Search Results

Search found 11194 results on 448 pages for 'big friendly giant'.

Page 3/448 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Why CFOs Should Care About Big Data

    - by jmorourke
    The topic of “big data” clearly has reached a tipping point in 2012.  With plenty of coverage over the past few years in the IT press, we are now starting to see the topic of “big data” covered in mainstream business press, including a cover story in the October 2012 issue of the Harvard Business Review.  To help customers understand the challenges of managing “big data” as well as the opportunities that can be created by leveraging “big data”, Oracle has recently run and published the results of a customer survey, as well as white papers and articles on this topic.  Most recently, we commissioned a white paper titled “Mastering Big Data: CFO Strategies to Transform Insight into Opportunity”. The premise here is that “big data” is not just a topic that CIOs should pay attention to, but one that CFOs should understand and take advantage of as well.  Clearly, whoever masters the art and science of big data will be positioned for competitive advantage in their industries or markets.  That’s why smart CFOs are taking control of big data and business analytics projects, not just to uncover new ways to drive growth in a slowing global economy, but also to be a catalyst for change in the enterprise.  With an increasing number of CFOs now responsible for overseeing IT investments and providing strategic insight to the board, CFOs will be increasingly called upon to take a leadership role in assessing the value of “big data” initiatives, building on their traditional skills in reporting and helping managers analyze data to support decision making. Here’s a link to the white paper referenced above, which is posted on the Oracle C-Central/CFO web site, as well as some other resources that can help CFOs master the topic of “big data”: White Paper “Mastering Big Data:  CFO Strategies to Transform Insight into Opportunity CFO Market Watch article:  “Does Big Data Affect the CFO?” Oracle Survey Report:  “From Overload to Impact – An Industry Scorecard on Big Data Industry Challenges” Upcoming Big Data Webcast with Andrew McAfee Here’s a general link to Oracle C-Central/CFO in case you want to start there: www.oracle.com/c-central/cfo Feel free to contact me if you have any questions or need additional information:  [email protected]

    Read the article

  • What are the different ways of making a Joomla! website mobile friendly?

    - by Treebranch
    I am involved in the development of a number of Joomla! websites and we would like to make these websites mobile friendly. I have done a bit of searching online and I can't seem to find any standard way of doing this. I have have come across a few Joomla! extensions that claim to make themselves mobile friendly for this device or that device. However, I am weary to just start trying these out. Do any of you know of standard ways to make a Joomla! site mobile friendly?

    Read the article

  • Oracle Big Data Learning Library - Click on LEARN BY PRODUCT to Open Page

    - by chberger
    Oracle Big Data Learning Library... Learn about Oracle Big Data, Data Science, Learning Analytics, Oracle NoSQL Database, and more! Oracle Big Data Essentials Attend this Oracle University Course! Using Oracle NoSQL Database Attend this Oracle University class! Oracle and Big Data on OTN See the latest resource on OTN. Search Welcome Get Started Learn by Role Learn by Product Latest Additions Additional Resources Oracle Big Data Appliance Oracle Big Data and Data Science Basics Meeting the Challenge of Big Data Oracle Big Data Tutorial Video Series Oracle MoviePlex - a Big Data End-to-End Series of Demonstrations Oracle Big Data Overview Oracle Big Data Essentials Data Mining Oracle NoSQL Database Tutorial Videos Oracle NoSQL Database Tutorial Series Oracle NoSQL Database Release 2 New Features Using Oracle NoSQL Database Exalytics Enterprise Manager 12c R3: Manage Exalytics Setting Up and Running Summary Advisor on an E s Oracle R Enterprise Oracle R Enterprise Tutorial Series Oracle Big Data Connectors Integrate All Your Data with Oracle Big Data Connectors Using Oracle Direct Connector for HDFS to Read the Data from HDSF Using Oracle R Connector for Hadoop to Analyze Data Oracle NoSQL Database Oracle NoSQL Database Tutorial Videos Oracle NoSQL Database Tutorial Series Oracle NoSQL Database Release 2 New Features  Using Oracle NoSQL Database eries Oracle Business Intelligence Enterprise Edition Oracle Business Intelligence Oracle BI 11g R1: Create Analyses and Dashboards - 4 day class Oracle BI Publisher 11g R1: Fundamentals - 3 day class Oracle BI 11g R1: Build Repositories - 5 day class

    Read the article

  • New Feature in ODI 11.1.1.6: ODI for Big Data

    - by Julien Testut
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} By Ananth Tirupattur Starting with Oracle Data Integrator 11.1.1.6.0, ODI is offering a solution to process Big Data. This post provides an overview of this feature. With all the buzz around Big Data and before getting into the details of ODI for Big Data, I will provide a brief introduction to Big Data and Oracle Solution for Big Data. So, what is Big Data? Big data includes: structured data (this includes data from relation data stores, xml data stores), semi-structured data (this includes data from weblogs) unstructured data (this includes data from text blob, images) Traditionally, business decisions are based on the information gathered from transactional data. For example, transactional Data from CRM applications is fed to a decision system for analysis and decision making. Products such as ODI play a key role in enabling decision systems. However, with the emergence of massive amounts of semi-structured and unstructured data it is important for decision system to include them in the analysis to achieve better decision making capability. While there is an abundance of opportunities for business for gaining competitive advantages, process of Big Data has challenges. The challenges of processing Big Data include: Volume of data Velocity of data - The high Rate at which data is generated Variety of data In order to address these challenges and convert them into opportunities, we would need an appropriate framework, platform and the right set of tools. Hadoop is an open source framework which is highly scalable, fault tolerant system, for storage and processing large amounts of data. Hadoop provides 2 key services, distributed and reliable storage called Hadoop Distributed File System or HDFS and a framework for parallel data processing called Map-Reduce. Innovations in Hadoop and its related technology continue to rapidly evolve, hence therefore, it is highly recommended to follow information on the web to keep up with latest information. Oracle's vision is to provide a comprehensive solution to address the challenges faced by Big Data. Oracle is providing the necessary Hardware, software and tools for processing Big Data Oracle solution includes: Big Data Appliance Oracle NoSQL Database Cloudera distribution for Hadoop Oracle R Enterprise- R is a statistical package which is very popular among data scientists. ODI solution for Big Data Oracle Loader for Hadoop for loading data from Hadoop to Oracle. Further details can be found here: http://www.oracle.com/us/products/database/big-data-appliance/overview/index.html ODI Solution for Big Data: ODI’s goal is to minimize the need to understand the complexity of Hadoop framework and simplify the adoption of processing Big Data seamlessly in an enterprise. ODI is providing the capabilities for an integrated architecture for processing Big Data. This includes capability to load data in to Hadoop, process data in Hadoop and load data from Hadoop into Oracle. ODI is expanding its support for Big Data by providing the following out of the box Knowledge Modules (KMs). IKM File to Hive (LOAD DATA).Load unstructured data from File (Local file system or HDFS ) into Hive IKM Hive Control AppendTransform and validate structured data on Hive IKM Hive TransformTransform unstructured data on Hive IKM File/Hive to Oracle (OLH)Load processed data in Hive to Oracle RKM HiveReverse engineer Hive tables to generate models Using the Loading KM you can map files (local and HDFS files) to the corresponding Hive tables. For example, you can map weblog files categorized by date into a corresponding partitioned Hive table schema. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Using the Hive control Append KM you can validate and transform data in Hive. In the below example, two source Hive tables are joined and mapped to a target Hive table. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} The Hive Transform KM facilitates processing of semi-structured data in Hive. In the below example, the data from weblog is processed using a Perl script and mapped to target Hive table. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Using the Oracle Loader for Hadoop (OLH) KM you can load data from Hive table or HDFS to a corresponding table in Oracle. OLH is available as a standalone product. ODI greatly enhances OLH capability by generating the configuration and mapping files for OLH based on the configuration provided in the interface and KM options. ODI seamlessly invokes OLH when executing the scenario. In the below example, a HDFS file is mapped to a table in Oracle. Development and Deployment:The following diagram illustrates the development and deployment of ODI solution for Big Data. Using the ODI Studio on your development machine create and develop ODI solution for processing Big Data by connecting to a MySQL DB or Oracle database on a BDA machine or Hadoop cluster. Schedule the ODI scenarios to be executed on the ODI agent deployed on the BDA machine or Hadoop cluster. ODI Solution for Big Data provides several exciting new capabilities to facilitate the adoption of Big Data in an enterprise. You can find more information about the Oracle Big Data connectors on OTN. You can find an overview of all the new features introduced in ODI 11.1.1.6 in the following document: ODI 11.1.1.6 New Features Overview

