Search Results

Search found 18301 results on 733 pages for 'network'.

Page 29/733 | < Previous Page | 25 26 27 28 29 30 31 32 33 34 35 36  | Next Page >

  • How to remove permanent map of a network drive on OS X Lion?

    - by Flijfi
    Some time ago I mapped a network drive on my Snow Leopard Mac, which was upgraded to Lion. The network drive is not active any more and I receive popups all the time with the error: There was a problem connecting to the server XXXX. I have no idea how I configured at the time. I may have included a mount command, in a config file but I don't know any more where I did it. I reviewed the Preferences/Account/Login items and there is no permanent mapping there. OSX is updated as Nov 27,2011 and the issue is not related to the upgrade to Lion itself but to a misconfiguration. Any help will be greatly appreciated. (If you have the opposite problem, here is the link to solve it: Permanently map a network drive on Mac OS X Leopard)

    Read the article

  • Windows 7 unidentified network (or limited access) after hibernate.

    - by null
    My windows 7 network will show limited access or unidentified network after coming up from hibernation. In the office I normally use LAN connection, I turn-off my wireless card (DELL Latitude has on/off switch for the wireless card). When I back at home I will turn on the wireless card, but it will take about 15 seconds to detect my home WIFI and then show limited access. I will have to restart the notebook and it will be able to connect to my WIFI and internet. The problem will be solved if I restart the notebook, but that defeats the purpose of hibernation doesn't it? I have tried uninstalling the wireless card driver but still does not solve it. I also tried updating my network card driver but windows says I am using the latest driver. On support.dell.com also showing I am using the latest driver.

    Read the article

  • How to Reuse Your Old Wi-Fi Router as a Network Switch

    - by Jason Fitzpatrick
    Just because your old Wi-Fi router has been replaced by a newer model doesn’t mean it needs to gather dust in the closet. Read on as we show you how to take an old and underpowered Wi-Fi router and turn it into a respectable network switch (saving your $20 in the process). Image by mmgallan. Why Do I Want To Do This? Wi-Fi technology has changed significantly in the last ten years but Ethernet-based networking has changed very little. As such, a Wi-Fi router with 2006-era guts is lagging significantly behind current Wi-Fi router technology, but the Ethernet networking component of the device is just as useful as ever; aside from potentially being only 100Mbs instead of 1000Mbs capable (which for 99% of home applications is irrelevant) Ethernet is Ethernet. What does this matter to you, the consumer? It means that even though your old router doesn’t hack it for your Wi-Fi needs any longer the device is still a perfectly serviceable (and high quality) network switch. When do you need a network switch? Any time you want to share an Ethernet cable among multiple devices, you need a switch. For example, let’s say you have a single Ethernet wall jack behind your entertainment center. Unfortunately you have four devices that you want to link to your local network via hardline including your smart HDTV, DVR, Xbox, and a little Raspberry Pi running XBMC. Instead of spending $20-30 to purchase a brand new switch of comparable build quality to your old Wi-Fi router it makes financial sense (and is environmentally friendly) to invest five minutes of your time tweaking the settings on the old router to turn it from a Wi-Fi access point and routing tool into a network switch–perfect for dropping behind your entertainment center so that your DVR, Xbox, and media center computer can all share an Ethernet connection. What Do I Need? For this tutorial you’ll need a few things, all of which you likely have readily on hand or are free for download. To follow the basic portion of the tutorial, you’ll need the following: 1 Wi-Fi router with Ethernet ports 1 Computer with Ethernet jack 1 Ethernet cable For the advanced tutorial you’ll need all of those things, plus: 1 copy of DD-WRT firmware for your Wi-Fi router We’re conducting the experiment with a Linksys WRT54GL Wi-Fi router. The WRT54 series is one of the best selling Wi-Fi router series of all time and there’s a good chance a significant number of readers have one (or more) of them stuffed in an office closet. Even if you don’t have one of the WRT54 series routers, however, the principles we’re outlining here apply to all Wi-Fi routers; as long as your router administration panel allows the necessary changes you can follow right along with us. A quick note on the difference between the basic and advanced versions of this tutorial before we proceed. Your typical Wi-Fi router has 5 Ethernet ports on the back: 1 labeled “Internet”, “WAN”, or a variation thereof and intended to be connected to your DSL/Cable modem, and 4 labeled 1-4 intended to connect Ethernet devices like computers, printers, and game consoles directly to the Wi-Fi router. When you convert a Wi-Fi router to a switch, in most situations, you’ll lose two port as the “Internet” port cannot be used as a normal switch port and one of the switch ports becomes the input port for the Ethernet cable linking the switch to the main network. This means, referencing the diagram above, you’d lose the WAN port and LAN port 1, but retain LAN ports 2, 3, and 4 for use. If you only need to switch for 2-3 devices this may be satisfactory. However, for those of you that would prefer a more traditional switch setup where there is a dedicated WAN port and the rest of the ports are accessible, you’ll need to flash a third-party router firmware like the powerful DD-WRT onto your device. Doing so opens up the router to a greater degree of modification and allows you to assign the previously reserved WAN port to the switch, thus opening up LAN ports 1-4. Even if you don’t intend to use that extra port, DD-WRT offers you so many more options that it’s worth the extra few steps. Preparing Your Router for Life as a Switch Before we jump right in to shutting down the Wi-Fi functionality and repurposing your device as a network switch, there are a few important prep steps to attend to. First, you want to reset the router (if you just flashed a new firmware to your router, skip this step). Following the reset procedures for your particular router or go with what is known as the “Peacock Method” wherein you hold down the reset button for thirty seconds, unplug the router and wait (while still holding the reset button) for thirty seconds, and then plug it in while, again, continuing to hold down the rest button. Over the life of a router there are a variety of changes made, big and small, so it’s best to wipe them all back to the factory default before repurposing the router as a switch. Second, after resetting, we need to change the IP address of the device on the local network to an address which does not directly conflict with the new router. The typical default IP address for a home router is 192.168.1.1; if you ever need to get back into the administration panel of the router-turned-switch to check on things or make changes it will be a real hassle if the IP address of the device conflicts with the new home router. The simplest way to deal with this is to assign an address close to the actual router address but outside the range of addresses that your router will assign via the DHCP client; a good pick then is 192.168.1.2. Once the router is reset (or re-flashed) and has been assigned a new IP address, it’s time to configure it as a switch. Basic Router to Switch Configuration If you don’t want to (or need to) flash new firmware onto your device to open up that extra port, this is the section of the tutorial for you: we’ll cover how to take a stock router, our previously mentioned WRT54 series Linksys, and convert it to a switch. Hook the Wi-Fi router up to the network via one of the LAN ports (consider the WAN port as good as dead from this point forward, unless you start using the router in its traditional function again or later flash a more advanced firmware to the device, the port is officially retired at this point). Open the administration control panel via  web browser on a connected computer. Before we get started two things: first,  anything we don’t explicitly instruct you to change should be left in the default factory-reset setting as you find it, and two, change the settings in the order we list them as some settings can’t be changed after certain features are disabled. To start, let’s navigate to Setup ->Basic Setup. Here you need to change the following things: Local IP Address: [different than the primary router, e.g. 192.168.1.2] Subnet Mask: [same as the primary router, e.g. 255.255.255.0] DHCP Server: Disable Save with the “Save Settings” button and then navigate to Setup -> Advanced Routing: Operating Mode: Router This particular setting is very counterintuitive. The “Operating Mode” toggle tells the device whether or not it should enable the Network Address Translation (NAT)  feature. Because we’re turning a smart piece of networking hardware into a relatively dumb one, we don’t need this feature so we switch from Gateway mode (NAT on) to Router mode (NAT off). Our next stop is Wireless -> Basic Wireless Settings: Wireless SSID Broadcast: Disable Wireless Network Mode: Disabled After disabling the wireless we’re going to, again, do something counterintuitive. Navigate to Wireless -> Wireless Security and set the following parameters: Security Mode: WPA2 Personal WPA Algorithms: TKIP+AES WPA Shared Key: [select some random string of letters, numbers, and symbols like JF#d$di!Hdgio890] Now you may be asking yourself, why on Earth are we setting a rather secure Wi-Fi configuration on a Wi-Fi router we’re not going to use as a Wi-Fi node? On the off chance that something strange happens after, say, a power outage when your router-turned-switch cycles on and off a bunch of times and the Wi-Fi functionality is activated we don’t want to be running the Wi-Fi node wide open and granting unfettered access to your network. While the chances of this are next-to-nonexistent, it takes only a few seconds to apply the security measure so there’s little reason not to. Save your changes and navigate to Security ->Firewall. Uncheck everything but Filter Multicast Firewall Protect: Disable At this point you can save your changes again, review the changes you’ve made to ensure they all stuck, and then deploy your “new” switch wherever it is needed. Advanced Router to Switch Configuration For the advanced configuration, you’ll need a copy of DD-WRT installed on your router. Although doing so is an extra few steps, it gives you a lot more control over the process and liberates an extra port on the device. Hook the Wi-Fi router up to the network via one of the LAN ports (later you can switch the cable to the WAN port). Open the administration control panel via web browser on the connected computer. Navigate to the Setup -> Basic Setup tab to get started. In the Basic Setup tab, ensure the following settings are adjusted. The setting changes are not optional and are required to turn the Wi-Fi router into a switch. WAN Connection Type: Disabled Local IP Address: [different than the primary router, e.g. 192.168.1.2] Subnet Mask: [same as the primary router, e.g. 255.255.255.0] DHCP Server: Disable In addition to disabling the DHCP server, also uncheck all the DNSMasq boxes as the bottom of the DHCP sub-menu. If you want to activate the extra port (and why wouldn’t you), in the WAN port section: Assign WAN Port to Switch [X] At this point the router has become a switch and you have access to the WAN port so the LAN ports are all free. Since we’re already in the control panel, however, we might as well flip a few optional toggles that further lock down the switch and prevent something odd from happening. The optional settings are arranged via the menu you find them in. Remember to save your settings with the save button before moving onto a new tab. While still in the Setup -> Basic Setup menu, change the following: Gateway/Local DNS : [IP address of primary router, e.g. 192.168.1.1] NTP Client : Disable The next step is to turn off the radio completely (which not only kills the Wi-Fi but actually powers the physical radio chip off). Navigate to Wireless -> Advanced Settings -> Radio Time Restrictions: Radio Scheduling: Enable Select “Always Off” There’s no need to create a potential security problem by leaving the Wi-Fi radio on, the above toggle turns it completely off. Under Services -> Services: DNSMasq : Disable ttraff Daemon : Disable Under the Security -> Firewall tab, uncheck every box except “Filter Multicast”, as seen in the screenshot above, and then disable SPI Firewall. Once you’re done here save and move on to the Administration tab. Under Administration -> Management:  Info Site Password Protection : Enable Info Site MAC Masking : Disable CRON : Disable 802.1x : Disable Routing : Disable After this final round of tweaks, save and then apply your settings. Your router has now been, strategically, dumbed down enough to plod along as a very dependable little switch. Time to stuff it behind your desk or entertainment center and streamline your cabling.     

    Read the article

  • c# Network Programming - HTTPWebRequest Scraping

    - by masterguru
    Hi, I am building a web scraping application. It should scrape a complex web site with concurrent HttpWebRequests from a single host to a single target web server. The application should run on Windows server 2008. One single HttpWebRequest for data could take from 1 minute to 4 minutes to complete (because of long running db operations) I should have at least 100 parallel requests to the target web server, but i have noticed that when i use more then 2-3 long-running requests i have big performance issues (request timeouts/hanging). How many concurrent requests can i have in this scenario from a single host to a single target web server? can i use Thread Pools in the application to run parallel HttpWebRequests to the server? will i have any issues with the default outbound HTTP connection/requests limits? what about Request timeouts when i reach outbound connection limits? what would be the best setup for my scenario? Any help would be appreciated. Thanks

    Read the article

  • Are there some general Network programming best practices?

    - by uriDium
    I am implementing some networking stuff in our project. It has been decided that the communication is very important and we want to do it synchronously. So the client sends something the server acknowledges. Are there some general best practices for the interaction between the client and the server. For instance if there isn't an answer from the server should the client automatically retry? Should there be a timeout period before it retries? What happens if the acknowledgement fails? At what point do we break the connection and reconnect? Is there some material? I have done searches but nothing is really coming up. I am looking for best practices in general. I am implementing this in c# (probably with sockets) so if there is anything .Net specific then please let me know too.

    Read the article

  • Calculation of charged traffic in GPRS network

    - by TyBoer
    I am working with a distributed application communicating over GPRS. I use UDP packets to send business data and ICMP pings to verify connectivity. And now I have a problem with calculating a traffic for which I will be charged by the provider. I have to consider following factors: UDP payload: that is obvious. UDP overhead: UDP header + IP header = 8 + 20 bytes. ICMP echo request without data: IP header + ICMP payload = 28 bytes. ICMP echo reply: as in 3. Above means that for evey data packet I am charged for payload + 28 bytes and for every ping 56 bytes. Am I right or I am missing/misunderstanding something?

    Read the article

  • Social Network News Feed Database & Design

    - by pws5068
    I'm designing a News Feed system using PHP/MySQL similar to facebook's. I have asked a similar question before but now I've changed the design and I'm looking for feedback. Example Notifications: User_A commented on User_B's new album. "Hey man nice picture!" User_B added a new Photo to [his/her] profile. [show photo thumbnail] Initially, I implemented this using excessive columns for Obj1:Type1 | Obj2:Type2 | etc.. Now the design is set up using a couple special keywords, and actor/receiver relationships. My database is designed for efficiency - using a table of messages joined on a table containing userid,actionid,receiverid,receiverObjectTypeID, Here's a condensed version of what it will look like once joined: News_ID | User_ID | Message | Timestamp 2643 A %a commented on %o's new %r. SomeTimestamp 2644 B %a added a new %r to [his/her] profile. SomeTimestamp %a = the User_ID of the person doing the action %r = the receiving object %o = the owner of the receiving object (for example the owner of the album) (NULL if %r is a user) Questions: Is this a smart (efficient/scalable) way to move forward? How can I show messages like: "User_B added 4 new photos to his profile."?

    Read the article

  • Neural Network: Handling unavailable inputs (missing or incomplete data)

    - by Mike
    Hopefully the last NN question you'll get from me this weekend, but here goes :) Is there a way to handle an input that you "don't always know"... so it doesn't affect the weightings somehow? Soo... if I ask someone if they are male or female and they would not like to answer, is there a way to disregard this input? Perhaps by placing it squarely in the centre? (assuming 1,0 inputs at 0.5?) Thanks

    Read the article

  • Problem with a blocking network task

    - by user326967
    Hello everyone. I'm new in Java so please forgive any obscene errors that I may make :) I'm developing a program in Java that among other things it should also handle clients that will connect to a server. The server has 3 threads running, and I have created them in the following way : DaemonForUI du; DaemonForPort da; DaemonForCheck dc; da = new DaemonForPort(3); dc = new DaemonForCheck(5); du = new DaemonForUI(7); Thread t_port = new Thread(da); Thread t_check = new Thread(dc); Thread t_ui = new Thread(du); t_port.setName("v1.9--PORTd"); t_check.setName("v1.9-CHECKd"); t_ui.setName("v1.9----UId"); t_port.start(); t_check.start(); t_ui.start(); Each thread handles a different aspect of the complete program. The thread t_ui is responsible to accept asynchronous incoming connections from clients, process the sent data and send other data back to the client. When I remove all the commands from the previous piece of code that has to with the t_ui thread, everything runs ok which in my case means that the other threads are printing their debug messages. If I set the t_ui thread to run too, then the whole program blocks at the "accept" of the t_ui thread. After reading at online manuals I saw that the accepted connections should be non-blocking, therefore use something like that : public ServerSocketChannel ssc = null; ssc = ServerSocketChannel.open(); ssc.socket().bind(new InetSocketAddress(port)); ssc.configureBlocking(false); SocketChannel sc = ssc.accept(); if (sc == null) { ; } else { System.out.println("The server and client are connected!"); System.out.println("Incoming connection from: " + sc.socket().getRemoteSocketAddress()); in = new DataInputStream(new BufferedInputStream(sc.socket().getInputStream())); out = new DataOutputStream(new BufferedOutputStream(sc.socket().getOutputStream())); //other magic things take place after that point... The thread for t_ui is created as follows : class DaemonForUI implements Runnable{ private int cnt; private int rr; public ListenerForUI serverListener; public DaemonForUI(int rr){ cnt = 0; this.rr = rr; serverListener = new ListenerForUI(); } public static String getCurrentTime() { final String DATE_FORMAT_NOW = "yyyy-MM-dd HH:mm:ss"; Calendar cal = Calendar.getInstance(); SimpleDateFormat sdf = new SimpleDateFormat(DATE_FORMAT_NOW); return (sdf.format(cal.getTime())); } public void run() { while(true) { System.out.println(Thread.currentThread().getName() + "\t (" + cnt + ")\t (every " + rr + " sec) @ " + getCurrentTime()); try{ Thread.sleep(rr * 1000); cnt++; } catch (InterruptedException e){ e.printStackTrace(); } } } } Obviously, I'm doing something wrong at the creation of the socket or at the use of the thread. Do you know what is causing the problem? Every help would be greatly appreciated.

    Read the article

  • C# Asynchronous Network IO and OutOfMemoryException

    - by The.Anti.9
    I'm working on a client/server application in C#, and I need to get Asynchronous sockets working so I can handle multiple connections at once. Technically it works the way it is now, but I get an OutOfMemoryException after about 3 minutes of running. MSDN says to use a WaitHandler to do WaitOne() after the socket.BeginAccept(), but it doesn't actually let me do that. When I try to do that in the code it says WaitHandler is an abstract class or interface, and I can't instantiate it. I thought maybe Id try a static reference, but it doesnt have teh WaitOne() method, just WaitAll() and WaitAny(). The main problem is that in the docs it doesn't give a full code snippet, so you can't actually see what their "wait handler" is coming from. its just a variable called allDone, which also has a Reset() method in the snippet, which a waithandler doesn't have. After digging around in their docs, I found some related thing about an AutoResetEvent in the Threading namespace. It has a WaitOne() and a Reset() method. So I tried that around the while(true) { ... socket.BeginAccept( ... ); ... }. Unfortunately this makes it only take one connection at a time. So I'm not really sure where to go. Here's my code: class ServerRunner { private Byte[] data = new Byte[2048]; private int size = 2048; private Socket server; static AutoResetEvent allDone = new AutoResetEvent(false); public ServerRunner() { server = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp); IPEndPoint iep = new IPEndPoint(IPAddress.Any, 33333); server.Bind(iep); Console.WriteLine("Server initialized.."); } public void Run() { server.Listen(100); Console.WriteLine("Listening..."); while (true) { //allDone.Reset(); server.BeginAccept(new AsyncCallback(AcceptCon), server); //allDone.WaitOne(); } } void AcceptCon(IAsyncResult iar) { Socket oldserver = (Socket)iar.AsyncState; Socket client = oldserver.EndAccept(iar); Console.WriteLine(client.RemoteEndPoint.ToString() + " connected"); byte[] message = Encoding.ASCII.GetBytes("Welcome"); client.BeginSend(message, 0, message.Length, SocketFlags.None, new AsyncCallback(SendData), client); } void SendData(IAsyncResult iar) { Socket client = (Socket)iar.AsyncState; int sent = client.EndSend(iar); client.BeginReceive(data, 0, size, SocketFlags.None, new AsyncCallback(ReceiveData), client); } void ReceiveData(IAsyncResult iar) { Socket client = (Socket)iar.AsyncState; int recv = client.EndReceive(iar); if (recv == 0) { client.Close(); server.BeginAccept(new AsyncCallback(AcceptCon), server); return; } string receivedData = Encoding.ASCII.GetString(data, 0, recv); //process received data here byte[] message2 = Encoding.ASCII.GetBytes("reply"); client.BeginSend(message2, 0, message2.Length, SocketFlags.None, new AsyncCallback(SendData), client); } }

    Read the article

  • How to gain greater control of network packets on Android

    - by mauvehead
    I'm looking to design an application that will require some deep control over IP packets. Looking over the reference guide on the developers site at Android I see very limited control over packets from java.net:SocketOptions and java.net:DatagramPacket. Specifically I'm looking to control the individual bits within the packet to set TCP Flags, SYN/ACK/RST, and so forth. Based on the docs I am assuming I cannot do this within the Java API provided by Android and I'm guessing I'll have to do it some other way? Anyone have any insight on this?

    Read the article

  • Neural Network Basics

    - by Stat Onetwothree
    I'm a computer science student and for this years project, I need to create and apply a Genetic Algorithm to something. I think Neural Networks would be a good thing to apply it to, but I'm having trouble understanding them. I fully understand the concepts but none of the websites out there really explain the following which is blocking my understanding: How the decision is made for how many nodes there are. What the nodes actually represent and do. What part the weights and bias actually play in classification. Could someone please shed some light on this for me? Also, I'd really appreciate it if you have any similar ideas for what I could apply a GA to. Thanks very much! :)

    Read the article

  • Hold a network connection although IP address change

    - by rursw1
    Hi, Is it possible to hold an open TCP connection with a client, while the IP address of the client is externally changed? For example, the connection is establishes against address X, but somewhen while the connection is open, the client-side user asks for IP renew and gets another IP address. Can the connection remains alive in this case? Thanks in advance.

    Read the article

  • Passing message over network

    - by Sylvestre Equy
    Hi, I'm currently trying to develop a message-oriented networking framework and I'm a bit stuck on the internal mechanism. Here are the problematic interfaces : public interface IMessage { } public class Connection { public void Subscribe<TMessage>(Action<TMessage> messageCallback); public void Send<TMessage>(TMessage message); } The Send method does not seem complicated, though the mechanism behind Subscribe seems a bit more painful. Obviously when receiving a message on one end of the connection, I'll have to invoke the appropriate delegate. Do you have any advice on how to read messages and easily detect their types ? By the way, I'd like to avoid to use MSMQ.

    Read the article

  • Neural Network: Handling unavailable inputs

    - by Mike
    Hopefully the last NN question you'll get from me this weekend, but here goes :) Is there a way to handle an input that you "don't always know"... so it doesn't affect the weightings somehow? Soo... if I ask someone if they are male or female and they would not like to answer, is there a way to disregard this input? Perhaps by placing it squarely in the centre? (assuming 1,0 inputs at 0.5?) Thanks

    Read the article

  • Solution to route/proxy SNMP Traps (or Netflow, generic UDP, etc) for network monitoring?

    - by Christopher Cashell
    I'm implementing a network monitoring solution for a very large network (approximately 5000 network devices). We'd like to have all devices on our network send SNMP traps to a single box (technically this will probably be an HA pair of boxes) and then have that box pass the SNMP traps on to the real processing boxes. This will allow us to have multiple back-end boxes handling traps, and to distribute load among those back end boxes. One key feature that we need is the ability to forward the traps to a specific box depending on the source address of the trap. Any suggestions for the best way to handle this? Among the things we've considered are: Using snmptrapd to accept the traps, and have it pass them off to a custom written perl handler script to rewrite the trap and send it to the proper processing box Using some sort of load balancing software running on a Linux box to handle this (having some difficulty finding many load balancing programs that will handle UDP) Using a Load Balancing Appliance (F5, etc) Using IPTables on a Linux box to route the SNMP traps with NATing We've currently implemented and are testing the last solution, with a Linux box with IPTables configured to receive the traps, and then depending on the source address of the trap, rewrite it with a destination nat (DNAT) so the packet gets sent to the proper server. For example: # Range: 10.0.0.0/19 Site: abc01 Destination: foo01 iptables -t nat -A PREROUTING -p udp --dport 162 -s 10.0.0.0/19 -j DNAT --to-destination 10.1.2.3 # Range: 10.0.33.0/21 Site: abc01 Destination: foo01 iptables -t nat -A PREROUTING -p udp --dport 162 -s 10.0.33.0/21 -j DNAT --to-destination 10.1.2.3 # Range: 10.1.0.0/16 Site: xyz01 Destination: bar01 iptables -t nat -A PREROUTING -p udp --dport 162 -s 10.1.0.0/16 -j DNAT --to-destination 10.3.2.1 This should work with excellent efficiency for basic trap routing, but it leaves us completely limited to what we can mach and filter on with IPTables, so we're concerned about flexibility for the future. Another feature that we'd really like, but isn't quite a "must have" is the ability to duplicate or mirror the UDP packets. Being able to take one incoming trap and route it to multiple destinations would be very useful. Has anyone tried any of the possible solutions above for SNMP traps (or Netflow, general UDP, etc) load balancing? Or can anyone think of any other alternatives to solve this?

    Read the article

  • How to connect the printer HP 2575 to a network?

    - by Peter
    I have 2 PCs and a router and I want to connect my HP 2575 to this network. So, I found a network cable and I connected the printer to the router. I access the router and I can see that the printer is connected. My question is: How can I use the printer, from one of my computer. I tried Add Printer feature, but with no luck. Any ideas?

    Read the article

  • How do I map a network drive in Ubuntu? I want to save my Firefox downloads directly in the mapped n

    - by NJTechie
    I work in an environment wherein files are exchanged over email which are then processed into databases. In Windows, mapping a network drive and storing files directly to a folder in the network drive from Firefox/Chrome downloads is a breeze. How to achieve the same in Ubuntu? I don't see the SFTP'ed drive/directory as options in Firefox- Downloads setup. Thanks in advance!

    Read the article

  • How do I map a network drive in Ubuntu? I want to save my Firefox downloads directly in the mapped n

    - by NJTechie
    I work in an environment wherein files are exchanged over email which are then processed into databases. In Windows, mapping a network drive and storing files directly to a folder in the network drive from Firefox/Chrome downloads is a breeze. How to achieve the same in Ubuntu? I don't see the SFTP'ed drive/directory as options in Firefox- Downloads setup. Thanks in advance!

    Read the article

< Previous Page | 25 26 27 28 29 30 31 32 33 34 35 36  | Next Page >