Search Results

Search found 5638 results on 226 pages for 'scheduling algorithm'.

Page 3/226 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Search algorithm (with a sort algorithm already implemented)

    - by msr
    Hello, Im doing a Java application and Im facing some doubts in which concerns performance. I have a PriorityQueue which guarantees me the element removed is the one with greater priority. That PriorityQueue has instances of class Event (which implements Comparable interface). Each Event is associated with a Entity. The size of that priorityqueue could be huge and very frequently I will have to remove events associated to an entity. Right now Im using an iterator to run all the priorityqueue. However Im finding it heavy and I wonder if there are better alternatives to search and remove events associated with an entity "xpto". Any suggestions? Thanks!

    Read the article

  • Help:Graph contest problem: maybe a modified Dijkstra or another alternative algorithm

    - by newba
    Hi you all, I'm trying to do this contest exercise about graphs: XPTO is an intrepid adventurer (a little too temerarious for his own good) who boasts about exploring every corner of the universe, no matter how inhospitable. In fact, he doesn't visit the planets where people can easily live in, he prefers those where only a madman would go with a very good reason (several millions of credits for instance). His latest exploit is trying to survive in Proxima III. The problem is that Proxima III suffers from storms of highly corrosive acids that destroy everything, including spacesuits that were especially designed to withstand corrosion. Our intrepid explorer was caught in a rectangular area in the middle of one of these storms. Fortunately, he has an instrument that is capable of measuring the exact concentration of acid on each sector and how much damage it does to his spacesuit. Now, he only needs to find out if he can escape the storm. Problem The problem consists of finding an escape route that will allow XPTOto escape the noxious storm. You are given the initial energy of the spacesuit, the size of the rectangular area and the damage that the spacesuit will suffer while standing in each sector. Your task is to find the exit sector, the number of steps necessary to reach it and the amount of energy his suit will have when he leaves the rectangular area. The escape route chosen should be the safest one (i.e., the one where his spacesuit will be the least damaged). Notice that Rodericus will perish if the energy of his suit reaches zero. In case there are more than one possible solutions, choose the one that uses the least number of steps. If there are at least two sectors with the same number of steps (X1, Y1) and (X2, Y2) then choose the first if X1 < X2 or if X1 = X2 and Y1 < Y2. Constraints 0 < E = 30000 the suit's starting energy 0 = W = 500 the rectangle's width 0 = H = 500 rectangle's height 0 < X < W the starting X position 0 < Y < H the starting Y position 0 = D = 10000 the damage sustained in each sector Input The first number given is the number of test cases. Each case will consist of a line with the integers E, X and Y. The following line will have the integers W and H. The following lines will hold the matrix containing the damage D the spacesuit will suffer whilst in the corresponding sector. Notice that, as is often the case for computer geeks, (1,1) corresponds to the upper left corner. Output If there is a solution, the output will be the remaining energy, the exit sector's X and Y coordinates and the number of steps of the route that will lead Rodericus to safety. In case there is no solution, the phrase Goodbye cruel world! will be written. Sample Input 3 40 3 3 7 8 12 11 12 11 3 12 12 12 11 11 12 2 1 13 11 11 12 2 13 2 14 10 11 13 3 2 1 12 10 11 13 13 11 12 13 12 12 11 13 11 13 12 13 12 12 11 11 11 11 13 13 10 10 13 11 12 8 3 4 7 6 4 3 3 2 2 3 2 2 5 2 2 2 3 3 2 1 2 2 3 2 2 4 3 3 2 2 4 1 3 1 4 3 2 3 1 2 2 3 3 0 3 4 10 3 4 7 6 3 3 1 2 2 1 0 2 2 2 4 2 2 5 2 2 1 3 0 2 2 2 2 1 3 3 4 2 3 4 4 3 1 1 3 1 2 2 4 2 2 1 Sample Output 12 5 1 8 Goodbye cruel world! 5 1 4 2 Basically, I think we have to do a modified Dijkstra, in which the distance between nodes is the suit's energy (and we have to subtract it instead of suming up like is normal with distances) and the steps are the ....steps made along the path. The pos with the bester binomial (Energy,num_Steps) is our "way out". Important : XPTO obviously can't move in diagonals, so we have to cut out this cases. I have many ideas, but I have such a problem implementing them... Could someone please help me thinking about this with some code or, at least, ideas? Am I totally wrong?

    Read the article

  • What problems have you solved using genetic algorithms/genetic programming?

    - by knorv
    Genetic algorithms (GA) and genetic programming (GP) are interesting areas of research. I'd like to know about specific problems you - the SO reader - have solved using GA/GP and what libraries/frameworks you used if you didn't roll your own. Questions: What problems have you used GA/GP to solve? What libraries/frameworks did you use? I'm looking for first-hand experiences, so please do not answer unless you have that.

    Read the article

  • Novel fitness measure for evolutionary image matching simulation

    - by Nick Johnson
    I'm sure many people have already seen demos of using genetic algorithms to generate an image that matches a sample image. You start off with noise, and gradually it comes to resemble the target image more and more closely, until you have a more-or-less exact duplicate. All of the examples I've seen, however, use a fairly straightforward pixel-by-pixel comparison, resulting in a fairly predictable 'fade in' of the final image. What I'm looking for is something more novel: A fitness measure that comes closer to what we see as 'similar' than the naive approach. I don't have a specific result in mind - I'm just looking for something more 'interesting' than the default. Suggestions?

    Read the article

  • Algorithm on trajectory analysis.

    - by Arman
    Hello, I would like to analyse the trajectory data based on given templates. I need to stack the similar trajectories together. The data is a set of coordinates xy,xy,xy and the templates are again the lines defined by the set of control points. I don't know to what direction to go, maybe to Neural Networks or pattern recognition? Could you please advace me page, book or library to start with? kind regards Arman. PS. Is it the right place to ask the question?

    Read the article

  • Shortest Path algorithm of a different kind

    - by Ram Bhat
    Hey guys, Lets say you have a grid like this (made randomly) Now lets say you have a car starting randomly from one of the while boxes, what would be the shortest path to go through each one of the white boxes? you can visit each white box as many times as you want and cant Jump over the black boxes. The black boxes are like walls. In simple words you can move from white box to white box only.. You can move in any direction, even diagonally.

    Read the article

  • Genetic algorithm resource

    - by Siblja
    Lately I'm interested in a topic of genetic algorithms, but i couldn't find any good resource. If you know any good resource, book or a site i would appreciate it. I have solid knowledge of algorithms and A.I. but im looking for something with good introduction in genetic programing.

    Read the article

  • Algorithm to make groups of units

    - by M28
    In Age of Mythology and some other strategy games, when you select multiple units and order them to move to some place, they make a "group" when they reach the desired location: I have a Vector with several sprites, which are the selected units, the variables tarX and tarY are the target x and y. I just want an example, so you can just set the x and y position and I can adapt it to my code. Also, I would like to ask that the algorithm calls "isWalkable" for the x and y position, to determine if it's a valid position for each unit.

    Read the article

  • Factors to consider when building an algorithm for gun recoil

    - by Nate Bross
    What would be a good algorithm for calculating the recoil of a shooting guns cross-hairs? What I've got now, is something like this: Define min/max recoil based on weapon size Generate random number of "delta" movement Apply random value to X, Y, or both of cross-hairs (only "up" on the Y axis) Multiply new delta based on time from the previous shot (more recoil for full-auto) What I'm worried about is that this feels rather predicable, what other factors should one take into account when building recoil? While I'd like it to be somewhat predictable, I'd also like to keep players on their toes. I'm thinking about increasing the min/max recoil values by a large amount (relatively) and adding a weighting, so large recoils will be more rare -- it seems like a lot of effort to go into something I felt would be simple. Maybe this is just something that needs to be fine-tuned with additional playtesting, and more playtesters? I think that it's important to note, that the recoil will be a large part of the game, and is a key factor in the game being fun/challenging or not.

    Read the article

  • Scheduling algorithm optimized to execute during low usage periods.

    - by The Rook
    Lets say there is a Web Application serving mostly one country. Because of normal sleep habits website traffic follows a Sine wave, where 1 period lasts 24 hours and the lowest part of the wave is at about midnight. Is there a scheduling algorithm optimized to execute during low usage periods? I am thinking of this as a liquid that is "pored into" this sine wave to flatten out resource usage. A ideal algorithm would take the integral of this empty space. If the same tasks need to be run daily the amount of resources consumed by previous executions could be used to predict future usage by looking at the rate in which resource usage is increasing. By knowing the amount of resources required this algorithm could fill in this empty space while leaving as much buffer as possible on either side such that its interference was reduced as much as possible. It would also be possible to detect if there isn't enough resources before execution begins, this opens the door for a cloud to help out. Does anything like this exist? Or should I build it into an existing scheduler like quartz and make it open source?