    Read the article

  • Big GRC: Turning Data into Actionable GRC Intelligence

    - by Jenna Danko
    While it’s no longer headline news that Governments have carried out large scale data-mining programmes aimed at terrorism detection and identifying other patterns of interest across a wide range of digital data sources, the debate over the ethics and justification over this action, will clearly continue for some time to come. What is becoming clear is that these programmes are a framework for the collation and aggregation of massive amounts of unstructured data and from this, the creation of actionable intelligence from analyses that allowed the analysts to explore and extract a variety of patterns and then direct resources. This data included audio and video chats, phone calls, photographs, e-mails, documents, internet searches, social media posts and mobile phone logs and connections. Although Governance, Risk and Compliance (GRC) professionals are not looking at the implementation of such programmes, there are many similar GRC “Big data” challenges to be faced and potential lessons to be learned from these high profile government programmes that can be applied a lot closer to home. For example, how can GRC professionals collect, manage and analyze an enormous and disparate volume of data to create and manage their own actionable intelligence covering hidden signs and patterns of criminal activity, the early or retrospective, violation of regulations/laws/corporate policies and procedures, emerging risks and weakening controls etc. Not exactly the stuff of James Bond to be sure, but it is certainly more applicable to most GRC professional’s day to day challenges. So what is Big Data and how can it benefit the GRC process? Although it often varies, the definition of Big Data largely refers to the following types of data: Traditional Enterprise Data – includes customer information from CRM systems, transactional ERP data, web store transactions, and general ledger data. Machine-Generated /Sensor Data – includes Call Detail Records (“CDR”), weblogs and trading systems data. Social Data – includes customer feedback streams, micro-blogging sites like Twitter, and social media platforms like Facebook. The McKinsey Global Institute estimates that data volume is growing 40% per year, and will grow 44x between 2009 and 2020. But while it’s often the most visible parameter, volume of data is not the only characteristic that matters. In fact, according to sources such as Forrester there are four key characteristics that define big data: Volume. Machine-generated data is produced in much larger quantities than non-traditional data. This is all the data generated by IT systems that power the enterprise. This includes live data from packaged and custom applications – for example, app servers, Web servers, databases, networks, virtual machines, telecom equipment, and much more. Velocity. Social media data streams – while not as massive as machine-generated data – produce a large influx of opinions and relationships valuable to customer relationship management as well as offering early insight into potential reputational risk issues. Even at 140 characters per tweet, the high velocity (or frequency) of Twitter data ensures large volumes (over 8 TB per day) need to be managed. Variety. Traditional data formats tend to be relatively well defined by a data schema and change slowly. In contrast, non-traditional data formats exhibit a dizzying rate of change. Without question, all GRC professionals work in a dynamic environment and as new services, new products, new business lines are added or new marketing campaigns executed for example, new data types are needed to capture the resultant information.  Value. The economic value of data varies significantly. Typically, there is good information hidden amongst a larger body of non-traditional data that GRC professionals can use to add real value to the organisation; the greater challenge is identifying what is valuable and then transforming and extracting that data for analysis and action. For example, customer service calls and emails have millions of useful data points and have long been a source of information to GRC professionals. Those calls and emails are critical in helping GRC professionals better identify hidden patterns and implement new policies that can reduce the amount of customer complaints.   Now on a scale and depth far beyond those in place today, all that unstructured call and email data can be captured, stored and analyzed to reveal the reasons for the contact, perhaps with the aggregated customer results cross referenced against what is being said about the organization or a similar peer organization on social media. The organization can then take positive actions, communicating to the market in advance of issues reaching the press, strengthening controls, adjusting risk profiles, changing policy and procedures and completely minimizing, if not eliminating, complaints and compensation for that specific reason in the future. In this one example of many similar ones, the GRC team(s) has demonstrated real and tangible business value. Big Challenges - Big Opportunities As pointed out by recent Forrester research, high performing companies (those that are growing 15% or more year-on-year compared to their peers) are taking a selective approach to investing in Big Data.  "Tomorrow's winners understand this, and they are making selective investments aimed at specific opportunities with tangible benefits where big data offers a more economical solution to meet a need." (Forrsights Strategy Spotlight: Business Intelligence and Big Data, Q4 2012) As pointed out earlier, with the ever increasing volume of regulatory demands and fines for getting it wrong, limited resource availability and out of date or inadequate GRC systems all contributing to a higher cost of compliance and/or higher risk profile than desired – a big data investment in GRC clearly falls into this category. However, to make the most of big data organizations must evolve both their business and IT procedures, processes, people and infrastructures to handle these new high-volume, high-velocity, high-variety sources of data and be able integrate them with the pre-existing company data to be analyzed. GRC big data clearly allows the organization access to and management over a huge amount of often very sensitive information that although can help create a more risk intelligent organization, also presents numerous data governance challenges, including regulatory compliance and information security. In addition to client and regulatory demands over better information security and data protection the sheer amount of information organizations deal with the need to quickly access, classify, protect and manage that information can quickly become a key issue  from a legal, as well as technical or operational standpoint. However, by making information governance processes a bigger part of everyday operations, organizations can make sure data remains readily available and protected. The Right GRC & Big Data Partnership Becomes Key  The "getting it right first time" mantra used in so many companies remains essential for any GRC team that is sponsoring, helping kick start, or even overseeing a big data project. To make a big data GRC initiative work and get the desired value, partnerships with companies, who have a long history of success in delivering successful GRC solutions as well as being at the very forefront of technology innovation, becomes key. Clearly solutions can be built in-house more cheaply than through vendor, but as has been proven time and time again, when it comes to self built solutions covering AML and Fraud for example, few have able to scale or adapt appropriately to meet the changing regulations or challenges that the GRC teams face on a daily basis. This has led to the creation of GRC silo’s that are causing so many headaches today. The solutions that stand out and should be explored are the ones that can seamlessly merge the traditional world of well-known data, analytics and visualization with the new world of seemingly innumerable data sources, utilizing Big Data technologies to generate new GRC insights right across the enterprise.Ultimately, Big Data is here to stay, and organizations that embrace its potential and outline a viable strategy, as well as understand and build a solid analytical foundation, will be the ones that are well positioned to make the most of it. A Blueprint and Roadmap Service for Big Data Big data adoption is first and foremost a business decision. As such it is essential that your partner can align your strategies, goals, and objectives with an architecture vision and roadmap to accelerate adoption of big data for your environment, as well as establish practical, effective governance that will maintain a well managed environment going forward. Key Activities: While your initiatives will clearly vary, there are some generic starting points the team and organization will need to complete: Clearly define your drivers, strategies, goals, objectives and requirements as it relates to big data Conduct a big data readiness and Information Architecture maturity assessment Develop future state big data architecture, including views across all relevant architecture domains; business, applications, information, and technology Provide initial guidance on big data candidate selection for migrations or implementation Develop a strategic roadmap and implementation plan that reflects a prioritization of initiatives based on business impact and technology dependency, and an incremental integration approach for evolving your current state to the target future state in a manner that represents the least amount of risk and impact of change on the business Provide recommendations for practical, effective Data Governance, Data Quality Management, and Information Lifecycle Management to maintain a well-managed environment Conduct an executive workshop with recommendations and next steps There is little debate that managing risk and data are the two biggest obstacles encountered by financial institutions.  Big data is here to stay and risk management certainly is not going anywhere, and ultimately financial services industry organizations that embrace its potential and outline a viable strategy, as well as understand and build a solid analytical foundation, will be best positioned to make the most of it. Matthew Long is a Financial Crime Specialist for Oracle Financial Services. He can be reached at matthew.long AT oracle.com.

    Read the article

  • Simple, user friendly and strong file encryption in Windows

    - by Adam Matan
    I want a colleague of mine to send me a sensitive MS-Word document via e-mail. Since Word's encryption is questionable, I would like to encrypt the file using a passphrase. Do you know of any user-friendly encryption tool that a novice user can easily use? I wouldn't like to prompt for keys or anything like this - just provide simple interface for single file encryption. EDIT: I have solved this using Putty Secure Copy, through a Linux box I have somewhere. The user downloaded scp to the same directory where the file was, and I have send him the exact scp command by mail. Nice! Another Edit I have some additions (mainly the usage of winscp and perhaps virtual machines). My detailed answer appears below, as requested in comments.

    Read the article

  • modx friendly urls nginx FPM php5.3 - friendly url's not working

    - by okdan
    Hi, Im using php5.3 on nginx 0.8.53 with FPM on Modx revolution. Im trying to get "friendly url's" to work, but all I get is 404's. In modx config, friendly url's is set to yes, friendly aliases is set to no (so it drops the suffix) My config file: server { listen 80; server_name .mydomain.net; # index index.php; root /home/mylogin/htdocs; location / { index index.php index.html; if (!-e $request_filename) { rewrite ^/(.*)$ /index.php?q=$1 last; } } # serve static files directly location ~* ^.+\.(jpg|jpeg|gif|css|png|js|ico)$ { root /home/mylogin/htdocs; access_log off; expires 30d; break; } } Fast CGI modx file: fastcgi_connect_timeout 60; fastcgi_send_timeout 300; fastcgi_buffers 4 32k; fastcgi_busy_buffers_size 32k; fastcgi_temp_file_write_size 32k; fastcgi_pass 127.0.0.1:9000; fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name; fastcgi_ignore_client_abort on; fastcgi_intercept_errors on; fastcgi_read_timeout 300; fastcgi_param QUERY_STRING $query_string; fastcgi_param REQUEST_METHOD $request_method; fastcgi_param CONTENT_TYPE $content_type; fastcgi_param CONTENT_LENGTH $content_length; fastcgi_param SCRIPT_NAME $fastcgi_script_name; fastcgi_param REQUEST_URI $request_uri; fastcgi_param DOCUMENT_URI $document_uri; fastcgi_param DOCUMENT_ROOT $document_root; fastcgi_param SERVER_PROTOCOL $server_protocol; fastcgi_param GATEWAY_INTERFACE CGI/1.1; fastcgi_param SERVER_SOFTWARE nginx/$nginx_version; fastcgi_param REMOTE_ADDR $remote_addr; fastcgi_param REMOTE_PORT $remote_port; fastcgi_param SERVER_ADDR $server_addr; fastcgi_param SERVER_PORT $server_port; fastcgi_param SERVER_NAME $server_name; fastcgi_param REDIRECT_STATUS 200;

    Read the article

  • BIG IP - HTTPS Health Monitor setup

    - by djo
    I have a Web site that we have setup a health monitoring pages so we can take our servers in and out of the Big-IP as we see fit. Now we have just moved onto Big-IP and the issue I have hit is that you setup Health Monitors for port 80 and 443, now the 80 check works fine but when I to get the 443 check to look at our file it fails. Now I am aware as I am hitting the this page on the IP address over HTTPS is going to cause a cert error but I would have guessed that BIG-Ip would have been setup just to accept the cert and carry on with the check. Is what I am wanting to do possible? Also is there a way of just using a HTTP monitor for HTTPS? Because if port 80 has stopped sending traffic then if i use the same monitor for 443 it will stop traffic to that. Any help would be great! Thanks

    Read the article

  • How Linux Saved A Fast Food Giant

    <b>Holy Crap My Hair is on Fire:</b> "Linux saved me and the company I sub contract to, a large fast food giant, from near-total disaster. Last month McAfee posted a virus definition update that flagged SVCHOST.EXE as a virus. This is my story of what happened."

    Read the article

  • User friendly urls in joomla1.5

    - by Aruna
    Hi , I am working Joomla 1.5 . I am unaware of how to set user-friendly Urls to the site in Joomla1.5. Give suggestions for keeping User-Friendly urls ... I have changed the configuration for SEO as yes to apache mod_rewrite and Search engine friendly Urls .It changes the url as http://localhost/joomla/Joomla_1.5.7/publicationsform but it shows me a 404 error and it works only when i put http://localhost/joomla/Joomla_1.5.7/index.php/publicationsform how to resolve this . Also even when i put http://localhost/joomla/Joomla_1.5.7/index.php/publicationsform my css is not getting added..

    Read the article

  • GWT SE friendly application

    - by user180152
    Hi friends, How I can develop 'Search Engine Friendly' web app in GWT? Take an example of StackOverflow it self, its a web app and should be SEO friendly allowing user to search from search engine. If some one want to develope same app in GWT. How one can make it SEO friendly? As GWT contain a single HTML file. How we can allow its inner content to be visible in SE? Any suggestion or comment, will really help. Thank you.

    Read the article

  • Big Data – Interacting with Hadoop – What is PIG? – What is PIG Latin? – Day 16 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned the importance of the HIVE in Big Data Story. In this article we will understand what is PIG and PIG Latin in Big Data Story. Yahoo started working on Pig for their application deployment on Hadoop. The goal of Yahoo to manage their unstructured data. What is Pig and What is Pig Latin? Pig is a high level platform for creating MapReduce programs used with Hadoop and the language we use for this platform is called PIG Latin. The pig was designed to make Hadoop more user-friendly and approachable by power-users and nondevelopers. PIG is an interactive execution environment supporting Pig Latin language. The language Pig Latin has supported loading and processing of input data with series of transforming to produce desired results. PIG has two different execution environments 1) Local Mode – In this case all the scripts run on a single machine. 2) Hadoop – In this case all the scripts run on Hadoop Cluster. Pig Latin vs SQL Pig essentially creates set of map and reduce jobs under the hoods. Due to same users does not have to now write, compile and build solution for Big Data. The pig is very similar to SQL in many ways. The Ping Latin language provide an abstraction layer over the data. It focuses on the data and not the structure under the hood. Pig Latin is a very powerful language and it can do various operations like loading and storing data, streaming data, filtering data as well various data operations related to strings. The major difference between SQL and Pig Latin is that PIG is procedural and SQL is declarative. In simpler words, Pig Latin is very similar to SQ Lexecution plan and that makes it much easier for programmers to build various processes. Whereas SQL handles trees naturally, Pig Latin follows directed acyclic graph (DAG). DAGs is used to model several different kinds of structures in mathematics and computer science. DAG Tomorrow In tomorrow’s blog post we will discuss about very important components of the Big Data Ecosystem – Zookeeper. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • How a .NET Programmer learn Big Data/Hadoop? [on hold]

    - by Smith Pascal Jr.
    I have been ASP.NET developer for sometime now and I have been reading a lot about Big Data- Hadoop and its future as to how it is the next technology in IT and how it would be useful to create million of jobs in US and elsewhere in the world. Now since Hadoop is an open source big data tool which is managed by Apache Server Foundation Group, I'm assuming I have to be well aware of JAVA - Correct me if I'm wrong. Moreover, How a .NET programmer can learn Big Data and its related technologies and can work professionally full time into this technology? What challenges and opportunities does a .NET professional face while changing the technology platform? Please advice. Thanks

    Read the article

  • Choices in Architecture, Design, Algorithms, Data Structures for effective RDF Reasoning and Querying in a Big Data Environment [on hold]

    - by user2891213
    As part of my academic project I would like to know what choices in Architecture, Design, Algorithms, Data Structures do we need in order to provide effective and efficient RDF Reasoning and Querying in a Big Data Environment. Basically I want to get info regarding below points: What are the Systems and Software to get appropriate Architecture? What kind of API layer(s) would we need on top of the Big Data stores, to make this possible? The Indexing structures we will need. The appropriate Algorithms, and appropriate Algorithms for Query Planning across Big Data stores. The Performance Analysis and Cost Models we will need to justify the design decisions we have made along the way. Can anyone please provide pointers.. Thanks, David

    Read the article

  • C# Byte[] to Url Friendly String

    - by LorenVS
    Hello, I'm working on a quick captcha generator for a simple site I'm putting together, and I'm hoping to pass an encrypted key in the url of the page. I could probably do this as a query string parameter easy enough, but I'm hoping not too (just because nothing else runs off the query string)... My encryption code produces a byte[], which is then transformed using Convert.ToBase64String(byte[]) into a string. This string, however, is still not quite url friendly, as it can contain things like '/' and '='. Does anyone know of a better function in the .NET framework to convert a byte array to a url friendly string? I know all about System.Web.HttpUtility.UrlEncode() and its equivalents, however, they only work properly with query string parameters. If I url encode an '=' inside of the path, my web server brings back a 400 Bad Request error. Anyways, not a critical issue, but hoping someone can give me a nice solution **EDIT: Just to be absolutely sure exactly what I'm doing with the string, I figured I would supply a little more information. The byte[] that results from my encryption algorithm should be fed through some sort of algorithm to make it into a url friendly string. After this, it becomes the content of an XElement, which is then used as the source document for an XSLT transformation, and is used as a part of the href attribute for an anchor. I don't believe the xslt transformation is causing the issues, since what is coming through on the path appears to be an encoded query string parameter, but causes the HTTP 400 I've also tried HttpUtility.UrlPathEncode() on a base64 string, but that doesn't seem to do the trick either (I still end up with '/'s in my url)**

    Read the article

  • Big Data – How to become a Data Scientist and Learn Data Science? – Day 19 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned the importance of the analytics in Big Data Story. In this article we will understand how to become a Data Scientist for Big Data Story. Data Scientist is a new buzz word, everyone seems to be wanting to become Data Scientist. Let us go over a few key topics related to Data Scientist in this blog post. First of all we will understand what is a Data Scientist. In the new world of Big Data, I see pretty much everyone wants to become Data Scientist and there are lots of people I have already met who claims that they are Data Scientist. When I ask what is their role, I have got a wide variety of answers. What is Data Scientist? Data scientists are the experts who understand various aspects of the business and know how to strategies data to achieve the business goals. They should have a solid foundation of various data algorithms, modeling and statistics methodology. What do Data Scientists do? Data scientists understand the data very well. They just go beyond the regular data algorithms and builds interesting trends from available data. They innovate and resurrect the entire new meaning from the existing data. They are artists in disguise of computer analyst. They look at the data traditionally as well as explore various new ways to look at the data. Data Scientists do not wait to build their solutions from existing data. They think creatively, they think before the data has entered into the system. Data Scientists are visionary experts who understands the business needs and plan ahead of the time, this tremendously help to build solutions at rapid speed. Besides being data expert, the major quality of Data Scientists is “curiosity”. They always wonder about what more they can get from their existing data and how to get maximum out of future incoming data. Data Scientists do wonders with the data, which goes beyond the job descriptions of Data Analysist or Business Analysist. Skills Required for Data Scientists Here are few of the skills a Data Scientist must have. Expert level skills with statistical tools like SAS, Excel, R etc. Understanding Mathematical Models Hands-on with Visualization Tools like Tableau, PowerPivots, D3. j’s etc. Analytical skills to understand business needs Communication skills On the technology front any Data Scientists should know underlying technologies like (Hadoop, Cloudera) as well as their entire ecosystem (programming language, analysis and visualization tools etc.) . Remember that for becoming a successful Data Scientist one require have par excellent skills, just having a degree in a relevant education field will not suffice. Final Note Data Scientists is indeed very exciting job profile. As per research there are not enough Data Scientists in the world to handle the current data explosion. In near future Data is going to expand exponentially, and the need of the Data Scientists will increase along with it. It is indeed the job one should focus if you like data and science of statistics. Courtesy: emc Tomorrow In tomorrow’s blog post we will discuss about various Big Data Learning resources. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Big Data – Interacting with Hadoop – What is Sqoop? – What is Zookeeper? – Day 17 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned the importance of the Pig and Pig Latin in Big Data Story. In this article we will understand what is Sqoop and Zookeeper in Big Data Story. There are two most important components one should learn when learning about interacting with Hadoop – Sqoop and Zookper. What is Sqoop? Most of the business stores their data in RDBMS as well as other data warehouse solutions. They need a way to move data to the Hadoop system to do various processing and return it back to RDBMS from Hadoop system. The data movement can happen in real time or at various intervals in bulk. We need a tool which can help us move this data from SQL to Hadoop and from Hadoop to SQL. Sqoop (SQL to Hadoop) is such a tool which extract data from non-Hadoop data sources and transform them into the format which Hadoop can use it and later it loads them into HDFS. Essentially it is ETL tool where it Extracts, Transform and Load from SQL to Hadoop. The best part is that it also does extract data from Hadoop and loads them to Non-SQL (or RDBMS) data stores. Essentially, Sqoop is a command line tool which does SQL to Hadoop and Hadoop to SQL. It is a command line interpreter. It creates MapReduce job behinds the scene to import data from an external database to HDFS. It is very effective and easy to learn tool for nonprogrammers. What is Zookeeper? ZooKeeper is a centralized service for maintaining configuration information, naming, providing distributed synchronization, and providing group services. In other words Zookeeper is a replicated synchronization service with eventual consistency. In simpler words – in Hadoop cluster there are many different nodes and one node is master. Let us assume that master node fails due to any reason. In this case, the role of the master node has to be transferred to a different node. The main role of the master node is managing the writers as that task requires persistence in order of writing. In this kind of scenario Zookeeper will assign new master node and make sure that Hadoop cluster performs without any glitch. Zookeeper is the Hadoop’s method of coordinating all the elements of these distributed systems. Here are few of the tasks which Zookeepr is responsible for. Zookeeper manages the entire workflow of starting and stopping various nodes in the Hadoop’s cluster. In Hadoop cluster when any processes need certain configuration to complete the task. Zookeeper makes sure that certain node gets necessary configuration consistently. In case of the master node fails, Zookeepr can assign new master node and make sure cluster works as expected. There many other tasks Zookeeper performance when it is about Hadoop cluster and communication. Basically without the help of Zookeeper it is not possible to design any new fault tolerant distributed application. Tomorrow In tomorrow’s blog post we will discuss about very important components of the Big Data Ecosystem – Big Data Analytics. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • AllSparkCube Packs 4,096 LEDs into a Giant Computer Controlled Display

    - by Jason Fitzpatrick
    LED matrix cubes are nothing new, but this 16x16x16 monster towers over the tiny 4x4x4 desktop variety. Check out the video to see it in action. Sound warning: the music starts off very loud and bass-filled; we’d recommend turning down the speakers if you’re watching from your cube. So what compels someone to build a giant LED cube driven by over a dozen Arduino shields? If you’re the employees at Adaptive Computing, you do it to dazzles crowds and show off your organizational skills: Every time I talk about the All Spark Cube people ask “so what does it do?” The features of the All Spark are the reason it was built and sponsored by Adaptive Computing. The Cube was built to catch peoples’ attention and to demonstrate how Adaptive can take a chaotic mess and inject order, structure and efficiency. We wrote several examples of how the All Spark Cube can demonstrate the effectiveness of a complex data center. If you’re interested in building a monster of your own, hit up the link below for more information, schematics, and videos. How Hackers Can Disguise Malicious Programs With Fake File Extensions Can Dust Actually Damage My Computer? What To Do If You Get a Virus on Your Computer

    Read the article

  • Big IP F5 Basics (show run/show conf/term len 0)

    - by PP
    I've tried to find the basics in a Big IP manual but it seems to me the device is marketed towards GUI users only. Meanwhile I want to write a few scripts to automate tasks on the load balancer. Namely: how do I turn off more - when I issue a command I want the output to stream out without waiting for me to press a key for the next page how do I show the running configuration (I think list all is the way to do it but cannot find it documented anywhere) Thanks!

    Read the article

  • Replicate a big, dense Windows volume over a WAN -- too big for DFS-R

    - by Jesse
    I've got a server with a LOT of small files -- many millions files, and over 1.5 TB of data. I need a decent backup strategy. Any filesystem-based backup takes too long -- just enumerating which files need to be copied takes a day. Acronis can do a disk image in 24 hours, but fails when it tries to do a differential backup the next day. DFS-R won't replicate a volume with this many files. I'm starting to look at Double Take, which seems to be able to do continuous replication. Are there other solutions that can do continuous replication at a block or sector level -- not file-by-file over a WAN?

    Read the article

  • How to calculate order (big O) for more complex algorithms (ie quicksort)

    - by bangoker
    I know there are quite a bunch of questions about big O notation, I have already checked Plain english explanation of Big O , Big O, how do you calculate/approximate it?, and Big O Notation Homework--Code Fragment Algorithm Analysis?, to name a few. I know by "intuition" how to calculate it for n, n^2, n! and so, however I am completely lost on how to calculate it for algorithms that are log n , n log n, n log log n and so. What I mean is, I know that Quick Sort is n log n (on average).. but, why? Same thing for merge/comb, etc. Could anybody explain me in a not to math-y way how do you calculate this? The main reason is that Im about to have a big interview and I'm pretty sure they'll ask for this kind of stuff. I have researched for a few days now, and everybody seem to have either an explanation of why bubble sort is n^2 or the (for me) unreadable explanation a la wikipedia Thanks!

    Read the article

  • Remove .php extension (explicitly written) for friendly URL

    - by miquel
    htaccess to remove the .php extension of my site's files. RewriteEngine on RewriteBase / RewriteCond %{SCRIPT_FILENAME} !-d RewriteCond %{SCRIPT_FILENAME} !-f RewriteRule ^(.*)$ $1.php [L,QSA] Now, if I go to my site www.mysite.com/home works fine, it redirects to home.php but the URL is still friendly. But if I write this URL: www.mysite.com/home.php The home.php is served, and the URL is not friendly. How can I avoid this behavior? I want that if the user writes www.mysite.com/home.php, the URL displayed in the URL bar be www.mysite.com/home

    Read the article

  • How SEO friendly is this URL ?

    - by The_AlienCoder
    I have this products catalog site.For the sake of SEO, I would have wanted my 'view details' link to look some thing like this ~/products/26-productname or ~/products/26/productname On my machine I'm using a url re-writing module and it works well. Unfortunately My host(shared) does not support url re-writing modules or Aspnet 4.0 for now. So I came up with a workaround that attempts to be SEO friendly Instead of this : ~/Products/details.aspx?id=26 I decided to simply append the product name in the url and i.e ~/Products/details.aspx?product=26-Toshiba Qosmio Notebook So my question is how SEO friendly is such a URL and is my attempt worth anything at all?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >