Search Results

Search found 123 results on 5 pages for 'projected'.

Page 3/5 | < Previous Page | 1 2 3 4 5  | Next Page >

  • How to implement friction in a physics engine based on "Advanced Character Physics"

    - by paldepind
    I have implemented a physics engine based on the concepts in the classic text Advanced Character Physics by Thomas Jakobsen. Friction is only discussed very briefly in the article and Jakobsen himself notes how "other and better friction models than this could and should be implemented." Generally how could one implement a believable friction model on top of the concepts from the mentioned article? And how could the found friction be translated into rotation on a circle? I do not want this question to be about my specific implementation but about how to combine Jakobsens ideas with a great friction system more generally. But here is a live demo showing the current state of my engine which does not handle friction in any way: http://jsfiddle.net/Z7ECB/embedded/result/ Below is a picture showing and example on how collision detection could work in an engine based in the paper. In the Verlet integration the current and previous position is always stored. Based on these a new position is calculated. In every frame I calculate the distance between the circles and the lines. If this distance is less than a circles radius a collision has occurred and the circle is projected perpendicular out of the offending line according to the size of the overlap (offset on the picture). Velocity is implicit due to Verlet integration so changing position also changes the velocity. What I need to do know is to somehow determine the amount of friction on the circle and move it backwards parallel to the line in order to reduce its speed.

    Read the article

  • Numerous Unexpected Obstacles Ruining any Project Plans

    - by Libor
    I am working as software developer and struggling with this problem time and time again for almost thirteen years. There seems not to be any way out of the following problem. And it happens with small projects as well. For example, I plan to write an extension for Microsoft Visual Studio. I dowload learning materials, get some book on the topic and allocate time for learning and development. However, during the development, many seemingly trivial problems arise, for example: Why the script refuses to delete the file? Why Visual Studio does not register the extension? (after two days) OK, it registers it, but now it got broken. How to fix it? each of these "small" obstacles usually take 1-5 days to resolve and the project finally consumes several times more man-hours than planned. Maybe it happens only because I am working on Microsoft platform and many of their Frameworks and architectures are bit confusing and badly documented. I would like to have most problems resolved by finding answer in a book or official documentation (MSDN), but the only answer I usually find is on some weird forum or personal blog googled after desperately searching for any relevant information on the topic. Do you have the same struggles? Do you have techniques on how to prevent these problems? I was thinking of simply multiplying projected time for a given project by some factor, but this does not help. Some projects get done briskly and some take months and the guiding factor here are these small "glitches" which take programmers whole weeks to resolve. I have to admit that lots of these obstacles demoralizes me and drains me of focus and joy of work (who likes to get back to work when he have to resolve some stupid registry problem or weird framework bug instead of doing creative work?) After the project is finally done, I am feeling like dying from thousand cuts.

    Read the article

  • "Are You There?".. India Tops Logistics List of Emerging Nations

    - by [email protected]
    It's just amazing how far, wide and deep modern supply chains are extending. AMR reported on 15 Apr (M.Burkett, A.Reese) in a SCM webcast that 'Penetrating Emerging Markets" was the top priotiy for organizations based on a recent survey. I took this as both adding new consumers to their prospect-list as well as leveraging 'lower cost labor arbitrage". (Read '3 Billion Capitalists") Supply Chain Quarterly reports that India and Brazil received the highest ranking of the logistics markets in developing nations India tops the list of emerging nations that scores the attractiveness of logistics markets to foreign investors. Developed by the UK-based research firm Transport Intelligence, the new  Emerging Market Logistics Index rated 38 developing countries on 3 factors. 1. "Market size and growth attractiveness," considered a country's economic output, projected growth rate, and population size.  2. "Market compatibility," which examined how well-matched a nation was with the services offered by global logistics providers. This includes a country's security levels, market accessibility, foreign direct investment, distribution of wealth and population, and development of its service sector. 3. "Connectedness," which rated the efficiency of customs and border controls, liner shipping connections, and transportation infrastructure. India claimed the top spot due to its market size and growth prospects. Brazil is second because of its economic performance, good levels of market accessibility, and improving domestic and international transport connections. Are you there? For more information see www.transportintelligence.com/articles_papers. The top 10 emerging countries India Brazil Indonesia Mexico Russia Turkey United Arab Emirates Egypt Saudi Arabia Malaysia Source: Transport Intelligence, The Emerging Markets Logistics Index, March 2010

    Read the article

  • A Trip to the Moon (Le Voyage dans la Lune) [Super Retro Classic Sci-Fi Video]

    - by Asian Angel
    If you are into retro sci-fi movies, then you will definitely want to have a look at this French classic from 1902. This silent movie is only 10.5 minutes long, but is well worth watching and makes for a fun romp through the early days of sci-fi. From YouTube: A Trip to the Moon (French: Le Voyage dans la lune) is a 1902 French black and white silent science fiction film. It is loosely based on two popular novels of the time: From the Earth to the Moon by Jules Verne and The First Men in the Moon by H. G. Wells. The film was written and directed by Georges Melies, assisted by his brother Gaston. The film runs 14 minutes if projected at 16 frames per second, which was the standard frame rate at the time the film was produced. It was extremely popular at the time of its release and is the best-known of the hundreds of fantasy films made by Melies. A Trip to the Moon is the first science fiction film, and utilizes innovative animation and special effects, including the iconic shot of the rocketship landing in the Moon’s eye. A Trip to the Moon / Le Voyage dans la lune – 1902 [via 20 best designs in sci-fi movies - Page 3 (Creative Bloq)] How to Use an Xbox 360 Controller On Your Windows PC Download the Official How-To Geek Trivia App for Windows 8 How to Banish Duplicate Photos with VisiPic

    Read the article

  • Project collision shapes to plane for 2.5D collision detection

    - by Jkh2
    I am working on a top down 2.5D game. In the game anything that overlaps on the screen should be 'colliding' with each other regardless of whether they are on the same plane in the 3D world. This is illustrated below from a side-ways view: The orange and green circles are spheres floating in the 3D world. They are projected onto a plane parallel to the viewport plane (y = 0 in the image) and if they overlap there is a collision event between them. These spheres are attached to other meshes to represent the sphere bounding boxes for collisions. The way I plan to implement this at the moment is the following: Get the 3D world position at the center of the sphere. Use Camera.WorldToViewportPoint to project the point to the viewport plane. Move a Sphere Collider with the radius of the sphere to that point. Test for collisions using unity colliders. My question is how to extend this to work for rotated cuboids. For instance if I have two rotated cuboids, if I follow the logic above it would not work as intended as the cuboids may not collide but they could still be intersected on the view plane. An example is below: Is there a way to project a cuboid that would be aligned with the plane? Would it be a valid cuboid for all rotations if I did this?

    Read the article

  • Beyond S&OP: Integrated Business Planning

    - by Paul Homchick
    In most corporations, planning is done at the department level — leaving disconnects and gaps across different departments. Finance sets revenue and profit goals with minimum validation from Manufacturing that the company has the resources, material, capacity, or demand to reach these goals. On the operations side, Manufacturing is developing plans to balance demand and supply but seldom knows if the resulting "plan" will meet the budgets on which the company's revenue and profit goals are based. The Sales department agrees to quotas that meet Finance's revenue goals without a complete understanding of what manufacturing can deliver. Integrated Business Planning (IBP) bridges these gaps in corporate planning systems. Integrated Business Planning integrates the financial planning provided by EPM systems with operations planning provided by Sales and Operations Planning solutions. This means that revenue goals and budgets are validated against a bottom-up operating plan, and that the operating plan is reconciled against financial goals. When detailed changes are made to the operations plan, planners can immediately see the big picture impact of the changes. IBP also addresses one the CFO's big concerns—the reliability of the revenue forecast. Operating plans are updated daily or weekly from a precise forecast based on current market conditions. These updated plans are then made available so that financial analysts are working with data that best represents what is going to happen - not what they projected would happen based on last quarter's data. For a discussion in more depth, see my article: Improve Reliability of Financial Forecasts with Integrated Business Planning in Supply & Demand Chain-Executive Magazine.

    Read the article

  • Beyond S&OP: Integrated Business Planning

    - by Paul Homchick
    In most corporations, planning is done at the department level — leaving disconnects and gaps across different departments. Finance sets revenue and profit goals with minimum validation from Manufacturing that the company has the resources, material, capacity, or demand to reach these goals. On the operations side, Manufacturing is developing plans to balance demand and supply but seldom knows if the resulting "plan" will meet the budgets on which the company's revenue and profit goals are based. The Sales department agrees to quotas that meet Finance's revenue goals without a complete understanding of what manufacturing can deliver. Integrated Business Planning (IBP) bridges these gaps in corporate planning systems. Integrated Business Planning integrates the financial planning provided by EPM systems with operations planning provided by Sales and Operations Planning solutions. This means that revenue goals and budgets are validated against a bottom-up operating plan, and that the operating plan is reconciled against financial goals. When detailed changes are made to the operations plan, planners can immediately see the big picture impact of the changes. IBP also addresses one the CFO's big concerns—the reliability of the revenue forecast. Operating plans are updated daily or weekly from a precise forecast based on current market conditions. These updated plans are then made available so that financial analysts are working with data that best represents what is going to happen - not what they projected would happen based on last quarter's data. For a discussion in more depth, see my article: Improve Reliability of Financial Forecasts with Integrated Business Planning in Supply & Demand Chain-Executive Magazine.

    Read the article

  • Early Z culling - Ogre

    - by teodron
    This question is concerned with how one can enable this "pixel filter" to work within an Ogre based app. Simply put, one can write two passes, the first without writing any colour values to the frame buffer lighting off colour_write off shading flat The second pass is the one that employs heavy pixel shader computations, hence it would be really nice to get rid of those hidden surface patches and not process them pixel-wise. This approach works, except for one thing: objects with alpha, such as billboard trees suffer in a peculiar way - from one side, they seem to capture the sky/background within their alpha region and ignore other trees/houses behind them, while viewed from the other side, they exhibit the desired behavior. To tackle the issue, I thought I could write a custom vertex shader in the first pass and offset the projected Z component of the vertex a little further away from its actual position, so that in the second pass there is a need to recompute correctly the pixels of the objects closest to the camera. This doesn't work at all, all surfaces are processed in the pixel shader and there is no performance gain. So, if anyone has done a similar trick with Ogre and alpha objects, kindly please help.

    Read the article

  • 3D zooming technique to maintain the relative position of an object on screen

    - by stark
    Is it possible to zoom to a certain point on screen by modifying the field of view and rotating the view of the camera as to keep that point/object in the same place on screen while zooming ? Changing the camera position is not allowed. I projected the 3D pos of the object on screen and remembered it. Then on each frame I calculate the direction to it in camera space and then I construct a rotation matrix to align this direction to Z axis (in cam space). After this, I calculate the direction from the camera to the object in world space and transform this vector with the matrix I obtained earlier and then use this final vector as the camera's new direction. And it's actually "kinda working", the problem is that it is more/less off than the camera's rotation before starting to zoom depending on the area you are trying to zoom in (larger error on edges/corners). It looks acceptable, but I'm not settling for only this. Any suggestions/resources for doing this technique perfectly? If some of you want to explain the math in detail, be my guest, I can understand these things well.

    Read the article

  • Now Available: Profit November 2012

    - by user462779
    The November 2012 issue of Profit is now available. In the five years I've worked on Profit, there has been measurable interest in content related to project management. Stories featuring project management as a key component have resulted in extra clicks, likes, and RTs (for you Twitter users) from our readers. I've chatted about this with Oracle customers, partners, and experts and received an assortment of ideas about why this might be. This issue of Profit is a bit of a culmination of those conversations, and the trends that are driving interest in project management best practices. Also, two online developments for Profit: check out my newly relaunched blog, Editor's Notebook, at blogs.oracle.com/profit, where readers can get a peek at the development of each issue of Profit as it happens. We've also launched a new LinkedIn group for our social media-inclined readers. In this issue: Three Keys to Project Management What can organizations with world-class project management teach the rest of us? Strong Medicine Gilead Sciences simplifies business processes to establish a foundation for continued growth. Architects of Reform Enterprise architecture plays an essential role in establishing Oregon as a leader in healthcare reform. Answering the Call Turkcell CIO Ilker Kuruoz finds IT-powered growth and innovation to be the calling card for success. Projected Results Sound project management practices and technology can have an immediate impact on the bottom line. Preparing for Impact Plans for dealing with enterprise information will define the big data winners. Is one issue of Profit not enough to get you through to February? Visit the Profit archives, or follow @OracleProfit on Twitter for a daily dose of enterprise technology news from Profit.

    Read the article

  • As my first professional position should I take it at a start-up or a better known company? [closed]

    - by Carl Carlson
    I am a couple of months removed from graduating with a CS degree and my gpa wasn't very high. But I do have aspirations of becoming a good software developer. Nevertheless I got two job offers recently. One is with a small start-up and the other is with a military contractor. The military contractor asked for my gpa and I gave it to them. The military contracting position is in developing GIS related applications which I was familiar with in an internship. After receiving an offer from the military contractor, I received an offer from the start-up after the start-up asked me how much the offer was from the military contractor. So the pay is even. The start-up would require I be immediately thrust into it with only two other people in the start-up currently and I would have to learn everything on my own. The military contractor has teams and people who know what their doing and would be able to offer me guidance. Seeing as how I have been a couple of months removed from school and need something of a refresher is it better than I just dive into the start-up and diversify what I've learned or be specialized on a particular track? Some more facts about the start-up: It deals with military contracts as well and is in Phase 2 of contracts. It will require I learn a diverse amount of technologies including cyber security, android development, python, javascript, etc. The military contractor will have me learn more C#, refine my Java, do javascript, and GIS related technologies. I might as well come out and say the military contractor is Northrop Grumman and more or less offered me less money than the projected starting salary from online salary calculators. But there is the possibility of bonuses, while the start-up doesn't include the possibility of bonuses. I think benefits for both are relatively the same.

    Read the article

  • Interesting 3d zooming technique

    - by stark
    Is it possible to zoom to a certain point on screen by modifying the field of view and rotating the camera as to keep that point/object in the same place on screen while zooming ? Changing the camera position is not allowed.. I projected the 3d pos of the object on screen and remembered it. Then on each frame I calculate the direction to it in camera space and then I construct a rotation matrix to align this direction to Z axis (in cam space). After this, I calculate the direction from the camera to the object in world space and transform this vector with the matrix I obtained earlier and then use this final vector as the camera's new direction. And it's actually "kinda working", the problem is that it is more/less off than the camera's rotation before starting to zoom depending on the area you are trying to zoom in (larger error on edges/corners). It looks acceptable, but I'm not settling for only this. Any suggestions/resources for doing this technique perfectly ? If some of you want to explain the math in detail, be my guests, I can understand these things well. Thanks. Edit: I'll check often for responses, I'm really curious about this :D

    Read the article

  • Coordinate spaces and transformation matrices

    - by Belgin
    I'm trying to get an object from object space, into projected space using these intermediate matrices: The first matrix (I) is the one that transforms from object space into inertial space, but since my object is not rotated or translated in any way inside the object space, this matrix is the 4x4 identity matrix. The second matrix (W) is the one that transforms from inertial space into world space, which is just a scale transform matrix of factor a = 14.1 on all coordinates, since the inertial space origin coincides with the world space origin. /a 0 0 0\ W = |0 a 0 0| |0 0 a 0| \0 0 0 1/ The third matrix (C) is the one that transforms from world space, into camera space. This matrix is a translation matrix with a translation of (0, 0, 10), because I want the camera to be located behind the object, so the object must be positioned 10 units into the z axis. /1 0 0 0\ C = |0 1 0 0| |0 0 1 10| \0 0 0 1/ And finally, the fourth matrix is the projection matrix (P). Bearing in mind that the eye is at the origin of the world space and the projection plane is defined by z = 1, the projection matrix is: /1 0 0 0\ P = |0 1 0 0| |0 0 1 0| \0 0 1/d 0/ where d is the distance from the eye to the projection plane, so d = 1. I'm multiplying them like this: (((P x C) x W) x I) x V, where V is the vertex' coordinates in column vector form: /x\ V = |y| |z| \1/ After I get the result, I divide x and y coordinates by w to get the actual screen coordinates. Apparenly, I'm doing something wrong or missing something completely here, because it's not rendering properly. Here's a picture of what is supposed to be the bottom side of the Stanford Dragon: Also, I should add that this is a software renderer so no DirectX or OpenGL stuff here.

    Read the article

  • Problem with SAT collision detection overlap checking code

    - by handyface
    I'm trying to implement a script that detects whether two rotated rectangles collide for my game, using SAT (Separating Axis Theorem). I used the method explained in the following article for my implementation in Google Dart. 2D Rotated Rectangle Collision I tried to implement this code into my game. Basically from what I understood was that I have two rectangles, these two rectangles can produce four axis (two per rectangle) by subtracting adjacent corner coordinates. Then all the corners from both rectangles need to be projected onto each axis, then multiplying the coordinates of the projection by the axis coordinates (point.x*axis.x+point.y*axis.y) to make a scalar value and checking whether the range of both the rectangle's projections overlap. When all the axis have overlapping projections, there's a collision. First of all, I'm wondering whether my comprehension about this algorithm is correct. If so I'd like to get some pointers in where my implementation (written in Dart, which is very readable for people comfortable with C-syntax) goes wrong. Thanks! EDIT: The question has been solved. For those interested in the working implementation: Click here

    Read the article

  • How can I render a semi transparent model with OpenGL correctly?

    - by phobitor
    I'm using OpenGL ES 2 and I want to render a simple model with some level of transparency. I'm just starting out with shaders, and I wrote a simple diffuse shader for the model without any issues but I don't know how to add transparency to it. I tried to set my fragment shader's output (gl_FragColor) to a non opaque alpha value but the results weren't too great. It sort of works, but it looks like certain model triangles are only rendered based on the camera position... It's really hard to describe what's wrong so please watch this short video I recorded: http://www.youtube.com/watch?v=s0JqA0rZabE I thought this was a depth testing issue so I tried playing around with enabling/disabling depth testing and back face culling. Enabling back face culling changes the output slightly but the problem in the video is still there. Enabling/disabling depth testing doesn't seem to do anything. Could anyone explain what I'm seeing and how I can add some simple transparency to my model with the shader? I'm not looking for advanced order independent transparency implementations. edit: Vertex Shader: // color varying for fragment shader varying mediump vec3 LightIntensity; varying highp vec3 VertexInModelSpace; void main() { // vec4 LightPosition = vec4(0.0, 0.0, 0.0, 1.0); vec3 LightColor = vec3(1.0, 1.0, 1.0); vec3 DiffuseColor = vec3(1.0, 0.25, 0.0); // find the vector from the given vertex to the light source vec4 vertexInWorldSpace = gl_ModelViewMatrix * vec4(gl_Vertex); vec3 normalInWorldSpace = normalize(gl_NormalMatrix * gl_Normal); vec3 lightDirn = normalize(vec3(LightPosition-vertexInWorldSpace)); // save vertexInWorldSpace VertexInModelSpace = vec3(gl_Vertex); // calculate light intensity LightIntensity = LightColor * DiffuseColor * max(dot(lightDirn,normalInWorldSpace),0.0); // calculate projected vertex position gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; } Fragment Shader: // varying to define color varying vec3 LightIntensity; varying vec3 VertexInModelSpace; void main() { gl_FragColor = vec4(LightIntensity,0.5); }

    Read the article

  • Best approach for tracking dependent state

    - by Pace
    Let's pretend I work on a project tracking application. The application is a database backed, server hosted, web application. In this application there are Projects which have many Activities which have many Tasks. A Task has two date fields an originalDueDate and a projectedDueDate. In addition, there are dynamic fields on the Activities and the Projects which indicate whether the Activity or Project is behind schedule based on the projected due dates of the child tasks and various other variables such as remaining buffer time, etc. There are a number of things that can cause the projectedDueDate to change. For example, an employee working on the project may (via a server request) enter in a shipping delay. Alternatively, a site may (via a server request) enter in an unexpected closure. When any of these things occur I need to not only update the projectedDueDate of the Task but also trigger the corresponding Project and Activity to update as well. What is the best way to do this? I've thought of the observer pattern but I don't keep a single copy of all these objects in memory. When a request comes in, I query the Task in from the database, at that point there is no associated Activity in memory that would be a listener. I could remove the ability to query for Tasks and force the application to query first by Project, then by Activity (in context of Project), then by task (in context of Activity) adding the observer relationships at each step but I'm not sure if that is the best way. I could setup a database event listening system so when a Task modified event is dispatched I have a handler which queries for the Activity at that point. I could simply setup a two-way relationship between Task and Activity so that the Task knows about the parent Activity and when the Task updates his state the Task grabs his parent and updates state. Right now I'm stuck considering all the options and am wondering if any single approach (doesn't have to be a listed approach) is jumping out at others as the best approach.

    Read the article

  • Understanding the value of Customer Experience & Loyalty for the Telecommunications Industry

    - by raul.goycoolea
    Worried by economic woes and market forces, especially in mature markets, communications service providers (CSPs) increasingly focus on improving customer experience. In fact, it seems difficult to find a major message by a C-level executive in the developed world that does not include something on "meeting and exceeding customers' needs". Frequently in customer satisfaction studies by prominent firms, CSPs fall short of the leadership demonstrated by other industries that take customer-centric approaches to their bottom-line strategies. Consider the following:Despite the continued impact of global economic crisis, in July 2010, Apple Computer posted record revenue and net quarterly profit. Those who attribute the results primarily to the iPhone 4 launch should note that Apple also shipped around 30% more Macintosh computers than the same period the previous year. Even sales of the iPod line increased by 8% in a highly commoditized, shrinking media player market. Finally, Apple began selling iPads during the quarter, with total sales of more than 3 million units. What does Apple have that the others lack? Well, some great products (and services) to be sure, but it also excels at customer service and support, marketing, and distribution, and has one of the strongest brands globally. Its products are useful, simple to use, easy to acquire and augment, high quality, and considered very cool. They also evoke such an emotional response from many of Apple's customers, which they turn up their noses at competitive products.In other words, Apple appears to have mastered virtually every aspect of customer experience and the resultant loyalty of its customer base - even in difficult financial times. Through that unwavering customer focus, Apple continues to drive its revenues and profits to new heights. Other customer loyalty leaders like Wal-Mart, Google, Toyota and Honda are also doing well by focusing on customer experience as an essential driver of profitability. Service providers should note this performance and ask themselves how they might leverage the same principles to increase their own profitability. After all, that is what customer experience and loyalty are all about: profitability.To successfully manage all the critical touch points of customer experience, CSPs must shun the one-size-fits-all approach. They can no longer afford to view customer service fundamentally as an act of altruism - which mentality dates back to the industry's civil service days, when CSPs were typically government organizations that were critical to economic development and public safety.As regulators and public officials have pushed, and continue to push, service providers to new heights of reliability - using incentives and punishments - most CSPs already have some of the fundamental building blocks of customer service in place. Yet despite that history and experience, service providers still lag other industries in providing what is seen as good customer service.As we observed in the TMF's 2009 Insights Research report, Customer Experience Management: Driving Loyalty & Profitability there has been resurgence in interest by CSPs. More and more of them have stated ambitions to catch up other industries, and they are realizing that good customer service is a powerful strategy for increasing business performance and profitability, not an act of good will.CSPs are recognizing the connection between customer experience and profitability, as demonstrated in many studies. For example, according to research by Bain & Company, a 5 percent improvement in customer retention rates can yield as much as a 75 percent increase in profits for companies across a range of industries.After decades of customer experience strategy formulation, Bain partner and business author, Frederick Reichheld, considers "would you recommend us to a friend?" as the ultimate question for a customer. How many times have you or your friends recommended an iPod, iPhone or a Mac? What do your children recommend to their peers? Their peers to them?There are certain steps service providers have to take to create more personalized relationships with their customers, as well as reduce churn and increase profitability, all while becoming leaner and more agile. First, they have to define customer experience, we define it as the result of the sum of observations, perceptions, thoughts and feelings arising from interactions and relationships between customers and their service provider(s). Virtually every customer touch point - whether directly or indirectly linked to service providers and their partners - contributes to customer perception, satisfaction, loyalty, and ultimately profitability. Gaining leadership in customer experience and satisfaction will not be a simple task, as it is affected by virtually every customer-facing aspect of the service provider, and in turn impacts the service provider deeply - especially on the all-important bottom line. The scope of issues affecting customer experience is complex and dynamic.With new services, devices and applications extending the basis of customer experience to domains beyond the direct control of the service provider, it is likely to increase in complexity and dynamism.Customer loyalty = increased profitsAs stated earlier, customer experience programs are not fundamentally altruistic exercises, but a strategic means of improving competitiveness and profitability in the short and long term. Loyalty is essential to deriving long term profits from customers.Some of the earliest loyalty programs date back to the 1930s, when packaged goods companies offered embedded coupons for rewards to buyers, and eventually retail chains began offering reward programs to frequent shoppers. These programs continued for decades but were leapfrogged in the 1980s by more aggressive programs from the airlines.This movement was led by American Airlines, which launched the first full-scale loyalty marketing program of the modern era with the AAdvantage frequent flyer scheme. It was the first to reward frequent fliers with notional air miles that could be accumulated and later redeemed for free travel. Figure 1: Opportunities example of Customer loyalty driven profitOther airlines and travel providers were quick to grasp the incredible value of providing customers with an incentive to use their company exclusively. Within a few years, dozens of travel industry companies launched similar initiatives and now loyalty programs are achieving near-ubiquity in many service industries, especially those in which it is difficult to differentiate offerings by product attributes.The belief is that increased profitability will result from customer retention efforts because:•    The cost of acquisition occurs only at the beginning of a relationship: the longer the relationship, the lower the amortized cost;•    Account maintenance costs decline as a percentage of total costs, or as a percentage of revenue, over the lifetime of the relationship;•    Long term customers tend to be less inclined to switch and less price sensitive which can result in stable unit sales volume and increases in dollar-sales volume;•    Long term customers may initiate word-of-mouth promotions and referrals, which cost the company nothing and arguably are the most effective form of advertising;•    Long-term customers are more likely to buy ancillary products and higher margin supplemental products;•    Long term customers tend to be satisfied with their relationship with the company and are less likely to switch to competitors, making market entry or competitors gaining market share difficult;•    Regular customers tend to be less expensive to service, as they are familiar with the processes involved, require less 'education', and are consistent in their order placement;•    Increased customer retention and loyalty makes the employees' jobs easier and more satisfying. In turn, happy employees feed back into higher customer satisfaction in a virtuous circle. Figure 2: The virtuous circle of customer loyaltyFigure 2 represents a high-level example of a virtuous cycle driven by customer satisfaction and loyalty, depicting how superiority in product and service offerings, as well as strong customer support by competent employees, lead to higher sales and ultimately profitability. As stated above, this is not a new concept, but succeeding with it is difficult. It has eluded many a company driven to achieve profitability goals. Of course, for this circle to be virtuous, the customer relationship(s) must be profitable.Trying to maintain the loyalty of unprofitable customers is not a viable business strategy. It is, therefore, important that marketers can assess the profitability of each customer (or customer segment), and either improve or terminate relationships that are not profitable. This means each customer's 'relationship costs' must be understood and compared to their 'relationship revenue'. Customer lifetime value (CLV) is the most commonly used metric here, as it is generally accepted as a representation of exactly how much each customer is worth in monetary terms, and therefore a determinant of exactly how much a service provider should be willing to spend to acquire or retain that customer.CLV models make several simplifying assumptions and often involve the following inputs:•    Churn rate represents the percentage of customers who end their relationship with a company in a given period;•    Retention rate is calculated by subtracting the churn rate percentage from 100;•    Period/horizon equates to the units of time into which a customer relationship can be divided for analysis. A year is the most commonly used period for this purpose. Customer lifetime value is a multi-period calculation, often projecting three to seven years into the future. In practice, analysis beyond this point is viewed as too speculative to be reliable. The model horizon is the number of periods used in the calculation;•    Periodic revenue is the amount of revenue collected from a customer in a given period (though this is often extended across multiple periods into the future to understand lifetime value), such as usage revenue, revenues anticipated from cross and upselling, and often some weighting for referrals by a loyal customer to others; •    Retention cost describes the amount of money the service provider must spend, in a given period, to retain an existing customer. Again, this is often forecast across multiple periods. Retention costs include customer support, billing, promotional incentives and so on;•    Discount rate means the cost of capital used to discount future revenue from a customer. Discounting is an advanced method used in more sophisticated CLV calculations;•    Profit margin is the projected profit as a percentage of revenue for the period. This may be reflected as a percentage of gross or net profit. Again, this is generally projected across the model horizon to understand lifetime value.A strong focus on managing these inputs can help service providers realize stronger customer relationships and profits, but there are some obstacles to overcome in achieving accurate calculations of CLV, such as the complexity of allocating costs across the customer base. There are many costs that serve all customers which must be properly allocated across the base, and often a simple proportional allocation across the whole base or a segment may not accurately reflect the true cost of serving that customer;  This is made worse by the fragmentation of customer information, which is likely to be across a variety of product or operations groups, and may be difficult to aggregate due to different representations.In addition, there is the complexity of account relationships and structures to take into consideration. Complex account structures may not be understood or properly represented. For example, a profitable customer may have a separate account for a second home or another family member, which may appear to be unprofitable. If the service provider cannot relate the two accounts, CLV is not properly represented and any resultant cancellation of the apparently unprofitable account may result in the customer churning from the profitable one.In summary, if service providers are to realize strong customer relationships and their attendant profits, there must be a very strong focus on data management. This needs to be coupled with analytics that help business managers and those who work in customer-facing functions offer highly personalized solutions to customers, while maintaining profitability for the service provider. It's clear that acquiring new customers is expensive. Advertising costs, campaign management expenses, promotional service pricing and discounting, and equipment subsidies make a serious dent in a new customer's profitability. That is especially true given the rising subsidies for Smartphone users, which service providers hope will result in greater profits from profits from data services profitability in future.  The situation is made worse by falling prices and greater competition in mature markets.Customer acquisition through industry consolidation isn't cheap either. A North American service provider spent about $2,000 per subscriber in its acquisition of a smaller company earlier this year. While this has allowed it to leapfrog to become the largest mobile service provider in the country, it required a total investment of more than $28 billion (including assumption of the acquiree's debt).While many operating cost synergies clearly made this deal more attractive to the acquiring company, this is certainly an expensive way to acquire customers: the cost per subscriber in this case is not out of line with the prices others have paid for acquisitions.While growth by acquisition certainly increases overall revenues, it often creates tremendous challenges for profitability. Organic growth through increased customer loyalty and retention is a more effective driver of profit, as well as a stronger predictor of future profitability. Service providers, especially those in mature markets, are increasingly recognizing this and taking steps toward a creating a more personalized, flexible and satisfying experience for their customers.In summary, the clearest path to profitability for companies in virtually all industries is through customer retention and maximization of lifetime value. Service providers would do well to recognize this and focus attention on profitable customer relationships.

    Read the article

  • Java Simple WGS84 Lat Lon to Pixel X, Y

    - by Cnich
    I've read a multitude of information regarding map projection today. The amount of information available is overwhelming. I am attempting to simply convert lat, long values into a screen X, Y coordinate not using any map. I do not need the values projected onto any map, just on the window. The window itself is representing approx. a 1500x1500 meter location. Lat, Long accuracy needed is to a 1/10th of a second. What may be some simpler ways in converting lat/long representation to the screen? I've read several articles and post regarding translation onto images, but nothing related to the natural java coordinate system. Thanks for any insight.

    Read the article

  • Compute bounding quad of a sphere with vertex shader

    - by Ben Jones
    I'm trying to implement an algorithm from a graphics paper and part of the algorithm is rendering spheres of known radius to a buffer. They say that they render the spheres by computing the location and size in a vertex shader and then doing appropriate shading in a fragment shader. Any guesses as to how they actually did this? The position and radius are known in world coordinates and the projection is perspective. Does that mean that the sphere will be projected as a circle? Thanks!

    Read the article

  • How to figure out optimal C / Gamma parameters in libsvm?

    - by Cuga
    I'm using libsvm for multi-class classification of datasets with a large number of features/attributes (around 5,800 per each item). I'd like to choose better parameters for C and Gamma than the defaults I am currently using. I've already tried running easy.py, but for the datasets I'm using, the estimated time is near forever (ran easy.py at 20, 50, 100, and 200 data samples and got a super-linear regression which projected my necessary runtime to take years). Is there a way to more quickly arrive at better C and Gamma values than the defaults? I'm using the Java libraries, if that makes any difference.

    Read the article

  • What is the maximum distance from an anchor point to a bezier curve?

    - by drawnonward
    Given a cubic bezier curve P0,P1,P2,P3 with the following properties: • Both P1 and P2 are on the same side of the line formed by P0 and P3. • P2 can be projected onto the line segment formed by P0 and P3 but P1 cannot. What is the T value for the point on the curve farthest from P3? Here is an image with an example curve. The curve bulges on the left, so there is a point on the curve farther from P3 than P0. I found this reference for finding the minimum distance from an arbitrary point to a curve. Is trial and error the only way to solve for maximum distance as well? Does it make any difference that the point is an anchor on the curve? Thanks

    Read the article

  • Merge overlapping triangles into a polygon

    - by nornagon
    I've got a bunch of overlapping triangles from a 3D model projected into a 2D plane. I need to merge each island of touching triangles into a closed, non-convex polygon. The resultant polygons shouldn't have any holes in them (since the source data doesn't). Many of the source triangles share (floating point identical) edges with other triangles in the source data. What's the easiest way to do this? Performance isn't particularly important, since this will be done at design time.

    Read the article

  • Calculate cubic bezier T value where tangent is perpendicular to anchor line.

    - by drawnonward
    Project a cubic bezier p1,p2,p3,p4 onto the line p1,p4. When p2 or p3 does not project onto the line segment between p1 and p4, the curve will bulge out from the anchor points. Is there a way to calculate the T value where the tangent of the curve is perpendicular to the anchor line? This could also be stated as finding the T values where the projected curve is farthest from the center of the line segment p1,p4. When p2 and p3 project onto the line segment, then the solutions are 0 and 1 respectively. Is there an equation for solving the more interesting case? The T value seems to depend only on the distance of the mapped control points from the anchor line segment. I can determine the value by refining guesses, but I am hoping there is a better way.

    Read the article

  • Projection matrix + world plane ~> Homography from image plane to world plane

    - by B3ret
    I think I have my wires crossed on this, it should be quite easy. I have a projection matrix from world coordinates to image coordinates (4D homogeneous to 3D homgeneous), and therefore I also have the inverse projection matrix from image coordinates to world "rays". I want to project points of the image back onto a plane within the world (which is given of course as 4D homogeneous vector). The needed homography should be uniquely identified, yet I can not figure out how to compute it. Of course I could also intersect the back-projected rays with the world plane, but this seems not a good way, knowing that there MUST be a homography doing this for me. Thanks in advance, Ben

    Read the article

  • LinqToSql: How can I create a projection to adhere to DRY?

    - by mhutter
    Just wondering if there is a way to take some of the repitition out of a LINQ to SQL projected type. Example: Table: Address Fields: AddressID, HouseNumber, Street, City, State, Zip, +20 more Class MyAddress: AddressID, HouseNumber, Street (Only 3 fields) LINQ: from a in db.Addresses select new MyAddress { AddressID = a.AddressID, HouseNumber = a.HouseNumber, Street = a.Street } The above query works perfectly, and I understand why something like this will return all 20+ fields in each row: from a in db.Addresses select new MyAddress(a); class MyAddress { public MyAddress(Address a) { this.AddressID = a.AddressID, this.HouseNumber = a.HouseNumber, this.Street = a.Street } } Which leads me to my Question: Is it possible to implement some kind of helper function or extension method to "map" from the LINQ model to MyAddress yet only return the necessary fields in the query result rather than all of the fields?

    Read the article

< Previous Page | 1 2 3 4 5  | Next Page >