    Read the article

  • How meaningful is the Big-O time complexity of an algorithm?

    - by james creasy
    Programmers often talk about the time complexity of an algorithm, e.g. O(log n) or O(n^2). Time complexity classifications are made as the input size goes to infinity, but ironically infinite input size in computation is not used. Put another way, the classification of an algorithm is based on a situation that algorithm will never be in: where n = infinity. Also, consider that a polynomial time algorithm where the exponent is huge is just as useless as an exponential time algorithm with tiny base (e.g., 1.00000001^n) is useful. Given this, how much can I rely on the Big-O time complexity to advise choice of an algorithm?

    Read the article

  • Checkers AI Algorithm

    - by John
    I am making an AI for my checkers game and I'm trying to make it as hard as possible. Here is the current criteria for a move on the hardest difficulty: 1: Look For A Block: This is when a piece is being threatened and another piece can be moved in behind it to protect it. Here is an example: Black Moves |W| |W| |W| |W| | | |W| |W| |W| |W| |W| | | |W| |W| | | | | |W| | | | | | | | | |B| | | | | |B| | | |B| |B| |B| |B| |B| |B| | | |B| |B| |B| |B| White Blocks |W| |W| |W| |W| | | |W| | | |W| |W| |W| |W| |W| |W| | | | | |W| | | | | | | | | |B| | | | | |B| | | |B| |B| |B| |B| |B| |B| | | |B| |B| |B| |B| 2: Move pieces out of danger: if any piece is being threatened, and a piece cannot block for that piece, then it will attempt to move out of the way. If the piece cannot move out of the way without still being in danger, the computer ignores the piece. 3: If the computer player owns any kings, it will attempt to 'hunt down' enemy pieces on the board, if no moves can be made that won't in danger the king or any other pieces, the computer ignores this rule. 4: Any piece that is owned by the computer that is in column 1 or 6 will attempt to go to a side. When a piece is in column 0 or 7, it is in a very strategic position because it cannot get captured while it is in either of these columns 5: It makes an educated random move, the move will not indanger the piece that is moving or any piece that is on the board. 6: If none of the above are possible it makes a random move. This question is not really specific to any language but if all examples could be in Java that would be great, considering this app is written in android. Does anyone see any room for improvement in this algorithm? Anything that would make it better at playing checkers?

    Read the article

  • C# XNA: Effecient mesh building algorithm for voxel based terrain ("top" outside layer only, non-destructible)

    - by Tim Hatch
    To put this bluntly, for non-destructible/non-constructible voxel style terrain, are generated meshes handled much better than instancing? Is there another method to achieve millions of visible quad faces per scene with ease? If generated meshes per chunk is the way to go, what kind of algorithm might I want to use based on only EVER needing the outer layer rendered? I'm using 3D Perlin Noise for terrain generation (for overhangs/caves/etc). The layout is fantastic, but even for around 20k visible faces, it's quite slow using instancing (whether it's one big draw call or multiple smaller chunks). I've simplified it to the point of removing non-visible cubes and only having the top faces of my cube-like terrain be rendered, but with 20k quad instances, it's still pretty sluggish (30fps on my machine). My goal is for the world to be made using quite small cubes. Where multiple games (IE: Minecraft) have the player 1x1 cube in width/length and 2 high, I'm shooting for 6x6 width/length and 9 high. With a lot of advantages as far as gameplay goes, it also means I could quite easily have a single scene with millions of truly visible quads. So, I have been trying to look into changing my method from instancing to mesh generation on a chunk by chunk basis. Do video cards handle this type of processing better than separate quads/cubes through instancing? What kind of existing algorithms should I be looking into? I've seen references to marching cubes a few times now, but I haven't spent much time investigating it since I don't know if it's the better route for my situation or not. I'm also starting to doubt my need of using 3D Perlin noise for terrain generation since I won't want the kind of depth it would seem best at. I just like the idea of overhangs and occasional cave-like structures, but could find no better 'surface only' algorithms to cover that. If anyone has any better suggestions there, feel free to throw them at me too. Thanks, Mythics

    Read the article

  • Which algorithm used in Advance Wars type turn based games

    - by Jan de Lange
    Has anyone tried to develop, or know of an algorithm such as used in a typical turn based game like Advance Wars, where the number of objects and the number of moves per object may be too large to search through up to a reasonable depth like one would do in a game with a smaller search base like chess? There is some path-finding needed to to engage into combat, harvest, or move to an object, so that in the next move such actions are possible. With this you can build a search tree for each item, resulting in a large tree for all items. With a cost function one can determine the best moves. Then the board flips over to the player role (min/max) and the computer searches the best player move, and flips back etc. upto a number of cycles deep. Finally it has found the best move and now it's the players turn. But he may be asleep by now... So how is this done in practice? I have found several good sources on A*, DFS, BFS, evaluation / cost functions etc. But as of yet I do not see how I can put it all together.

    Read the article

  • Scheduling Jobs in SQL Server Express - Part 2

    In my previous article Scheduling Jobs in SQL Server Express we saw how to make simple job scheduling in SQL Server 2005 Express work. We limited the scheduling to one time or daily repeats. Sometimes this isn't enough. In this article we'll take a look at how to make a scheduling solution based on Service Broker worthy of the SQL Server Agent itself.

    Read the article

  • Is there a scheduling algorithm that optimizes for "maker's schedules"?

    - by John Feminella
    You may be familiar with Paul Graham's essay, "Maker's Schedule, Manager's Schedule". The crux of the essay is that for creative and technical professionals, meetings are anathema to productivity, because they tend to lead to "schedule fragmentation", breaking up free time into chunks that are too small to acquire the focus needed to solve difficult problems. In my firm we've seen significant benefits by minimizing the amount of disruption caused, but the brute-force algorithm we use to decide schedules is not sophisticated enough to handle scheduling large groups of people well. (*) What I'm looking for is if there's are any well-known algorithms which minimize this productivity disruption, among a group of N makers and managers. In our model, There are N people. Each person pi is either a maker (Mk) or a manager (Mg). Each person has a schedule si. Everyone's schedule is H hours long. A schedule consists of a series of non-overlapping intervals si = [h1, ..., hj]. An interval is either free or busy. Two adjacent free intervals are equivalent to a single free interval that spans both. A maker's productivity is maximized when the number of free intervals is minimized. A manager's productivity is maximized when the total length of free intervals is maximized. Notice that if there are no meetings, both the makers and the managers experience optimum productivity. If meetings must be scheduled, then makers prefer that meetings happen back-to-back, while managers don't care where the meeting goes. Note that because all disruptions are treated as equally harmful to makers, there's no difference between a meeting that lasts 1 second and a meeting that lasts 3 hours if it segments the available free time. The problem is to decide how to schedule M different meetings involving arbitrary numbers of the N people, where each person in a given meeting must place a busy interval into their schedule such that it doesn't overlap with any other busy interval. For each meeting Mt the start time for the busy interval must be the same for all parties. Does an algorithm exist to solve this problem or one similar to it? My first thought was that this looks really similar to defragmentation (minimize number of distinct chunks), and there are a lot of algorithms about that. But defragmentation doesn't have much to do with scheduling. Thoughts? (*) Practically speaking this is not really a problem, because it's rare that we have meetings with more than ~5 people at once, so the space of possibilities is small.

    Read the article

  • Flood fill algorithm for Game of Go

    - by Jackson Borghi
    I'm having a hell of a time trying to figure out how to make captured stones disappear. I've read everywhere that I should use the flood fill algorithm, but I haven't had any luck with that so far. Any help would be amazing! Here is my code: package Go; import static java.lang.Math.*; import static stdlib.StdDraw.*; import java.awt.Color; public class Go2 { public static Color opposite(Color player) { if (player == WHITE) { return BLACK; } return WHITE; } public static void drawGame(Color[][] board) { Color[][][] unit = new Color[400][19][19]; for (int h = 0; h < 400; h++) { for (int x = 0; x < 19; x++) { for (int y = 0; y < 19; y++) { unit[h][x][y] = YELLOW; } } } setXscale(0, 19); setYscale(0, 19); clear(YELLOW); setPenColor(BLACK); line(0, 0, 0, 19); line(19, 19, 19, 0); line(0, 19, 19, 19); line(0, 0, 19, 0); for (double i = 0; i < 19; i++) { line(0.0, i, 19, i); line(i, 0.0, i, 19); } for (int x = 0; x < 19; x++) { for (int y = 0; y < 19; y++) { if (board[x][y] != YELLOW) { setPenColor(board[x][y]); filledCircle(x, y, 0.47); setPenColor(GRAY); circle(x, y, 0.47); } } } int h = 0; } public static void main(String[] args) { int px; int py; Color[][] temp = new Color[19][19]; Color[][] board = new Color[19][19]; Color player = WHITE; for (int i = 0; i < 19; i++) { for (int h = 0; h < 19; h++) { board[i][h] = YELLOW; temp[i][h] = YELLOW; } } while (true) { drawGame(board); while (!mousePressed()) { } px = (int) round(mouseX()); py = (int) round(mouseY()); board[px][py] = player; while (mousePressed()) { } floodFill(px, py, player, board, temp); System.out.print("XXXXX = "+ temp[px][py]); if (checkTemp(temp, board, px, py)) { for (int x = 0; x < 19; x++) { for (int y = 0; y < 19; y++) { if (temp[x][y] == GRAY) { board[x][y] = YELLOW; } } } } player = opposite(player); } } private static boolean checkTemp(Color[][] temp, Color[][] board, int x, int y) { if (x < 19 && x > -1 && y < 19 && y > -1) { if (temp[x + 1][y] == YELLOW || temp[x - 1][y] == YELLOW || temp[x][y - 1] == YELLOW || temp[x][y + 1] == YELLOW) { return false; } } if (x == 18) { if (temp[x - 1][y] == YELLOW || temp[x][y - 1] == YELLOW || temp[x][y + 1] == YELLOW) { return false; } } if (y == 18) { if (temp[x + 1][y] == YELLOW || temp[x - 1][y] == YELLOW || temp[x][y - 1] == YELLOW) { return false; } } if (y == 0) { if (temp[x + 1][y] == YELLOW || temp[x - 1][y] == YELLOW || temp[x][y + 1] == YELLOW) { return false; } } if (x == 0) { if (temp[x + 1][y] == YELLOW || temp[x][y - 1] == YELLOW || temp[x][y + 1] == YELLOW) { return false; } } else { if (x < 19) { if (temp[x + 1][y] == GRAY) { checkTemp(temp, board, x + 1, y); } } if (x >= 0) { if (temp[x - 1][y] == GRAY) { checkTemp(temp, board, x - 1, y); } } if (y < 19) { if (temp[x][y + 1] == GRAY) { checkTemp(temp, board, x, y + 1); } } if (y >= 0) { if (temp[x][y - 1] == GRAY) { checkTemp(temp, board, x, y - 1); } } } return true; } private static void floodFill(int x, int y, Color player, Color[][] board, Color[][] temp) { if (board[x][y] != player) { return; } else { temp[x][y] = GRAY; System.out.println("x = " + x + " y = " + y); if (x < 19) { floodFill(x + 1, y, player, board, temp); } if (x >= 0) { floodFill(x - 1, y, player, board, temp); } if (y < 19) { floodFill(x, y + 1, player, board, temp); } if (y >= 0) { floodFill(x, y - 1, player, board, temp); } } } }

    Read the article

  • FloodFill Algorithm for Game of Go

    - by Jackson Borghi
    I'm having a hell of a time trying to figure out how to make captured stones disappear. I've read everywhere that I should use the FloodFill algorithm, but I havent had any luck with that so far. Any help would be amazing! Here is my code: package Go; import static java.lang.Math.; import static stdlib.StdDraw.; import java.awt.Color; public class Go2 { public static Color opposite(Color player) { if (player == WHITE) { return BLACK; } return WHITE; } public static void drawGame(Color[][] board) { Color[][][] unit = new Color[400][19][19]; for (int h = 0; h < 400; h++) { for (int x = 0; x < 19; x++) { for (int y = 0; y < 19; y++) { unit[h][x][y] = YELLOW; } } } setXscale(0, 19); setYscale(0, 19); clear(YELLOW); setPenColor(BLACK); line(0, 0, 0, 19); line(19, 19, 19, 0); line(0, 19, 19, 19); line(0, 0, 19, 0); for (double i = 0; i < 19; i++) { line(0.0, i, 19, i); line(i, 0.0, i, 19); } for (int x = 0; x < 19; x++) { for (int y = 0; y < 19; y++) { if (board[x][y] != YELLOW) { setPenColor(board[x][y]); filledCircle(x, y, 0.47); setPenColor(GRAY); circle(x, y, 0.47); } } } int h = 0; } public static void main(String[] args) { int px; int py; Color[][] temp = new Color[19][19]; Color[][] board = new Color[19][19]; Color player = WHITE; for (int i = 0; i < 19; i++) { for (int h = 0; h < 19; h++) { board[i][h] = YELLOW; temp[i][h] = YELLOW; } } while (true) { drawGame(board); while (!mousePressed()) { } px = (int) round(mouseX()); py = (int) round(mouseY()); board[px][py] = player; while (mousePressed()) { } floodFill(px, py, player, board, temp); System.out.print("XXXXX = "+ temp[px][py]); if (checkTemp(temp, board, px, py)) { for (int x = 0; x < 19; x++) { for (int y = 0; y < 19; y++) { if (temp[x][y] == GRAY) { board[x][y] = YELLOW; } } } } player = opposite(player); } } private static boolean checkTemp(Color[][] temp, Color[][] board, int x, int y) { if (x < 19 && x > -1 && y < 19 && y > -1) { if (temp[x + 1][y] == YELLOW || temp[x - 1][y] == YELLOW || temp[x][y - 1] == YELLOW || temp[x][y + 1] == YELLOW) { return false; } } if (x == 18) { if (temp[x - 1][y] == YELLOW || temp[x][y - 1] == YELLOW || temp[x][y + 1] == YELLOW) { return false; } } if (y == 18) { if (temp[x + 1][y] == YELLOW || temp[x - 1][y] == YELLOW || temp[x][y - 1] == YELLOW) { return false; } } if (y == 0) { if (temp[x + 1][y] == YELLOW || temp[x - 1][y] == YELLOW || temp[x][y + 1] == YELLOW) { return false; } } if (x == 0) { if (temp[x + 1][y] == YELLOW || temp[x][y - 1] == YELLOW || temp[x][y + 1] == YELLOW) { return false; } } else { if (x < 19) { if (temp[x + 1][y] == GRAY) { checkTemp(temp, board, x + 1, y); } } if (x >= 0) { if (temp[x - 1][y] == GRAY) { checkTemp(temp, board, x - 1, y); } } if (y < 19) { if (temp[x][y + 1] == GRAY) { checkTemp(temp, board, x, y + 1); } } if (y >= 0) { if (temp[x][y - 1] == GRAY) { checkTemp(temp, board, x, y - 1); } } } return true; } private static void floodFill(int x, int y, Color player, Color[][] board, Color[][] temp) { if (board[x][y] != player) { return; } else { temp[x][y] = GRAY; System.out.println("x = " + x + " y = " + y); if (x < 19) { floodFill(x + 1, y, player, board, temp); } if (x >= 0) { floodFill(x - 1, y, player, board, temp); } if (y < 19) { floodFill(x, y + 1, player, board, temp); } if (y >= 0) { floodFill(x, y - 1, player, board, temp); } } } }

    Read the article

  • Open Source Scheduling Software?

    - by Kaiser Advisor
    Hi Everyone, I'm looking for scheduling software to schedule 25 people over 8 work sites. Most are FT and can work up to 40 hours a week, but some are part-time and can only work certain days of the week and up to a certain number of hours a week. There are 3 classes of employees: Managers, Supervisors, and Workers. They should be shuffled so that they spend approximately equal time at each of the 8 work sites and with all classes of employees; i.e., Joe the worker should spend about 1 out of 8 days on each work site, and work with managers, supervisors, and other workers equally. I tried to do this in excel with the solver, but the shuffling requirement makes it way too complicated, so I'm stuck trying to do big parts of this manually with the solver helping out with just the hour provisioning piece. Is there any open source software that could help me? Much appreciated! KA

    Read the article

  • Is there a constraint-based scheduling/calendar application?

    - by wonsungi
    Is there a constraint-based scheduling/calendar application? This application would be used to coordinate multiple people's schedules. Two basic use cases: Multiple people need to schedule a time to meet together. Everyone is busy at different days/times. Each person enters blocks of days/times they cannot meet, and the application suggests the best times to meet given a desired time range. Multiple people need to use some common resources for a specific length of time (over some time span like a week), but the exact date/time does not matter. These people enter the resources and time needed, and the application suggests the best way to share these resources. This use case still accounts for people's blocks of busy time. I imagine this program would be graphical, but other interfaces would be acceptable. Also preferable if web-based/works on both PC's and Mac's, but PC-only/Mac-only solutions are acceptable.

    Read the article

  • Pella Increases Online Appointment Scheduling and Rapidly Personalizes and Updates Marketing Initiatives

    - by Michael Snow
    Originally posted on Oracle Customers page.Oracle Customer: Pella CorporationLocation:  Pella, IowaIndustry: Industrial Manufacturing Employees:  7,100 Pella Corporation is an innovative leader in creating a better view for homes and businesses by designing, testing, manufacturing, and installing quality windows and doors for new construction, remodeling, and replacement applications. A family-owned company, Pella has an 88-year history of innovation and, today, is the second-largest manufacturer in the country of windows and doors, including patio, entry, and storm doors. The company has 10 manufacturing facilities in United States and window and door showrooms across the United States and Canada. In-home consultations are an important part of Pella’s sales process. Several years ago, the company launched an online appointment scheduling tool to improve customer convenience. While the functionality worked well, the company wanted to increase online conversion rates and decrease the number of incomplete, online appointment schedules. It also wanted to give its business analysts and other line-of-business personnel the ability to update the scheduling tool and interface quickly, without needing IT team intervention and recoding, to better capitalize on opportunities and personalize the interface for specific markets. Pella also looked to reduce IT complexity by selecting a system that integrated easily with its Oracle E-Business Suite Release 12.1 enterprise applications.Pella, which has a large Oracle footprint, selected Oracle WebCenter Sites as the foundation for its new, real-time appointment scheduling application. It used the solution to re-engineer the scheduling process and the information required to set up an appointment. Just a few months after launch, it is seeing improvement in the number of appointments booked online and experiencing fewer abandoned appointments during the scheduling process. As important, Pella can now quickly and easily make changes to images, video, and content displayed on the scheduling tool interface, delivering greater business agility. Previously, such changes required a developer and weeks of coding and testing. Today, a member of Pella’s business analyst team can complete the changes in hours. This capability enables Pella to personalize the Web experience for customers. For example, it can display different products or images for clients in different regions.The solution is also highly scalable. Pella is using Oracle WebCenter Sites for appointment scheduling now and plans to migrate Pella.com, its configurator tool, and dealer microsites onto the platform. Further, Pella plans to leverage the solution to optimize mobile devices. “Moving ahead, we expect to extensively leverage Oracle WebCenter Sites to gain greater flexibility in updating the Web experience, thanks to the ability to make updates quickly without developer resources. Segmentation and targeting capabilities will allow us to create a more personalized experience across both traditional and mobile platforms,” said Teri Lancaster, IT manager, customer experience applications, Pella Corporation. A word from Pella Corporation "Oracle WebCenter Sites?from the start?delivered important benefits. We’ve redesigned the online scheduling process and are seeing more potential customers completing consultation bookings online. More important, the solution opens a world of other possibilities as we plan to migrate Pella.com and our dealer microsites to the platform, and leverage it to optimize the Web experience for our mobile devices.” – Teri Lancaster, IT Manager, Customer Experience Applications, Pella Corporation Oracle Product and Services Oracle WebCenter Sites Why Oracle Pella has a long-standing relationship with Oracle. “We look to Oracle first for a solution. Our Oracle account team came to us with several solutions, and Oracle WebCenter Sites delivered the scalability, ease-of-use, flexibility, and scalability that we required for the appointment scheduling initiative and other Web projects on the horizon, including migrating Pella.com and optimizing our site for mobile platforms,”said Teri Lancaster, IT manager, customer experience applications, Pella Corporation. Implementation Process The Pella implementation team, working with Oracle partner Element Solutions, LLC, integrated the appointment setting application with Pella.com as well as the company’s Oracle E-Business Suite customer relationship management applications. Using Oracle WebCenter Site’s development tools and subversion capabilities to develop the application, the Element Solutions and Pella teams could work remotely and collaboratively, accelerating deployment. Pella went live with the new scheduling tool in just six months. Partner Oracle PartnerElement Solutions, LLC Element Solutions was instrumental at every major stage of the project, including design creation and approval, development, training, and rollout. “Element Solutions was a vital partner for our Oracle WebCenter Sites initiative. The team provided guidance, and more important, critical knowledge transfer at every stage?which equipped us to get the most out of this powerful and versatile solution. We were definitely collaboration partners,” Lancaster said. Resources Pella Corporation Upgrades Enterprise Applications to Continue to Improve Manufacturing Efficiency Thousands of Customers Successfully and Smoothly Upgrade to Oracle E-Business Suite 12.1 for New Functionality, Lower Operating Costs and Improved Shared Operations Managing the Virtual World

    Read the article

  • Algorithm for spreading labels in a visually appealing and intuitive way

    - by mac
    Short version Is there a design pattern for distributing vehicle labels in a non-overlapping fashion, placing them as close as possible to the vehicle they refer to? If not, is any of the method I suggest viable? How would you implement this yourself? Extended version In the game I'm writing I have a bird-eye vision of my airborne vehicles. I also have next to each of the vehicles a small label with key-data about the vehicle. This is an actual screenshot: Now, since the vehicles could be flying at different altitudes, their icons could overlap. However I would like to never have their labels overlapping (or a label from vehicle 'A' overlap the icon of vehicle 'B'). Currently, I can detect collisions between sprites and I simply push away the offending label in a direction opposite to the otherwise-overlapped sprite. This works in most situations, but when the airspace get crowded, the label can get pushed very far away from its vehicle, even if there was an alternate "smarter" alternative. For example I get: B - label A -----------label C - label where it would be better (= label closer to the vehicle) to get: B - label label - A C - label EDIT: It also has to be considered that beside the overlapping vehicles case, there might be other configurations in which vehicles'labels could overlap (the ASCII-art examples show for example three very close vehicles in which the label of A would overlap the icon of B and C). I have two ideas on how to improve the present situation, but before spending time implementing them, I thought to turn to the community for advice (after all it seems like a "common enough problem" that a design pattern for it could exist). For what it's worth, here's the two ideas I was thinking to: Slot-isation of label space In this scenario I would divide all the screen into "slots" for the labels. Then, each vehicle would always have its label placed in the closest empty one (empty = no other sprites at that location. Spiralling search From the location of the vehicle on the screen, I would try to place the label at increasing angles and then at increasing radiuses, until a non-overlapping location is found. Something down the line of: try 0°, 10px try 10°, 10px try 20°, 10px ... try 350°, 10px try 0°, 20px try 10°, 20px ...

    Read the article

  • AABB Sweeping, algorithm to solve "stacking box" problem

    - by Ivo Wetzel
    I'm currently working on a simple AABB collision system and after some fiddling the sweeping of a single box vs. another and the calculation of the response velocity needed to push them apart works flawlessly. Now on to the new problem, imagine I'm having a stack of boxes which are falling towards a ground box which isn't moving: Each of these boxes has a vertical velocity for the "gravity" value, let's say this velocity is 5. Now, the result is that they all fall into each other: The reason is obvious, since all the boxes have a downward velocity of 5, this results in no collisions when calculating the relative velocity between the boxes during sweeping. Note: The red ground box here is static (always 0 velocity, can utilize spatial partitioning ), and all dynamic static collisions are resolved first, thus the fact that the boxes stop correctly at this ground box. So, this seems to be simply an issue with the order the boxes are sweept against each other. I imagine that sorting the boxes based on their x and y velocities and then sweeping these groups correctly against each other may resolve this issues. So, I'm looking for algorithms / examples on how to implement such a system. The code can be found here: https://github.com/BonsaiDen/aabb The two files which are of interest are [box/Dynamic.lua][3] and [box/Manager.lua][4]. The project is using Love2D in case you want to run it.

    Read the article

  • Derive a algorithm to match best position

    - by Farooq Arshed
    I have pieces in my game which have stats and cost assigned to them and they can only be placed at a certain location. Lets say I have 50 pieces. e.g. Piece1 = 100 stats, 10 cost, Position A. Piece2 = 120 stats, 5 cost, Position B. Piece3 = 500 stats, 50 cost, Position C. Piece4 = 200 stats, 25 cost, Position A. and so on.. I have a board on which 12 pieces have to be allocated and have to remain inside the board cost. e.g. A board has A,B,C ... J,K,L positions and X Cost assigned to it. I have to figure out a way to place best possible piece in the correct position and should remain within the cost specified by the board. Any help would be appreciated.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >