Search Results

Search found 5377 results on 216 pages for 'explicit cast operator'.

Page 3/216 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • How do you override operator == when using interfaces instead of actual types?

    - by RickL
    I have some code like this: How should I implement the operator == so that it will be called when the variables are of interface IMyClass? public class MyClass : IMyClass { public static bool operator ==(MyClass a, MyClass b) { if (ReferenceEquals(a, b)) return true; if ((Object)a == null || (Object)b == null) return false; return false; } public static bool operator !=(MyClass a, MyClass b) { return !(a == b); } } class Program { static void Main(string[] args) { IMyClass m1 = new MyClass(); IMyClass m2 = new MyClass(); MyClass m3 = new MyClass(); MyClass m4 = new MyClass(); Console.WriteLine(m1 == m2); // does not go into custom == function. why not? Console.WriteLine(m3 == m4); // DOES go into custom == function } }

    Read the article

  • friending istream operator with class

    - by user1388172
    hello i'm trying to overload my operator >> to my class but i ecnouter an error in eclipse. code: friend istream& operator>>(const istream& is, const RAngle& ra){ return is >> ra.x >> ra.y; } code2: friend istream& operator>>(const istream& is, const RAngle& ra) { is >> ra.x; is >> ra.y; return is } Both crash and i don't know why, please help. EDIT: ra.x & ra.y are both 2 private ints of my class; Full error: error: ..\/rightangle.h: In function 'std::istream& operator>>(std::istream&, const RAngle&)': ..\/rightangle.h:65:12: error: ambiguous overload for 'operator>>' in 'is >> ra.RAngle::x' ..\/rightangle.h:65:12: note: candidates are: c:\mingw\bin\../lib/gcc/mingw32/4.6.1/include/c++/istream:122:7: note: std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(std::basic_istream<_CharT, _Traits>::__istream_type& (*)(std::basic_istream<_CharT, _Traits>::__istream_type&)) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>] <near match> c:\mingw\bin\../lib/gcc/mingw32/4.6.1/include/c++/istream:122:7: note: no known conversion for argument 1 from 'const int' to 'std::basic_istream<char>::__istream_type& (*)(std::basic_istream<char>::__istream_type&) {aka std::basic_istream<char>& (*)(std::basic_istream<char>&)}' c:\mingw\bin\../lib/gcc/mingw32/4.6.1/include/c++/istream:126:7: note: std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(std::basic_istream<_CharT, _Traits>::__ios_type& (*)(std::basic_istream<_CharT, _Traits>::__ios_type&)) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>, std::basic_istream<_CharT, _Traits>::__ios_type = std::basic_ios<char>] <near match> c:\mingw\bin\../lib/gcc/mingw32/4.6.1/include/c++/istream:126:7: note: no known conversion for argument 1 from 'const int' to 'std::basic_istream<char>::__ios_type& (*)(std::basic_istream<char>::__ios_type&) {aka std::basic_ios<char>& (*)(std::basic_ios<char>&)}' c:\mingw\bin\../lib/gcc/mingw32/4.6.1/include/c++/istream:133:7: note: std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(std::ios_base& (*)(std::ios_base&)) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>] <near match> c:\mingw\bin\../lib/gcc/mingw32/4.6.1/include/c++/istream:133:7: note: no known conversion for argument 1 from 'const int' to 'std::ios_base& (*)(std::ios_base&)' c:\mingw\bin\../lib/gcc/mingw32/4.6.1/include/c++/istream:241:7: note: std::basic_istream<_CharT, _Traits>& std::basic_istream<_CharT, _Traits>::operator>>(std::basic_istream<_CharT, _Traits>::__streambuf_type*) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_istream<_CharT, _Traits>::__streambuf_type = std::basic_streambuf<char>] <near match> c:\mingw\bin\../lib/gcc/mingw32/4.6.1/include/c++/istream:241:7: note: no known conversion for argument 1 from 'const int' to 'std::basic_istream<char>::__streambuf_type* {aka std::basic_streambuf<char>*}' ..\/rightangle.h:66:12: error: ambiguous overload for 'operator>>' in 'is >> ra.RAngle::y' ..\/rightangle.h:66:12: note: candidates are: c:\mingw\bin\../lib/gcc/mingw32/4.6.1/include/c++/istream:122:7: note: std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(std::basic_istream<_CharT, _Traits>::__istream_type& (*)(std::basic_istream<_CharT, _Traits>::__istream_type&)) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>] <near match> c:\mingw\bin\../lib/gcc/mingw32/4.6.1/include/c++/istream:122:7: note: no known conversion for argument 1 from 'const int' to 'std::basic_istream<char>::__istream_type& (*)(std::basic_istream<char>::__istream_type&) {aka std::basic_istream<char>& (*)(std::basic_istream<char>&)}' c:\mingw\bin\../lib/gcc/mingw32/4.6.1/include/c++/istream:126:7: note: std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(std::basic_istream<_CharT, _Traits>::__ios_type& (*)(std::basic_istream<_CharT, _Traits>::__ios_type&)) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>, std::basic_istream<_CharT, _Traits>::__ios_type = std::basic_ios<char>] <near match> c:\mingw\bin\../lib/gcc/mingw32/4.6.1/include/c++/istream:126:7: note: no known conversion for argument 1 from 'const int' to 'std::basic_istream<char>::__ios_type& (*)(std::basic_istream<char>::__ios_type&) {aka std::basic_ios<char>& (*)(std::basic_ios<char>&)}' c:\mingw\bin\../lib/gcc/mingw32/4.6.1/include/c++/istream:133:7: note: std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(std::ios_base& (*)(std::ios_base&)) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>] <near match> c:\mingw\bin\../lib/gcc/mingw32/4.6.1/include/c++/istream:133:7: note: no known conversion for argument 1 from 'const int' to 'std::ios_base& (*)(std::ios_base&)' c:\mingw\bin\../lib/gcc/mingw32/4.6.1/include/c++/istream:241:7: note: std::basic_istream<_CharT, _Traits>& std::basic_istream<_CharT, _Traits>::operator>>(std::basic_istream<_CharT, _Traits>::__streambuf_type*) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_istream<_CharT, _Traits>::__streambuf_type = std::basic_streambuf<char>] <near match> c:\mingw\bin\../lib/gcc/mingw32/4.6.1/include/c++/istream:241:7: note: no known conversion for argument 1 from 'const int' to 'std::basic_istream<char>::__streambuf_type* {aka std::basic_streambuf<char>*}''

    Read the article

  • explicit copy constructor or implicit parameter by value

    - by R Samuel Klatchko
    I recently read (and unfortunately forgot where), that the best way to write operator= is like this: foo &operator=(foo other) { swap(*this, other); return *this; } instead of this: foo &operator=(const foo &other) { foo copy(other); swap(*this, copy); return *this; } The idea is that if operator= is called with an rvalue, the first version can optimize away construction of a copy. So when called with a rvalue, the first version is faster and when called with an lvalue the two are equivalent. I'm curious as to what other people think about this? Would people avoid the first version because of lack of explicitness? Am I correct that the first version can be better and can never be worse?

    Read the article

  • User defined conversion operator as argument for printf

    - by BC
    I have a class that defined a user defined operator for a TCHAR*, like so CMyClass::operator const TCHAR*() const { // returns text as const TCHAR* } I want to be able to do something like CMyClass myClass; _tprintf(_T("%s"), myClass); or even _tprintf(_T("%s"), CMyClass(value)); But when trying, printf always prints (null) instead of the value. I have also tried a normal char* operator, as well variations with const etc. It only works correctly if I explicitly call the operator or do a cast, like _tprintf(_T("%s\n"), (const TCHAR*)myClass); _tprintf(_T("%s\n"), myClass.operator const TCHAR *()); However, I don't want to cast. How can this be achieved? Note, that a possibility is to create a function that has a parameter of const TCHAR*, so that it forcible calls the operator TCHAR*, but this I also don't want to implement.

    Read the article

  • How to reduce redundant code when adding new c++0x rvalue reference operator overloads

    - by Inverse
    I am adding new operator overloads to take advantage of c++0x rvalue references, and I feel like I'm producing a lot of redundant code. I have a class, tree, that holds a tree of algebraic operations on double values. Here is an example use case: tree x = 1.23; tree y = 8.19; tree z = (x + y)/67.31 - 3.15*y; ... std::cout << z; // prints "(1.23 + 8.19)/67.31 - 3.15*8.19" For each binary operation (like plus), each side can be either an lvalue tree, rvalue tree, or double. This results in 8 overloads for each binary operation: // core rvalue overloads for plus: tree operator +(const tree& a, const tree& b); tree operator +(const tree& a, tree&& b); tree operator +(tree&& a, const tree& b); tree operator +(tree&& a, tree&& b); // cast and forward cases: tree operator +(const tree& a, double b) { return a + tree(b); } tree operator +(double a, const tree& b) { return tree(a) + b; } tree operator +(tree&& a, double b) { return std::move(a) + tree(b); } tree operator +(double a, tree&& b) { return tree(a) + std::move(b); } // 8 more overloads for minus // 8 more overloads for multiply // 8 more overloads for divide // etc which also has to be repeated in a way for each binary operation (minus, multiply, divide, etc). As you can see, there are really only 4 functions I actually need to write; the other 4 can cast and forward to the core cases. Do you have any suggestions for reducing the size of this code? PS: The class is actually more complex than just a tree of doubles. Reducing copies does dramatically improve performance of my project. So, the rvalue overloads are worthwhile for me, even with the extra code. I have a suspicion that there might be a way to template away the "cast and forward" cases above, but I can't seem to think of anything.

    Read the article

  • C++ stream as a parameter when overloading operator<<

    - by TheOm3ga
    I'm trying to write my own logging class and use it as a stream: logger L; L << "whatever" << std::endl; This is the code I started with: #include <iostream> using namespace std; class logger{ public: template <typename T> friend logger& operator <<(logger& log, const T& value); }; template <typename T> logger& operator <<(logger& log, T const & value) { // Here I'd output the values to a file and stdout, etc. cout << value; return log; } int main(int argc, char *argv[]) { logger L; L << "hello" << '\n' ; // This works L << "bye" << "alo" << endl; // This doesn't work return 0; } But I was getting an error when trying to compile, saying that there was no definition for operator<<: pruebaLog.cpp:31: error: no match for ‘operator<<’ in ‘operator<< [with T = char [4]](((logger&)((logger*)operator<< [with T = char [4]](((logger&)(& L)), ((const char (&)[4])"bye")))), ((const char (&)[4])"alo")) << std::endl’ So, I've been trying to overload operator<< to accept this kind of streams, but it's driving me mad. I don't know how to do it. I've been loking at, for instance, the definition of std::endl at the ostream header file and written a function with this header: logger& operator <<(logger& log, const basic_ostream<char,char_traits<char> >& (*s)(basic_ostream<char,char_traits<char> >&)) But no luck. I've tried the same using templates instead of directly using char, and also tried simply using "const ostream& os", and nothing. Another thing that bugs me is that, in the error output, the first argument for operator<< changes, sometimes it's a reference to a pointer, sometimes looks like a double reference...

    Read the article

  • cast operator to base class within a thin wrapper derived class

    - by miked
    I have a derived class that's a very thin wrapper around a base class. Basically, I have a class that has two ways that it can be compared depending on how you interpret it so I created a new class that derives from the base class and only has new constructors (that just delegate to the base class) and a new operator==. What I'd like to do is overload the operator Base&() in the Derived class so in cases where I need to interpret it as the Base. For example: class Base { Base(stuff); Base(const Base& that); bool operator==(Base& rhs); //typical equality test }; class Derived : public Base { Derived(stuff) : Base(stuff) {}; Derived(const Base& that) : Base(that) {}; Derived(const Derived& that) : Base(that) {}; bool operator==(Derived& rhs); //special case equality test operator Base&() { return (Base&)*this; //Is this OK? It seems wrong to me. } }; If you want a simple example of what I'm trying to do, pretend I had a String class and String==String is the typical character by character comparison. But I created a new class CaseInsensitiveString that did a case insensitive compare on CaseInsensitiveString==CaseInsensitiveString but in all other cases just behaved like a String. it doesn't even have any new data members, just an overloaded operator==. (Please, don't tell me to use std::string, this is just an example!) Am I going about this right? Something seems fishy, but I can't put my finger on it.

    Read the article

  • Why doesn't is operator take in consideration if the explicit operator is overriden when checking ty

    - by Galilyou
    Hey Guys, Consider this code sample: public class Human { public string Value { get; set;} } public class Car { public static explicit operator Human (Car c) { Human h = new Human(); h.Value = "Value from Car"; return h; } } public class Program { public static void Mani() { Car c = new Car(); Human h = (Human)c; Console.WriteLine("h.Value = {0}", h.Value); Console.WriteLine(c is Human); } } Up I provide a possibility of an explicit cast from Car to Human, though Car and Human hierarchically are not related! The above code simply means that "Car is convertible to human" However, if you run the snippet you will find the expression c is Human evaluates to false! I used to believe that the is operator is kinda expensive cause it attempts to do an actual cast that might result in an InvalidCastException. If the operator is trying to cast, then the cast should succeed as there's an operator logic that should perform the cast! What does "is" test? Does test a hierarchical "is-a" relationship? Does test whether a variable type is convertible to a type?

    Read the article

  • C++ Unary - Operator Overload Won't Compile

    - by Brian Hooper
    I am attempting to create an overloaded unary - operator but can't get the code to compile. A cut-down version of the code is as follows:- class frag { public: frag myfunc (frag oper1, frag oper2); frag myfunc2 (frag oper1, frag oper2); friend frag operator + (frag &oper1, frag &oper2); frag operator - () { frag f; f.element = -element; return f; } private: int element; }; frag myfunc (frag oper1, frag oper2) { return oper1 + -oper2; } frag myfunc2 (frag oper1, frag oper2) { return oper1 + oper2; } frag operator+ (frag &oper1, frag &oper2) { frag innerfrag; innerfrag.element = oper1.element + oper2.element; return innerfrag; } The compiler reports... /home/brian/Desktop/frag.hpp: In function ‘frag myfunc(frag, frag)’: /home/brian/Desktop/frag.hpp:41: error: no match for ‘operator+’ in ‘oper1 + oper2.frag::operator-()’ /home/brian/Desktop/frag.hpp:16: note: candidates are: frag operator+(frag&, frag&) Could anyone suggest what I need to be doing here? Thanks.

    Read the article

  • operator overloading and inheritance

    - by user168715
    I was given the following code: class FibHeapNode { //... // These all have trivial implementation virtual void operator =(FibHeapNode& RHS); virtual int operator ==(FibHeapNode& RHS); virtual int operator <(FibHeapNode& RHS); }; class Event : public FibHeapNode { // These have nontrivial implementation virtual void operator=(FibHeapNode& RHS); virtual int operator==(FibHeapNode& RHS); virtual int operator<(FibHeapNode& RHS); }; class FibHeap { //... int DecreaseKey(FibHeapNode *theNode, FibHeapNode& NewKey) { FibHeapNode *theParent; // Some code if (theParent != NULL && *theNode < *theParent) { //... } //... return 1; } }; Much of FibHeap's implementation is similar: FibHeapNode pointers are dereferenced and then compared. Why does this code work? (or is it buggy?) I would think that the virtuals here would have no effect: since *theNode and *theParent aren't pointer or reference types, no dynamic dispatch occurs and FibHeapNode::operator< gets called no matter what's written in Event.

    Read the article

  • Cast then check or check then cast?

    - by jamesrom
    Which method is regarded as best practice? Cast first? public string Describe(ICola cola) { var coke = cola as CocaCola; if (coke != null) { string result; // some unique coca-cola only code here. return result; } var pepsi = cola as Pepsi; if (pepsi != null) { string result; // some unique pepsi only code here. return result; } } Or should I check first, cast later? public string Describe(ICola cola) { if (cola is CocaCola) { coke = (CocaCola) cola; string result; // some unique coca-cola only code here. return result; } if (cola is Pepsi) { pepsi = (Pepsi) cola; string result; // some unique pepsi only code here. return result; } } Can you see any other way to do this?

    Read the article

  • C++ [] array operator with multiple arguments?

    - by genesys
    Can I define in C++ an array operator that takes multiple arguments? I tried it like this: const T& operator[](const int i, const int j, const int k) const{ return m_cells[k*m_resSqr+j*m_res+i]; } T& operator[](const int i, const int j, const int k){ return m_cells[k*m_resSqr+j*m_res+i]; } But I'm getting this error: error C2804 binary operator '[' has too many parameters

    Read the article

  • Prolog: declaring an operator

    - by B K
    I have defined ! (factorial) function and registered it as arithmetic function and an operator, so that I can execute: A is 6!. Now I'd like to define !! (factorial of odd numbers), but the same way - writing clauses, registering arithmetic_function and operator, calling A is 7!! - results in SyntaxError: Operator expected How should I, if possible, register !! operator ? Yes, I realize, ! is normally the cut.

    Read the article

  • operator[][] C++

    - by bobobobo
    I'd like to overload operator[][] to give internal access to a 2D array of char in C++. Right now I'm only overloading operator[], which goes something like class Object { char ** charMap ; char* operator[]( int row ) { return charMap[row] ; } } ; It works ok.. Is it possible to override operator[][] though?

    Read the article

  • Object initializer with explicit interface in C#

    - by Ben Aston
    How can I use an object initializer with an explicit interface implementation in C#? public interface IType { string Property1 { get; set; } } public class Type1 : IType { string IType.Property1() { get; set; } } ... //doesn't work var v = new Type1 { IType.Property1 = "myString" };

    Read the article

  • how to cout a vector of structs (that's a class member, using extraction operator)

    - by Julz
    hi, i'm trying to simply cout the elements of a vector using an overloaded extraction operator. the vector contians Point, which is just a struct containing two doubles. the vector is a private member of a class called Polygon, so heres my Point.h #ifndef POINT_H #define POINT_H #include <iostream> #include <string> #include <sstream> struct Point { double x; double y; //constructor Point() { x = 0.0; y = 0.0; } friend std::istream& operator >>(std::istream& stream, Point &p) { stream >> std::ws; stream >> p.x; stream >> p.y; return stream; } friend std::ostream& operator << (std::ostream& stream, Point &p) { stream << p.x << p.y; return stream; } }; #endif my Polygon.h #ifndef POLYGON_H #define POLYGON_H #include "Segment.h" #include <vector> class Polygon { //insertion operator needs work friend std::istream & operator >> (std::istream &inStream, Polygon &vertStr); // extraction operator friend std::ostream & operator << (std::ostream &outStream, const Polygon &vertStr); public: //Constructor Polygon(const std::vector<Point> &theVerts); //Default Constructor Polygon(); //Copy Constructor Polygon(const Polygon &polyCopy); //Accessor/Modifier methods inline std::vector<Point> getVector() const {return vertices;} //Return number of Vector elements inline int sizeOfVect() const {return vertices.size();} //add Point elements to vector inline void setVertices(const Point &theVerts){vertices.push_back (theVerts);} private: std::vector<Point> vertices; }; and Polygon.cc using namespace std; #include "Polygon.h" // Constructor Polygon::Polygon(const vector<Point> &theVerts) { vertices = theVerts; } //Default Constructor Polygon::Polygon(){} istream & operator >> (istream &inStream, Polygon::Polygon &vertStr) { inStream >> ws; inStream >> vertStr; return inStream; } // extraction operator ostream & operator << (ostream &outStream, const Polygon::Polygon &vertStr) { outStream << vertStr.vertices << endl; return outStream; } i figure my Point insertion/extraction is right, i can insert and cout using it and i figure i should be able to just...... cout << myPoly[i] << endl; in my driver? (in a loop) or even... cout << myPoly[0] << endl; without a loop? i've tried all sorts of myPoly.at[i]; myPoly.vertices[i]; etc etc also tried all veriations in my extraction function outStream << vertStr.vertices[i] << endl; within loops, etc etc. when i just create a... vector<Point> myVect; in my driver i can just... cout << myVect.at(i) << endl; no problems. tried to find an answer for days, really lost and not through lack of trying!!! thanks in advance for any help. please excuse my lack of comments and formatting also there's bits and pieces missing but i really just need an answer to this problem thanks again

    Read the article

  • LINQ .Cast() extension method fails but (type)object works.

    - by Ben Robinson
    To convert between some LINQ to SQL objects and DTOs we have created explicit cast operators on the DTOs. That way we can do the following: DTOType MyDTO = (LinqToSQLType)MyLinq2SQLObj; This works well. However when you try to cast using the LINQ .Cast() extension method it trows an invalid cast exception saying cannot cast type Linq2SQLType to type DTOType. i.e. the below does not work List<DTO.Name> Names = dbContact.tNames.Cast<DTO.Name>() .ToList(); But the below works fine: DAL.tName MyDalName = new DAL.tName(); DTO.Name MyDTOName = (DTO.Name)MyDalName; and the below also works fine List<DTO.Name> Names = dbContact.tNames.Select(name => (DTO.Name)name) .ToList(); Why does the .Cast() extension method throw an invalid cast exception? I have used the .Cast() extension method in this way many times in the past and when you are casting something like a base type to a derived type it works fine, but falls over when the object has an explicit cast operator.

    Read the article

  • Cast object to interface when created via reflection

    - by Al
    I'm trying some stuff out in Android and I'm stuck at when trying to cast a class in another .apk to my interface. I have the interface and various classes in other .apks that implement that interface. I find the other classes using PackageManager's query methods and use Application#createPackageContext() to get the classloader for that context. I then load the class, create a new instance and try to cast it to my interface, which I know it definitely implements. When I try to cast, it throws a class cast exception. I tried various things like loading the interface first, using Class#asSubclass, etc, none of which work. Class#getInterfaces() shows the interface is implemented. My code is below: PackageManager pm = getPackageManager(); List<ResolveInfo> lr = pm.queryIntentServices(new Intent("com.example.some.action"), 0); ArrayList<MyInterface> list = new ArrayList<MyInterface>(); for (ResolveInfo r : lr) { try { Context c = getApplication().createPackageContext(r.serviceInfo.packageName, Context.CONTEXT_IGNORE_SECURITY | Context.CONTEXT_INCLUDE_CODE); ClassLoader cl = c.getClassLoader(); String className = r.serviceInfo.name; if (className != null) { try { Class<?> cls = cl.loadClass(className); Object o = cls.newInstance(); if (o instanceof MyInterface) { //fails list.add((MyInterface) o); } } catch (ClassNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } // some exceptions removed for readability } } catch (NameNotFoundException e1) { e1.printStackTrace(); }

    Read the article

  • operator<< cannot output std::endl -- Fix?

    - by dehmann
    The following code gives an error when it's supposed to output just std::endl: #include <iostream> #include <sstream> struct MyStream { std::ostream* out_; MyStream(std::ostream* out) : out_(out) {} std::ostream& operator<<(const std::string& s) { (*out_) << s; return *out_; } }; template<class OutputStream> struct Foo { OutputStream* out_; Foo(OutputStream* out) : out_(out) {} void test() { (*out_) << "OK" << std::endl; (*out_) << std::endl; // ERROR } }; int main(int argc, char** argv){ MyStream out(&std::cout); Foo<MyStream> foo(&out); foo.test(); return EXIT_SUCCESS; } The error is: stream1.cpp:19: error: no match for 'operator<<' in '*((Foo<MyStream>*)this)->Foo<MyStream>::out_ << std::endl' stream1.cpp:7: note: candidates are: std::ostream& MyStream::operator<<(const std::string&) So it can output a string (see line above the error), but not just the std::endl, presumably because std::endl is not a string, but the operator<< definition asks for a string. Templating the operator<< didn't help: template<class T> std::ostream& operator<<(const T& s) { ... } How can I make the code work? Thanks!

    Read the article

  • Implementing Operator Overloading with Logarithms in C++

    - by Jacob Relkin
    Hello my friends, I'm having some issues with implementing a logarithm class with operator overloading in C++. My first goal is how I would implement the changeBase method, I've been having a tough time wrapping my head around it. My secoond goal is to be able to perform an operation where the left operand is a double and the right operand is a logarithm object. Here's a snippet of my log class: // coefficient: double // base: unsigned int // number: double class _log { double coefficient, number; unsigned int base; public: _log() { base = rand(); coefficient = rand(); number = rand(); } _log operator+ ( const double b ) const; _log operator* ( const double b ) const; _log operator- ( const double b ) const; _log operator/ ( const double b ) const; _log operator<< ( const _log &b ); double getValue() const; bool changeBase( unsigned int base ); }; You guys are awesome, thank you for your time.

    Read the article

  • Visual C++ doesn't operator<< overload

    - by PierreBdR
    I have a vector class that I want to be able to input/output from a QTextStream object. The forward declaration of my vector class is: namespace util { template <size_t dim, typename T> class Vector; } I define the operator<< as: namespace util { template <size_t dim, typename T> QTextStream& operator<<(QTextStream& out, const util::Vector<dim,T>& vec) { ... } template <size_t dim, typename T> QTextStream& operator>>(QTextStream& in,util::Vector<dim,T>& vec) { .. } } However, if I ty to use these operators, Visual C++ returns this error: error C2678: binary '<<' : no operator found which takes a left-hand operand of type 'QTextStream' (or there is no acceptable conversion) A few things I tried: Originaly, the methods were defined as friends of the template, and it is working fine this way with g++. The methods have been moved outside the namespace util I changed the definition of the templates to fit what I found on various Visual C++ websites. The original friend declaration is: friend QTextStream& operator>>(QTextStream& ss, Vector& in) { ... } The "Visual C++ adapted" version is: friend QTextStream& operator>> <dim,T>(QTextStream& ss, Vector<dim,T>& in); with the function pre-declared before the class and implemented after. I checked the file is correctly included using: #pragma message ("Including vector header") And everything seems fine. Doesn anyone has any idea what might be wrong?

    Read the article

  • What are the default return values for operator< and operator[] in C++ (Visual Studio 6)?

    - by DustOff
    I've inherited a large Visual Studio 6 C++ project that needs to be translated for VS2005. Some of the classes defined operator< and operator[], but don't specify return types in the declarations. VS6 allows this, but not VS2005. I am aware that the C standard specifies that the default return type for normal functions is int, and I assumed VS6 might have been following that, but would this apply to C++ operators as well? Or could VS6 figure out the return type on its own? For example, the code defines a custom string class like this: class String { char arr[16]; public: operator<(const String& other) { return something1 < something2; } operator[](int index) { return arr[index]; } }; Would VS6 have simply put the return types for both as int, or would it have been smart enough to figure out that operator[] should return a char and operator< should return a bool (and not convert both results to int all the time)? Of course I have to add return types to make this code VS2005 C++ compliant, but I want to make sure to specify the same type as before, as to not immediately change program behavior (we're going for compatibility at the moment; we'll standardize things later).

    Read the article

  • What is the rationale to not allow overloading of C++ conversions operator with non-member function

    - by Vicente Botet Escriba
    C++0x has added explicit conversion operators, but they must always be defined as members of the Source class. The same applies to the assignment operator, it must be defined on the Target class. When the Source and Target classes of the needed conversion are independent of each other, neither the Source can define a conversion operator, neither the Target can define a constructor from a Source. Usually we get it by defining a specific function such as Target ConvertToTarget(Source& v); If C++0x allowed to overload conversion operator by non member functions we could for example define the conversion implicitly or explicitly between unrelated types. template < typename To, typename From > operator To(const From& val); For example we could specialize the conversion from chrono::time_point to posix_time::ptime as follows template < class Clock, class Duration> operator boost::posix_time::ptime( const boost::chrono::time_point<Clock, Duration>& from) { using namespace boost; typedef chrono::time_point<Clock, Duration> time_point_t; typedef chrono::nanoseconds duration_t; typedef duration_t::rep rep_t; rep_t d = chrono::duration_cast<duration_t>( from.time_since_epoch()).count(); rep_t sec = d/1000000000; rep_t nsec = d%1000000000; return posix_time::from_time_t(0)+ posix_time::seconds(static_cast<long>(sec))+ posix_time::nanoseconds(nsec); } And use the conversion as any other conversion. For a more complete description of the problem, see here or on my Boost.Conversion library.. So the question is: What is the rationale to non allow overloading of C++ conversions operator with non-member functions?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >