Search Results

Search found 40757 results on 1631 pages for 'inferred type'.

Page 299/1631 | < Previous Page | 295 296 297 298 299 300 301 302 303 304 305 306  | Next Page >

  • serializeArray doesn't include submit-button value

    - by guzh
    Hi, I got two submit buttons in a form. One that deletes the post, and one to edit it. I want to display a fancybox with either the edit-form or a message saying that the user deleted the post. It's all decided by which button was pushed, with a "if(isset)"-sentence in edit.php. However I can't figure out how to get the value of the button within the serializeArray.. I tried with .click(function() instead, but that didn't send anything to the fancybox.. $("#form").bind("submit", function() { $.ajax({ type : "POST", cache : false, url : "edit.php", data : $(this).serializeArray(), success: function(data) { $.fancybox(data); } }); return false; }); The form looks like this: <form method='post' action='' id="form"> <input type='submit' value='Edit' name='edit' /> <input type='submit' value='Delete' name='delete' onClick="return slett('<?php echo $oppgave->name; ?>')"/> <input name='oppgaveID' type='hidden' value='<?php echo $oppgave->id; ?>' /> </form> I would really appreciate it if someone could help me! Thanks in advance!

    Read the article

  • php mysql_fetch_array() error

    - by user1877823
    I am getting this error while i am trying to delete a record the query is working but this line remains on the page. i want to echo "Deleted" written in the while should show up but the while loop is not working, i have tried and searched alot nothing helps! mysql_fetch_array() expects parameter 1 to be resource, boolean given in delete.php on line 27 delete.php <html> <body> <form method="post"> Id : <input type="text" name="id"> Name : <input type="text" name="name"> Description : <input type="text" name="des"> <input type="submit" value="delete" name="delete"> </form> <?php include("connect.php"); $id = $_POST['id']; $name = $_POST['name']; $des = $_POST['des']; $result = mysql_query("DELETE FROM fact WHERE id='$id'") or die(mysql_error()); while($row = mysql_fetch_array($result)) { echo "Deleted"; } mysql_close($con); ?> </body> </html> connect.php <?php $con = mysql_connect("localhost","root",""); if (!$con) { die('Could not connect: ' . mysql_error()); } mysql_select_db("Dataentry", $con); ?> How should i make the while loop work..

    Read the article

  • Template function overloading with identical signatures, why does this work?

    - by user1843978
    Minimal program: #include <stdio.h> #include <type_traits> template<typename S, typename T> int foo(typename T::type s) { return 1; } template<typename S, typename T> int foo(S s) { return 2; } int main(int argc, char* argv[]) { int x = 3; printf("%d\n", foo<int, std::enable_if<true, int>>(x)); return 0; } output: 1 Why doesn't this give a compile error? When the template code is generated, wouldn't the functions int foo(typename T::type search) and int foo(S& search) have the same signature? If you change the template function signatures a little bit, it still works (as I would expect given the example above): template<typename S, typename T> void foo(typename T::type s) { printf("a\n"); } template<typename S, typename T> void foo(S s) { printf("b\n"); } Yet this doesn't and yet the only difference is that one has an int signature and the other is defined by the first template parameter. template<typename T> void foo(typename T::type s) { printf("a\n"); } template<typename T> void foo(int s) { printf("b\n"); } I'm using code similar to this for a project I'm working on and I'm afraid that there's a subtly to the language that I'm not understanding that will cause some undefined behavior in certain cases. I should also mention that it does compile on both Clang and in VS11 so I don't think it's just a compiler bug.

    Read the article

  • jquery find element next to another

    - by Thiganofx
    Hi I have the following html: <p> <input type="text" name="field2" /> <input type="hidden" name="fieldh2"/> <button type="button" class="sendInfo">Send</button> </p> What I want is that when user clicks the button, I need to send using ajax the contents of the field field. This is what i'm trying to do with no success. $(function() { $('button.sendInfo').live('click', function() { var id = $(this).parent().next('[type=text]').val(); alert(id); }); }); I plan to set what the user types in textbox to the hidden field, and the value received from the ajax call to normal textbox. But the problem is that i can´t even get the value of the textbox that is in the same line as the button the user clicks. Can anyone help me? Thanks a lot.

    Read the article

  • why won't background change in firefox but it will in ie

    - by rod
    <%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="_Default" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server"> <title></title> <link id="csslink" href="Handler.ashx" rel="stylesheet" type="text/css" /> </head> <body> <form id="form1" runat="server"> <div> <input id="Button1" type="button" value="Blue" /> <input id="Button2" type="button" value="Red" /> </div> </form> <script type="text/javascript"> var pageDefault = { btn1: document.getElementById('Button1'), btn2: document.getElementById('Button2'), csslink: document.getElementById('csslink'), init: function() { this.btn1.onclick = function() { pageDefault.csslink.href = "Handler.ashx?id=1"; } this.btn2.onclick = function() { pageDefault.csslink.href = "Handler.ashx?id=2"; } } } pageDefault.init(); </script> </body> </html> Here's the ashx ProcessRequest public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; var id = context.Request.QueryString["id"]; if (id == "1") { context.Response.Write(@" body { background: Blue; } "); } else if (id == "2") { context.Response.Write(@" body { background: Red; } "); } else { } }

    Read the article

  • Wrapping <%= f.check_box %> inside <label>

    - by Ben Scheirman
    I have a list of checkboxes on a form. Due to the way the CSS is structured, the label element is styled directly. This requires me to nest the checkbox inside of the tag. This works in raw HTML, if you click on the label text, the state of the checkbox changes. It doesn't work with the rails <%= f.check_box %> helper, however, because it outputs a hidden input tag first. In summary, <label> <%= f.check_box :foo %> Foo </label> this is the output I want: <label> <input type="checkbox" ... /> <input type="hidden" ... /> Foo </label> ...but this is what rails is giving me: <label> <input type="hidden" ... /> <input type="checkbox" ... /> Foo </label> So the label behavior doesn't actually work :(. Is there any way to get around this?

    Read the article

  • Looping through array values using JQuery and show them on separate lines

    - by user3192948
    I'm building a simple shopping cart where visitors can select a few items they want, click on the "Next" button, and see the confirmation list of things they just selected. I would like to have the confirmation list shown on each line for each item selected. HTML selection <div id="c_b"> <input type="checkbox" value="razor brand new razor that everyone loves, price at $.99" checked> <input type="checkbox" value="soap used soap for a nice public shower, good for your homies, price at $.99" checked> <input type="checkbox" value="manpacks ultimate choice, all in 1, price at $99"> </div> <button type='button' id='confirm'>Next</button> HTML confirmation list <div id='confirmation_list' style='display:none;'> <h2>You have selected item 1</h2> <h2>Your have selected item 2 </h2> </div> JS $(function(){ $('#confirm').click(function(){ var val = []; $(':checkbox:checked').each(function(i){ val[i] = $(this).val(); }); }); }); I ultimately want to replace the words 'Your have selected item 2' in h2s with the values selected from each check box. With the code above I'm able to collect the values of each checkbox into an array val, but having difficulty looping through and displaying them. Any advice would be appreciated.

    Read the article

  • what this json must work?

    - by user1772630
    hi i search alot for get a respone from php back and if that respone is ok do someting and if its false do something else(!!!!!!!! WHENE I HAVE OTHER OUTPUT FROM THAT PHP !!!!!!) this is my index file <head> <script src="jquery-1.7.2.js" type="text/javascript"></script> <script src="js.js" type="text/javascript"></script> </head> <body> <p> click </p> <input type="text" id="who"> <br> <input type="text" id="why"> <div id="bg" align="center"> </div> </body> this is my JS file $(document).ready(function(){ $('p').click(function(){ var who = $('input#who').val(); var why = $('input#why').val(); $.post('file.php',{who:who,why:why},function(data) { if(data.success){ alert(data.message); } else{ alert('ERROR:' + data.message); } }); }); }); and this is my file.php <?php $response = array('success' => 'true', 'code' => "jQuery('#bg').html('\"Javascript\", \"json\", \"PHP\"');"); echo json_encode($response); ?> my question : 1- why this is not work i get alert (error:undifined) 2- how i can get some result from that php file when its have other output like this: <?php echo "1"; echo "2"; echo "3"; and now echo that json ?> thanks :(

    Read the article

  • BIND returns serverfail when querying for its authoriative domain

    - by estol
    Hi there Serverfault folks! First of all: sorry about the title, I had some problem coming up with the proper title. I have a little home server set up, for internet sharing, samba, basic http, dlna mediaserver and what not, and I happend to have a domain at hand, so I thought why not direct it to this computer? I have a BIND 9.8.0 installed, and - afaik - configured it properly. For a few days, the public view did not worked, and I really did not cared, since the local view worked. But now suddenly, even the local view fails. If I try to query the nameserver for anything in my domain, it returns the following error: $ nslookup andromeda.dafaces.com ;; Got SERVFAIL reply from ::1, trying next server ;; Got SERVFAIL reply from ::1, trying next server Server: 127.0.0.1 Address: 127.0.0.1#53 ** server can't find andromeda.dafaces.com.dafaces.com: SERVFAIL Also, the public view points to the old ip address of the domain, probably because of the same error. Some information about the system: $ uname -a Linux tressis 2.6.37-ARCH #1 SMP PREEMPT Tue Mar 15 09:21:17 CET 2011 x86_64 AMD Athlon(tm) 64 X2 Dual Core Processor 5000+ AuthenticAMD GNU/Linux $ named -v BIND 9.8.0 And the named.conf file: # cat /etc/named.conf // // /etc/named.conf // include "/etc/rndc.key"; #controls { # inet 127.0.0.1 allow {localhost; } keys { "dnskulcs"; }; #}; options { directory "/var/named"; pid-file "/var/run/named/named.pid"; auth-nxdomain yes; datasize default; // Uncomment these to enable IPv6 connections support // IPv4 will still work: listen-on-v6 { any; }; listen-on { any; }; // Add this for no IPv4: // listen-on { none; }; // Default security settings. // allow-recursion { 127.0.0.1; ::1; 192.168.1.0/24; }; // allow-recursion { any; }; allow-query { any; }; allow-transfer { 127.0.0.1; ::1; 92.243.14.172; 87.98.164.164; 88.191.64.64; }; allow-update { key "dnskulcs"; }; version none; hostname none; server-id none; zone-statistics yes; forwarders { 213.46.246.53; 213.26.246.54; 8.8.8.8; 8.8.4.4; 192.188.242.65; 193.227.196.3; 2001:470:20::2; }; }; view "local" { match-clients { 192.168.1.0/24; 127.0.0.1; ::1; fec0:0:0:ffff::/64; }; recursion yes; zone "localhost" IN { type master; file "localhost.zone"; allow-transfer { any; }; }; zone "0.0.127.in-addr.arpa" IN { type master; file "127.0.0.zone"; allow-transfer { any; }; }; zone "." IN { type hint; file "root.hint"; }; zone "dafaces.com" IN { type master; file "internal/dafaces.com.fw"; allow-update { key "dnskulcs"; }; }; zone "1.168.192.in-addr.arpa" IN { type master; file "internal/dafaces.com.rev"; allow-update { key "dnskulcs"; }; }; }; view "public" { match-clients { any;}; recursion no; zone "dafaces.com" IN { type master; file "external/dafaces.com.fw"; allow-transfer { 87.98.164.164; 195.234.42.1; 88.191.64.64; }; }; }; //zone "example.org" IN { // type slave; // file "example.zone"; // masters { // 192.168.1.100; // }; // allow-query { any; }; // allow-transfer { any; }; //}; logging { channel xfer-log { file "/var/log/named.log"; print-category yes; print-severity yes; print-time yes; severity info; }; category xfer-in { xfer-log; }; category xfer-out { xfer-log; }; category notify { xfer-log; }; }; All help would be highly appreciated! EDIT: Zone files: # cat /var/named/internal/dafaces.com.fw $ORIGIN . $TTL 3600 ; 1 hour dafaces.com IN SOA tressis.dafaces.com. postmaster.dafaces.com. ( 2011032201 ; serial 28800 ; refresh (8 hours) 7200 ; retry (2 hours) 2419200 ; expire (4 weeks) 3600 ; minimum (1 hour) ) NS tressis.dafaces.com. A 192.168.1.1 MX 10 mail.dafaces.com. $ORIGIN _tcp.dafaces.com. _http SRV 0 5 80 www.dafaces.com. _ssh SRV 0 5 22 tressis.dafaces.com. $ORIGIN dafaces.com. acrisius A 192.168.1.230 andromeda A 192.168.1.7 andromeda-win7 CNAME andromeda aspasia A 192.168.1.233 athena A 192.168.1.232 callisto A 192.168.1.102 db A 192.168.1.1 management A 192.168.1.1 ; web management for the router functions haley A 192.168.1.5 hoth A 192.168.1.101 mail A 192.168.1.1 satelite A 192.168.1.20 sony-player A 192.168.1.103 TXT "310f16de2d2712dfc4ae6e5c54f60f828e" torrent A 192.168.1.1 tracker A 192.168.1.1 tressis A 192.168.1.1 www A 192.168.1.1 zeus A 192.168.1.231 and # cat /var/named/external/dafaces.com.fw $ORIGIN . $TTL 3600 dafaces.com IN SOA ns.dafaces.com. postmaster.dafaces.com. ( 2011032405; serial 28800; refresh 7200; retry 2419200; expire 3600; minimum ) NS ns.dafaces.com. NS ns0.xname.org. NS ns1.xname.org. NS ns2.xname.org. A 89.135.129.37 MX 10 mail.dafaces.com. $ORIGIN dafaces.com. ;Szolgaltatasok _ssh._tcp SRV 0 5 22 tressis _http._tcp SRV 0 5 80 www ns A 89.135.129.37 hoth A 89.135.129.37 www A 89.135.129.37 mail A 89.135.129.37 db A 89.135.129.37 torrent A 89.135.129.37 tracker A 89.135.129.37 Edit: Ohh, hell I almost forgot. Since the node is connected to the internet via a residential connection, there is a possibility, that the public ipv4 address will change(but thank god, it is a very rare case), so I daily update the external IP address in the zone file with a shellscript: # cat /etc/cron.daily/dnsupdate #!/bin/sh FILE="/var/named/external/dafaces.com.fw" SERIAL=$(date +%Y%m%d05) PUBLIC_IP=$(ifconfig internet |sed -n "/inet addr:.*255.255.255.255/{s/.*inet addr://; s/ .*//; p}") cat $FILE | sed --posix 's/^.* serial$/\t\t\t\t\t'$SERIAL'; serial/' | sed --posix 's/[0-9]*\.[0-9]*\.[0-9]*\.[0-9]*/'$PUBLIC_IP'/' > /tmp/ujzona mv /tmp/ujzona $FILE /etc/rc.d/named reload

    Read the article

  • Dependency Injection in ASP.NET MVC NerdDinner App using Ninject

    - by shiju
    In this post, I am applying Dependency Injection to the NerdDinner application using Ninject. The controllers of NerdDinner application have Dependency Injection enabled constructors. So we can apply Dependency Injection through constructor without change any existing code. A Dependency Injection framework injects the dependencies into a class when the dependencies are needed. Dependency Injection enables looser coupling between classes and their dependencies and provides better testability of an application and it removes the need for clients to know about their dependencies and how to create them. If you are not familiar with Dependency Injection and Inversion of Control (IoC), read Martin Fowler’s article Inversion of Control Containers and the Dependency Injection pattern. The Open Source Project NerDinner is a great resource for learning ASP.NET MVC.  A free eBook provides an end-to-end walkthrough of building NerdDinner.com application. The free eBook and the Open Source Nerddinner application are extremely useful if anyone is trying to lean ASP.NET MVC. The first release of  Nerddinner was as a sample for the first chapter of Professional ASP.NET MVC 1.0. Currently the application is updating to ASP.NET MVC 2 and you can get the latest source from the source code tab of Nerddinner at http://nerddinner.codeplex.com/SourceControl/list/changesets. I have taken the latest ASP.NET MVC 2 source code of the application and applied  Dependency Injection using Ninject and Ninject extension Ninject.Web.Mvc.Ninject &  Ninject.Web.MvcNinject is available at http://github.com/enkari/ninject and Ninject.Web.Mvc is available at http://github.com/enkari/ninject.web.mvcNinject is a lightweight and a great dependency injection framework for .NET.  Ninject is a great choice of dependency injection framework when building ASP.NET MVC applications. Ninject.Web.Mvc is an extension for ninject which providing integration with ASP.NET MVC.Controller constructors and dependencies of NerdDinner application Listing 1 – Constructor of DinnersController  public DinnersController(IDinnerRepository repository) {     dinnerRepository = repository; }  Listing 2 – Constrcutor of AccountControllerpublic AccountController(IFormsAuthentication formsAuth, IMembershipService service) {     FormsAuth = formsAuth ?? new FormsAuthenticationService();     MembershipService = service ?? new AccountMembershipService(); }  Listing 3 – Constructor of AccountMembership – Concrete class of IMembershipService public AccountMembershipService(MembershipProvider provider) {     _provider = provider ?? Membership.Provider; }    Dependencies of NerdDinnerDinnersController, RSVPController SearchController and ServicesController have a dependency with IDinnerRepositiry. The concrete implementation of IDinnerRepositiry is DinnerRepositiry. AccountController has dependencies with IFormsAuthentication and IMembershipService. The concrete implementation of IFormsAuthentication is FormsAuthenticationService and the concrete implementation of IMembershipService is AccountMembershipService. The AccountMembershipService has a dependency with ASP.NET Membership Provider. Dependency Injection in NerdDinner using NinjectThe below steps will configure Ninject to apply controller injection in NerdDinner application.Step 1 – Add reference for NinjectOpen the  NerdDinner application and add  reference to Ninject.dll and Ninject.Web.Mvc.dll. Both are available from http://github.com/enkari/ninject and http://github.com/enkari/ninject.web.mvcStep 2 – Extend HttpApplication with NinjectHttpApplication Ninject.Web.Mvc extension allows integration between the Ninject and ASP.NET MVC. For this, you have to extend your HttpApplication with NinjectHttpApplication. Open the Global.asax.cs and inherit your MVC application from  NinjectHttpApplication instead of HttpApplication.   public class MvcApplication : NinjectHttpApplication Then the Application_Start method should be replace with OnApplicationStarted method. Inside the OnApplicationStarted method, call the RegisterAllControllersIn() method.   protected override void OnApplicationStarted() {     AreaRegistration.RegisterAllAreas();     RegisterRoutes(RouteTable.Routes);     ViewEngines.Engines.Clear();     ViewEngines.Engines.Add(new MobileCapableWebFormViewEngine());     RegisterAllControllersIn(Assembly.GetExecutingAssembly()); }  The RegisterAllControllersIn method will enables to activating all controllers through Ninject in the assembly you have supplied .We are passing the current assembly as parameter for RegisterAllControllersIn() method. Now we can expose dependencies of controller constructors and properties to request injectionsStep 3 – Create Ninject ModulesWe can configure your dependency injection mapping information using Ninject Modules.Modules just need to implement the INinjectModule interface, but most should extend the NinjectModule class for simplicity. internal class ServiceModule : NinjectModule {     public override void Load()     {                    Bind<IFormsAuthentication>().To<FormsAuthenticationService>();         Bind<IMembershipService>().To<AccountMembershipService>();                  Bind<MembershipProvider>().ToConstant(Membership.Provider);         Bind<IDinnerRepository>().To<DinnerRepository>();     } } The above Binding inforamtion specified in the Load method tells the Ninject container that, to inject instance of DinnerRepositiry when there is a request for IDinnerRepositiry and  inject instance of FormsAuthenticationService when there is a request for IFormsAuthentication and inject instance of AccountMembershipService when there is a request for IMembershipService. The AccountMembershipService class has a dependency with ASP.NET Membership provider. So we configure that inject the instance of Membership Provider. When configuring the binding information, you can specify the object scope in you application.There are four built-in scopes available in Ninject:Transient  -  A new instance of the type will be created each time one is requested. (This is the default scope). Binding method is .InTransientScope()   Singleton - Only a single instance of the type will be created, and the same instance will be returned for each subsequent request. Binding method is .InSingletonScope()Thread -  One instance of the type will be created per thread. Binding method is .InThreadScope() Request -  One instance of the type will be created per web request, and will be destroyed when the request ends. Binding method is .InRequestScope() Step 4 – Configure the Ninject KernelOnce you create NinjectModule, you load them into a container called the kernel. To request an instance of a type from Ninject, you call the Get() extension method. We can configure the kernel, through the CreateKernel method in the Global.asax.cs. protected override IKernel CreateKernel() {     var modules = new INinjectModule[]     {         new ServiceModule()     };       return new StandardKernel(modules); } Here we are loading the Ninject Module (ServiceModule class created in the step 3)  onto the container called the kernel for performing dependency injection.Source CodeYou can download the source code from http://nerddinneraddons.codeplex.com. I just put the modified source code onto CodePlex repository. The repository will update with more add-ons for the NerdDinner application.

    Read the article

  • Maintaining shared service in ASP.NET MVC Application

    - by kazimanzurrashid
    Depending on the application sometimes we have to maintain some shared service throughout our application. Let’s say you are developing a multi-blog supported blog engine where both the controller and view must know the currently visiting blog, it’s setting , user information and url generation service. In this post, I will show you how you can handle this kind of case in most convenient way. First, let see the most basic way, we can create our PostController in the following way: public class PostController : Controller { public PostController(dependencies...) { } public ActionResult Index(string blogName, int? page) { BlogInfo blog = blogSerivce.FindByName(blogName); if (blog == null) { return new NotFoundResult(); } IEnumerable<PostInfo> posts = postService.FindPublished(blog.Id, PagingCalculator.StartIndex(page, blog.PostPerPage), blog.PostPerPage); int count = postService.GetPublishedCount(blog.Id); UserInfo user = null; if (HttpContext.User.Identity.IsAuthenticated) { user = userService.FindByName(HttpContext.User.Identity.Name); } return View(new IndexViewModel(urlResolver, user, blog, posts, count, page)); } public ActionResult Archive(string blogName, int? page, ArchiveDate archiveDate) { BlogInfo blog = blogSerivce.FindByName(blogName); if (blog == null) { return new NotFoundResult(); } IEnumerable<PostInfo> posts = postService.FindArchived(blog.Id, archiveDate, PagingCalculator.StartIndex(page, blog.PostPerPage), blog.PostPerPage); int count = postService.GetArchivedCount(blog.Id, archiveDate); UserInfo user = null; if (HttpContext.User.Identity.IsAuthenticated) { user = userService.FindByName(HttpContext.User.Identity.Name); } return View(new ArchiveViewModel(urlResolver, user, blog, posts, count, page, achiveDate)); } public ActionResult Tag(string blogName, string tagSlug, int? page) { BlogInfo blog = blogSerivce.FindByName(blogName); if (blog == null) { return new NotFoundResult(); } TagInfo tag = tagService.FindBySlug(blog.Id, tagSlug); if (tag == null) { return new NotFoundResult(); } IEnumerable<PostInfo> posts = postService.FindPublishedByTag(blog.Id, tag.Id, PagingCalculator.StartIndex(page, blog.PostPerPage), blog.PostPerPage); int count = postService.GetPublishedCountByTag(tag.Id); UserInfo user = null; if (HttpContext.User.Identity.IsAuthenticated) { user = userService.FindByName(HttpContext.User.Identity.Name); } return View(new TagViewModel(urlResolver, user, blog, posts, count, page, tag)); } } As you can see the above code heavily depends upon the current blog and the blog retrieval code is duplicated in all of the action methods, once the blog is retrieved the same blog is passed in the view model. Other than the blog the view also needs the current user and url resolver to render it properly. One way to remove the duplicate blog retrieval code is to create a custom model binder which converts the blog from a blog name and use the blog a parameter in the action methods instead of the string blog name, but it only helps the first half in the above scenario, the action methods still have to pass the blog, user and url resolver etc in the view model. Now lets try to improve the the above code, first lets create a new class which would contain the shared services, lets name it as BlogContext: public class BlogContext { public BlogInfo Blog { get; set; } public UserInfo User { get; set; } public IUrlResolver UrlResolver { get; set; } } Next, we will create an interface, IContextAwareService: public interface IContextAwareService { BlogContext Context { get; set; } } The idea is, whoever needs these shared services needs to implement this interface, in our case both the controller and the view model, now we will create an action filter which will be responsible for populating the context: public class PopulateBlogContextAttribute : FilterAttribute, IActionFilter { private static string blogNameRouteParameter = "blogName"; private readonly IBlogService blogService; private readonly IUserService userService; private readonly BlogContext context; public PopulateBlogContextAttribute(IBlogService blogService, IUserService userService, IUrlResolver urlResolver) { Invariant.IsNotNull(blogService, "blogService"); Invariant.IsNotNull(userService, "userService"); Invariant.IsNotNull(urlResolver, "urlResolver"); this.blogService = blogService; this.userService = userService; context = new BlogContext { UrlResolver = urlResolver }; } public static string BlogNameRouteParameter { [DebuggerStepThrough] get { return blogNameRouteParameter; } [DebuggerStepThrough] set { blogNameRouteParameter = value; } } public void OnActionExecuting(ActionExecutingContext filterContext) { string blogName = (string) filterContext.Controller.ValueProvider.GetValue(BlogNameRouteParameter).ConvertTo(typeof(string), Culture.Current); if (!string.IsNullOrWhiteSpace(blogName)) { context.Blog = blogService.FindByName(blogName); } if (context.Blog == null) { filterContext.Result = new NotFoundResult(); return; } if (filterContext.HttpContext.User.Identity.IsAuthenticated) { context.User = userService.FindByName(filterContext.HttpContext.User.Identity.Name); } IContextAwareService controller = filterContext.Controller as IContextAwareService; if (controller != null) { controller.Context = context; } } public void OnActionExecuted(ActionExecutedContext filterContext) { Invariant.IsNotNull(filterContext, "filterContext"); if ((filterContext.Exception == null) || filterContext.ExceptionHandled) { IContextAwareService model = filterContext.Controller.ViewData.Model as IContextAwareService; if (model != null) { model.Context = context; } } } } As you can see we are populating the context in the OnActionExecuting, which executes just before the controllers action methods executes, so by the time our action methods executes the context is already populated, next we are are assigning the same context in the view model in OnActionExecuted method which executes just after we set the  model and return the view in our action methods. Now, lets change the view models so that it implements this interface: public class IndexViewModel : IContextAwareService { // More Codes } public class ArchiveViewModel : IContextAwareService { // More Codes } public class TagViewModel : IContextAwareService { // More Codes } and the controller: public class PostController : Controller, IContextAwareService { public PostController(dependencies...) { } public BlogContext Context { get; set; } public ActionResult Index(int? page) { IEnumerable<PostInfo> posts = postService.FindPublished(Context.Blog.Id, PagingCalculator.StartIndex(page, Context.Blog.PostPerPage), Context.Blog.PostPerPage); int count = postService.GetPublishedCount(Context.Blog.Id); return View(new IndexViewModel(posts, count, page)); } public ActionResult Archive(int? page, ArchiveDate archiveDate) { IEnumerable<PostInfo> posts = postService.FindArchived(Context.Blog.Id, archiveDate, PagingCalculator.StartIndex(page, Context.Blog.PostPerPage), Context.Blog.PostPerPage); int count = postService.GetArchivedCount(Context.Blog.Id, archiveDate); return View(new ArchiveViewModel(posts, count, page, achiveDate)); } public ActionResult Tag(string blogName, string tagSlug, int? page) { TagInfo tag = tagService.FindBySlug(Context.Blog.Id, tagSlug); if (tag == null) { return new NotFoundResult(); } IEnumerable<PostInfo> posts = postService.FindPublishedByTag(Context.Blog.Id, tag.Id, PagingCalculator.StartIndex(page, Context.Blog.PostPerPage), Context.Blog.PostPerPage); int count = postService.GetPublishedCountByTag(tag.Id); return View(new TagViewModel(posts, count, page, tag)); } } Now, the last thing where we have to glue everything, I will be using the AspNetMvcExtensibility to register the action filter (as there is no better way to inject the dependencies in action filters). public class RegisterFilters : RegisterFiltersBase { private static readonly Type controllerType = typeof(Controller); private static readonly Type contextAwareType = typeof(IContextAwareService); protected override void Register(IFilterRegistry registry) { TypeCatalog controllers = new TypeCatalogBuilder() .Add(GetType().Assembly) .Include(type => controllerType.IsAssignableFrom(type) && contextAwareType.IsAssignableFrom(type)); registry.Register<PopulateBlogContextAttribute>(controllers); } } Thoughts and Comments?

    Read the article

  • Thinktecture.IdentityModel: WIF Support for WCF REST Services and OData

    - by Your DisplayName here!
    The latest drop of Thinktecture.IdentityModel includes plumbing and support for WIF, claims and tokens for WCF REST services and Data Services (aka OData). Cibrax has an alternative implementation that uses the WCF Rest Starter Kit. His recent post reminded me that I should finally “document” that part of our library. Features include: generic plumbing for all WebServiceHost derived WCF services support for SAML and SWT tokens support for ClaimsAuthenticationManager and ClaimsAuthorizationManager based solely on native WCF extensibility points (and WIF) This post walks you through the setup of an OData / WCF DataServices endpoint with token authentication and claims support. This sample is also included in the codeplex download along a similar sample for plain WCF REST services. Setting up the Data Service To prove the point I have created a simple WCF Data Service that renders the claims of the current client as an OData set. public class ClaimsData {     public IQueryable<ViewClaim> Claims     {         get { return GetClaims().AsQueryable(); }     }       private List<ViewClaim> GetClaims()     {         var claims = new List<ViewClaim>();         var identity = Thread.CurrentPrincipal.Identity as IClaimsIdentity;           int id = 0;         identity.Claims.ToList().ForEach(claim =>             {                 claims.Add(new ViewClaim                 {                    Id = ++id,                    ClaimType = claim.ClaimType,                    Value = claim.Value,                    Issuer = claim.Issuer                 });             });           return claims;     } } …and hooked that up with a read only data service: public class ClaimsDataService : DataService<ClaimsData> {     public static void InitializeService(IDataServiceConfiguration config)     {         config.SetEntitySetAccessRule("*", EntitySetRights.AllRead);     } } Enabling WIF Before you enable WIF, you should generate your client proxies. Afterwards the service will only accept requests with an access token – and svcutil does not support that. All the WIF magic is done in a special service authorization manager called the FederatedWebServiceAuthorizationManager. This code checks incoming calls to see if the Authorization HTTP header (or X-Authorization for environments where you are not allowed to set the authorization header) contains a token. This header must either start with SAML access_token= or WRAP access_token= (for SAML or SWT tokens respectively). For SAML validation, the plumbing uses the normal WIF configuration. For SWT you can either pass in a SimpleWebTokenRequirement or the SwtIssuer, SwtAudience and SwtSigningKey app settings are checked.If the token can be successfully validated, ClaimsAuthenticationManager and ClaimsAuthorizationManager are invoked and the IClaimsPrincipal gets established. The service authorization manager gets wired up by the FederatedWebServiceHostFactory: public class FederatedWebServiceHostFactory : WebServiceHostFactory {     protected override ServiceHost CreateServiceHost(       Type serviceType, Uri[] baseAddresses)     {         var host = base.CreateServiceHost(serviceType, baseAddresses);           host.Authorization.ServiceAuthorizationManager =           new FederatedWebServiceAuthorizationManager();         host.Authorization.PrincipalPermissionMode = PrincipalPermissionMode.Custom;           return host;     } } The last step is to set up the .svc file to use the service host factory (see the sample download). Calling the Service To call the service you need to somehow get a token. This is up to you. You can either use WSTrustChannelFactory (for the full CLR), WSTrustClient (Silverlight) or some other way to obtain a token. The sample also includes code to generate SWT tokens for testing – but the whole WRAP/SWT support will be subject of a separate post. I created some extensions methods for the most common web clients (WebClient, HttpWebRequest, DataServiceContext) that allow easy setting of the token, e.g.: public static void SetAccessToken(this DataServiceContext context,   string token, string type, string headerName) {     context.SendingRequest += (s, e) =>     {         e.RequestHeaders[headerName] = GetHeader(token, type);     }; } Making a query against the Data Service could look like this: static void CallService(string token, string type) {     var data = new ClaimsData(new Uri("https://server/odata.svc/"));     data.SetAccessToken(token, type);       data.Claims.ToList().ForEach(c =>         Console.WriteLine("{0}\n {1}\n ({2})\n", c.ClaimType, c.Value, c.Issuer)); } HTH

    Read the article

  • DialogFX: A New Approach to JavaFX Dialogs

    - by HecklerMark
    How would you like a quick and easy drop-in dialog box capability for JavaFX? That's what I was thinking when a weekend presented itself. And never being one to waste a good weekend...  :-) After doing some "roll-your-own" basic dialog building for a JavaFX app, I recently stumbled across Anton Smirnov's work on GitHub. It was a good start, but it wasn't exactly what I was after, and ideas just kept popping up of things I'd do differently. I wanted something a bit more streamlined, a bit easier to just "drop in and use". And so DialogFX was born. DialogFX wasn't intended to be overly fancy, overly clever - just useful and robust. Here were my goals: Easy to use. A dialog "system" should be so simple to use a new developer can drop it in quickly with nearly no learning curve. A seasoned developer shouldn't even have to think, just tap in a few lines and go. Why should dialogs slow "actual development"?  :-) Defaults. If you don't specify something (dialog type, buttons, etc.), a good dialog system should still work. It may not be pretty, but it shouldn't throw gears. Sharable. It's all open source. Even the icons are in the commons, so they can be reused at will. Let's take a look at some screen captures and the code used to produce them.   DialogFX INFO dialog Screen captures Windows Mac  Sample code         DialogFX dialog = new DialogFX();        dialog.setTitleText("Info Dialog Box Example");        dialog.setMessage("This is an example of an INFO dialog box, created using DialogFX.");        dialog.showDialog(); DialogFX ERROR dialog Screen captures Windows Mac  Sample code         DialogFX dialog = new DialogFX(Type.ERROR);        dialog.setTitleText("Error Dialog Box Example");        dialog.setMessage("This is an example of an ERROR dialog box, created using DialogFX.");        dialog.showDialog(); DialogFX ACCEPT dialog Screen captures Windows Mac  Sample code         DialogFX dialog = new DialogFX(Type.ACCEPT);        dialog.setTitleText("Accept Dialog Box Example");        dialog.setMessage("This is an example of an ACCEPT dialog box, created using DialogFX.");        dialog.showDialog(); DialogFX Question dialog (Yes/No) Screen captures Windows Mac  Sample code         DialogFX dialog = new DialogFX(Type.QUESTION);        dialog.setTitleText("Question Dialog Box Example");        dialog.setMessage("This is an example of an QUESTION dialog box, created using DialogFX. Would you like to continue?");        dialog.showDialog(); DialogFX Question dialog (custom buttons) Screen captures Windows Mac  Sample code         List<String> buttonLabels = new ArrayList<>(2);        buttonLabels.add("Affirmative");        buttonLabels.add("Negative");         DialogFX dialog = new DialogFX(Type.QUESTION);        dialog.setTitleText("Question Dialog Box Example");        dialog.setMessage("This is an example of an QUESTION dialog box, created using DialogFX. This also demonstrates the automatic wrapping of text in DialogFX. Would you like to continue?");        dialog.addButtons(buttonLabels, 0, 1);        dialog.showDialog(); A couple of things to note You may have noticed in that last example the addButtons(buttonLabels, 0, 1) call. You can pass custom button labels in and designate the index of the default button (responding to the ENTER key) and the cancel button (for ESCAPE). Optional parameters, of course, but nice when you may want them. Also, the showDialog() method actually returns the index of the button pressed. Rather than create EventHandlers in the dialog that really have little to do with the dialog itself, you can respond to the user's choice within the calling object. Or not. Again, it's your choice.  :-) And finally, I've Javadoc'ed the code in the main places. Hopefully, this will make it easy to get up and running quickly and with a minimum of fuss. How Do I Get (Git?) It? To try out DialogFX, just point your browser here to the DialogFX GitHub repository and download away! Please take a look, try it out, and let me know what you think. All feedback welcome! All the best, Mark 

    Read the article

  • Handling HumanTask attachments in Oracle BPM 11g PS4FP+ (I)

    - by ccasares
    Adding attachments to a HumanTask is a feature that exists in Oracle HWF (Human Workflow) since 10g. However, in 11g there have been many improvements on this feature and this entry will try to summarize them. Oracle BPM 11g 11.1.1.5.1 (aka PS4 Feature Pack or PS4FP) introduced two great features: Ability to link attachments at a Task scope or at a Process scope: "Task" attachments are only visible within the scope (lifetime) of a task. This means that, initially, any member of the assignment pattern of the Human Task will be able to handle (add, review or remove) attachments. However, once the task is completed, subsequent human tasks will not have access to them. This does not mean those attachments got lost. Once the human task is completed, attachments can be retrieved in order to, i.e., check them in to a Content Server or to inject them to a new and different human task. Aside note: a "re-initiated" human task will inherit comments and attachments, along with history and -optionally- payload. See here for more info. "Process" attachments are visible within the scope of the process. This means that subsequent human tasks in the same process instance will have access to them. Ability to use Oracle WebCenter Content (previously known as "Oracle UCM") as the backend for the attachments instead of using HWF database backend. This feature adds all content server document lifecycle capabilities to HWF attachments (versioning, RBAC, metadata management, etc). As of today, only Oracle WCC is supported. However, Oracle BPM Suite does include a license of Oracle WCC for the solely usage of document management within BPM scope. Here are some code samples that leverage the above features. Retrieving uploaded attachments -Non UCM- Non UCM attachments (default ones or those that have existed from 10g, and are stored "as-is" in HWK database backend) can be retrieved after the completion of the Human Task. Firstly, we need to know whether any attachment has been effectively uploaded to the human task. There are two ways to find it out: Through an XPath function: Checking the execData/attachment[] structure. For example: Once we are sure one ore more attachments were uploaded to the Human Task, we want to get them. In this example, by "get" I mean to get the attachment name and the payload of the file. Aside note: Oracle HWF lets you to upload two kind of [non-UCM] attachments: a desktop document and a Web URL. This example focuses just on the desktop document one. In order to "retrieve" an uploaded Web URL, you can get it directly from the execData/attachment[] structure. Attachment content (payload) is retrieved through the getTaskAttachmentContents() XPath function: This example shows how to retrieve as many attachments as those had been uploaded to the Human Task and write them to the server using the File Adapter service. The sample process excerpt is as follows:  A dummy UserTask using "HumanTask1" Human Task followed by a Embedded Subprocess that will retrieve the attachments (we're assuming at least one attachment is uploaded): and once retrieved, we will write each of them back to a file in the server using a File Adapter service: In detail: We've defined an XSD structure that will hold the attachments (both name and payload): Then, we can create a BusinessObject based on such element (attachmentCollection) and create a variable (named attachmentBPM) of such BusinessObject type. We will also need to keep a copy of the HumanTask output's execData structure. Therefore we need to create a variable of type TaskExecutionData... ...and copy the HumanTask output execData to it: Now we get into the embedded subprocess that will retrieve the attachments' payload. First, and using an XSLT transformation, we feed the attachmentBPM variable with the name of each attachment and setting an empty value to the payload: Please note that we're using the XSLT for-each node to create as many target structures as necessary. Also note that we're setting an Empty text to the payload variable. The reason for this is to make sure the <payload></payload> tag gets created. This is needed when we map the payload to the XML variable later. Aside note: We are assuming that we're retrieving non-UCM attachments. However in real life you might want to check the type of attachment you're handling. The execData/attachment[]/storageType contains the values "UCM" for UCM type attachments, "TASK" for non-UCM ones or "URL" for Web URL ones. Those values are part of the "Ext.Com.Oracle.Xmlns.Bpel.Workflow.Task.StorageTypeEnum" enumeration. Once we have fed the attachmentsBPM structure and so it now contains the name of each of the attachments, it is time to iterate through it and get the payload. Therefore we will use a new embedded subprocess of type MultiInstance, that will iterate over the attachmentsBPM/attachment[] element: In every iteration we will use a Script activity to map the corresponding payload element with the result of the XPath function getTaskAttachmentContents(). Please, note how the target array element is indexed with the loopCounter predefined variable, so that we make sure we're feeding the right element during the array iteration:  The XPath function used looks as follows: hwf:getTaskAttachmentContents(bpmn:getDataObject('UserTask1LocalExecData')/ns1:systemAttributes/ns1:taskId, bpmn:getDataObject('attachmentsBPM')/ns:attachment[bpmn:getActivityInstanceAttribute('SUBPROCESS3067107484296', 'loopCounter')]/ns:fileName)  where the input parameters are: taskId of the just completed Human Task attachment name we're retrieving the payload from array index (loopCounter predefined variable)  Aside note: The reason whereby we're iterating the execData/attachment[] structure through embedded subprocess and not, i.e., using XSLT and for-each nodes, is mostly because the getTaskAttachmentContents() XPath function is currently not available in XSLT mappings. So all this example might be considered as a workaround until this gets fixed/enhanced in future releases. Once this embedded subprocess ends, we will have all attachments (name + payload) in the attachmentsBPM variable, which is the main goal of this sample. But in order to test everything runs fine, we finish the sample writing each attachment to a file. To that end we include a final embedded subprocess to concurrently iterate through each attachmentsBPM/attachment[] element: On each iteration we will use a Service activity that invokes a File Adapter write service. In here we have two important parameters to set. First, the payload itself. The file adapter awaits binary data in base64 format (string). We have to map it using XPath (Simple mapping doesn't recognize a String as a base64-binary valid target):  Second, we must set the target filename using the Service Properties dialog box:  Again, note how we're making use of the loopCounter index variable to get the right element within the embedded subprocess iteration. Handling UCM attachments will be part of a different and upcoming blog entry. Once I finish will all posts on this matter, I will upload the whole sample project to java.net.

    Read the article

  • Metro: Grouping Items in a ListView Control

    - by Stephen.Walther
    The purpose of this blog entry is to explain how you can group list items when displaying the items in a WinJS ListView control. In particular, you learn how to group a list of products by product category. Displaying a grouped list of items in a ListView control requires completing the following steps: Create a Grouped data source from a List data source Create a Grouped Header Template Declare the ListView control so it groups the list items Creating the Grouped Data Source Normally, you bind a ListView control to a WinJS.Binding.List object. If you want to render list items in groups, then you need to bind the ListView to a grouped data source instead. The following code – contained in a file named products.js — illustrates how you can create a standard WinJS.Binding.List object from a JavaScript array and then return a grouped data source from the WinJS.Binding.List object by calling its createGrouped() method: (function () { "use strict"; // Create List data source var products = new WinJS.Binding.List([ { name: "Milk", price: 2.44, category: "Beverages" }, { name: "Oranges", price: 1.99, category: "Fruit" }, { name: "Wine", price: 8.55, category: "Beverages" }, { name: "Apples", price: 2.44, category: "Fruit" }, { name: "Steak", price: 1.99, category: "Other" }, { name: "Eggs", price: 2.44, category: "Other" }, { name: "Mushrooms", price: 1.99, category: "Other" }, { name: "Yogurt", price: 2.44, category: "Other" }, { name: "Soup", price: 1.99, category: "Other" }, { name: "Cereal", price: 2.44, category: "Other" }, { name: "Pepsi", price: 1.99, category: "Beverages" } ]); // Create grouped data source var groupedProducts = products.createGrouped( function (dataItem) { return dataItem.category; }, function (dataItem) { return { title: dataItem.category }; }, function (group1, group2) { return group1.charCodeAt(0) - group2.charCodeAt(0); } ); // Expose the grouped data source WinJS.Namespace.define("ListViewDemos", { products: groupedProducts }); })(); Notice that the createGrouped() method requires three functions as arguments: groupKey – This function associates each list item with a group. The function accepts a data item and returns a key which represents a group. In the code above, we return the value of the category property for each product. groupData – This function returns the data item displayed by the group header template. For example, in the code above, the function returns a title for the group which is displayed in the group header template. groupSorter – This function determines the order in which the groups are displayed. The code above displays the groups in alphabetical order: Beverages, Fruit, Other. Creating the Group Header Template Whenever you create a ListView control, you need to create an item template which you use to control how each list item is rendered. When grouping items in a ListView control, you also need to create a group header template. The group header template is used to render the header for each group of list items. Here’s the markup for both the item template and the group header template: <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> You should declare the two templates in the same file as you declare the ListView control – for example, the default.html file. Declaring the ListView Control The final step is to declare the ListView control. Here’s the required markup: <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> In the markup above, six properties of the ListView control are set when the control is declared. First the itemDataSource and itemTemplate are specified. Nothing new here. Next, the group data source and group header template are specified. Notice that the group data source is represented by the ListViewDemos.products.groups.dataSource property of the grouped data source. Finally, notice that the layout of the ListView is changed to Grid Layout. You are required to use Grid Layout (instead of the default List Layout) when displaying grouped items in a ListView. Here’s the entire contents of the default.html page: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewDemos</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewDemos references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script src="/js/products.js" type="text/javascript"></script> <style type="text/css"> .product { width: 200px; height: 100px; border: white solid 1px; font-size: x-large; } </style> </head> <body> <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> </body> </html> Notice that the default.html page includes a reference to the products.js file: <script src=”/js/products.js” type=”text/javascript”></script> The default.html page also contains the declarations of the item template, group header template, and ListView control. Summary The goal of this blog entry was to explain how you can group items in a ListView control. You learned how to create a grouped data source, a group header template, and declare a ListView so that it groups its list items.

    Read the article

  • Metro: Grouping Items in a ListView Control

    - by Stephen.Walther
    The purpose of this blog entry is to explain how you can group list items when displaying the items in a WinJS ListView control. In particular, you learn how to group a list of products by product category. Displaying a grouped list of items in a ListView control requires completing the following steps: Create a Grouped data source from a List data source Create a Grouped Header Template Declare the ListView control so it groups the list items Creating the Grouped Data Source Normally, you bind a ListView control to a WinJS.Binding.List object. If you want to render list items in groups, then you need to bind the ListView to a grouped data source instead. The following code – contained in a file named products.js — illustrates how you can create a standard WinJS.Binding.List object from a JavaScript array and then return a grouped data source from the WinJS.Binding.List object by calling its createGrouped() method: (function () { "use strict"; // Create List data source var products = new WinJS.Binding.List([ { name: "Milk", price: 2.44, category: "Beverages" }, { name: "Oranges", price: 1.99, category: "Fruit" }, { name: "Wine", price: 8.55, category: "Beverages" }, { name: "Apples", price: 2.44, category: "Fruit" }, { name: "Steak", price: 1.99, category: "Other" }, { name: "Eggs", price: 2.44, category: "Other" }, { name: "Mushrooms", price: 1.99, category: "Other" }, { name: "Yogurt", price: 2.44, category: "Other" }, { name: "Soup", price: 1.99, category: "Other" }, { name: "Cereal", price: 2.44, category: "Other" }, { name: "Pepsi", price: 1.99, category: "Beverages" } ]); // Create grouped data source var groupedProducts = products.createGrouped( function (dataItem) { return dataItem.category; }, function (dataItem) { return { title: dataItem.category }; }, function (group1, group2) { return group1.charCodeAt(0) - group2.charCodeAt(0); } ); // Expose the grouped data source WinJS.Namespace.define("ListViewDemos", { products: groupedProducts }); })(); Notice that the createGrouped() method requires three functions as arguments: groupKey – This function associates each list item with a group. The function accepts a data item and returns a key which represents a group. In the code above, we return the value of the category property for each product. groupData – This function returns the data item displayed by the group header template. For example, in the code above, the function returns a title for the group which is displayed in the group header template. groupSorter – This function determines the order in which the groups are displayed. The code above displays the groups in alphabetical order: Beverages, Fruit, Other. Creating the Group Header Template Whenever you create a ListView control, you need to create an item template which you use to control how each list item is rendered. When grouping items in a ListView control, you also need to create a group header template. The group header template is used to render the header for each group of list items. Here’s the markup for both the item template and the group header template: <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> You should declare the two templates in the same file as you declare the ListView control – for example, the default.html file. Declaring the ListView Control The final step is to declare the ListView control. Here’s the required markup: <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> In the markup above, six properties of the ListView control are set when the control is declared. First the itemDataSource and itemTemplate are specified. Nothing new here. Next, the group data source and group header template are specified. Notice that the group data source is represented by the ListViewDemos.products.groups.dataSource property of the grouped data source. Finally, notice that the layout of the ListView is changed to Grid Layout. You are required to use Grid Layout (instead of the default List Layout) when displaying grouped items in a ListView. Here’s the entire contents of the default.html page: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewDemos</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewDemos references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script src="/js/products.js" type="text/javascript"></script> <style type="text/css"> .product { width: 200px; height: 100px; border: white solid 1px; font-size: x-large; } </style> </head> <body> <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> </body> </html> Notice that the default.html page includes a reference to the products.js file: <script src=”/js/products.js” type=”text/javascript”></script> The default.html page also contains the declarations of the item template, group header template, and ListView control. Summary The goal of this blog entry was to explain how you can group items in a ListView control. You learned how to create a grouped data source, a group header template, and declare a ListView so that it groups its list items.

    Read the article

  • Monitoring Html Element CSS Changes in JavaScript

    - by Rick Strahl
    [ updated Feb 15, 2011: Added event unbinding to avoid unintended recursion ] Here's a scenario I've run into on a few occasions: I need to be able to monitor certain CSS properties on an HTML element and know when that CSS element changes. For example, I have a some HTML element behavior plugins like a drop shadow that attaches to any HTML element, but I then need to be able to automatically keep the shadow in sync with the window if the  element dragged around the window or moved via code. Unfortunately there's no move event for HTML elements so you can't tell when it's location changes. So I've been looking around for some way to keep track of the element and a specific CSS property, but no luck. I suspect there's nothing native to do this so the only way I could think of is to use a timer and poll rather frequently for the property. I ended up with a generic jQuery plugin that looks like this: (function($){ $.fn.watch = function (props, func, interval, id) { /// <summary> /// Allows you to monitor changes in a specific /// CSS property of an element by polling the value. /// when the value changes a function is called. /// The function called is called in the context /// of the selected element (ie. this) /// </summary> /// <param name="prop" type="String">CSS Properties to watch sep. by commas</param> /// <param name="func" type="Function"> /// Function called when the value has changed. /// </param> /// <param name="interval" type="Number"> /// Optional interval for browsers that don't support DOMAttrModified or propertychange events. /// Determines the interval used for setInterval calls. /// </param> /// <param name="id" type="String">A unique ID that identifies this watch instance on this element</param> /// <returns type="jQuery" /> if (!interval) interval = 200; if (!id) id = "_watcher"; return this.each(function () { var _t = this; var el$ = $(this); var fnc = function () { __watcher.call(_t, id) }; var itId = null; var data = { id: id, props: props.split(","), func: func, vals: [props.split(",").length], fnc: fnc, origProps: props, interval: interval }; $.each(data.props, function (i) { data.vals[i] = el$.css(data.props[i]); }); el$.data(id, data); hookChange(el$, id, data.fnc); }); function hookChange(el$, id, fnc) { el$.each(function () { var el = $(this); if (typeof (el.get(0).onpropertychange) == "object") el.bind("propertychange." + id, fnc); else if ($.browser.mozilla) el.bind("DOMAttrModified." + id, fnc); else itId = setInterval(fnc, interval); }); } function __watcher(id) { var el$ = $(this); var w = el$.data(id); if (!w) return; var _t = this; if (!w.func) return; // must unbind or else unwanted recursion may occur el$.unwatch(id); var changed = false; var i = 0; for (i; i < w.props.length; i++) { var newVal = el$.css(w.props[i]); if (w.vals[i] != newVal) { w.vals[i] = newVal; changed = true; break; } } if (changed) w.func.call(_t, w, i); // rebind event hookChange(el$, id, w.fnc); } } $.fn.unwatch = function (id) { this.each(function () { var el = $(this); var fnc = el.data(id).fnc; try { if (typeof (this.onpropertychange) == "object") el.unbind("propertychange." + id, fnc); else if ($.browser.mozilla) el.unbind("DOMAttrModified." + id, fnc); else clearInterval(id); } // ignore if element was already unbound catch (e) { } }); return this; } })(jQuery); With this I can now monitor movement by monitoring say the top CSS property of the element. The following code creates a box and uses the draggable (jquery.ui) plugin and a couple of custom plugins that center and create a shadow. Here's how I can set this up with the watcher: $("#box") .draggable() .centerInClient() .shadow() .watch("top", function() { $(this).shadow(); },70,"_shadow"); ... $("#box") .unwatch("_shadow") .shadow("remove"); This code basically sets up the window to be draggable and initially centered and then a shadow is added. The .watch() call then assigns a CSS property to monitor (top in this case) and a function to call in response. The component now sets up a setInterval call and keeps on pinging this property every time. When the top value changes the supplied function is called. While this works and I can now drag my window around with the shadow following suit it's not perfect by a long shot. The shadow move is delayed and so drags behind the window, but using a higher timer value is not appropriate either as the UI starts getting jumpy if the timer's set with too small of an increment. This sort of monitor can be useful for other things as well where operations are maybe not quite as time critical as a UI operation taking place. Can anybody see a better a better way of capturing movement of an element on the page?© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  JavaScript  jQuery  

    Read the article

  • How to use Azure storage for uploading and displaying pictures.

    - by Magnus Karlsson
    Basic set up of Azure storage for local development and production. This is a somewhat completion of the following guide from http://www.windowsazure.com/en-us/develop/net/how-to-guides/blob-storage/ that also involves a practical example that I believe is commonly used, i.e. upload and present an image from a user.   First we set up for local storage and then we configure for them to work on a web role. Steps: 1. Configure connection string locally. 2. Configure model, controllers and razor views.   1. Setup connectionsstring 1.1 Right click your web role and choose “Properties”. 1.2 Click Settings. 1.3 Add setting. 1.4 Name your setting. This will be the name of the connectionstring. 1.5 Click the ellipsis to the right. (the ellipsis appear when you mark the area. 1.6 The following window appears- Select “Windows Azure storage emulator” and click ok.   Now we have a connection string to use. To be able to use it we need to make sure we have windows azure tools for storage. 2.1 Click Tools –> Library Package manager –> Manage Nuget packages for solution. 2.2 This is what it looks like after it has been added.   Now on to what the code should look like. 3.1 First we need a view which collects images to upload. Here Index.cshtml. 1: @model List<string> 2:  3: @{ 4: ViewBag.Title = "Index"; 5: } 6:  7: <h2>Index</h2> 8: <form action="@Url.Action("Upload")" method="post" enctype="multipart/form-data"> 9:  10: <label for="file">Filename:</label> 11: <input type="file" name="file" id="file1" /> 12: <br /> 13: <label for="file">Filename:</label> 14: <input type="file" name="file" id="file2" /> 15: <br /> 16: <label for="file">Filename:</label> 17: <input type="file" name="file" id="file3" /> 18: <br /> 19: <label for="file">Filename:</label> 20: <input type="file" name="file" id="file4" /> 21: <br /> 22: <input type="submit" value="Submit" /> 23: 24: </form> 25:  26: @foreach (var item in Model) { 27:  28: <img src="@item" alt="Alternate text"/> 29: } 3.2 We need a controller to receive the post. Notice the “containername” string I send to the blobhandler. I use this as a folder for the pictures for each user. If this is not a requirement you could just call it container or anything with small characters directly when creating the container. 1: public ActionResult Upload(IEnumerable<HttpPostedFileBase> file) 2: { 3: BlobHandler bh = new BlobHandler("containername"); 4: bh.Upload(file); 5: var blobUris=bh.GetBlobs(); 6: 7: return RedirectToAction("Index",blobUris); 8: } 3.3 The handler model. I’ll let the comments speak for themselves. 1: public class BlobHandler 2: { 3: // Retrieve storage account from connection string. 4: CloudStorageAccount storageAccount = CloudStorageAccount.Parse( 5: CloudConfigurationManager.GetSetting("StorageConnectionString")); 6: 7: private string imageDirecoryUrl; 8: 9: /// <summary> 10: /// Receives the users Id for where the pictures are and creates 11: /// a blob storage with that name if it does not exist. 12: /// </summary> 13: /// <param name="imageDirecoryUrl"></param> 14: public BlobHandler(string imageDirecoryUrl) 15: { 16: this.imageDirecoryUrl = imageDirecoryUrl; 17: // Create the blob client. 18: CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient(); 19: 20: // Retrieve a reference to a container. 21: CloudBlobContainer container = blobClient.GetContainerReference(imageDirecoryUrl); 22: 23: // Create the container if it doesn't already exist. 24: container.CreateIfNotExists(); 25: 26: //Make available to everyone 27: container.SetPermissions( 28: new BlobContainerPermissions 29: { 30: PublicAccess = BlobContainerPublicAccessType.Blob 31: }); 32: } 33: 34: public void Upload(IEnumerable<HttpPostedFileBase> file) 35: { 36: // Create the blob client. 37: CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient(); 38: 39: // Retrieve a reference to a container. 40: CloudBlobContainer container = blobClient.GetContainerReference(imageDirecoryUrl); 41: 42: if (file != null) 43: { 44: foreach (var f in file) 45: { 46: if (f != null) 47: { 48: CloudBlockBlob blockBlob = container.GetBlockBlobReference(f.FileName); 49: blockBlob.UploadFromStream(f.InputStream); 50: } 51: } 52: } 53: } 54: 55: public List<string> GetBlobs() 56: { 57: // Create the blob client. 58: CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient(); 59: 60: // Retrieve reference to a previously created container. 61: CloudBlobContainer container = blobClient.GetContainerReference(imageDirecoryUrl); 62: 63: List<string> blobs = new List<string>(); 64: 65: // Loop over blobs within the container and output the URI to each of them 66: foreach (var blobItem in container.ListBlobs()) 67: blobs.Add(blobItem.Uri.ToString()); 68: 69: return blobs; 70: } 71: } 3.4 So, when the files have been uploaded we will get them to present them to out user in the index page. Pretty straight forward. In this example we only present the image by sending the Uri’s to the view. A better way would be to save them up in a view model containing URI, metadata, alternate text, and other relevant information but for this example this is all we need.   4. Now press F5 in your solution to try it out. You can see the storage emulator UI here:     4.1 If you get any exceptions or errors I suggest to first check if the service Is running correctly. I had problem with this and they seemed related to the installation and a reboot fixed my problems.     5. Set up for Cloud storage. To do this we need to add configuration for cloud just as we did for local in step one. 5.1 We need our keys to do this. Go to the windows Azure menagement portal, select storage icon to the right and click “Manage keys”. (Image from a different blog post though).   5.2 Do as in step 1.but replace step 1.6 with: 1.6 Choose “Manually entered credentials”. Enter your account name. 1.7 Paste your Account Key from step 5.1. and click ok.   5.3. Save, publish and run! Please feel free to ask any questions using the comments form at the bottom of this page. I will get back to you to help you solve any questions. Our consultancy agency also provides services in the Nordic regions if you would like any further support.

    Read the article

  • The Application Architecture Domain

    - by Michael Glas
    I have been spending a lot of time thinking about Application Architecture in the context of EA. More specifically, as an Enterprise Architect, what do I need to consider when looking at/defining/designing the Application Architecture Domain?There are several definitions of Application Architecture. TOGAF says “The objective here [in Application Architecture] is to define the major kinds of application system necessary to process the data and support the business”. FEA says the Application Architecture “Defines the applications needed to manage the data and support the business functions”.I agree with these definitions. They reflect what the Application Architecture domain does. However, they need to be decomposed to be practical.I find it useful to define a set of views into the Application Architecture domain. These views reflect what an EA needs to consider when working with/in the Applications Architecture domain. These viewpoints are, at a high level:Capability View: This view reflects how applications alignment with business capabilities. It is a super set of the following views when viewed in aggregate. By looking at the Application Architecture domain in terms of the business capabilities it supports, you get a good perspective on how those applications are directly supporting the business.Technology View: The technology view reflects the underlying technology that makes up the applications. Based on the number of rationalization activities I have seen (more specifically application rationalization), the phrase “complexity equals cost” drives the importance of the technology view, especially when attempting to reduce that complexity through standardization type activities. Some of the technology components to be considered are: Software: The application itself as well as the software the application relies on to function (web servers, application servers). Infrastructure: The underlying hardware and network components required by the application and supporting application software. Development: How the application is created and maintained. This encompasses development components that are part of the application itself (i.e. customizable functions), as well as bolt on development through web services, API’s, etc. The maintenance process itself also falls under this view. Integration: The interfaces that the application provides for integration as well as the integrations to other applications and data sources the application requires to function. Type: Reflects the kind of application (mash-up, 3 tiered, etc). (Note: functional type [CRM, HCM, etc.] are reflected under the capability view). Organization View: Organizations are comprised of people and those people use applications to do their jobs. Trying to define the application architecture domain without taking the organization that will use/fund/change it into consideration is like trying to design a car without thinking about who will drive it (i.e. you may end up building a formula 1 car for a family of 5 that is really looking for a minivan). This view reflects the people aspect of the application. It includes: Ownership: Who ‘owns’ the application? This will usually reflect primary funding and utilization but not always. Funding: Who funds both the acquisition/creation as well as the on-going maintenance (funding to create/change/operate)? Change: Who can/does request changes to the application and what process to the follow? Utilization: Who uses the application, how often do they use it, and how do they use it? Support: Which organization is responsible for the on-going support of the application? Information View: Whether or not you subscribe to the view that “information drives the enterprise”, it is a fact that information is critical. The management, creation, and organization of that information are primary functions of enterprise applications. This view reflects how the applications are tied to information (or at a higher level – how the Application Architecture domain relates to the Information Architecture domain). It includes: Access: The application is the mechanism by which end users access information. This could be through a primary application (i.e. CRM application), or through an information access type application (a BI application as an example). Creation: Applications create data in order to provide information to end-users. (I.e. an application creates an order to be used by an end-user as part of the fulfillment process). Consumption: Describes the data required by applications to function (i.e. a product id is required by a purchasing application to create an order. Application Service View: Organizations today are striving to be more agile. As an EA, I need to provide an architecture that supports this agility. One of the primary ways to achieve the required agility in the application architecture domain is through the use of ‘services’ (think SOA, web services, etc.). Whether it is through building applications from the ground up utilizing services, service enabling an existing application, or buying applications that are already ‘service enabled’, compartmentalizing application functions for re-use helps enable flexibility in the use of those applications in support of the required business agility. The applications service view consists of: Services: Here, I refer to the generic definition of a service “a set of related software functionalities that can be reused for different purposes, together with the policies that should control its usage”. Functions: The activities within an application that are not available / applicable for re-use. This view is helpful when identifying duplication functions between applications that are not service enabled. Delivery Model View: It is hard to talk about EA today without hearing the terms ‘cloud’ or shared services.  Organizations are looking at the ways their applications are delivered for several reasons, to reduce cost (both CAPEX and OPEX), to improve agility (time to market as an example), etc.  From an EA perspective, where/how an application is deployed has impacts on the overall enterprise architecture. From integration concerns to SLA requirements to security and compliance issues, the Enterprise Architect needs to factor in how applications are delivered when designing the Enterprise Architecture. This view reflects how applications are delivered to end-users. The delivery model view consists of different types of delivery mechanisms/deployment options for applications: Traditional: Reflects non-cloud type delivery options. The most prevalent consists of an application running on dedicated hardware (usually specific to an environment) for a single consumer. Private Cloud: The application runs on infrastructure provisioned for exclusive use by a single organization comprising multiple consumers. Public Cloud: The application runs on infrastructure provisioned for open use by the general public. Hybrid: The application is deployed on two or more distinct cloud infrastructures (private, community, or public) that remain unique entities, but are bound together by standardized or proprietary technology that enables data and application portability. While by no means comprehensive, I find that applying these views to the application domain gives a good understanding of what an EA needs to consider when effecting changes to the Application Architecture domain.Finally, the application architecture domain is one of several architecture domains that an EA must consider when developing an overall Enterprise Architecture. The Oracle Enterprise Architecture Framework defines four Primary domains: Business Architecture, Application Architecture, Information Architecture, and Technology Architecture. Each domain links to the others either directly or indirectly at some point. Oracle links them at a high level as follows:Business Capabilities and/or Business Processes (Business Architecture), links to the Applications that enable the capability/process (Applications Architecture – COTS, Custom), links to the Information Assets managed/maintained by the Applications (Information Architecture), links to the technology infrastructure upon which all this runs (Technology Architecture - integration, security, BI/DW, DB infrastructure, deployment model). There are however, times when the EA needs to narrow focus to a particular domain for some period of time. These views help me to do just that.

    Read the article

  • Anatomy of a .NET Assembly - CLR metadata 1

    - by Simon Cooper
    Before we look at the bytes comprising the CLR-specific data inside an assembly, we first need to understand the logical format of the metadata (For this post I only be looking at simple pure-IL assemblies; mixed-mode assemblies & other things complicates things quite a bit). Metadata streams Most of the CLR-specific data inside an assembly is inside one of 5 streams, which are analogous to the sections in a PE file. The name of each section in a PE file starts with a ., and the name of each stream in the CLR metadata starts with a #. All but one of the streams are heaps, which store unstructured binary data. The predefined streams are: #~ Also called the metadata stream, this stream stores all the information on the types, methods, fields, properties and events in the assembly. Unlike the other streams, the metadata stream has predefined contents & structure. #Strings This heap is where all the namespace, type & member names are stored. It is referenced extensively from the #~ stream, as we'll be looking at later. #US Also known as the user string heap, this stream stores all the strings used in code directly. All the strings you embed in your source code end up in here. This stream is only referenced from method bodies. #GUID This heap exclusively stores GUIDs used throughout the assembly. #Blob This heap is for storing pure binary data - method signatures, generic instantiations, that sort of thing. Items inside the heaps (#Strings, #US, #GUID and #Blob) are indexed using a simple binary offset from the start of the heap. At that offset is a coded integer giving the length of that item, then the item's bytes immediately follow. The #GUID stream is slightly different, in that GUIDs are all 16 bytes long, so a length isn't required. Metadata tables The #~ stream contains all the assembly metadata. The metadata is organised into 45 tables, which are binary arrays of predefined structures containing information on various aspects of the metadata. Each entry in a table is called a row, and the rows are simply concatentated together in the file on disk. For example, each row in the TypeRef table contains: A reference to where the type is defined (most of the time, a row in the AssemblyRef table). An offset into the #Strings heap with the name of the type An offset into the #Strings heap with the namespace of the type. in that order. The important tables are (with their table number in hex): 0x2: TypeDef 0x4: FieldDef 0x6: MethodDef 0x14: EventDef 0x17: PropertyDef Contains basic information on all the types, fields, methods, events and properties defined in the assembly. 0x1: TypeRef The details of all the referenced types defined in other assemblies. 0xa: MemberRef The details of all the referenced members of types defined in other assemblies. 0x9: InterfaceImpl Links the types defined in the assembly with the interfaces that type implements. 0xc: CustomAttribute Contains information on all the attributes applied to elements in this assembly, from method parameters to the assembly itself. 0x18: MethodSemantics Links properties and events with the methods that comprise the get/set or add/remove methods of the property or method. 0x1b: TypeSpec 0x2b: MethodSpec These tables provide instantiations of generic types and methods for each usage within the assembly. There are several ways to reference a single row within a table. The simplest is to simply specify the 1-based row index (RID). The indexes are 1-based so a value of 0 can represent 'null'. In this case, which table the row index refers to is inferred from the context. If the table can't be determined from the context, then a particular row is specified using a token. This is a 4-byte value with the most significant byte specifying the table, and the other 3 specifying the 1-based RID within that table. This is generally how a metadata table row is referenced from the instruction stream in method bodies. The third way is to use a coded token, which we will look at in the next post. So, back to the bytes Now we've got a rough idea of how the metadata is logically arranged, we can now look at the bytes comprising the start of the CLR data within an assembly: The first 8 bytes of the .text section are used by the CLR loader stub. After that, the CLR-specific data starts with the CLI header. I've highlighted the important bytes in the diagram. In order, they are: The size of the header. As the header is a fixed size, this is always 0x48. The CLR major version. This is always 2, even for .NET 4 assemblies. The CLR minor version. This is always 5, even for .NET 4 assemblies, and seems to be ignored by the runtime. The RVA and size of the metadata header. In the diagram, the RVA 0x20e4 corresponds to the file offset 0x2e4 Various flags specifying if this assembly is pure-IL, whether it is strong name signed, and whether it should be run as 32-bit (this is how the CLR differentiates between x86 and AnyCPU assemblies). A token pointing to the entrypoint of the assembly. In this case, 06 (the last byte) refers to the MethodDef table, and 01 00 00 refers to to the first row in that table. (after a gap) RVA of the strong name signature hash, which comes straight after the CLI header. The RVA 0x2050 corresponds to file offset 0x250. The rest of the CLI header is mainly used in mixed-mode assemblies, and so is zeroed in this pure-IL assembly. After the CLI header comes the strong name hash, which is a SHA-1 hash of the assembly using the strong name key. After that comes the bodies of all the methods in the assembly concatentated together. Each method body starts off with a header, which I'll be looking at later. As you can see, this is a very small assembly with only 2 methods (an instance constructor and a Main method). After that, near the end of the .text section, comes the metadata, containing a metadata header and the 5 streams discussed above. We'll be looking at this in the next post. Conclusion The CLI header data doesn't have much to it, but we've covered some concepts that will be important in later posts - the logical structure of the CLR metadata and the overall layout of CLR data within the .text section. Next, I'll have a look at the contents of the #~ stream, and how the table data is arranged on disk.

    Read the article

  • WebSocket Applications using Java: JSR 356 Early Draft Now Available (TOTD #183)

    - by arungupta
    WebSocket provide a full-duplex and bi-directional communication protocol over a single TCP connection. JSR 356 is defining a standard API for creating WebSocket applications in the Java EE 7 Platform. This Tip Of The Day (TOTD) will provide an introduction to WebSocket and how the JSR is evolving to support the programming model. First, a little primer on WebSocket! WebSocket is a combination of IETF RFC 6455 Protocol and W3C JavaScript API (still a Candidate Recommendation). The protocol defines an opening handshake and data transfer. The API enables Web pages to use the WebSocket protocol for two-way communication with the remote host. Unlike HTTP, there is no need to create a new TCP connection and send a chock-full of headers for every message exchange between client and server. The WebSocket protocol defines basic message framing, layered over TCP. Once the initial handshake happens using HTTP Upgrade, the client and server can send messages to each other, independent from the other. There are no pre-defined message exchange patterns of request/response or one-way between client and and server. These need to be explicitly defined over the basic protocol. The communication between client and server is pretty symmetric but there are two differences: A client initiates a connection to a server that is listening for a WebSocket request. A client connects to one server using a URI. A server may listen to requests from multiple clients on the same URI. Other than these two difference, the client and server behave symmetrically after the opening handshake. In that sense, they are considered as "peers". After a successful handshake, clients and servers transfer data back and forth in conceptual units referred as "messages". On the wire, a message is composed of one or more frames. Application frames carry payload intended for the application and can be text or binary data. Control frames carry data intended for protocol-level signaling. Now lets talk about the JSR! The Java API for WebSocket is worked upon as JSR 356 in the Java Community Process. This will define a standard API for building WebSocket applications. This JSR will provide support for: Creating WebSocket Java components to handle bi-directional WebSocket conversations Initiating and intercepting WebSocket events Creation and consumption of WebSocket text and binary messages The ability to define WebSocket protocols and content models for an application Configuration and management of WebSocket sessions, like timeouts, retries, cookies, connection pooling Specification of how WebSocket application will work within the Java EE security model Tyrus is the Reference Implementation for JSR 356 and is already integrated in GlassFish 4.0 Promoted Builds. And finally some code! The API allows to create WebSocket endpoints using annotations and interface. This TOTD will show a simple sample using annotations. A subsequent blog will show more advanced samples. A POJO can be converted to a WebSocket endpoint by specifying @WebSocketEndpoint and @WebSocketMessage. @WebSocketEndpoint(path="/hello")public class HelloBean {     @WebSocketMessage    public String sayHello(String name) {         return "Hello " + name + "!";     }} @WebSocketEndpoint marks this class as a WebSocket endpoint listening at URI defined by the path attribute. The @WebSocketMessage identifies the method that will receive the incoming WebSocket message. This first method parameter is injected with payload of the incoming message. In this case it is assumed that the payload is text-based. It can also be of the type byte[] in case the payload is binary. A custom object may be specified if decoders attribute is specified in the @WebSocketEndpoint. This attribute will provide a list of classes that define how a custom object can be decoded. This method can also take an optional Session parameter. This is injected by the runtime and capture a conversation between two endpoints. The return type of the method can be String, byte[] or a custom object. The encoders attribute on @WebSocketEndpoint need to define how a custom object can be encoded. The client side is an index.jsp with embedded JavaScript. The JSP body looks like: <div style="text-align: center;"> <form action="">     <input onclick="say_hello()" value="Say Hello" type="button">         <input id="nameField" name="name" value="WebSocket" type="text"><br>    </form> </div> <div id="output"></div> The code is relatively straight forward. It has an HTML form with a button that invokes say_hello() method and a text field named nameField. A div placeholder is available for displaying the output. Now, lets take a look at some JavaScript code: <script language="javascript" type="text/javascript"> var wsUri = "ws://localhost:8080/HelloWebSocket/hello";     var websocket = new WebSocket(wsUri);     websocket.onopen = function(evt) { onOpen(evt) };     websocket.onmessage = function(evt) { onMessage(evt) };     websocket.onerror = function(evt) { onError(evt) };     function init() {         output = document.getElementById("output");     }     function say_hello() {      websocket.send(nameField.value);         writeToScreen("SENT: " + nameField.value);     } This application is deployed as "HelloWebSocket.war" (download here) on GlassFish 4.0 promoted build 57. So the WebSocket endpoint is listening at "ws://localhost:8080/HelloWebSocket/hello". A new WebSocket connection is initiated by specifying the URI to connect to. The JavaScript API defines callback methods that are invoked when the connection is opened (onOpen), closed (onClose), error received (onError), or a message from the endpoint is received (onMessage). The client API has several send methods that transmit data over the connection. This particular script sends text data in the say_hello method using nameField's value from the HTML shown earlier. Each click on the button sends the textbox content to the endpoint over a WebSocket connection and receives a response based upon implementation in the sayHello method shown above. How to test this out ? Download the entire source project here or just the WAR file. Download GlassFish4.0 build 57 or later and unzip. Start GlassFish as "asadmin start-domain". Deploy the WAR file as "asadmin deploy HelloWebSocket.war". Access the application at http://localhost:8080/HelloWebSocket/index.jsp. After clicking on "Say Hello" button, the output would look like: Here are some references for you: WebSocket - Protocol and JavaScript API JSR 356: Java API for WebSocket - Specification (Early Draft) and Implementation (already integrated in GlassFish 4 promoted builds) Subsequent blogs will discuss the following topics (not necessary in that order) ... Binary data as payload Custom payloads using encoder/decoder Error handling Interface-driven WebSocket endpoint Java client API Client and Server configuration Security Subprotocols Extensions Other topics from the API Capturing WebSocket on-the-wire messages

    Read the article

  • Superclass Sensitive Actions

    - by Geertjan
    I've created a small piece of functionality that enables you to create actions for Java classes in the IDE. When the user right-clicks on a Java class, they will see one or more actions depending on the superclass of the selected class. To explain this visually, here I have "BlaTopComponent.java". I right-click on its node in the Projects window and I see "This is a TopComponent": Indeed, when you look at the source code of "BlaTopComponent.java", you'll see that it implements the TopComponent class. Next, in the screenshot below, you see that I have right-click a different class. In this case, there's an action available because the selected class implements the ActionListener class. Then, take a look at this one. Here both TopComponent and ActionListener are superclasses of the current class, hence both the actions are available to be invoked: Finally, here's a class that subclasses neither TopComponent nor ActionListener, hence neither of the actions that I created for doing something that relates to TopComponents or ActionListeners is available, since those actions are irrelevant in this context: How does this work? Well, it's a combination of my blog entries "Generic Node Popup Registration Solution" and "Showing an Action on a TopComponent Node". The cool part is that the definition of the two actions that you see above is remarkably trivial: import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import javax.swing.JOptionPane; import org.openide.loaders.DataObject; import org.openide.util.Utilities; public class TopComponentSensitiveAction implements ActionListener { private final DataObject context; public TopComponentSensitiveAction() { context = Utilities.actionsGlobalContext().lookup(DataObject.class); } @Override public void actionPerformed(ActionEvent ev) { //Do something with the context: JOptionPane.showMessageDialog(null, "TopComponent: " + context.getNodeDelegate().getDisplayName()); } } The above is the action that will be available if you right-click a Java class that extends TopComponent. This, in turn, is the action that will be available if you right-click a Java class that implements ActionListener: import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import javax.swing.JOptionPane; import org.openide.loaders.DataObject; import org.openide.util.Utilities; public class ActionListenerSensitiveAction implements ActionListener { private final DataObject context; public ActionListenerSensitiveAction() { context = Utilities.actionsGlobalContext().lookup(DataObject.class); } @Override public void actionPerformed(ActionEvent ev) { //Do something with the context: JOptionPane.showMessageDialog(null, "ActionListener: " + context.getNodeDelegate().getDisplayName()); } } Indeed, the classes, at this stage are the same. But, depending on what I want to do with TopComponents or ActionListeners, I now have a starting point, which includes access to the DataObject, from where I can get down into the source code, as shown here. This is how the two ActionListeners that you see defined above are registered in the layer, which could ultimately be done via annotations on the ActionListeners, of course: <folder name="Actions"> <folder name="Tools"> <file name="org-netbeans-sbas-impl-TopComponentSensitiveAction.instance"> <attr stringvalue="This is a TopComponent" name="displayName"/> <attr name="instanceCreate" methodvalue="org.netbeans.sbas.SuperclassSensitiveAction.create"/> <attr name="type" stringvalue="org.openide.windows.TopComponent"/> <attr name="delegate" newvalue="org.netbeans.sbas.impl.TopComponentSensitiveAction"/> </file> <file name="org-netbeans-sbas-impl-ActionListenerSensitiveAction.instance"> <attr stringvalue="This is an ActionListener" name="displayName"/> <attr name="instanceCreate" methodvalue="org.netbeans.sbas.SuperclassSensitiveAction.create"/> <attr name="type" stringvalue="java.awt.event.ActionListener"/> <attr name="delegate" newvalue="org.netbeans.sbas.impl.ActionListenerSensitiveAction"/> </file> </folder> </folder> <folder name="Loaders"> <folder name="text"> <folder name="x-java"> <folder name="Actions"> <file name="org-netbeans-sbas-impl-TopComponentSensitiveAction.shadow"> <attr name="originalFile" stringvalue="Actions/Tools/org-netbeans-sbas-impl-TopComponentSensitiveAction.instance"/> <attr intvalue="150" name="position"/> </file> <file name="org-netbeans-sbas-impl-ActionListenerSensitiveAction.shadow"> <attr name="originalFile" stringvalue="Actions/Tools/org-netbeans-sbas-impl-ActionListenerSensitiveAction.instance"/> <attr intvalue="160" name="position"/> </file> </folder> </folder> </folder> </folder> The most important parts of the layer registration are the lines that are highlighted above. Those lines connect the layer to the generic action that delegates back to the action listeners defined above, as follows: public final class SuperclassSensitiveAction extends AbstractAction implements ContextAwareAction { private final Map map; //This method is called from the layer, via "instanceCreate", //magically receiving a map, which contains all the attributes //that are defined in the layer for the file: static SuperclassSensitiveAction create(Map map) { return new SuperclassSensitiveAction(Utilities.actionsGlobalContext(), map); } public SuperclassSensitiveAction(Lookup context, Map m) { super(m.get("displayName").toString()); this.map = m; String superclass = m.get("type").toString(); //Enable the menu item only if //we're dealing with a class of type superclass: JavaSource javaSource = JavaSource.forFileObject( context.lookup(DataObject.class).getPrimaryFile()); try { javaSource.runUserActionTask(new ScanTask(this, superclass), true); } catch (IOException ex) { Exceptions.printStackTrace(ex); } //Hide the menu item if it isn't enabled: putValue(DynamicMenuContent.HIDE_WHEN_DISABLED, true); } @Override public void actionPerformed(ActionEvent ev) { ActionListener delegatedAction = (ActionListener)map.get("delegate"); delegatedAction.actionPerformed(ev); } @Override public Action createContextAwareInstance(Lookup actionContext) { return new SuperclassSensitiveAction(actionContext, map); } private class ScanTask implements Task<CompilationController> { private SuperclassSensitiveAction action = null; private String superclass; private ScanTask(SuperclassSensitiveAction action, String superclass) { this.action = action; this.superclass = superclass; } @Override public void run(final CompilationController info) throws Exception { info.toPhase(Phase.ELEMENTS_RESOLVED); new EnableIfGivenSuperclassMatches(info, action, superclass).scan( info.getCompilationUnit(), null); } } private static class EnableIfGivenSuperclassMatches extends TreePathScanner<Void, Void> { private CompilationInfo info; private final AbstractAction action; private final String superclassName; public EnableIfGivenSuperclassMatches(CompilationInfo info, AbstractAction action, String superclassName) { this.info = info; this.action = action; this.superclassName = superclassName; } @Override public Void visitClass(ClassTree t, Void v) { Element el = info.getTrees().getElement(getCurrentPath()); if (el != null) { TypeElement te = (TypeElement) el; List<? extends TypeMirror> interfaces = te.getInterfaces(); if (te.getSuperclass().toString().equals(superclassName)) { action.setEnabled(true); } else { action.setEnabled(false); } for (TypeMirror typeMirror : interfaces) { if (typeMirror.toString().equals(superclassName)){ action.setEnabled(true); } } } return null; } } } This is a pretty cool solution and, as you can see, very generic. Create a new ActionListener, register it in the layer so that it maps to the generic class above, and make sure to set the type attribute, which defines the superclass to which the action should be sensitive.

    Read the article

  • How do I increase moving speed of body?

    - by Siddharth
    How to move ball speedily on the screen using box2d in libGDX? package com.badlogic.box2ddemo; import com.badlogic.gdx.ApplicationListener; import com.badlogic.gdx.Gdx; import com.badlogic.gdx.graphics.GL10; import com.badlogic.gdx.graphics.Texture; import com.badlogic.gdx.graphics.g2d.Sprite; import com.badlogic.gdx.graphics.g2d.SpriteBatch; import com.badlogic.gdx.graphics.g2d.TextureRegion; import com.badlogic.gdx.math.Matrix4; import com.badlogic.gdx.math.Vector2; import com.badlogic.gdx.physics.box2d.Body; import com.badlogic.gdx.physics.box2d.BodyDef; import com.badlogic.gdx.physics.box2d.BodyDef.BodyType; import com.badlogic.gdx.physics.box2d.Box2DDebugRenderer; import com.badlogic.gdx.physics.box2d.CircleShape; import com.badlogic.gdx.physics.box2d.Fixture; import com.badlogic.gdx.physics.box2d.FixtureDef; import com.badlogic.gdx.physics.box2d.PolygonShape; import com.badlogic.gdx.physics.box2d.World; public class Box2DDemo implements ApplicationListener { private SpriteBatch batch; private TextureRegion texture; private World world; private Body groundDownBody, groundUpBody, groundLeftBody, groundRightBody, ballBody; private BodyDef groundBodyDef1, groundBodyDef2, groundBodyDef3, groundBodyDef4, ballBodyDef; private PolygonShape groundDownPoly, groundUpPoly, groundLeftPoly, groundRightPoly; private CircleShape ballPoly; private Sprite sprite; private FixtureDef fixtureDef; private Vector2 ballPosition; private Box2DDebugRenderer renderer; Vector2 vector2; @Override public void create() { texture = new TextureRegion(new Texture( Gdx.files.internal("img/red_ring.png"))); sprite = new Sprite(texture); sprite.setOrigin(sprite.getWidth() / 2, sprite.getHeight() / 2); batch = new SpriteBatch(); world = new World(new Vector2(0.0f, 0.0f), false); groundBodyDef1 = new BodyDef(); groundBodyDef1.type = BodyType.StaticBody; groundBodyDef1.position.x = 0.0f; groundBodyDef1.position.y = 0.0f; groundDownBody = world.createBody(groundBodyDef1); groundBodyDef2 = new BodyDef(); groundBodyDef2.type = BodyType.StaticBody; groundBodyDef2.position.x = 0f; groundBodyDef2.position.y = Gdx.graphics.getHeight(); groundUpBody = world.createBody(groundBodyDef2); groundBodyDef3 = new BodyDef(); groundBodyDef3.type = BodyType.StaticBody; groundBodyDef3.position.x = 0f; groundBodyDef3.position.y = 0f; groundLeftBody = world.createBody(groundBodyDef3); groundBodyDef4 = new BodyDef(); groundBodyDef4.type = BodyType.StaticBody; groundBodyDef4.position.x = Gdx.graphics.getWidth(); groundBodyDef4.position.y = 0f; groundRightBody = world.createBody(groundBodyDef4); groundDownPoly = new PolygonShape(); groundDownPoly.setAsBox(480.0f, 10f); fixtureDef = new FixtureDef(); fixtureDef.density = 0f; fixtureDef.restitution = 1f; fixtureDef.friction = 0f; fixtureDef.shape = groundDownPoly; fixtureDef.filter.groupIndex = 0; groundDownBody.createFixture(fixtureDef); groundUpPoly = new PolygonShape(); groundUpPoly.setAsBox(480.0f, 10f); fixtureDef = new FixtureDef(); fixtureDef.friction = 0f; fixtureDef.restitution = 0f; fixtureDef.density = 0f; fixtureDef.shape = groundUpPoly; fixtureDef.filter.groupIndex = 0; groundUpBody.createFixture(fixtureDef); groundLeftPoly = new PolygonShape(); groundLeftPoly.setAsBox(10f, 320f); fixtureDef = new FixtureDef(); fixtureDef.friction = 0f; fixtureDef.restitution = 0f; fixtureDef.density = 0f; fixtureDef.shape = groundLeftPoly; fixtureDef.filter.groupIndex = 0; groundLeftBody.createFixture(fixtureDef); groundRightPoly = new PolygonShape(); groundRightPoly.setAsBox(10f, 320f); fixtureDef = new FixtureDef(); fixtureDef.friction = 0f; fixtureDef.restitution = 0f; fixtureDef.density = 0f; fixtureDef.shape = groundRightPoly; fixtureDef.filter.groupIndex = 0; groundRightBody.createFixture(fixtureDef); ballPoly = new CircleShape(); ballPoly.setRadius(16f); fixtureDef = new FixtureDef(); fixtureDef.shape = ballPoly; fixtureDef.density = 1f; fixtureDef.friction = 1f; fixtureDef.restitution = 1f; ballBodyDef = new BodyDef(); ballBodyDef.type = BodyType.DynamicBody; ballBodyDef.position.x = (int) 200; ballBodyDef.position.y = (int) 200; ballBody = world.createBody(ballBodyDef); ballBody.setLinearVelocity(200f, 200f); // ballBody.applyLinearImpulse(new Vector2(250f, 250f), // ballBody.getLocalCenter()); ballBody.createFixture(fixtureDef); renderer = new Box2DDebugRenderer(true, false, false); } @Override public void dispose() { ballPoly.dispose(); groundLeftPoly.dispose(); groundUpPoly.dispose(); groundDownPoly.dispose(); groundRightPoly.dispose(); world.destroyBody(ballBody); world.dispose(); } @Override public void pause() { } @Override public void render() { world.step(1f/30f, 3, 3); Gdx.gl.glClearColor(1f, 1f, 1f, 1f); Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT); batch.begin(); vector2 = ballBody.getLinearVelocity(); System.out.println("X=" + vector2.x + " Y=" + vector2.y); ballPosition = ballBody.getPosition(); renderer.render(world,batch.getProjectionMatrix()); // int preX = (int) (vector2.x / Math.abs(vector2.x)); // int preY = (int) (vector2.y / Math.abs(vector2.y)); // // if (Math.abs(vector2.x) == 0.0f) // ballBody1.setLinearVelocity(1.4142137f, vector2.y); // else if (Math.abs(vector2.x) < 1.4142137f) // ballBody1.setLinearVelocity(preX * 5, vector2.y); // // if (Math.abs(vector2.y) == 0.0f) // ballBody1.setLinearVelocity(vector2.x, 1.4142137f); // else if (Math.abs(vector2.y) < 1.4142137f) // ballBody1.setLinearVelocity(vector2.x, preY * 5); batch.draw(sprite, (ballPosition.x - (texture.getRegionWidth() / 2)), (ballPosition.y - (texture.getRegionHeight() / 2))); batch.end(); } @Override public void resize(int arg0, int arg1) { } @Override public void resume() { } } I implement above code but I can not achieve higher moving speed of the ball

    Read the article

  • parallel_for_each from amp.h – part 1

    - by Daniel Moth
    This posts assumes that you've read my other C++ AMP posts on index<N> and extent<N>, as well as about the restrict modifier. It also assumes you are familiar with C++ lambdas (if not, follow my links to C++ documentation). Basic structure and parameters Now we are ready for part 1 of the description of the new overload for the concurrency::parallel_for_each function. The basic new parallel_for_each method signature returns void and accepts two parameters: a grid<N> (think of it as an alias to extent) a restrict(direct3d) lambda, whose signature is such that it returns void and accepts an index of the same rank as the grid So it looks something like this (with generous returns for more palatable formatting) assuming we are dealing with a 2-dimensional space: // some_code_A parallel_for_each( g, // g is of type grid<2> [ ](index<2> idx) restrict(direct3d) { // kernel code } ); // some_code_B The parallel_for_each will execute the body of the lambda (which must have the restrict modifier), on the GPU. We also call the lambda body the "kernel". The kernel will be executed multiple times, once per scheduled GPU thread. The only difference in each execution is the value of the index object (aka as the GPU thread ID in this context) that gets passed to your kernel code. The number of GPU threads (and the values of each index) is determined by the grid object you pass, as described next. You know that grid is simply a wrapper on extent. In this context, one way to think about it is that the extent generates a number of index objects. So for the example above, if your grid was setup by some_code_A as follows: extent<2> e(2,3); grid<2> g(e); ...then given that: e.size()==6, e[0]==2, and e[1]=3 ...the six index<2> objects it generates (and hence the values that your lambda would receive) are:    (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) So what the above means is that the lambda body with the algorithm that you wrote will get executed 6 times and the index<2> object you receive each time will have one of the values just listed above (of course, each one will only appear once, the order is indeterminate, and they are likely to call your code at the same exact time). Obviously, in real GPU programming, you'd typically be scheduling thousands if not millions of threads, not just 6. If you've been following along you should be thinking: "that is all fine and makes sense, but what can I do in the kernel since I passed nothing else meaningful to it, and it is not returning any values out to me?" Passing data in and out It is a good question, and in data parallel algorithms indeed you typically want to pass some data in, perform some operation, and then typically return some results out. The way you pass data into the kernel, is by capturing variables in the lambda (again, if you are not familiar with them, follow the links about C++ lambdas), and the way you use data after the kernel is done executing is simply by using those same variables. In the example above, the lambda was written in a fairly useless way with an empty capture list: [ ](index<2> idx) restrict(direct3d), where the empty square brackets means that no variables were captured. If instead I write it like this [&](index<2> idx) restrict(direct3d), then all variables in the some_code_A region are made available to the lambda by reference, but as soon as I try to use any of those variables in the lambda, I will receive a compiler error. This has to do with one of the direct3d restrictions, where only one type can be capture by reference: objects of the new concurrency::array class that I'll introduce in the next post (suffice for now to think of it as a container of data). If I write the lambda line like this [=](index<2> idx) restrict(direct3d), all variables in the some_code_A region are made available to the lambda by value. This works for some types (e.g. an integer), but not for all, as per the restrictions for direct3d. In particular, no useful data classes work except for one new type we introduce with C++ AMP: objects of the new concurrency::array_view class, that I'll introduce in the post after next. Also note that if you capture some variable by value, you could use it as input to your algorithm, but you wouldn’t be able to observe changes to it after the parallel_for_each call (e.g. in some_code_B region since it was passed by value) – the exception to this rule is the array_view since (as we'll see in a future post) it is a wrapper for data, not a container. Finally, for completeness, you can write your lambda, e.g. like this [av, &ar](index<2> idx) restrict(direct3d) where av is a variable of type array_view and ar is a variable of type array - the point being you can be very specific about what variables you capture and how. So it looks like from a large data perspective you can only capture array and array_view objects in the lambda (that is how you pass data to your kernel) and then use the many threads that call your code (each with a unique index) to perform some operation. You can also capture some limited types by value, as input only. When the last thread completes execution of your lambda, the data in the array_view or array are ready to be used in the some_code_B region. We'll talk more about all this in future posts… (a)synchronous Please note that the parallel_for_each executes as if synchronous to the calling code, but in reality, it is asynchronous. I.e. once the parallel_for_each call is made and the kernel has been passed to the runtime, the some_code_B region continues to execute immediately by the CPU thread, while in parallel the kernel is executed by the GPU threads. However, if you try to access the (array or array_view) data that you captured in the lambda in the some_code_B region, your code will block until the results become available. Hence the correct statement: the parallel_for_each is as-if synchronous in terms of visible side-effects, but asynchronous in reality.   That's all for now, we'll revisit the parallel_for_each description, once we introduce properly array and array_view – coming next. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Notes on implementing Visual Studio 2010 Navigate To

    - by cyberycon
    One of the many neat functions added to Visual Studio in VS 2010 was the Navigate To feature. You can find it by clicking Edit, Navigate To, or by using the keyboard shortcut Ctrl, (yes, that's control plus the comma key). This pops up the Navigate To dialog that looks like this: As you type, Navigate To starts searching through a number of different search providers for your term. The entries in the list change as you type, with most providers doing some kind of fuzzy or at least substring matching. If you have C#, C++ or Visual Basic projects in your solution, all symbols defined in those projects are searched. There's also a file search provider, which displays all matching filenames from projects in the current solution as well. And, if you have a Visual Studio package of your own, you can implement a provider too. Micro Focus (where I work) provide the Visual COBOL language inside Visual Studio (http://visualstudiogallery.msdn.microsoft.com/ef9bc810-c133-4581-9429-b01420a9ea40 ), and we wanted to provide this functionality too. This post provides some notes on the things I discovered mainly through trial and error, but also with some kind help from devs inside Microsoft. The expectation of Navigate To is that it searches across the whole solution, not just the current project. So in our case, we wanted to search for all COBOL symbols inside all of our Visual COBOL projects inside the solution. So first of all, here's the Microsoft documentation on Navigate To: http://msdn.microsoft.com/en-us/library/ee844862.aspx . It's the reference information on the Microsoft.VisualStudio.Language.NavigateTo.Interfaces Namespace, and it lists all the interfaces you will need to implement to create your own Navigate To provider. Navigate To uses Visual Studio's latest mechanism for integrating external functionality and services, Managed Extensibility Framework (MEF). MEF components don't require any registration with COM or any other registry entries to be found by Visual Studio. Visual Studio looks in several well-known locations for manifest files (extension.vsixmanifest). It then uses reflection to scan for MEF attributes on classes in the assembly to determine which functionality the assembly provides. MEF itself is actually part of the .NET framework, and you can learn more about it here: http://mef.codeplex.com/. To get started with Visual Studio and MEF you could do worse than look at some of the editor examples on the VSX page http://archive.msdn.microsoft.com/vsx . I've also written a small application to help with switching between development and production MEF assemblies, which you can find on Codeproject: http://www.codeproject.com/KB/miscctrl/MEF_Switch.aspx. The Navigate To interfaces Back to Navigate To, and summarizing the MSDN reference documentation, you need to implement the following interfaces: INavigateToItemProviderFactoryThis is Visual Studio's entry point to your Navigate To implementation, and you must decorate your implementation with the following MEF export attribute: [Export(typeof(INavigateToItemProviderFactory))]  INavigateToItemProvider Your INavigateToItemProviderFactory needs to return your implementation of INavigateToItemProvider. This class implements StartSearch() and StopSearch(). StartSearch() is the guts of your provider, and we'll come back to it in a minute. This object also needs to implement IDisposeable(). INavigateToItemDisplayFactory Your INavigateToItemProvider hands back NavigateToItems to the NavigateTo framework. But to give you good control over what appears in the NavigateTo dialog box, these items will be handed back to your INavigateToItemDisplayFactory, which must create objects implementing INavigateToItemDisplay  INavigateToItemDisplay Each of these objects represents one result in the Navigate To dialog box. As well as providing the description and name of the item, this object also has a NavigateTo() method that should be capable of displaying the item in an editor when invoked. Carrying out the search The lifecycle of your INavigateToItemProvider is the same as that of the Navigate To dialog. This dialog is modal, which makes your implementation a little easier because you know that the user can't be changing things in editors and the IDE while this dialog is up. But the Navigate To dialog DOES NOT run on the main UI thread of the IDE – so you need to be aware of that if you want to interact with editors or other parts of the IDE UI. When the user invokes the Navigate To dialog, your INavigateToItemProvider gets sent a TryCreateNavigateToItemProvider() message. Instantiate your INavigateToItemProvider and hand this back. The sequence diagram below shows what happens next. Your INavigateToItemProvider will get called with StartSearch(), and passed an INavigateToCallback. StartSearch() is an asynchronous request – you must return from this method as soon as possible, and conduct your search on a separate thread. For each match to the search term, instantiate a NavigateToItem object and send it to INavigateToCallback.AddItem(). But as the user types in the Search Terms field, NavigateTo will invoke your StartSearch() method repeatedly with the changing search term. When you receive the next StartSearch() message, you have to abandon your current search, and start a new one. You can't rely on receiving a StopSearch() message every time. Finally, when the Navigate To dialog box is closed by the user, you will get a Dispose() message – that's your cue to abandon any uncompleted searches, and dispose any resources you might be using as part of your search. While you conduct your search invoke INavigateToCallback.ReportProgress() occasionally to provide feedback about how close you are to completing the search. There does not appear to be any particular requirement to how often you invoke ReportProgress(), and you report your progress as the ratio of two integers. In my implementation I report progress in terms of the number of symbols I've searched over the total number of symbols in my dictionary, and send a progress report every 16 symbols. Displaying the Results The Navigate to framework invokes INavigateToItemDisplayProvider.CreateItemDisplay() once for each result you passed to the INavigateToCallback. CreateItemDisplay() is passed the NavigateToItem you handed to the callback, and must return an INavigateToItemDisplay object. NavigateToItem is a sealed class which has a few properties, including the name of the symbol. It also has a Tag property, of type object. This enables you to stash away all the information you will need to create your INavigateToItemDisplay, which must implement an INavigateTo() method to display a symbol in an editor IDE when the user double-clicks an entry in the Navigate To dialog box. Since the tag is of type object, it is up to you, the implementor, to decide what kind of object you store in here, and how it enables the retrieval of other information which is not included in the NavigateToItem properties. Some of the INavigateToItemDisplay properties are self-explanatory, but a couple of them are less obvious: Additional informationThe string you return here is displayed inside brackets on the same line as the Name property. In English locales, Visual Studio includes the preposition "of". If you look at the first line in the Navigate To screenshot at the top of this article, Book_WebRole.Default is the additional information for textBookAuthor, and is the namespace qualified type name the symbol appears in. For procedural COBOL code we display the Program Id as the additional information DescriptionItemsYou can use this property to return any textual description you want about the item currently selected. You return a collection of DescriptionItem objects, each of which has a category and description collection of DescriptionRun objects. A DescriptionRun enables you to specify some text, and optional formatting, so you have some control over the appearance of the displayed text. The DescriptionItems property is displayed at the bottom of the Navigate To dialog box, with the Categories on the left and the Descriptions on the right. The Visual COBOL implementation uses it to display more information about the location of an item, making it easier for the user to know disambiguate duplicate names (something there can be a lot of in large COBOL applications). Summary I hope this article is useful for anyone implementing Navigate To. It is a fantastic navigation feature that Microsoft have added to Visual Studio, but at the moment there still don't seem to be any examples on how to implement it, and the reference information on MSDN is a little brief for anyone attempting an implementation.

    Read the article

< Previous Page | 295 296 297 298 299 300 301 302 303 304 305 306  | Next Page >