hang" so to speak, as if I plug in a flash drive, I see information and a /dev/sd* entry printed to the screen. Post/pre-init scripts are not run, there is no handoff, nor busybox or VT prompt. Virtual terminals can't be changed (with Ctrl-Alt-Fx). For what I can see, init may have not been executed yet. With certain kernel and OS combinations however, (specifically 3.2.0-29), I get a full boot and am able to use the OS as if there is no problem. After 3.2.0-29, I've been hard pressed to find a kernel that works. Any idea what's happening or how to fix this? Or even a road to take? I've exhausted the first five pages of Google for every search term I can think of. This is a Lenovo Z580 (i5-3210M) with Phoenix SecureCore Tiano firmware, if that helps any.

    Read the article

  • Best arguments for/against introducing ORM technology into a companies dev process

    - by james
    I have started using ORM technology in the last few years. My first exposure was NHibernate. I then moved onto Linq 2 Sql, and Entity Framework. The issue I have however is, there are some organisations where I have found strong opposition to introducing ORM tools. They usually have a number of reasons: they have a lot of built up SQL skills in the team, and are worried about the underlying SQL that ORM's generate. they have DBA's who like to be able to see the SQL an app uses in order that can review it for best practice. they are worried about performance (some people have "heard" the ORM's aren't as performant but have no real proof themselves - there may well be some truth in this! :). So, I'm looking for the best or most convincing arguments that you have put forward FOR the use of ORM tools. Equally, I would be interested in the against arguments too. Note: this is NOT a discussion over which ORM I should use.

    Read the article

  • Thread safe GUI programming

    - by James
    I have been programming Java with swing for a couple of years now, and always accepted that GUI interactions had to happen on the Event Dispatch Thread. I recently started to use GTK+ for C applications and was unsurprised to find that GUI interactions had to be called on gtk_main. Similarly, I looked at SWT to see in what ways it was different to Swing and to see if it was worth using, and again found the UI thread idea, and I am sure that these 3 are not the only toolkits to use this model. I was wondering if there is a reason for this design i.e. what is the reason for keeping UI modifications isolated to a single thread. I can see why some modifications may cause issues (like modifying a list while it is being drawn), but I do not see why these concerns pass on to the user of the API. Is there a limit imposed by an operating system? Is there a good reason these concerns are not 'hidden' (i.e. some form of synchronization that is invisible to the user)? Is there any (even purely conceptual) way of creating a thread safe graphics library, or is such a thing actually impossible? I found this http://blogs.operationaldynamics.com/andrew/software/gnome-desktop/gtk-thread-awareness which seems to describe GTK differently to how I understood it (although my understanding was the same as many people's) How does this differ to other toolkits? Is it possible to implement this in Swing (as the EDT model does not actually prevent access from other threads, it just often leads to Exceptions)

    Read the article

  • Comparing Dates in Oracle Business Rule Decision Tables

    - by James Taylor
    I have been working with decision tables for some time but have never had a scenario where I need to compare dates. The use case was to check if a persons membership had expired. I didn't think much of it till I started to develop it. The first trap I feel into was trying to create ranges and bucket sets. The other trap I fell into was not converting the date field to a complete date. This may seem obvious to most people but my Google searches came up with nothing so I thought I would create a quick post. I assume everyone knows how to create a decision table so I'm not going to go through those steps. The prerequisite for this post is to have a decision table with a payload that has a date field. This filed must have the date in the following format YYYY-MM-DDThh:mm:ss. Create a new condition in your decision table Right-click on the condition to edit it and select the expression builder In the expression builder, select the Functions tab. Expand the CurrentDate file and select date, and click Insert Into Expression button. In the Expression Builder you need to create an expression that will return true or false, add the operation <= after the CurrentDate.date In my scenario my date field is memberExpire, Navigate to your date field and expand, select toGregorianCalendar(). Your expression will look something like this, click OK to get back to the decision table Now its just a matter of checking if the value is true or false. Simple when you know how :-)

    Read the article

  • Generic Repositories with DI & Data Intensive Controllers

    - by James
    Usually, I consider a large number of parameters as an alarm bell that there may be a design problem somewhere. I am using a Generic Repository for an ASP.NET application and have a Controller with a growing number of parameters. public class GenericRepository<T> : IRepository<T> where T : class { protected DbContext Context { get; set; } protected DbSet<T> DbSet { get; set; } public GenericRepository(DbContext context) { Context = context; DbSet = context.Set<T>(); } ...//methods excluded to keep the question readable } I am using a DI container to pass in the DbContext to the generic repository. So far, this has met my needs and there are no other concrete implmentations of IRepository<T>. However, I had to create a dashboard which uses data from many Entities. There was also a form containing a couple of dropdown lists. Now using the generic repository this makes the parameter requirments grow quickly. The Controller will end up being something like public HomeController(IRepository<EntityOne> entityOneRepository, IRepository<EntityTwo> entityTwoRepository, IRepository<EntityThree> entityThreeRepository, IRepository<EntityFour> entityFourRepository, ILogError logError, ICurrentUser currentUser) { } It has about 6 IRepositories plus a few others to include the required data and the dropdown list options. In my mind this is too many parameters. From a performance point of view, there is only 1 DBContext per request and the DI container will serve the same DbContext to all of the Repositories. From a code standards/readability point of view it's ugly. Is there a better way to handle this situation? Its a real world project with real world time constraints so I will not dwell on it too long, but from a learning perspective it would be good to see how such situations are handled by others.

    Read the article

  • PHP Calculating Text to Content Ratio

    - by James
    I am using the following code to calculate text to code ratio. I think it is crazy that no one can agree on how to properly calculate the result. I am looking any suggestions or ideas to improve this code that may make it more accurate. <?php // Returns the size of the content in bytes function findKb($content){ $count=0; $order = array("\r\n", "\n", "\r", "chr(13)", "\t", "\0", "\x0B"); $content = str_replace($order, "12", $content); for ($index = 0; $index < strlen($content); $index ++){ $byte = ord($content[$index]); if ($byte <= 127) { $count++; } else if ($byte >= 194 && $byte <= 223) { $count=$count+2; } else if ($byte >= 224 && $byte <= 239) { $count=$count+3; } else if ($byte >= 240 && $byte <= 244) { $count=$count+4; } } return $count; } // Collect size of entire code $filesize = findKb($content); // Remove anything within script tags $code = preg_replace("@<script[^>]*>.+</script[^>]*>@i", "", $content); // Remove anything within style tags $code = preg_replace("@<style[^>]*>.+</style[^>]*>@i", "", $content); // Remove all tags from the system $code = strip_tags($code); // Remove Extra whitespace from the content $code = preg_replace( '/\s+/', ' ', $code ); // Find the size of the remaining code $codesize = findKb($code); // Calculate Percentage $percent = $codesize/$filesize; $percentage = $percent*100; echo $percentage; ?> I don't know the exact calculations that are used so this function is just my guess. Does anyone know what the proper calculations are or if my functions are close enough for a good judgement.

    Read the article

  • Cookie access within a HTTP Class

    - by James Jeffery
    I have a HTTP class that has a Get, and Post, method. It's a simple class I created to encapsulate Post and Get requests so I don't have to repeat the get/post code throughout the application. In C#: class HTTP { private CookieContainer cookieJar; private String userAgent = "..."; public HTTP() { this.cookieJar = new CookieContainer(); } public String get(String url) { // Make get request. Return the JSON } public String post(String url, String postData) { // Make post request. Return the JSON } } I've made the CookieJar a property because I want to preserve the cookie values throughout the session. If the user is logged into Twitter with my application, each request I make (be it get or post) I want to use the cookies so they remain logged in. That's the basics of it anyway. But, I don't want to return a string in all instances. Sometimes I may want the cookie, or a header value, or something else from the request. Ideally I'd like to be able to do this in my code: Cookie cookie = http.get("http://google.com").cookie("g_user"); String g_user = cookie.value; or String source = http.get("http://google.com").body; My question - To do this, would I need to have a Get class, and a Post class, that are included within the HTTP class and are accessible via accessors? Within the Get and Post class I would then have the Cookie method, and the body property, and whatever else is needed. Should I also use an interface, or create a Request class and have Post and Get extend it so that common methods and properties are available to both classes? Or, am I thinking totally wrong?

    Read the article

  • facebook javascript sdk fb_xd_fragment??

    - by James Lin
    Hi guys, I am using the facebook javascript sdk to embed a like button in my page. What is fb_xd_fragment??? I see it appends to the end of my url like http://www.mysite.com/controller/?fb_xd_fragment, and this is causing some nasty recursive reload of the page. Cheers James

    Read the article

  • Hosted full text search solutions?

    - by James Cooper
    Does anyone know of companies offering SaaS full text search? I'm looking for something that uses Lucene, solr, or sphinx on the backend, and provides a REST API for submitting documents to index, and running searches. I could build my own EC2 AMI, but I'd have to configure EBS and other stuff, monitor it, etc. Curious if someone has already done all this and would charge per MB/GB indexed. thank you. -- James

    Read the article

  • Eclipse Plugin project with other project dependencies

    - by James
    I have an Eclipse plugin project, and it depends on other projects that I have in my Eclipse workspace. After adding the project dependencies under "Java Build Path" - "Projects" tab, and also selecting the project in the "Order and Export" I get a java.lang.NoClassDefFoundError. I'm assuming that the other projects have not been properly included into the plugin. Does anyone know how to fix this? Thanks, James

    Read the article

  • C++ Builder 2010 How to switch to FASTMM

    - by James
    Hello I have some projects which were done in c++ builder 2009 and they need borlandmm.dll to run. I have read that c++ Builder 2010 by default use Fastmm, but it dont seems to be the case in my projects. They still need borlandmm.dll So how can i switch my projects to use fastmm ? Regards James

    Read the article

< Previous Page | 25 26 27 28 29 30 31 32 33 34 35 36  | Next Page >