Search Results

Search found 72651 results on 2907 pages for 'application end'.

Page 292/2907 | < Previous Page | 288 289 290 291 292 293 294 295 296 297 298 299  | Next Page >

  • Make NetBeans automatically include newline at end of file?

    - by keithjgrant
    I just switched to NetBeans (6.8) and have noticed some of my files don't end with a newline. This has been a helpful option in other IDEs I've used, but I haven't been able to find it in the NetBeans options menus. Is it buried in there somewhere or is there any other way to make sure it always saves files with a newline at the end? I'm coding primarily in PHP, if it's available in any of the language-specific options.

    Read the article

  • Is there a way to use sharepoint as the back-end versioning and storage for my custom document manag

    - by Aaron Palmer
    I want to build a custom document management web application that ties in with sharepoint for the actual document versioning and storage. I'm hoping for something like a sharepoint widget that I can plug into my web application that would allow me to tie in with sharepoint and download documents, make edits to them, and upload them back to sharepoint, with sharepoint handling all of the versioning and storage. If WSS is the answer to this, are there licensing issues that I need to consider? Thanks.

    Read the article

  • How to set cursor at the end in a TEXTAREA? (by not using jQuery)

    - by Brian Hawk
    Is there a way to set the cursor at the end in a TEXTAREA tag? I'm using Firefox 3.6 and I don't need it to work in IE or Chrome. JavaScript is ok but it seems all the related answers in here use onfocus() event, which seems to be useless because when user clicks on anywhere within textarea, Firefox sets cursor position to there. I have a long text to display in a textarea so that it displays the last portion (making it easier to add something at the end).

    Read the article

  • How do you programmatically move the caret of a Flex TextArea to the end?

    - by Akinwale
    I'm trying to move the caret in a Flex TextArea to the end after appending some text from my code. I've looked through the reference documentation for TextArea and its underlying TextField but it appears there is no method provided to handle this. One approach I've tried is to set focus to the text area and dispatch a KeyUp KeyboardEvent with the event's key code set to the "End" key, but this doesn't work. Any ideas on how to do this? Thanks.

    Read the article

  • Where can you find good examples of an End-User Software License?

    - by JFV
    Should I create my own End-User Software License (with a lawyer), or are there some good examples of one on the Internet? I'm getting close to rolling out my first Windows-based program for my side-business. I would like to have the end-users to agree not to: resell the software, change/modify it, use it in another application, etc. Any and all help appreciated! Thanks! JFV

    Read the article

  • Where's my memory?! Nginx + PHP-FPM front end webserver slows to a crawl...

    - by incredimike
    I'm not sure if I have a problem with a memory leak (as my hosting company suggests), or if we both need to read http://linuxatemyram.com. Maybe you clever people can help us out? This is a front-end webserver VM running essentially only nginx & php-fpm on RHEL 5.5. This server is powering Magento, a PHP eCommerce thinggy. The server is running in a shared environment, but we're changing that soon. Anyway.. after a reboot the server runs just fine, but within a day it will grind itself into nothingness. Pages will take literally 2 minutes to load, CPU spikes like crazy, etc.. The console is even sluggish when I SSH in. It's like my whole server is being brought to its knees. I've also been monitoring the DB server via top and tcpdumping incoming traffic. The DB stays idle for a good portion of that "slow" load time. When i start seeing queries coming from the front-end server, the page loads soon afterward. Here are some stats after me logging in during a slow-down, after restarting php-fpm: [mike@front01 ~]$ free -m total used free shared buffers cached Mem: 5963 5217 745 0 192 314 -/+ buffers/cache: 4711 1252 Swap: 4047 4 4042 [mike@front01 ~]$ top top - 11:38:55 up 2 days, 1:01, 3 users, load average: 0.06, 0.17, 0.21 Tasks: 131 total, 1 running, 130 sleeping, 0 stopped, 0 zombie Cpu0 : 0.0%us, 0.3%sy, 0.0%ni, 99.3%id, 0.3%wa, 0.0%hi, 0.0%si, 0.0%st Cpu1 : 0.3%us, 0.0%sy, 0.0%ni, 99.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu2 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu3 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 6106800k total, 5361288k used, 745512k free, 199960k buffers Swap: 4144728k total, 4976k used, 4139752k free, 328480k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 31806 apache 15 0 601m 120m 37m S 0.0 2.0 0:22.23 php-fpm 31805 apache 15 0 549m 66m 31m S 0.0 1.1 0:14.54 php-fpm 31809 apache 16 0 547m 65m 32m S 0.0 1.1 0:12.84 php-fpm 32285 apache 15 0 546m 63m 33m S 0.0 1.1 0:09.22 php-fpm 32373 apache 15 0 546m 62m 32m S 0.0 1.1 0:09.66 php-fpm 31808 apache 16 0 543m 60m 35m S 0.0 1.0 0:18.93 php-fpm 31807 apache 16 0 533m 49m 30m S 0.0 0.8 0:08.93 php-fpm 32092 apache 15 0 535m 48m 27m S 0.0 0.8 0:06.67 php-fpm 4392 root 18 0 194m 10m 7184 S 0.0 0.2 0:06.96 cvd 4064 root 15 0 154m 8304 4220 S 0.0 0.1 3:55.57 snmpd 4394 root 15 0 119m 5660 2944 S 0.0 0.1 0:02.84 EvMgrC 31804 root 15 0 519m 5180 932 S 0.0 0.1 0:00.46 php-fpm 4138 ntp 15 0 23396 5032 3904 S 0.0 0.1 0:02.38 ntpd 643 nginx 15 0 95276 4408 1524 S 0.0 0.1 0:01.15 nginx 5131 root 16 0 90128 3340 2600 S 0.0 0.1 0:01.41 sshd 28467 root 15 0 90128 3340 2600 S 0.0 0.1 0:00.35 sshd 32602 root 16 0 90128 3332 2600 S 0.0 0.1 0:00.36 sshd 1614 root 16 0 90128 3308 2588 S 0.0 0.1 0:00.02 sshd 2817 root 5 -10 7216 3140 1724 S 0.0 0.1 0:03.80 iscsid 4161 root 15 0 66948 2340 800 S 0.0 0.0 0:10.35 sendmail 1617 nicole 17 0 53876 2000 1516 S 0.0 0.0 0:00.02 sftp-server ... Is there anything else I should be looking at, or any more information that might be useful? I'm just a developer, but the slowdowns on this system worry me and make it hard to do my work.. Help me out, ServerFault!

    Read the article

  • how to know application is going to destroy/remove?

    - by Bhavesh Jethani
    My requirement is, i want to cancel my alarm manager or services when application going to destroy/closed. if i am in activity A by clicking on button started activity B suddenly user is going to press home button. ---- if application is running in background then don't cancel service. but when he going to remove from recent list of application at that time cancel service. Service/Alarm manager will work even when user has sent application in background by pressing home screen. No of way application can destroy or removed. 1) by clicking back button multiple times if stack have multiple activities. 2) by pressing home button and then remove from recent list. i am facing issue with (2)second option. in that when user press home button at that time service or alarm manager should be work. But when user will be going to remove application from recent list at that time i want to cancel service/alarm manager. Second issue. my service is called at fix interval of time. if i will write code on onCreate(), onDestroy() in each activity. then timer will start from beginning. Is there any listners who talk me application is going to closed?

    Read the article

  • How best to implement support for multiple devices in a web application.

    - by Kabeer
    Hello. My client would like a business application to support 'every possible device'. The application in question is essentially a web application and 'every possible device', I believe encompasses mobile phones, netbooks, ipad, other browser supporting devices, etc. The application is somewhat complex w.r.t. the data it captures and other functions it performs (reporting). If I continue to honor increasing complexity in the application, I guess there are more chances of it not working on other devices. I'd like to know how web applications support multiple devices conventionally? Are there multiple versions of presentation layer (like many times I find m.website.com dedicated for mobile devices)? Further, if my application is to take advantage of Java Script, RIA (Flash, SilverLight) then what are the consequences and workarounds? Mine is a .Net based application and the stack also contains Ext JS Java Script library. While I would like to use it for sure, considering that I would be doing a lot of work in Java Script rather than HTML, this could be a problem. The answer to the above could be descriptive. If there is something already prescribed out there, please share the link(s). Thanks.

    Read the article

  • How to set up site specific configuration vs application configuration in Zend Framework?

    - by rbruhn
    Being fairly new to Zend Framework, I've been reading and trying out various tutorials on the web and books I've purchased. One thing all the tutorials do is hard code certain values into into the bootstrap or other code. For example, setting the title: $this-_view-headTitle('MySite'); I realize this can be set in the application.ini file, but I don't think that is appropriate either if you are distributing the application to other sites. I would be interested in hearing ideas where application specific settings are set in the application.ini file and loaded: $application = new Zend_Application( APPLICATION_ENV, APPLICATION_PATH.'/configs/application.ini' ); Then somewhere in the bootstrap, checking for a config.ini file and adding these to currently existing application config array, and if config.ini does not exist, retrieving such site specific configs from a database and writing the config.ini file (Obviously the file deleted and rewritten if a value is changed in the database). I don't need to see how the file is written or what not... just a general idea of how others are handling such things. Or provide different ideas of doing this? I would rather end up using something like this when setting various site specific configurations: $this->_view->headTitle($config->site->title); Hope this makes sense :-)

    Read the article

  • How to make Finder 'Open With' work for my application (XCode, OS X)?

    - by Adion
    I have created an application that is capable of playing audio files. This in itself works fine, and so does drag&drop from finder to my application. What I would like as well, is that people can use my application from Finder using the Open With menu (or even allow them to set my application as default for a certain file type) After a lot of searching, I found that I should configure a document type in XCode (Editing information property lists) I successfully added such a type named 'Music File', with UTI 'public.mp3' When I now right-click an MP3 file, my application is listed in the 'Open With' menu. Trying to use it, my app opens, but I get a warning message saying "The document could not be opened. App cannot open files in the 'Music File' format" It doesn't appear to be passed through the command line as is the case in Windows. My application does support drag&drop from Finder, and this is working fine too. I don't really know where to look next, so it would be great if anyone could point me in the right direction. My application isn't using NSDocument, so the 'Class' field doesn't apply for me I think (and according to the docs this field isn't required, but it doesn't say how to handle it without a Class)

    Read the article

  • Lua metatable Objects cannot be purge from memory?

    - by Prometheus3k
    Hi there, I'm using a proprietary platform that reported memory usage in realtime on screen. I decided to use a Class.lua I found on http://lua-users.org/wiki/SimpleLuaClasses However, I noticed memory issues when purging object created by this using a simple Account class. Specifically, I would start with say 146k of memory used, create 1000 objects of a class that just holds an integer instance variable and store each object into a table. The memory used is now 300k I would then exit, iterating through the table and setting each element in the table to nil. But would never get back the 146k, usually after this I am left using 210k or something similar. If I run the load sequence again during the same session, it does not exceed 300k so it is not a memory leak. I have tried creating 1000 integers in a table and setting these to nil, which does give me back 146k. In addition I've tried a simpler class file (Account2.lua) that doesn't rely on a class.lua. This still incurs memory fragmentation but not as much as the one that uses Class.lua Can anybody explain what is going on here? How can I purge these objects and get back the memory? here is the code --------Class.lua------ -- class.lua -- Compatible with Lua 5.1 (not 5.0). --http://lua-users.org/wiki/SimpleLuaClasses function class(base,ctor) local c = {} -- a new class instance if not ctor and type(base) == 'function' then ctor = base base = nil elseif type(base) == 'table' then -- our new class is a shallow copy of the base class! for i,v in pairs(base) do c[i] = v end c._base = base end -- the class will be the metatable for all its objects, -- and they will look up their methods in it. c.__index = c -- expose a ctor which can be called by () local mt = {} mt.__call = function(class_tbl,...) local obj = {} setmetatable(obj,c) if ctor then ctor(obj,...) else -- make sure that any stuff from the base class is initialized! if base and base.init then base.init(obj,...) end end return obj end c.init = ctor c.instanceOf = function(self,klass) local m = getmetatable(self) while m do if m == klass then return true end m = m._base end return false end setmetatable(c,mt) return c end --------Account.lua------ --Import Class template require 'class' local classname = "Account" --Declare class Constructor Account = class(function(acc,balance) --Instance variables declared here. if(balance ~= nil)then acc.balance = balance else --default value acc.balance = 2097 end acc.classname = classname end) --------Account2.lua------ local account2 = {} account2.classname = "unnamed" account2.balance = 2097 -----------Constructor 1 do local metatable = { __index = account2; } function Account2() return setmetatable({}, metatable); end end --------Main.lua------ require 'Account' require 'Account2' MAX_OBJ = 5000; test_value = 1000; Obj_Table = {}; MODE_ACC0 = 0 --integers MODE_ACC1 = 1 --Account MODE_ACC2 = 2 --Account2 TEST_MODE = MODE_ACC0; Lua_mem = ""; print("##1) collectgarbage('count'): " .. collectgarbage('count')); function Load() for i=1, MAX_OBJ do if(TEST_MODE == MODE_ACC0 )then table.insert(Obj_Table, test_value); elseif(TEST_MODE == MODE_ACC1 )then table.insert(Obj_Table, Account(test_value)); --Account.lua elseif(TEST_MODE == MODE_ACC2 )then table.insert(Obj_Table, Account2()); --Account2.lua Obj_Table[i].balance = test_value; end end print("##2) collectgarbage('count'): " .. collectgarbage('count')); end function Purge() --metatable purge if(TEST_MODE ~= MODE_ACC0)then --purge stage 0: print("set each elements metatable to nil") for i=1, MAX_OBJ do setmetatable(Obj_Table[i], nil); end end --purge stage 1: print("set table element to nil") for i=1, MAX_OBJ do Obj_Table[i] = nil; end --purge stage 2: print("start table.remove..."); for i=1, MAX_OBJ do table.remove(Obj_Table, i); end print("...end table.remove"); --purge stage 3: print("create new object_table {}"); Obj_Table= {}; --purge stage 4: print("collectgarbage('collect')"); collectgarbage('collect'); print("##3) collectgarbage('count'): " .. collectgarbage('count')); end --Loop callback function OnUpdate() collectgarbage('collect'); Lua_mem = collectgarbage('count'); end ------------------- --NOTE: --On start of game runs Load(), another runs Purge() --Update I've updated the code with suggestions from comments below, and will post my findings later today.

    Read the article

  • What is New in ASP.NET 4.0 Code Access Security

    - by Xiaohong
    ASP.NET Code Access Security (CAS) is a feature that helps protect server applications on hosting multiple Web sites, ASP.NET lets you assign a configurable trust level that corresponds to a predefined set of permissions. ASP.NET has predefined ASP.NET Trust Levels and Policy Files that you can assign to applications, you also can assign custom trust level and policy files. Most web hosting companies run ASP.NET applications in Medium Trust to prevent that one website affect or harm another site etc. As .NET Framework's Code Access Security model has evolved, ASP.NET 4.0 Code Access Security also has introduced several changes and improvements. The main change in ASP.NET 4.0 CAS In ASP.NET v4.0 partial trust applications, application domain can have a default partial trust permission set as opposed to being full-trust, the permission set name is defined in the <trust /> new attribute permissionSetName that is used to initialize the application domain . By default, the PermissionSetName attribute value is "ASP.Net" which is the name of the permission set you can find in all predefined partial trust configuration files. <trust level="Something" permissionSetName="ASP.Net" /> This is ASP.NET 4.0 new CAS model. For compatibility ASP.NET 4.0 also support legacy CAS model where application domain still has full trust permission set. You can specify new legacyCasModel attribute on the <trust /> element to indicate whether the legacy CAS model is enabled. By default legacyCasModel is false which means that new 4.0 CAS model is the default. <trust level="Something" legacyCasModel="true|false" /> In .Net FX 4.0 Config directory, there are two set of predefined partial trust config files for each new CAS model and legacy CAS model, trust config files with name legacy.XYZ.config are for legacy CAS model: New CAS model: Legacy CAS model: web_hightrust.config legacy.web_hightrust.config web_mediumtrust.config legacy.web_mediumtrust.config web_lowtrust.config legacy.web_lowtrust.config web_minimaltrust.config legacy.web_minimaltrust.config   The figure below shows in ASP.NET 4.0 new CAS model what permission set to grant to code for partial trust application using predefined partial trust levels and policy files:    There also some benefits that comes with the new CAS model: You can lock down a machine by making all managed code no-execute by default (e.g. setting the MyComputer zone to have no managed execution code permissions), it should still be possible to configure ASP.NET web applications to run as either full-trust or partial trust. UNC share doesn’t require full trust with CASPOL at machine-level CAS policy. Side effect that comes with the new CAS model: processRequestInApplicationTrust attribute is deprecated  in new CAS model since application domain always has partial trust permission set in new CAS model.   In ASP.NET 4.0 legacy CAS model or ASP.NET 2.0 CAS model, even though you assign partial trust level to a application but the application domain still has full trust permission set. The figure below shows in ASP.NET 4.0 legacy CAS model (or ASP.NET 2.0 CAS model) what permission set to grant to code for partial trust application using predefined partial trust levels and policy files:     What $AppDirUrl$, $CodeGen$, $Gac$ represents: $AppDirUrl$ The application's virtual root directory. This allows permissions to be applied to code that is located in the application's bin directory. For example, if a virtual directory is mapped to C:\YourWebApp, then $AppDirUrl$ would equate to C:\YourWebApp. $CodeGen$ The directory that contains dynamically generated assemblies (for example, the result of .aspx page compiles). This can be configured on a per application basis and defaults to %windir%\Microsoft.NET\Framework\{version}\Temporary ASP.NET Files. $CodeGen$ allows permissions to be applied to dynamically generated assemblies. $Gac$ Any assembly that is installed in the computer's global assembly cache (GAC). This allows permissions to be granted to strong named assemblies loaded from the GAC by the Web application.   The new customization of CAS Policy in ASP.NET 4.0 new CAS model 1. Define which named permission set in partial trust configuration files By default the permission set that will be assigned at application domain initialization time is the named "ASP.Net" permission set found in all predefined partial trust configuration files. However ASP.NET 4.0 allows you set PermissionSetName attribute to define which named permission set in a partial trust configuration file should be the one used to initialize an application domain. Example: add "ASP.Net_2" named permission set in partial trust configuration file: <PermissionSet class="NamedPermissionSet" version="1" Name="ASP.Net_2"> <IPermission class="FileIOPermission" version="1" Read="$AppDir$" PathDiscovery="$AppDir$" /> <IPermission class="ReflectionPermission" version="1" Flags ="RestrictedMemberAccess" /> <IPermission class="SecurityPermission " version="1" Flags ="Execution, ControlThread, ControlPrincipal, RemotingConfiguration" /></PermissionSet> Then you can use "ASP.Net_2" named permission set for the application domain permission set: <trust level="Something" legacyCasModel="false" permissionSetName="ASP.Net_2" /> 2. Define a custom set of Full Trust Assemblies for an application By using the new fullTrustAssemblies element to configure a set of Full Trust Assemblies for an application, you can modify set of partial trust assemblies to full trust at the machine, site or application level. The configuration definition is shown below: <fullTrustAssemblies> <add assemblyName="MyAssembly" version="1.1.2.3" publicKey="hex_char_representation_of_key_blob" /></fullTrustAssemblies> 3. Define <CodeGroup /> policy in partial trust configuration files ASP.NET 4.0 new CAS model will retain the ability for developers to optionally define <CodeGroup />with membership conditions and assigned permission sets. The specific restriction in ASP.NET 4.0 new CAS model though will be that the results of evaluating custom policies can only result in one of two outcomes: either an assembly is granted full trust, or an assembly is granted the partial trust permission set currently associated with the running application domain. It will not be possible to use custom policies to create additional custom partial trust permission sets. When parsing the partial trust configuration file: Any assemblies that match to code groups associated with "PermissionSet='FullTrust'" will run at full trust. Any assemblies that match to code groups associated with "PermissionSet='Nothing'" will result in a PolicyError being thrown from the CLR. This is acceptable since it provides administrators with a way to do a blanket-deny of managed code followed by selectively defining policy in a <CodeGroup /> that re-adds assemblies that would be allowed to run. Any assemblies that match to code groups associated with other permissions sets will be interpreted to mean the assembly should run at the permission set of the appdomain. This means that even though syntactically a developer could define additional "flavors" of partial trust in an ASP.NET partial trust configuration file, those "flavors" will always be ignored. Example: defines full trust in <CodeGroup /> for my strong named assemblies in partial trust config files: <CodeGroup class="FirstMatchCodeGroup" version="1" PermissionSetName="Nothing"> <IMembershipCondition    class="AllMembershipCondition"    version="1" /> <CodeGroup    class="UnionCodeGroup"    version="1"    PermissionSetName="FullTrust"    Name="My_Strong_Name"    Description="This code group grants code signed full trust. "> <IMembershipCondition      class="StrongNameMembershipCondition" version="1"       PublicKeyBlob="hex_char_representation_of_key_blob" /> </CodeGroup> <CodeGroup   class="UnionCodeGroup" version="1" PermissionSetName="ASP.Net">   <IMembershipCondition class="UrlMembershipCondition" version="1" Url="$AppDirUrl$/*" /> </CodeGroup> <CodeGroup class="UnionCodeGroup" version="1" PermissionSetName="ASP.Net">   <IMembershipCondition class="UrlMembershipCondition" version="1" Url="$CodeGen$/*"   /> </CodeGroup></CodeGroup>   4. Customize CAS policy at runtime in ASP.NET 4.0 new CAS model ASP.NET 4.0 new CAS model allows to customize CAS policy at runtime by using custom HostSecurityPolicyResolver that overrides the ASP.NET code access security policy. Example: use custom host security policy resolver to resolve partial trust web application bin folder MyTrustedAssembly.dll to full trust at runtime: You can create a custom host security policy resolver and compile it to assembly MyCustomResolver.dll with strong name enabled and deploy in GAC: public class MyCustomResolver : HostSecurityPolicyResolver{ public override HostSecurityPolicyResults ResolvePolicy(Evidence evidence) { IEnumerator hostEvidence = evidence.GetHostEnumerator(); while (hostEvidence.MoveNext()) { object hostEvidenceObject = hostEvidence.Current; if (hostEvidenceObject is System.Security.Policy.Url) { string assemblyName = hostEvidenceObject.ToString(); if (assemblyName.Contains(“MyTrustedAssembly.dll”) return HostSecurityPolicyResult.FullTrust; } } //default fall-through return HostSecurityPolicyResult.DefaultPolicy; }} Because ASP.NET accesses the custom HostSecurityPolicyResolver during application domain initialization, and a custom policy resolver requires full trust, you also can add a custom policy resolver in <fullTrustAssemblies /> , or deploy in the GAC. You also need configure a custom HostSecurityPolicyResolver instance by adding the HostSecurityPolicyResolverType attribute in the <trust /> element: <trust level="Something" legacyCasModel="false" hostSecurityPolicyResolverType="MyCustomResolver, MyCustomResolver" permissionSetName="ASP.Net" />   Note: If an assembly policy define in <CodeGroup/> and also in hostSecurityPolicyResolverType, hostSecurityPolicyResolverType will win. If an assembly added in <fullTrustAssemblies/> then the assembly has full trust no matter what policy in <CodeGroup/> or in hostSecurityPolicyResolverType.   Other changes in ASP.NET 4.0 CAS Use the new transparency model introduced in .Net Framework 4.0 Change in dynamically compiled code generated assemblies by ASP.NET: In new CAS model they will be marked as security transparent level2 to use Framework 4.0 security transparent rule that means partial trust code is treated as completely Transparent and it is more strict enforcement. In legacy CAS model they will be marked as security transparent level1 to use Framework 2.0 security transparent rule for compatibility. Most of ASP.NET products runtime assemblies are also changed to be marked as security transparent level2 to switch to SecurityTransparent code by default unless SecurityCritical or SecuritySafeCritical attribute specified. You also can look at Security Changes in the .NET Framework 4 for more information about these security attributes. Support conditional APTCA If an assembly is marked with the Conditional APTCA attribute to allow partially trusted callers, and if you want to make the assembly both visible and accessible to partial-trust code in your web application, you must add a reference to the assembly in the partialTrustVisibleAssemblies section: <partialTrustVisibleAssemblies> <add assemblyName="MyAssembly" publicKey="hex_char_representation_of_key_blob" />/partialTrustVisibleAssemblies>   Most of ASP.NET products runtime assemblies are also changed to be marked as conditional APTCA to prevent use of ASP.NET APIs in partial trust environments such as Winforms or WPF UI controls hosted in Internet Explorer.   Differences between ASP.NET new CAS model and legacy CAS model: Here list some differences between ASP.NET new CAS model and legacy CAS model ASP.NET 4.0 legacy CAS model  : Asp.net partial trust appdomains have full trust permission Multiple different permission sets in a single appdomain are allowed in ASP.NET partial trust configuration files Code groups Machine CAS policy is honored processRequestInApplicationTrust attribute is still honored    New configuration setting for legacy model: <trust level="Something" legacyCASModel="true" ></trust><partialTrustVisibleAssemblies> <add assemblyName="MyAssembly" publicKey="hex_char_representation_of_key_blob" /></partialTrustVisibleAssemblies>   ASP.NET 4.0 new CAS model: ASP.NET will now run in homogeneous application domains. Only full trust or the app-domain's partial trust grant set, are allowable permission sets. It is no longer possible to define arbitrary permission sets that get assigned to different assemblies. If an application currently depends on fine-tuning the partial trust permission set using the ASP.NET partial trust configuration file, this will no longer be possible. processRequestInApplicationTrust attribute is deprecated Dynamically compiled assemblies output by ASP.NET build providers will be updated to explicitly mark assemblies as transparent. ASP.NET partial trust grant sets will be independent from any enterprise, machine, or user CAS policy levels. A simplified model for locking down web servers that only allows trusted managed web applications to run. Machine policy used to always grant full-trust to managed code (based on membership conditions) can instead be configured using the new ASP.NET 4.0 full-trust assembly configuration section. The full-trust assembly configuration section requires explicitly listing each assembly as opposed to using membership conditions. Alternatively, the membership condition(s) used in machine policy can instead be re-defined in a <CodeGroup /> within ASP.NET's partial trust configuration file to grant full-trust.   New configuration setting for new model: <trust level="Something" legacyCASModel="false" permissionSetName="ASP.Net" hostSecurityPolicyResolverType=".NET type string" ></trust><fullTrustAssemblies> <add assemblyName=”MyAssembly” version=”1.0.0.0” publicKey="hex_char_representation_of_key_blob" /></fullTrustAssemblies><partialTrustVisibleAssemblies> <add assemblyName="MyAssembly" publicKey="hex_char_representation_of_key_blob" /></partialTrustVisibleAssemblies>     Hope this post is helpful to better understand the ASP.Net 4.0 CAS. Xiaohong Tang ASP.NET QA Team

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Looking into ASP.Net MVC 4.0 Mobile Development - part 1

    - by nikolaosk
    In this post I will be looking how ASP.Net MVC 4.0 helps us to create web solutions that target mobile devices.We all experience the magic that is the World Wide Web through mobile devices. Millions of people around the world, use tablets and smartphones to view the contents of websites,e-shops and portals.ASP.Net MVC 4.0 includes a new mobile project template and the ability to render a different set of views for different types of devices.There is a new feature that is called browser overriding which allows us to control exactly what a user is going to see from your web application regardless of what type of device he is using.In order to follow along this post you must have Visual Studio 2012 and .Net Framework 4.5 installed in your machine.Download and install VS 2012 using this link.My machine runs on Windows 8 and Visual Studio 2012 works just fine.It will work fine in Windows 7 as well so do not worry if you do not have the latest Microsoft operating system.1) Launch VS 2012 and create a new Web Forms application by going to File - >New Project - > ASP.Net MVC 4 Web Application and then click OKHave a look at the picture below  2) From the available templates select Mobile Application and then click OK.Have a look at the picture below 3) When I run the application I get the mobile view of the page. I would like to show you what a typical ASP.Net MVC 4.0 application looks like. So I will create a new simple ASP.Net MVC 4.0 Web Application. When I run the application I get the normal page view.Have a look at the picture below.On the left is the mobile view and on the right the normal view. As you can see we have more or less the same content in our mobile application (log in,register) compared with the normal ASP.Net MVC 4.0 application but it is optimised for mobile devices. 4) Let me explain how and when the mobile view is selected and finally rendered.There is a feature in MVC 4.0 that is called Display Modes and with this feature the runtime will select a view.If we have 2 views e.g contact.mobile.cshtml and contact.cshtml in our application the Controller at some point will instruct the runtime to select and render a view named contact.The runtime will look at the browser making the request and will determine if it is a mobile browser or a desktop browser. So if there is a request from my IPhone Safari browser for a particular site, if there is a mobile view the MVC 4.0 will select it and render it. If there is not a mobile view, the normal view will be rendered.5) In the  ASP.Net MVC 4.0 (Internet application) I created earlier (not the first project which was a mobile one) I can run it once more and see how it looks on the browser. If I want to view it with a mobile browser I must download one emulator like Opera Mobile.You can download Opera Mobile hereWhen I run the application I get the same view in both the desktop and the mobile browser. That was to be expected. Have a look at the picture below 6) Then I create another version of the _Layout.mobile.cshtml view in the Shared folder.I simply copy and paste the _Layout.cshtml  into the same folder and then rename it to _Layout.mobile.cshtml and then just alter the contents of the _Layout.mobile.cshtml.When I run again the application I get a different view on the desktop browser and a different one on the Opera mobile browser.Have a look at the picture below ?he Controller will instruct the ASP.Net runtime to select and render a view named _Layout.mobile.cshtml when the request will come from a mobile browser.?he runtime knows that a browser is a mobile one through the ASP.Net browser capability provider. Hope it helps!!!

    Read the article

  • Configure Forms based authentication in SharePoint 2010

    - by sreejukg
      Configuring form authentication is a straight forward task in SharePoint. Mostly public facing websites built on SharePoint requires form based authentication. Recently, one of the WCM implementation where I was included in the project team required registration system. Any internet user can register to the site and the site offering them some membership specific functionalities once the user logged in. Since the registration open for all, I don’t want to store all those users in Active Directory. I have decided to use Forms based authentication for those users. This is a typical scenario of form authentication in SharePoint implementation. To implement form authentication you require the following A data store where you are storing the users – technically this can be active directory, SQL server database, LDAP etc. Form authentication will redirect the user to the login page, if the request is not authenticated. In the login page, there will be controls that validate the user inputs against the configured data store. In this article, I am going to use SQL server database with ASP.Net membership API’s to configure form based authentication in SharePoint 2010. This article assumes that you have SQL membership database available. I already configured the membership and roles database using aspnet_regsql command. If you want to know how to configure membership database using aspnet_regsql command, read the below blog post. http://weblogs.asp.net/sreejukg/archive/2011/06/16/usage-of-aspnet-regsql-exe-in-asp-net-4.aspx The snapshot of the database after implementing membership and role manager is as follows. I have used the database name “aspnetdb_claim”. Make sure you have created the database and make sure your database contains tables and stored procedures for membership. Create a web application with claims based authentication. This article assumes you already created a web application using claims based authentication. If you want to enable forms based authentication in SharePoint 2010, you must enable claims based authentication. Read this post for creating a web application using claims based authentication. http://weblogs.asp.net/sreejukg/archive/2011/06/15/create-a-web-application-in-sharepoint-2010-using-claims-based-authentication.aspx  You make sure, you have selected enable form authentication, and then selected Membership provider and Role manager name. To make sure you are done with the configuration, navigate to central administration website, from central administration, navigate to the Web Applications page, select the web application and click on icon, you will see the authentication providers for the current web application. Go to the section Claims authentication types, and make sure you have enabled forms based authentication. As mentioned in the snapshot, I have named the membership provider as SPFormAuthMembership and role manager as SPFormAuthRoleManager. You can choose your own names as you need. Modify the configuration files(Web.Config) to enable form authentication There are three applications that needs to be configured to support form authentication. The following are those applications. Central Administration If you want to assign permissions to web application using the credentials from form authentication, you need to update Central Administration configuration. If you do not want to access form authentication credentials from Central Administration, just leave this step.  STS service application Security Token service is the service application that issues security token when users are logging in. You need to modify the configuration of STS application to make sure users are able to login. To find the STS application, follow the following steps Go to the IIS Manager Expand the sites Node, you will see SharePoint Web Services Expand SharePoint Web Services, you can see SecurityTokenServiceApplication Right click SecuritytokenServiceApplication and click explore, it will open the corresponding file system. By default, the path for STS is C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\14\WebServices\SecurityToken You need to modify the configuration file available in the mentioned location. The web application that needs to be enabled with form authentication. You need to modify the configuration of your web application to make sure your web application identifies users from the form authentication.   Based on the above, I am going to modify the web configuration. At end of each step, I have mentioned the expected output. I recommend you to go step by step and after each step, make sure the configuration changes are working as expected. If you do everything all together, and test your application at the end, you may face difficulties in troubleshooting the configuration errors. Modifications for Central Administration Web.Config Open the web.config for the Central administration in a text editor. I always prefer Visual Studio, for editing web.config. In most cases, the path of the web.config for the central administration website is as follows C:\inetpub\wwwroot\wss\VirtualDirectories\<port number> Make sure you keep a backup copy of the web.config, before editing it. Let me summarize what we are going to do with Central Administration web.config. First I am going to add a connection string that points to the form authentication database, that I created as mentioned in previous steps. Then I need to add a membership provider and a role manager with the corresponding connectionstring. Then I need to update the peoplepickerwildcards section to make sure the users are appearing in search results. By default there is no connection string available in the web.config of Central Administration. Add a connection string just after the configsections element. The below is the connection string I have used all over the article. <add name="FormAuthConnString" connectionString="Initial Catalog=yourdatabasename;data source=databaseservername;Integrated Security=SSPI;" /> Once you added the connection string, the web.config look similar to Now add membership provider to the code. In web.config for CA, there will be <membership> tag, search for it. You will find membership and role manager under the <system.web> element. Under the membership providers section add the below code… <add name="SPFormAuthMembership" type="System.Web.Security.SqlMembershipProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" applicationName="FormAuthApplication" connectionStringName="FormAuthConnString" /> After adding memberhip element, see the snapshot of the web.config. Now you need to add role manager element to the web.config. Insider providers element under rolemanager, add the below code. <add name="SPFormAuthRoleManager" type="System.Web.Security.SqlRoleProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" applicationName="FormAuthApplication" connectionStringName="FormAuthConnString" /> After adding, your role manager will look similar to the following. As a last step, you need to update the people picker wildcard element in web.config, so that the users from your membership provider are available for browsing in Central Administration. Search for PeoplePickerWildcards in the web.config, add the following inside the <PeoplePickerWildcards> tag. <add key="SPFormAuthMembership" value="%" /> After adding this element, your web.config will look like After completing these steps, you can browse the users available in the SQL server database from central administration website. Go to the site collection administrator’s page from central administration. Select the site collection you have created for form authentication. Click on the people picker icon, choose Forms Auth and click on the search icon, you will see the users listed from the SQL server database. Once you complete these steps, make sure the users are available for browsing from central administration website. If you are unable to find the users, there must be some errors in the configuration, check windows event logs to find related errors and fix them. Change the web.config for STS application Open the web.config for STS application in text editor. By default, STS web.config does not have system.Web or connectionstrings section. Just after the System.Webserver element, add the following code. <connectionStrings> <add name="FormAuthConnString" connectionString="Initial Catalog=aspnetdb_claim;data source=sp2010_db;Integrated Security=SSPI;" /> </connectionStrings> <system.web> <roleManager enabled="true" cacheRolesInCookie="false" cookieName=".ASPXROLES" cookieTimeout="30" cookiePath="/" cookieRequireSSL="false" cookieSlidingExpiration="true" cookieProtection="All" createPersistentCookie="false" maxCachedResults="25"> <providers> <add name="SPFormAuthRoleManager" type="System.Web.Security.SqlRoleProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" applicationName="FormAuthApplication" connectionStringName="FormAuthConnString" /> </providers> </roleManager> <membership userIsOnlineTimeWindow="15" hashAlgorithmType=""> <providers> <add name="SPFormAuthMembership" type="System.Web.Security.SqlMembershipProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" applicationName="FormAuthApplication" connectionStringName="FormAuthConnString" /> </providers> </membership> </system.web> See the snapshot of the web.config after adding the required elements. After adding this, you should be able to login using the credentials from SQL server. Try assigning a user as primary/secondary administrator for your site collection from Central Administration and login to your site using form authentication. If you made everything correct, you should be able to login. This means you have successfully completed configuration of STS Configuration of Web Application for Form Authentication As a last step, you need to modify the web.config of the form authentication web application. Once you have done this, you should be able to grant permissions to users stored in the membership database. Open the Web.config of the web application you created for form authentication. You can find the web.config for the application under the path C:\inetpub\wwwroot\wss\VirtualDirectories\<port number> Basically you need to add connection string, membership provider, role manager and update the people picker wild card configuration. Add the connection string (same as the one you added to the web.config in Central Administration). See the screenshot after the connection string has added. Search for <membership> in the web.config, you will find this inside system.web element. There will be other providers already available there. You add your form authentication membership provider (similar to the one added to Central Administration web.config) to the provider element under membership. Find the snapshot of membership configuration as follows. Search for <roleManager> element in web.config, add the new provider name under providers section of the roleManager element. See the snapshot of web.config after new provider added. Now you need to configure the peoplepickerwildcard configuration in web.config. As I specified earlier, this is to make sure, you can locate the users by entering a part of their username. Add the following line under the <PeoplePickerWildcards> element in web.config. See the screenshot of the peoplePickerWildcards element after the element has been added. Now you have completed all the setup for form authentication. Navigate to the web application. From the site actions -> site settings -> go to peope and groups Click on new -> add users, it will popup the people picker dialog. Click on the icon, select Form Auth, enter a username in the search textbox, and click on search icon. See the screenshot of admin search when I tried searching the users If it displays the user, it means you are done with the configuration. If you add users to the form authentication database, the users will be able to access SharePoint portal as normal.

    Read the article

  • SQL SERVER – Get All the Information of Database using sys.databases

    - by pinaldave
    Earlier I wrote blog article SQL SERVER – Finding Last Backup Time for All Database. In the response of this article I have received very interesting script from SQL Server Expert Matteo as a comment in the blog. He has written script using sys.databases which provides plenty of the information about database. I suggest you can run this on your database and know unknown of your databases as well. SELECT database_id, CONVERT(VARCHAR(25), DB.name) AS dbName, CONVERT(VARCHAR(10), DATABASEPROPERTYEX(name, 'status')) AS [Status], state_desc, (SELECT COUNT(1) FROM sys.master_files WHERE DB_NAME(database_id) = DB.name AND type_desc = 'rows') AS DataFiles, (SELECT SUM((size*8)/1024) FROM sys.master_files WHERE DB_NAME(database_id) = DB.name AND type_desc = 'rows') AS [Data MB], (SELECT COUNT(1) FROM sys.master_files WHERE DB_NAME(database_id) = DB.name AND type_desc = 'log') AS LogFiles, (SELECT SUM((size*8)/1024) FROM sys.master_files WHERE DB_NAME(database_id) = DB.name AND type_desc = 'log') AS [Log MB], user_access_desc AS [User access], recovery_model_desc AS [Recovery model], CASE compatibility_level WHEN 60 THEN '60 (SQL Server 6.0)' WHEN 65 THEN '65 (SQL Server 6.5)' WHEN 70 THEN '70 (SQL Server 7.0)' WHEN 80 THEN '80 (SQL Server 2000)' WHEN 90 THEN '90 (SQL Server 2005)' WHEN 100 THEN '100 (SQL Server 2008)' END AS [compatibility level], CONVERT(VARCHAR(20), create_date, 103) + ' ' + CONVERT(VARCHAR(20), create_date, 108) AS [Creation date], -- last backup ISNULL((SELECT TOP 1 CASE TYPE WHEN 'D' THEN 'Full' WHEN 'I' THEN 'Differential' WHEN 'L' THEN 'Transaction log' END + ' – ' + LTRIM(ISNULL(STR(ABS(DATEDIFF(DAY, GETDATE(),Backup_finish_date))) + ' days ago', 'NEVER')) + ' – ' + CONVERT(VARCHAR(20), backup_start_date, 103) + ' ' + CONVERT(VARCHAR(20), backup_start_date, 108) + ' – ' + CONVERT(VARCHAR(20), backup_finish_date, 103) + ' ' + CONVERT(VARCHAR(20), backup_finish_date, 108) + ' (' + CAST(DATEDIFF(second, BK.backup_start_date, BK.backup_finish_date) AS VARCHAR(4)) + ' ' + 'seconds)' FROM msdb..backupset BK WHERE BK.database_name = DB.name ORDER BY backup_set_id DESC),'-') AS [Last backup], CASE WHEN is_fulltext_enabled = 1 THEN 'Fulltext enabled' ELSE '' END AS [fulltext], CASE WHEN is_auto_close_on = 1 THEN 'autoclose' ELSE '' END AS [autoclose], page_verify_option_desc AS [page verify option], CASE WHEN is_read_only = 1 THEN 'read only' ELSE '' END AS [read only], CASE WHEN is_auto_shrink_on = 1 THEN 'autoshrink' ELSE '' END AS [autoshrink], CASE WHEN is_auto_create_stats_on = 1 THEN 'auto create statistics' ELSE '' END AS [auto create statistics], CASE WHEN is_auto_update_stats_on = 1 THEN 'auto update statistics' ELSE '' END AS [auto update statistics], CASE WHEN is_in_standby = 1 THEN 'standby' ELSE '' END AS [standby], CASE WHEN is_cleanly_shutdown = 1 THEN 'cleanly shutdown' ELSE '' END AS [cleanly shutdown] FROM sys.databases DB ORDER BY dbName, [Last backup] DESC, NAME Please let me know if you find this information useful. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, Readers Contribution, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • Integrating Twitter Into An ASP.NET Website Using OAuth

    Earlier this year I wrote an article about Twitterizer, an open-source .NET library that can be used to integrate your application with Twitter. Using Twitterizer you can allow your visitors to post tweets, view their timeline, and much more, all without leaving your website. The original article, Integrating Twitter Into An ASP.NET Website, showed how to post tweets and view a timeline to a particular Twitter account using Twitterizer 1.0. To post a tweet to a specific account, Twitterizer 1.0 uses basic authentication. Basic authentication is a very simple authentication scheme. For an application to post a tweet to JohnDoe's Twitter account, it would submit JohnDoe's username and password (along with the tweet text) to Twitter's servers. Basic authentication, while easy to implement, is not an ideal authentication scheme as it requires that the integrating application know the username(s) and password(s) of the accounts that it is connected to. Consequently, a user must share her password in order to connect her Twitter account with the application. Such password sharing is not only insecure, but it can also cause difficulties down the line if the user changes her password or decides that she no longer wants to connect her account to certain applications (but wants to remain connected to others). To remedy these issues, Twitter introduced support for OAuth, which is a simple, secure protocol for granting API access. In a nutshell, OAuth allows a user to connect an application to their Twitter account without having to share their password. Instead, the user is sent to Twitter's website where they confirm whether they want to connect to the application. Upon confirmation, Twitter generates an token that is then sent back to the application. The application then submits this token when integrating with the user's account. The token serves as proof that the user has allowed this application access to their account. (Twitter users can view what application's they're connected to and may revoke these tokens on an application-by-application basis.) In late 2009, Twitter announced that it was ending its support for basic authentication in June 2010. As a result, the code examined in Integrating Twitter Into An ASP.NET Website, which uses basic authentication, will no longer work once the cut off date is reached. The good news is that the Twitterizer version 2.0 supports OAuth. This article examines how to use Twitterizer 2.0 and OAuth from a website. Specifically, we'll see how to retrieve and display a user's latest tweets and how to post a tweet from an ASP.NET page. Read on to learn more! Read More >

    Read the article

  • Integrating Twitter Into An ASP.NET Website Using OAuth

    Earlier this year I wrote an article about Twitterizer, an open-source .NET library that can be used to integrate your application with Twitter. Using Twitterizer you can allow your visitors to post tweets, view their timeline, and much more, all without leaving your website. The original article, Integrating Twitter Into An ASP.NET Website, showed how to post tweets and view a timeline to a particular Twitter account using Twitterizer 1.0. To post a tweet to a specific account, Twitterizer 1.0 uses basic authentication. Basic authentication is a very simple authentication scheme. For an application to post a tweet to JohnDoe's Twitter account, it would submit JohnDoe's username and password (along with the tweet text) to Twitter's servers. Basic authentication, while easy to implement, is not an ideal authentication scheme as it requires that the integrating application know the username(s) and password(s) of the accounts that it is connected to. Consequently, a user must share her password in order to connect her Twitter account with the application. Such password sharing is not only insecure, but it can also cause difficulties down the line if the user changes her password or decides that she no longer wants to connect her account to certain applications (but wants to remain connected to others). To remedy these issues, Twitter introduced support for OAuth, which is a simple, secure protocol for granting API access. In a nutshell, OAuth allows a user to connect an application to their Twitter account without having to share their password. Instead, the user is sent to Twitter's website where they confirm whether they want to connect to the application. Upon confirmation, Twitter generates an token that is then sent back to the application. The application then submits this token when integrating with the user's account. The token serves as proof that the user has allowed this application access to their account. (Twitter users can view what application's they're connected to and may revoke these tokens on an application-by-application basis.) In late 2009, Twitter announced that it was ending its support for basic authentication in June 2010. As a result, the code examined in Integrating Twitter Into An ASP.NET Website, which uses basic authentication, will no longer work once the cut off date is reached. The good news is that the Twitterizer version 2.0 supports OAuth. This article examines how to use Twitterizer 2.0 and OAuth from a website. Specifically, we'll see how to retrieve and display a user's latest tweets and how to post a tweet from an ASP.NET page. Read on to learn more! Read More >Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Auto-cancel reason not found (6, 13906)

    - by Rajesh Sharma
    There are many errors in the application which are never invoked because of appropriate application configuration done at the time of implementation by the solution architects. So typically, as an application end user you would never stumble upon such errors. But what if the application administrator inadvertently changes the configuration/setup in the development, test, QA, or production environment? This is the time when you as an end user are introduced to a brand-new error for which you may not have a clue or understanding to what it means and neither the access/privilege to rectify it.    In this post we'll focus on one such error '6, 13906 - Auto-cancel reason not found'.   You get this error if you have not defined a Bill (Segment) Cancel Reason (Admin Menu, B, Bill Cancel Reason) code with System Default value of Turn off auto-cancel.   Consider a scenario when you are about to final bill an 'Account' for which the bill period's cut-off date you selected is falling on or after the Service Agreement's (SA) end/stop date (basically SA is Stopped with a date earlier than it was billed previously). And for the same 'Account' either: Bill segments exists that end after the SA's end date OR Non-closing bill segments exists that end on the SA's end date (OR closing bill segments that do not end on SA's end date or do not exist at all - remember closing/final bill segment is generated if the SA is in Stopped status).   CC&B detects such scenario and attempts to cancel all such violating bill segments automatically, but NOT if you are generating the bill Online. If online, the system assumes that you know what you are doing, and prompts you with error 2, 13716 - Bill segments that violate the SA (%1) End Date (%2) exist to take necessary action.   If in batch, system automatically cancels these kinds of bill segment(s).   Since this happens in the background, you have to define within the application which System Default Bill (Segment) cancellation reason code identified as Turn off auto-cancel, should be used by the process when it attempts to cancel any such violating bill segments (You already know that you cannot cancel a bill segment without giving a reason for cancellation).   So what exactly happens during batch billing?   Bill Segment generation routine at first determines billing eligibility of the service agreement being billed. One of the billing eligibility criteria is to check the SA's previous bill segments which have end dates greater than the current cut-off date/end date. Technically, the routine retrieves a count of such violating bill segments.     SELECT COUNT (*) FROM CI_BSEG WHERE SA_ID = :SA-ID AND BSEG_STAT_FLG = '50' -- Frozen AND END_DT IS NOT NULL AND (END_DT > '03-JUN-2010' -- Bill segment greater than SA's End Date OR OR (END_DT = '03-JUN-2010' AND CLOSING_BSEG_SW = 'N')) -- Non-closing bill segment ending on SA's end date   If the count is greater than zero, Bill segment generation routine executes another program to auto-cancel such bill segments. Auto-cancel program retrieves the 'Bill Cancel Reason' code which is identified as Turn off auto-cancel. Retrieved cancel reason code is then placed on the bill segments that are being cancelled automatically.   During this process if the routine fails to determine the bill cancel reason code having System Default Turn off auto-cancel because it was not been configured, you get a bill exception 6, 13906 - Auto-cancel reason not found.   Also note that duplicate or multiple System Default codes identified as Turn off auto-cancel are not allowed. CC&B would complain with an error 2, 54201.   Duplicate validation/check is also performed within Auto-cancel routine, if suppose for test purposes you executed a DML statement updating CI_BILL_CAN_RSN.BSCAN_SYS_DFLT_FLG with a value 'T'.

    Read the article

  • WSS 3.0/MOSS 2007 Active Directory Forms Based Authentication PeoplePicker no users found

    - by John Haigh
    WSS 3.0/MOSS 2007 Active Directory Forms Based Authentication PeoplePicker no users found After finding these steps online from http://dattard.blogspot.com/2008/11/active-directory-forms-based.html in order to setup Active Directory Forms Based Authentication I was all set to complete this task, except for one problem. These steps are missing one very important vital step in order for FBA to work with Active Directory. A supplement to step 3 before granting access in step 5 through the people picker. You need to specify the Active Directory Provider Name to the people picker, otherwise you will not be able specify users through the Policy for Web Application. <PeoplePickerWildcards>       <clear />          <add key="ADMembershipProvider" value="%" />     </PeoplePickerWildcards> Recently we needed to use Forms Based Authentication with Active Directory from an Extranet. This is how we got it to work. 1. Extend the Web Application Instead of tweaking the internal web app, Extend the web application you want to expose to the Extranet, giving it the required host headers etc. 2. Configure SharePoint Central Admin to use FBA for the "new" Web Applications Login to SharePoint Central Admin Go to Application Management / Application Security / Authentication Providers and Change the Web Application to the one which needs to be configured for Forms Based Authentication Click zone / default, change authentication type to forms and enter ActiveDirectoryMemebershipProvider under membership provider name ( for example , "ADMembershipProvider") and save this change 3. Update the web.config of SharePoint Central admin site under configuration node <connectionStrings> <add name="ADConnectionString" connectionString="LDAP://DynamicsAX.local/CN=Users,DC=DynamicsAX,DC=local /> </connectionStrings> under system.web node <membership defaultProvider="ADMembershipProvider"> <providers> <add name="ADMembershipProvider" type="System.Web.Security.ActiveDirectoryMembershipProvider,System.Web,Version=2.0.0.0,Culture=neutral,PublicKeyToken=b03f5f7f11d50a3a" connectionStringName="ADConnectionString" connectionUsername="xxx" connectionPassword="yyy" enableSearchMethods="true" attributeMapUsername="sAMAccountName"/> </providers> </membership> 4.Update the web.config of SharePoint Web application Repeat step 3 for the web.config of the SharePoint webapplication to be configured for Forms Based Authentication Change the authentication in web.config to <authentication mode="Forms"> <forms loginUrl="/_layouts/login.aspx"></forms> </authentication> 5. Grant Access on the extended Web Application Your extranet web application is now configured to use FBA. However, until users, who will be accessing the site via FBA, are given permissions for the site, it will be inaccessible to them. To get started, open your browser and navigate to your farm’s Central Administration site. Click on Application Management and then click on Policy for Web Application. Make sure that you are working on the extranet web application. Do the following steps: Click on Add Users. In the Zones drop down, select the appropriate Extranet zone. IMPORTANT: If you select the incorrect zone, you may not be able to resolve user names. Hence, the zone you select must match the zone of the web application that is configured to use FBA. Click the Next button. In the Users edit box, type the name of the FBA user whom you wish to have full control for the site. Click the Resolve link next to the Users edit box. If the web application's FBA information has been configured correctly, the name will resolve and become underlined. Check the Full Control checkbox. Click the Finish button.

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

< Previous Page | 288 289 290 291 292 293 294 295 296 297 298 299  | Next Page >