Search Results

Search found 269 results on 11 pages for 'sealed'.

Page 3/11 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11  | Next Page >

  • Oracle IRM Desktop update

    - by martin.abrahams
    Just in time for Christmas, we have made a fresh IRM Desktop build available with a number of valuable enhancements: Office 2010 support Adobe Reader X support Enhanced compatibility with SharePoint Ability to enable the Sealed Email for Lotus Notes integration during IRM Desktop installation The kit is currently available as a patch that you can access by logging in to My Oracle Support and looking for patch 9165540. The patch enables you to download a package containing all 27 language variants of the IRM Desktop. We will be making the kit available from OTN as soon as possible, at which time you will be able to pick a particular language if preferred.

    Read the article

  • What might cause this ExecutionEngineException?

    - by Qwertie
    I am trying to use Reflection.Emit to generate a wrapper class in a dynamic assembly. Automatic wrapper generation is part of a new open-source library I'm writing called "GoInterfaces". The wrapper class implements IEnumerable<string> and wraps List<string>. In C# terms, all it does is this: class List1_7931B0B4_79328AA0 : IEnumerable<string> { private readonly List<string> _obj; public List1_7931B0B4_79328AA0(List<string> obj) { this._obj = obj; } IEnumerator IEnumerable.GetEnumerator() { return this._obj.GetEnumerator(); } public sealed IEnumerator<string> GetEnumerator() { return this._obj.GetEnumerator(); } } However, when I try to call the GetEnumerator() method on my wrapper class, I get ExecutionEngineException. So I saved my dynamic assembly to a DLL and used ildasm on it. Is there anything wrong with the following code? .class public auto ansi sealed List`1_7931B0B4_79328AA0 extends [mscorlib]System.Object implements [mscorlib]System.Collections.Generic.IEnumerable`1<string>, [Loyc.Runtime]Loyc.Runtime.IGoInterfaceWrapper { .field private initonly class [mscorlib]System.Collections.Generic.List`1<string> _obj .method public hidebysig virtual final instance class [mscorlib]System.Collections.Generic.IEnumerator`1<string> GetEnumerator() cil managed { // Code size 12 (0xc) .maxstack 1 IL_0000: ldarg.0 IL_0001: ldfld class [mscorlib]System.Collections.Generic.List`1<string> List`1_7931B0B4_79328AA0::_obj IL_0006: call instance valuetype [mscorlib]System.Collections.Generic.List`1/Enumerator<!0> class [mscorlib]System.Collections.Generic.List`1<string>::GetEnumerator() IL_000b: ret } // end of method List`1_7931B0B4_79328AA0::GetEnumerator .method public hidebysig virtual final instance class [mscorlib]System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() cil managed { .override [mscorlib]System.Collections.IEnumerable::GetEnumerator // Code size 12 (0xc) .maxstack 1 IL_0000: ldarg.0 IL_0001: ldfld class [mscorlib]System.Collections.Generic.List`1<string> List`1_7931B0B4_79328AA0::_obj IL_0006: call instance valuetype [mscorlib]System.Collections.Generic.List`1/Enumerator<!0> class [mscorlib]System.Collections.Generic.List`1<string>::GetEnumerator() IL_000b: ret } // end of method List`1_7931B0B4_79328AA0::System.Collections.IEnumerable.GetEnumerator ... I have a test suite that wraps all sorts of different things, including interfaces derived from other interfaces, and multiple interface methods with identical signatures. It's only when I try to wrap IEnumerable<T> that this problem occurs. I'd be happy to send the source code (2 *.cs files, no dependencies) if anyone would like.

    Read the article

  • WPF - TextBlock - Cannot override OnRender

    - by Nitin Chaudhari
    Hi, I am creating a custom control by deriving TextBlock, my intention is to do some custom rendering based on some dependency properties. However the OnRender method is sealed on TextBlock. Although I can get my work done by overriding OnRenderSizeChanged, this is not correct. Any ideas on how can i do it the right way? Thanks in advance.

    Read the article

  • How to extend methods to a class not to its instances.

    - by Fraga
    Hi. Extending methods to any instance is really easy: public static string LeaveJustNumbers(this string text) { return Regex.Replace(text, @"[\D]", ""); } ... string JustNumbers = "A5gfb343j4".LeaveJustNumber(); But what if i want to extend methods to a sealed class like string, to work like: string.Format("Hi:{0}","Fraga"); Is there any way to do it?

    Read the article

  • Alias for EditorAttribute

    - by Johan
    Is there a way to create a shorter alias for an EditorAttribute? Instead of: [EditorAttribute(typeof<ColorPickerDialogPropertyValueEditor>, typeof<DialogPropertyValueEditor>)] public Color4 Color { get; set; } I would like to write: using ColorPicker = EditorAttribute(typeof<ColorPickerDialogPropertyValueEditor>, typeof<DialogPropertyValueEditor>) [ColorPicker] public Color4 Color { get; set; } Unfortunately the EditorAttribute class is sealed so I cannot inherit it.

    Read the article

  • Singleton Pattern for C#

    - by cam
    I need to store a bunch of variables that need to be accessed globally and I'm wondering if a singleton pattern would be applicable. From the examples I've seen, a singleton pattern is just a static class that can't be inherited. But the examples I've seen are overly complex for my needs. What would be the very simplest singleton class? Couldn't I just make a static, sealed class with some variables inside?

    Read the article

  • references in C++

    - by Alexander
    Once I read in a statement that The language feature that "sealed the deal" to include references is operator overloading. Why are references needed to effectively support operator overloading?? Any good explanation?

    Read the article

  • Generic Type Parameter constraints in C# .NET

    - by activwerx
    Consider the following Generic class: public class Custom<T> where T : string { } This produces the following error: 'string' is not a valid constraint. A type used as a constraint must be an interface, a non-sealed class or a type parameter. Is there another way to constrain which types my generic class can use? Also, can I constrain to multiple types? E.G. T can only be string, int or byte

    Read the article

  • How to define type member constant in F# ?

    - by zproxy
    In C# one can define a type member constant like this: class Foo { public const int Bar = 600; } The IL shall looks like this. .field public static literal int32 Bar = int32(600) How can I do the same within Visual F# / FSharp? I tried this to no avail: [<Sealed>] type Foo() = [<Literal>] let Bar = 600

    Read the article

  • Decorator Design Pattern - Not Possible

    - by Lennie
    Hi, This is more a design question... You can't do a decorate design pattern if: 1) The object is marked "sealed" meaning you can't extend from it. 2) or you want to override a method but its not virtual. What can you do then? Taken that you can't change the class source code if you don't have the source code (like a 3rd party library).

    Read the article

  • Extending existing data structure in Scala.

    - by Lukasz Lew
    I have a normal tree defined in Scala. sealed abstract class Tree case class Node (...) extends Tree case class Leaf (...) extends Tree Now I want to add a member variable to all nodes and leaves in the tree. Is it possible with extend keyword or do I have to modify the tree classes by adding [T]?

    Read the article

  • How can I prevent a field from being copied to the client proxy in WCF RIA?

    - by Martin Doms
    Is there a metadata attribute I can use to prevent a field from being accessible on the client in a WCF RIA services? I sure I have seen this before, but I'm drawing a blank and Google isn't helping. It would look something like [MetadataType(typeof(User.UserMetadata))] public partial class User { internal sealed class UserMetadata { private UserMetadata() { } public int Id { get; set; } [HideFromClientProxy] public string PasswordSalt { get; set; } } }

    Read the article

  • How to pass an object from a Frame to another Frame in a Windows 8 Style App

    - by Mythul
    I have problem that i just cant figure out right now. I am trying to develop a Windows-8 style app and im stuck implementing this functionality. I have a MainWindow which contains a ListBox and a Button (lets say addButton). When i click the button i navigate to a new page, lets say AddCustomerPage with this.Frame.Navigate(typeof (AddCustomerPage)); AddCustomerPage has 1 textBox and 1 button (lets say doneButton. When i click the button i want the string in the textBox to be added to the ListBox on the previous page. This is my current functionality: 1. MainWindow is created. Click addButton AddCustomer page is created. MainWindow is destroyed(problem). Click doneButton A MainWindow object is created with a ListBox with 1 item. Repeat the add process, i always get a MainWindow with a ListBox with 1 item. Thanks for the help. Here is the code: public sealed partial class MainPage : Page { public MainPage() { this.InitializeComponent(); this.brainPageController = new PageController(); // add items from the List<String> to the listBox listGoals.ItemsSource = brainPageController.GetListGoals(); } protected override void OnNavigatedTo(NavigationEventArgs e) { var parameter = e.Parameter as String; // a simple controller that adds a string to a List<string> brainPageController.AddGoal(parameter); } private void addButton_Click(object sender, RoutedEventArgs e) { this.Frame.Navigate(typeof (GoalsInfo)); } // VARIABLES DECLARATION private PageController brainPageController; } public sealed partial class GoalsInfo : WinGoalsWIP.Common.LayoutAwarePage { public GoalsInfo() { this.InitializeComponent(); this.brainPageController = new PageController(); } protected override void LoadState(Object navigationParameter, Dictionary<String, Object> pageState) { } protected override void SaveState(Dictionary<String, Object> pageState) { } private void Button_Click_1(object sender, RoutedEventArgs e) { brainPageController.AddGoal(nameTextBox.Text); this.Frame.Navigate(typeof(MainPage), nameTextBox.Text); } // VARIABLES DECLARATION PageController brainPageController; }

    Read the article

  • Get a random folder C# .NET

    - by Joshua
    Hi. public sealed static class FolderHelper { public static string GetRandomFolder() { // do work } } But.... How? Like start at c:\ (or whatever the main drive is) and then randomly take routes? Not even sure how to do that.

    Read the article

  • Behind ASP.NET MVC Mock Objects

    - by imran_ku07
       Introduction:           I think this sentence now become very familiar to ASP.NET MVC developers that "ASP.NET MVC is designed with testability in mind". But what ASP.NET MVC team did for making applications build with ASP.NET MVC become easily testable? Understanding this is also very important because it gives you some help when designing custom classes. So in this article i will discuss some abstract classes provided by ASP.NET MVC team for the various ASP.NET intrinsic objects, including HttpContext, HttpRequest, and HttpResponse for making these objects as testable. I will also discuss that why it is hard and difficult to test ASP.NET Web Forms.      Description:           Starting from Classic ASP to ASP.NET MVC, ASP.NET Intrinsic objects is extensively used in all form of web application. They provide information about Request, Response, Server, Application and so on. But ASP.NET MVC uses these intrinsic objects in some abstract manner. The reason for this abstraction is to make your application testable. So let see the abstraction.           As we know that ASP.NET MVC uses the same runtime engine as ASP.NET Web Form uses, therefore the first receiver of the request after IIS and aspnet_filter.dll is aspnet_isapi.dll. This will start the application domain. With the application domain up and running, ASP.NET does some initialization and after some initialization it will call Application_Start if it is defined. Then the normal HTTP pipeline event handlers will be executed including both HTTP Modules and global.asax event handlers. One of the HTTP Module is registered by ASP.NET MVC is UrlRoutingModule. The purpose of this module is to match a route defined in global.asax. Every matched route must have IRouteHandler. In default case this is MvcRouteHandler which is responsible for determining the HTTP Handler which returns MvcHandler (which is derived from IHttpHandler). In simple words, Route has MvcRouteHandler which returns MvcHandler which is the IHttpHandler of current request. In between HTTP pipeline events the handler of ASP.NET MVC, MvcHandler.ProcessRequest will be executed and shown as given below,          void IHttpHandler.ProcessRequest(HttpContext context)          {                    this.ProcessRequest(context);          }          protected virtual void ProcessRequest(HttpContext context)          {                    // HttpContextWrapper inherits from HttpContextBase                    HttpContextBase ctxBase = new HttpContextWrapper(context);                    this.ProcessRequest(ctxBase);          }          protected internal virtual void ProcessRequest(HttpContextBase ctxBase)          {                    . . .          }             HttpContextBase is the base class. HttpContextWrapper inherits from HttpContextBase, which is the parent class that include information about a single HTTP request. This is what ASP.NET MVC team did, just wrap old instrinsic HttpContext into HttpContextWrapper object and provide opportunity for other framework to provide their own implementation of HttpContextBase. For example           public class MockHttpContext : HttpContextBase          {                    . . .          }                     As you can see, it is very easy to create your own HttpContext. That's what did the third party mock frameworks like TypeMock, Moq, RhinoMocks, or NMock2 to provide their own implementation of ASP.NET instrinsic objects classes.           The key point to note here is the types of ASP.NET instrinsic objects. In ASP.NET Web Form and ASP.NET MVC. For example in ASP.NET Web Form the type of Request object is HttpRequest (which is sealed) and in ASP.NET MVC the type of Request object is HttpRequestBase. This is one of the reason that makes test in ASP.NET WebForm is difficult. because their is no base class and the HttpRequest class is sealed, therefore it cannot act as a base class to others. On the other side ASP.NET MVC always uses a base class to give a chance to third parties and unit test frameworks to create thier own implementation ASP.NET instrinsic object.           Therefore we can say that in ASP.NET MVC, instrinsic objects are of type base classes (for example HttpContextBase) .Actually these base classes had it's own implementation of same interface as the intrinsic objects it abstracts. It includes only virtual members which simply throws an exception. ASP.NET MVC also provides the corresponding wrapper classes (for example, HttpRequestWrapper) which provides a concrete implementation of the base classes in the form of ASP.NET intrinsic object. Other wrapper classes may be defined by third parties in the form of a mock object for testing purpose.           So we can say that a Request object in ASP.NET MVC may be HttpRequestWrapper or may be MockRequestWrapper(assuming that MockRequestWrapper class is used for testing purpose). Here is list of ASP.NET instrinsic and their implementation in ASP.NET MVC in the form of base and wrapper classes. Base Class Wrapper Class ASP.NET Intrinsic Object Description HttpApplicationStateBase HttpApplicationStateWrapper Application HttpApplicationStateBase abstracts the intrinsic Application object HttpBrowserCapabilitiesBase HttpBrowserCapabilitiesWrapper HttpBrowserCapabilities HttpBrowserCapabilitiesBase abstracts the HttpBrowserCapabilities class HttpCachePolicyBase HttpCachePolicyWrapper HttpCachePolicy HttpCachePolicyBase abstracts the HttpCachePolicy class HttpContextBase HttpContextWrapper HttpContext HttpContextBase abstracts the intrinsic HttpContext object HttpFileCollectionBase HttpFileCollectionWrapper HttpFileCollection HttpFileCollectionBase abstracts the HttpFileCollection class HttpPostedFileBase HttpPostedFileWrapper HttpPostedFile HttpPostedFileBase abstracts the HttpPostedFile class HttpRequestBase HttpRequestWrapper Request HttpRequestBase abstracts the intrinsic Request object HttpResponseBase HttpResponseWrapper Response HttpResponseBase abstracts the intrinsic Response object HttpServerUtilityBase HttpServerUtilityWrapper Server HttpServerUtilityBase abstracts the intrinsic Server object HttpSessionStateBase HttpSessionStateWrapper Session HttpSessionStateBase abstracts the intrinsic Session object HttpStaticObjectsCollectionBase HttpStaticObjectsCollectionWrapper HttpStaticObjectsCollection HttpStaticObjectsCollectionBase abstracts the HttpStaticObjectsCollection class      Summary:           ASP.NET MVC provides a set of abstract classes for ASP.NET instrinsic objects in the form of base classes, allowing someone to create their own implementation. In addition, ASP.NET MVC also provide set of concrete classes in the form of wrapper classes. This design really makes application easier to test and even application may replace concrete implementation with thier own implementation, which makes ASP.NET MVC very flexable.

    Read the article

  • Routing Issue in ASP.NET MVC 3 RC 2

    - by imran_ku07
         Introduction:             Two weeks ago, ASP.NET MVC team shipped the ASP.NET MVC 3 RC 2 release. This release includes some new features and some performance optimization. This release also fixes most of the bugs but still some minor issues are present in this release. Some of these issues are already discussed by Scott Guthrie at Update on ASP.NET MVC 3 RC2 (and a workaround for a bug in it). In addition to these issues, I have found another issue in this release regarding routing. In this article, I will show you the issue regarding routing and a simple workaround for this issue.       Description:             The easiest way to understand an issue is to reproduce it in the application. So create a MVC 2 application and a MVC 3 RC 2 application. Then in both applications, just open global.asax file and update the default route as below,     routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( "Default", // Route name "{controller}/{action}/{id1}/{id2}", // URL with parameters new { controller = "Home", action = "Index", id1 = UrlParameter.Optional, id2 = UrlParameter.Optional } // Parameter defaults );              Then just open Index View and add the following lines,    <%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage" %> <asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server"> Home Page </asp:Content> <asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server"> <% Html.RenderAction("About"); %> </asp:Content>             The above view will issue a child request to About action method. Now run both applications. ASP.NET MVC 2 application will run just fine. But ASP.NET MVC 3 RC 2 application will throw an exception as shown below,                  You may think that this is a routing issue but this is not the case here as both ASP.NET MVC 2 and ASP.NET MVC  3 RC 2 applications(created above) are built with .NET Framework 4.0 and both will use the same routing defined in System.Web. Something is wrong in ASP.NET MVC 3 RC 2. So after digging into ASP.NET MVC source code, I have found that the UrlParameter class in ASP.NET MVC 3 RC 2 overrides the ToString method which simply return an empty string.     public sealed class UrlParameter { public static readonly UrlParameter Optional = new UrlParameter(); private UrlParameter() { } public override string ToString() { return string.Empty; } }             In MVC 2 the ToString method was not overridden. So to quickly fix the above problem just replace UrlParameter.Optional default value with a different value other than null or empty(for example, a single white space) or replace UrlParameter.Optional default value with a new class object containing the same code as UrlParameter class have except the ToString method is not overridden (or with a overridden ToString method that return a string value other than null or empty). But by doing this you will loose the benefit of ASP.NET MVC 2 Optional URL Parameters. There may be many different ways to fix the above problem and not loose the benefit of optional parameters. Here I will create a new class MyUrlParameter with the same code as UrlParameter class have except the ToString method is not overridden. Then I will create a base controller class which contains a constructor to remove all MyUrlParameter route data parameters, same like ASP.NET MVC doing with UrlParameter route data parameters early in the request.     public class BaseController : Controller { public BaseController() { if (System.Web.HttpContext.Current.CurrentHandler is MvcHandler) { RouteValueDictionary rvd = ((MvcHandler)System.Web.HttpContext.Current.CurrentHandler).RequestContext.RouteData.Values; string[] matchingKeys = (from entry in rvd where entry.Value == MyUrlParameter.Optional select entry.Key).ToArray(); foreach (string key in matchingKeys) { rvd.Remove(key); } } } } public class HomeController : BaseController { public ActionResult Index(string id1) { ViewBag.Message = "Welcome to ASP.NET MVC!"; return View(); } public ActionResult About() { return Content("Child Request Contents"); } }     public sealed class MyUrlParameter { public static readonly MyUrlParameter Optional = new MyUrlParameter(); private MyUrlParameter() { } }     routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( "Default", // Route name "{controller}/{action}/{id1}/{id2}", // URL with parameters new { controller = "Home", action = "Index", id1 = MyUrlParameter.Optional, id2 = MyUrlParameter.Optional } // Parameter defaults );             MyUrlParameter class is a copy of UrlParameter class except that MyUrlParameter class not overrides the ToString method. Note that the default route is modified to use MyUrlParameter.Optional instead of UrlParameter.Optional. Also note that BaseController class constructor is removing MyUrlParameter parameters from the current request route data so that the model binder will not bind these parameters with action method parameters. Now just run the ASP.NET MVC 3 RC 2 application again, you will find that it runs just fine.             In case if you are curious to know that why ASP.NET MVC 3 RC 2 application throws an exception if UrlParameter class contains a ToString method which returns an empty string, then you need to know something about a feature of routing for url generation. During url generation, routing will call the ParsedRoute.Bind method internally. This method includes a logic to match the route and build the url. During building the url, ParsedRoute.Bind method will call the ToString method of the route values(in our case this will call the UrlParameter.ToString method) and then append the returned value into url. This method includes a logic after appending the returned value into url that if two continuous returned values are empty then don't match the current route otherwise an incorrect url will be generated. Here is the snippet from ParsedRoute.Bind method which will prove this statement.       if ((builder2.Length > 0) && (builder2[builder2.Length - 1] == '/')) { return null; } builder2.Append("/"); ........................................................... ........................................................... ........................................................... ........................................................... if (RoutePartsEqual(obj3, obj4)) { builder2.Append(UrlEncode(Convert.ToString(obj3, CultureInfo.InvariantCulture))); continue; }             In the above example, both id1 and id2 parameters default values are set to UrlParameter object and UrlParameter class include a ToString method that returns an empty string. That's why this route will not matched.            Summary:             In this article I showed you the issue regarding routing and also showed you how to workaround this problem. I explained this issue with an example by creating a ASP.NET MVC 2 and a ASP.NET MVC 3 RC 2 application. Finally I also explained the reason for this issue. Hopefully you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • We've completed the first iteration

    - by CliveT
    There are a lot of features in C# that are implemented by the compiler and not by the underlying platform. One such feature is a lambda expression. Since local variables cannot be accessed once the current method activation finishes, the compiler has to go out of its way to generate a new class which acts as a home for any variable whose lifetime needs to be extended past the activation of the procedure. Take the following example:     Random generator = new Random();     Func func = () = generator.Next(10); In this case, the compiler generates a new class called c_DisplayClass1 which is marked with the CompilerGenerated attribute. [CompilerGenerated] private sealed class c__DisplayClass1 {     // Fields     public Random generator;     // Methods     public int b__0()     {         return this.generator.Next(10);     } } Two quick comments on this: (i)    A display was the means that compilers for languages like Algol recorded the various lexical contours of the nested procedure activations on the stack. I imagine that this is what has led to the name. (ii)    It is a shame that the same attribute is used to mark all compiler generated classes as it makes it hard to figure out what they are being used for. Indeed, you could imagine optimisations that the runtime could perform if it knew that classes corresponded to certain high level concepts. We can see that the local variable generator has been turned into a field in the class, and the body of the lambda expression has been turned into a method of the new class. The code that builds the Func object simply constructs an instance of this class and initialises the fields to their initial values.     c__DisplayClass1 class2 = new c__DisplayClass1();     class2.generator = new Random();     Func func = new Func(class2.b__0); Reflector already contains code to spot this pattern of code and reproduce the form containing the lambda expression, so this is example is correctly decompiled. The use of compiler generated code is even more spectacular in the case of iterators. C# introduced the idea of a method that could automatically store its state between calls, so that it can pick up where it left off. The code can express the logical flow with yield return and yield break denoting places where the method should return a particular value and be prepared to resume.         {             yield return 1;             yield return 2;             yield return 3;         } Of course, there was already a .NET pattern for expressing the idea of returning a sequence of values with the computation proceeding lazily (in the sense that the work for the next value is executed on demand). This is expressed by the IEnumerable interface with its Current property for fetching the current value and the MoveNext method for forcing the computation of the next value. The sequence is terminated when this method returns false. The C# compiler links these two ideas together so that an IEnumerator returning method using the yield keyword causes the compiler to produce the implementation of an Iterator. Take the following piece of code.         IEnumerable GetItems()         {             yield return 1;             yield return 2;             yield return 3;         } The compiler implements this by defining a new class that implements a state machine. This has an integer state that records which yield point we should go to if we are resumed. It also has a field that records the Current value of the enumerator and a field for recording the thread. This latter value is used for optimising the creation of iterator instances. [CompilerGenerated] private sealed class d__0 : IEnumerable, IEnumerable, IEnumerator, IEnumerator, IDisposable {     // Fields     private int 1__state;     private int 2__current;     public Program 4__this;     private int l__initialThreadId; The body gets converted into the code to construct and initialize this new class. private IEnumerable GetItems() {     d__0 d__ = new d__0(-2);     d__.4__this = this;     return d__; } When the class is constructed we set the state, which was passed through as -2 and the current thread. public d__0(int 1__state) {     this.1__state = 1__state;     this.l__initialThreadId = Thread.CurrentThread.ManagedThreadId; } The state needs to be set to 0 to represent a valid enumerator and this is done in the GetEnumerator method which optimises for the usual case where the returned enumerator is only used once. IEnumerator IEnumerable.GetEnumerator() {     if ((Thread.CurrentThread.ManagedThreadId == this.l__initialThreadId)               && (this.1__state == -2))     {         this.1__state = 0;         return this;     } The state machine itself is implemented inside the MoveNext method. private bool MoveNext() {     switch (this.1__state)     {         case 0:             this.1__state = -1;             this.2__current = 1;             this.1__state = 1;             return true;         case 1:             this.1__state = -1;             this.2__current = 2;             this.1__state = 2;             return true;         case 2:             this.1__state = -1;             this.2__current = 3;             this.1__state = 3;             return true;         case 3:             this.1__state = -1;             break;     }     return false; } At each stage, the current value of the state is used to determine how far we got, and then we generate the next value which we return after recording the next state. Finally we return false from the MoveNext to signify the end of the sequence. Of course, that example was really simple. The original method body didn't have any local variables. Any local variables need to live between the calls to MoveNext and so they need to be transformed into fields in much the same way that we did in the case of the lambda expression. More complicated MoveNext methods are required to deal with resources that need to be disposed when the iterator finishes, and sometimes the compiler uses a temporary variable to hold the return value. Why all of this explanation? We've implemented the de-compilation of iterators in the current EAP version of Reflector (7). This contrasts with previous version where all you could do was look at the MoveNext method and try to figure out the control flow. There's a fair amount of things we have to do. We have to spot the use of a CompilerGenerated class which implements the Enumerator pattern. We need to go to the class and figure out the fields corresponding to the local variables. We then need to go to the MoveNext method and try to break it into the various possible states and spot the state transitions. We can then take these pieces and put them back together into an object model that uses yield return to show the transition points. After that Reflector can carry on optimising using its usual optimisations. The pattern matching is currently a little too sensitive to changes in the code generation, and we only do a limited analysis of the MoveNext method to determine use of the compiler generated fields. In some ways, it is a pity that iterators are compiled away and there is no metadata that reflects the original intent. Without it, we are always going to dependent on our knowledge of the compiler's implementation. For example, we have noticed that the Async CTP changes the way that iterators are code generated, so we'll have to do some more work to support that. However, with that warning in place, we seem to do a reasonable job of decompiling the iterators that are built into the framework. Hopefully, the EAP will give us a chance to find examples where we don't spot the pattern correctly or regenerate the wrong code, and we can improve things. Please give it a go, and report any problems.

    Read the article

  • Lenovo ThinkServer TS130 1105 - does 32/64 depend on RAM?

    - by Ecnerwal
    Just got in a Lenovo ThinkServer TS130 1105 (Xeon E3-1225V1) and a (new, sealed, holographed, looks legit) copy of Windows Server 2008 32/64 (standard) to run on it for a pretty lightweight job (currently handled, adequately, by a terrifyingly old Optima P4 running Windows 2000 server - really lightweight, but long-past-due for replacement, without any particular need or excuse for server 2012...) The 64 bit disc sits there and does nothing. The 32 bit disc boots. I haven't spotted any mention of this in the TS130 Manual (I have now combed it, and find no mention of a need to populate in pairs - a preferred order to populate in, yes, but no mention of pairs being required) but I begin to wonder if it's due to the fact that the 4GB RAM suppled with it was a single DIMM, rather than a pair. Better for upgrading, but perhaps requiring an upgrade (or sidegrade) right away to install the x64 version?? Anyone know? I tried the 64-bit DVD on a desktop with an AMD Athlon II X4 635 processor which normally runs Windows7 in 64 bit, and it booted up just fine.

    Read the article

  • Creating encrypted database for work

    - by Baldur
    My boss posed this problem to me: Encrypted: We need an encrypted database for miscellanious passwords we use at work that are currently only in people's head. Easily accessable: Someone needs to be able to quickly access specific passwords, possibly at hectic moments. This requires any sort of public key management (keeping it on a USB key in a sealed envelope?) to be relatively easy. Access control: The system should have groups of passwords where only specific people have access to specific groups. Recoverability: We need to make sure passwords from one group aren't lost even if the only users with direct access quit or pass away—hence we need some way where (for example) any two members of senior management may override the system (see the treshold link below) and retrieve all the passwords with their key. The first thing that jumped into my mind was some form of threshold and asymmetric cryptography but I don't want to reinvent the wheel, are there any solutions for this? Any software should preferrably be free and open-source.

    Read the article

  • XNA: Camera's Rotation and Translation matrices seem to interfere with each other

    - by Danjen
    I've been following the guide here for how to create a custom 2D camera in XNA. It works great, I've implemented it before, but for some reason, the matrix math is throwing me off. public sealed class Camera2D { public Vector2 Origin { get; set; } public Vector2 Position { get; set; } public float Scale { get; set; } public float Rotation { get; set; } } It might be easier to just show you a picture of my problem: http://i.imgur.com/H1l6LEx.png What I want to do is allow the camera to pivot around any given point. Right now, I have the rotations mapped to my shoulder buttons on a gamepad, and if I press them, it should rotate around the point the camera is currently looking at. Then, I use the left stick to move the camera around. The problem is that after it's been rotated, pressing "up" results in it being used relative to the rotation, creating the image above. I understand that matrices have to be applied in a certain order, and that I have to offset the thing to be rotated around the world origin and move it back, but it just won't work! public Matrix GetTransformationMatrix() { Matrix mRotate = Matrix.Identity * Matrix.CreateTranslation(-Origin.X, -Origin.Y, 0.00f) * // Move origin to world center Matrix.CreateRotationZ(MathHelper.ToRadians(Rotation)) * // Apply rotation Matrix.CreateTranslation(+Origin.X, +Origin.Y, 0.00f); // Undo the move operation Matrix mTranslate = Matrix.Identity * Matrix.CreateTranslation(-Position.X, Position.Y, 0.00f); // Apply the actual translation return mRotate * mTranslate; } So to recap, it seems I can have it rotate around an arbitrary point and lose the ability to have "up" move the camera straight up, or I can rotate it around the world origin and have the camera move properly, but not both.

    Read the article

  • AJI Report #19 | Scott K Davis and his son Tommy on Gamification and Programming for Kids

    - by Jeff Julian
    We are very excited about this show. John and Jeff sat down with Scott Davis and his son Tommy to talk about Gamification and Programming for Kids. Tommy is nine years old and the Iowa Code Camp was his second time presenting. Scott and Tommy introduce a package called Scratch that was developed by MIT to teach kids about logic and interacting with programming using sprites. Tommy's favorite experience with programming right now is Lego Mindstorms because of the interaction with the Legos and the development. Most adults when they get started with development also got started with interacting more with the physical machines. The next generation is given amazing tools, but the tools tend to be sealed and the physical interaction is not there. With some of these alternative hobby platforms like Legos, Arduino, and .NET Micro Framework, kids can write some amazing application and see their code work with physical movement and interaction with devices and sensors. In the second half of this podcast, Scott talks about how companies can us Gamification to prompt employees to interact with software and processes in the organization. We see gamification throughout the consumer space and you need to do is open up the majority of the apps on our phones or tablets and there is some interaction point to give the user a reward for using the tool. Scott gets into his product Qonqr which is described as the board game Risk and Foursquare together. Scott gets into the different mindsets of gamers (Bartle Index) and how you can use these mindsets to get the most out of your team through gamification techniques. Listen to the Show Site: http://scottkdavis.com/ Twitter: @ScottKDavis LinkedIn: ScottKDavis Scratch: http://scratch.mit.edu/ Lego Mindstorms: http://mindstorms.lego.com/ Bartle Test: Wikipedia Gamification: Wikipedia

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11  | Next Page >