Search Results

Search found 33242 results on 1330 pages for 'database optimization'.

Page 30/1330 | < Previous Page | 26 27 28 29 30 31 32 33 34 35 36 37  | Next Page >

  • Python optimization

    - by Rami Jarrar
    Hi, I do like this: f = open('wl4.txt', 'w') hh = 0 ###################################### for n in range(1,5): for l in range(33,127): if n==1: b = chr(l) + '\n' f.write(b) hh += 1 elif n==2: for s0 in range(33, 127): b = chr(l) + chr(s0) + '\n' f.write(b) hh += 1 elif n==3: for s0 in range(33, 127): for s1 in range(33, 127): b = chr(l) + chr(s0) + chr(s1) + '\n' f.write(b) hh += 1 elif n==4: for s0 in range(33, 127): for s1 in range(33, 127): for s2 in range(33,127): b = chr(l) + chr(s0) + chr(s1) + chr(s2) + '\n' f.write(b) hh += 1 ###################################### print "We Made %d Words." %(hh) ###################################### f.close() So, is there any method to make it faster?

    Read the article

  • Open space sitting optimization algorithm

    - by Georgy Bolyuba
    As a result of changes in the company, we have to rearrange our sitting plan: one room with 10 desks in it. Some desks are more popular than others for number of reasons. One solution would be to draw a desk number from a hat. We think there is a better way to do it. We have 10 desks and 10 people. Lets give every person in this contest 50 hypothetical tokens to bid on the desks. There is no limit of how much you bid on one desk, you can put all 50, which would be saying "I want to sit only here, period". You can also say "I do not care" by giving every desk 5 tokens. Important note: nobody knows what other people are doing. Everyone has to decide based only on his/her best interest (sounds familiar?) Now lets say we obtained these hypothetical results: # | Desk# >| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 1 | Alise | 30 | 2 | 2 | 1 | 0 | 0 | 0 | 15 | 0 | 0 | = 50 2 | Bob | 20 | 15 | 0 | 10 | 1 | 1 | 1 | 1 | 1 | 0 | = 50 ... 10 | Zed | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | = 50 Now, what we need to find is that one (or more) configuration(s) that gives us maximum satisfaction (i.e. people get desks they wanted taking into account all the bids and maximizing on the total of the group. Naturally the assumption is the more one bade on the desk the more he/she wants it). Since there are only 10 people, I think we can brute force it looking into all possible configurations, but I was wondering it there is a better algorithm for solving this kind of problems?

    Read the article

  • Compilier optimization of repeated accessor calls C#

    - by apocalypse9
    I've found recently that for some types of financial calculations that the following pattern is much easier to follow and test especially in situations where we may need to get numbers from various stages of the computation. public class nonsensical_calculator { ... double _rate; int _term; int _days; double monthlyRate { get { return _rate / 12; }} public double days { get { return (1 - i); }} double ar { get { return (1+ days) /(monthlyRate * days) double bleh { get { return Math.Pow(ar - days, _term) public double raar { get { return bleh * ar/2 * ar / days; }} .... } Obviously this often results in multiple calls to the same accessor within a given formula. I was curious as to whether or not the compiler is smart enough to optimize away these repeated calls with no intervening change in state, or whether this style is causing a decent performance hit. Further reading suggestions are always appreciated

    Read the article

  • Optimization of running total calculation in SQL for multiple values per join condition

    - by Kiril
    I have the following table (test_table): date value --------------- d1 10.0 d1 20.0 d2 60.0 d2 10.0 d2 -20.0 d3 40.0 I calculate the running total as follows. I use the same query twice, because first I need to calculate the values for a specifi date, and afterwards I can calculate the running total. Otherwise, joining the two tables where date is not unique, I would get too many results from the join: SELECT t1.date, SUM(t2.value) AS total FROM (SELECT date, SUM(value) AS value FROM test_table GROUP BY date) AS t1 JOIN (SELECT date, SUM(value) AS value FROM test_table GROUP BY date) AS t2 ON t1.date >= t2.date GROUP BY t1.date ORDER BY t1.date This gives me (which is fine): date total ------------- d1 30.0 d2 80.0 d3 120.0 BUT, this query isn't very efficient, because I need to change conditions in two places, if necessary. In production, the test_table is a lot bigger ( 4 Mio. rows), and the query takes too much time to complete. Question: How can I avoid using the same query twice?

    Read the article

  • Python: Memory usage and optimization when modifying lists

    - by xApple
    The problem My concern is the following: I am storing a relativity large dataset in a classical python list and in order to process the data I must iterate over the list several times, perform some operations on the elements, and often pop an item out of the list. It seems that deleting one item out of a Python list costs O(N) since Python has to copy all the items above the element at hand down one place. Furthermore, since the number of items to delete is approximately proportional to the number of elements in the list this results in an O(N^2) algorithm. I am hoping to find a solution that is cost effective (time and memory-wise). I have studied what I could find on the internet and have summarized my different options below. Which one is the best candidate ? Keeping a local index: while processingdata: index = 0 while index < len(somelist): item = somelist[index] dosomestuff(item) if somecondition(item): del somelist[index] else: index += 1 This is the original solution I came up with. Not only is this not very elegant, but I am hoping there is better way to do it that remains time and memory efficient. Walking the list backwards: while processingdata: for i in xrange(len(somelist) - 1, -1, -1): dosomestuff(item) if somecondition(somelist, i): somelist.pop(i) This avoids incrementing an index variable but ultimately has the same cost as the original version. It also breaks the logic of dosomestuff(item) that wishes to process them in the same order as they appear in the original list. Making a new list: while processingdata: for i, item in enumerate(somelist): dosomestuff(item) newlist = [] for item in somelist: if somecondition(item): newlist.append(item) somelist = newlist gc.collect() This is a very naive strategy for eliminating elements from a list and requires lots of memory since an almost full copy of the list must be made. Using list comprehensions: while processingdata: for i, item in enumerate(somelist): dosomestuff(item) somelist[:] = [x for x in somelist if somecondition(x)] This is very elegant but under-the-cover it walks the whole list one more time and must copy most of the elements in it. My intuition is that this operation probably costs more than the original del statement at least memory wise. Keep in mind that somelist can be huge and that any solution that will iterate through it only once per run will probably always win. Using the filter function: while processingdata: for i, item in enumerate(somelist): dosomestuff(item) somelist = filter(lambda x: not subtle_condition(x), somelist) This also creates a new list occupying lots of RAM. Using the itertools' filter function: from itertools import ifilterfalse while processingdata: for item in itertools.ifilterfalse(somecondtion, somelist): dosomestuff(item) This version of the filter call does not create a new list but will not call dosomestuff on every item breaking the logic of the algorithm. I am including this example only for the purpose of creating an exhaustive list. Moving items up the list while walking while processingdata: index = 0 for item in somelist: dosomestuff(item) if not somecondition(item): somelist[index] = item index += 1 del somelist[index:] This is a subtle method that seems cost effective. I think it will move each item (or the pointer to each item ?) exactly once resulting in an O(N) algorithm. Finally, I hope Python will be intelligent enough to resize the list at the end without allocating memory for a new copy of the list. Not sure though. Abandoning Python lists: class Doubly_Linked_List: def __init__(self): self.first = None self.last = None self.n = 0 def __len__(self): return self.n def __iter__(self): return DLLIter(self) def iterator(self): return self.__iter__() def append(self, x): x = DLLElement(x) x.next = None if self.last is None: x.prev = None self.last = x self.first = x self.n = 1 else: x.prev = self.last x.prev.next = x self.last = x self.n += 1 class DLLElement: def __init__(self, x): self.next = None self.data = x self.prev = None class DLLIter: etc... This type of object resembles a python list in a limited way. However, deletion of an element is guaranteed O(1). I would not like to go here since this would require massive amounts of code refactoring almost everywhere.

    Read the article

  • optimization mvc code

    - by user276640
    i have such code var prj = _dataContext.Project.FirstOrDefault(p => p.isPopular == true); if (prj != null) { prj.isPopular = false; _dataContext.SaveChanges(); } prj = Details(id); prj.isPopular = true; _dataContext.SaveChanges(); idea-i have only one record with value true in field isPopular, so i get it and make false, then i get object by id and make it isPopular true. i don't like 2 calls on savechanges. any ideas?

    Read the article

  • MySQL efficiency as it relates to the database/table size

    - by mlissner
    I'm building a system using django, Sphinx and MySQL that's very quickly becoming quite large. The database currently has about 2000 rows, and I've written a program that's going to populate it with another 40,000 rows in a couple days. Since the database is live right now, and since I've never had a database with this much information in it, I'm worried about some things: Is adding all these rows going to seriously degrade the efficiency of my django app? Will I need to go back through it and optimize all my database calls so they're doing things more cleverly? Or will this make the database slow all around to the extent that I can't do anything about it at all? If you scoff at my 40k rows, then, my next question is, at what point SHOULD I be concerned? I will likely be adding another couple hundred thousand soon, so I worry, and I fret. How is sphinx going to feel about all this? Is it going to freak out when it realizes it has to index all this data? Or will it be fine? Is this normal for it? If it is, at what point should I be concerned that it's too much data for Sphinx? Thanks for any thoughts.

    Read the article

  • MySQL query optimization JOIN

    - by Pierre
    Hi, I need your help to optimize those mysql query, both are in my slow query logs. SELECT a.nom, c.id_apps, c.id_commentaire, c.id_utilisateur, c.note_commentaire, u.nom_utilisateur FROM comments AS c LEFT JOIN apps AS a ON c.id_apps = a.id_apps LEFT JOIN users AS u ON c.id_utilisateur = u.id_utilisateur ORDER BY c.date_commentaire DESC LIMIT 5; There is a MySQL INDEX on c.id_apps, a.id_apps, c.id_utilisateur, u.id_utilisateur and c.date_commentaire. SELECT a.id_apps, a.id_itunes, a.nom, a.prix, a.resume, c.nom_fr_cat, e.nom_edit FROM apps AS a LEFT JOIN cat AS c ON a.categorie = c.id_cat LEFT JOIN edit AS e ON a.editeur = e.id_edit ORDER BY a.id_apps DESC LIMIT 20; There is a MySQL INDEX on a.categorie, c.id_cat, a.editeur, e.id_edit and a.id_apps Thanks

    Read the article

  • Solver Foundation Optimization - 1D Bin Packing

    - by Val Nolav
    I want to optimize loading marbles into trucks. I do not know, if I can use Solver Foundation class for that purpose. Before, I start writing code, I wanted to ask it here. 1- Marbles can be in any weight between 1 to 24 Tons. 2 - A truck can hold maximum of 24 Tons. 3- It can be loaded as many marble cubes, as it can take for upto 24 tones, which means there is no Volume limitation. 4- There can be between 200 up to 500 different marbles depending on time. GOAL - The goal is to load marbles in minimum truck shipment. How can I do that without writing a lot of if conditions and for loops? Can I use Microsoft Solver Foundation for that purpose? I read the documentation provided by Microsoft however, I could not find a scenario similar to mine. M1+ M2 + M3 + .... Mn <=24 this is for one truck shipment. Let say there are 200 different Marbles and Marble weights are Float. Thanks

    Read the article

  • query optimization

    - by Gaurav
    I have a query of the form SELECT uid1,uid2 FROM friend WHERE uid1 IN (SELECT uid2 FROM friend WHERE uid1='.$user_id.') and uid2 IN (SELECT uid2 FROM friend WHERE uid1='.$user_id.') The problem now is that the nested query SELECT uid2 FROM friend WHERE uid1='.$user_id.' returns a very large number of ids(approx. 5000). The table structure of the friend table is uid1(int), uid2(int). This table is used to determine whether two users are linked together as friends. Any workaround? Can I write the query in a different way? Or is there some other way to solve this issue. I'm sure I am not the first person to face such a problem. Any help would be greatly appreciated.

    Read the article

  • Haskell optimization of a function looking for a bytestring terminator

    - by me2
    Profiling of some code showed that about 65% of the time I was inside the following code. What it does is use the Data.Binary.Get monad to walk through a bytestring looking for the terminator. If it detects 0xff, it checks if the next byte is 0x00. If it is, it drops the 0x00 and continues. If it is not 0x00, then it drops both bytes and the resulting list of bytes is converted to a bytestring and returned. Any obvious ways to optimize this? I can't see it. parseECS = f [] False where f acc ff = do b <- getWord8 if ff then if b == 0x00 then f (0xff:acc) False else return $ L.pack (reverse acc) else if b == 0xff then f acc True else f (b:acc) False

    Read the article

  • (x86) Assembler Optimization

    - by Pindatjuh
    I'm building a compiler/assembler/linker in Java for the x86-32 (IA32) processor targeting Windows. High-level concepts of a "language" (in essential a Java API for creating executables) are translated into opcodes, which then are wrapped and outputted to a file. The translation process has several phases, one is the translation between languages: the highest-level code is translated into the medium-level code which is then translated into the lowest-level code (probably more than 3 levels). My problem is the following; if I have higher-level code (X and Y) translated to lower-level code (x, y, U and V), then an example of such a translation is, in pseudo-code: x + U(f) // generated by X + V(f) + y // generated by Y (An easy example) where V is the opposite of U (compare with a stack push as U and a pop as V). This needs to be 'optimized' into: x + y (essentially removing the "useless" code) My idea was to use regular expressions. For the above case, it'll be a regular expression looking like this: x:(U(x)+V(x)):null, meaning for all x find U(x) followed by V(x) and replace by null. Imagine more complex regular expressions, for more complex optimizations. This should work on all levels. What do you suggest? What would be a good approach to optimize in these situations?

    Read the article

  • Execution Plan Optimization when where clause is removed then added back

    - by nmushov
    I have a stored procedure that uses a table valued function which executes in 9 seconds. If I alter the table valued function and remove the where clause, the stored procedure executes in 3 seconds. If I add the where clause back, the query still executes in 3 seconds. I took a look at the execution plans and it appears that after I remove the where clause, the execution plan includes parallelism and the scan count for 2 of my tables drops for 50000 and 65000 down to 5 and 3. After I add the where clause back, the optimized execution plan still runs unless I run DBCC FREEPROCCACHE. Questions 1. Why would SQL Server start using the optimized execution plan for both queries only when I first remove the where clause? Is there a way to force SQL Server to use this execution plan? Also, this is a paramaterized all-in-one query that uses the (Parameter is null or Parameter) in the where clause, which I believe is bad for performance. RETURNS TABLE AS RETURN ( SELECT TOP (@PageNumber * @PageSize) CASE WHEN @SortOrder = 'Expensive' THEN ROW_NUMBER() OVER (ORDER BY SellingPrice DESC) WHEN @SortOrder = 'Inexpensive' THEN ROW_NUMBER() OVER (ORDER BY SellingPrice ASC) WHEN @SortOrder = 'LowMiles' THEN ROW_NUMBER() OVER (ORDER BY Mileage ASC) WHEN @SortOrder = 'HighMiles' THEN ROW_NUMBER() OVER (ORDER BY Mileage DESC) WHEN @SortOrder = 'Closest' THEN ROW_NUMBER() OVER (ORDER BY P1.Distance ASC) WHEN @SortOrder = 'Newest' THEN ROW_NUMBER() OVER (ORDER BY [Year] DESC) WHEN @SortOrder = 'Oldest' THEN ROW_NUMBER() OVER (ORDER BY [Year] ASC) ELSE ROW_NUMBER() OVER (ORDER BY InventoryID ASC) END as rn, P1.InventoryID, P1.SellingPrice, P1.Distance, P1.Mileage, Count(*) OVER () RESULT_COUNT, dimCarStatus.[year] FROM (SELECT InventoryID, SellingPrice, Zip.Distance, Mileage, ColorKey, CarStatusKey, CarKey FROM facInventory JOIN @ZipCodes Zip ON Zip.DealerKey = facInventory.DealerKey) as P1 JOIN dimColor ON dimColor.ColorKey = P1.ColorKey JOIN dimCarStatus ON dimCarStatus.CarStatusKey = P1.CarStatusKey JOIN dimCar ON dimCar.CarKey = P1.CarKey WHERE (@ExteriorColor is NULL OR dimColor.ExteriorColor like @ExteriorColor) AND (@InteriorColor is NULL OR dimColor.InteriorColor like @InteriorColor) AND (@Condition is NULL OR dimCarStatus.Condition like @Condition) AND (@Year is NULL OR dimCarStatus.[Year] like @Year) AND (@Certified is NULL OR dimCarStatus.Certified like @Certified) AND (@Make is NULL OR dimCar.Make like @Make) AND (@ModelCategory is NULL OR dimCar.ModelCategory like @ModelCategory) AND (@Model is NULL OR dimCar.Model like @Model) AND (@Trim is NULL OR dimCar.Trim like @Trim) AND (@BodyType is NULL OR dimCar.BodyType like @BodyType) AND (@VehicleTypeCode is NULL OR dimCar.VehicleTypeCode like @VehicleTypeCode) AND (@MinPrice is NULL OR P1.SellingPrice >= @MinPrice) AND (@MaxPrice is NULL OR P1.SellingPrice < @MaxPrice) AND (@Mileage is NULL OR P1.Mileage < @Mileage) ORDER BY CASE WHEN @SortOrder = 'Expensive' THEN -SellingPrice WHEN @SortOrder = 'Inexpensive' THEN SellingPrice WHEN @SortOrder = 'LowMiles' THEN Mileage WHEN @SortOrder = 'HighMiles' THEN -Mileage WHEN @SortOrder = 'Closest' THEN P1.Distance WHEN @SortOrder = 'Newest' THEN -[YEAR] WHEN @SortOrder = 'Oldest' THEN [YEAR] ELSE InventoryID END )

    Read the article

  • Java variables -> replace? RAM optimization

    - by poeschlorn
    Hi guys, I just wanted to know what happens behind my program when I declare and initialize a variable and later initialize it again with other values, e.g. an ArrayList or something similar. What happens in my RAM, when I say e.g. this: ArrayList<String> al = new ArrayList<String>(); ...add values, work with it and so on.... al = new ArrayList<String>(); So is my first ArrayList held in RAM or will the second ArrayList be stored on the same position where the first one has been before? Or will it just change the reference of "al"? If it is not replaced...is there a way to manually free the RAM which was occupied by the first arraylist? (without waiting for the garbage collector) Would it help to set it first =null? Nice greetings, poeschlorn

    Read the article

  • Query with many CASE statements - optimization

    - by Nemanja Vujacic
    Hi guys, I have one very dirty query that per sure can be optimized because there are so many CASE statements in it! SELECT (CASE pa.KplusTable_Id WHEN 1 THEN sp.sp_id WHEN 2 THEN fw.fw_id WHEN 3 THEN s.sw_Id WHEN 4 THEN id.ia_id END) as Deal_Id, max(CASE pa.KplusTable_Id WHEN 1 THEN sp.Trans_Id WHEN 2 THEN fw.Trans_Id WHEN 3 THEN s.Trans_Id WHEN 4 THEN id.Trans_Id END) as TransId_CurrentMax INTO #MaxRazlicitOdNull FROM #PotencijalniAktuelni pa LEFT JOIN kplus_sp sp (nolock) on sp.sp_id=pa.Deal_Id AND pa.KplusTable_Id=1 LEFT JOIN kplus_fw fw (nolock) on fw.fw_id=pa.Deal_Id AND pa.KplusTable_Id=2 LEFT JOIN dev_sw s (nolock) on s.sw_Id=pa.Deal_Id AND pa.KplusTable_Id=3 LEFT JOIN kplus_ia id (nolock) on id.ia_id=pa.Deal_Id AND pa.KplusTable_Id=4 WHERE isnull(CASE pa.KplusTable_Id WHEN 1 THEN sp.BROJ_TIKETA WHEN 2 THEN fw.BROJ_TIKETA WHEN 3 THEN s.tiket WHEN 4 THEN id.BROJ_TIKETA END, '')<>'' GROUP BY CASE pa.KplusTable_Id WHEN 1 THEN sp.sp_id WHEN 2 THEN fw.fw_id WHEN 3 THEN s.sw_Id WHEN 4 THEN id.ia_id END Because I have same condition couple times, do you have idea how to optimize query, make it simpler and better. All suggestions are welcome! TnX in advance! Nemanja

    Read the article

  • C# 'is' type check on struct - odd .NET 4.0 x86 optimization behavior

    - by Jacob Stanley
    Since upgrading to VS2010 I'm getting some very strange behavior with the 'is' keyword. The program below (test.cs) outputs True when compiled in debug mode (for x86) and False when compiled with optimizations on (for x86). Compiling all combinations in x64 or AnyCPU gives the expected result, True. All combinations of compiling under .NET 3.5 give the expected result, True. I'm using the batch file below (runtest.bat) to compile and test the code using various combinations of compiler .NET framework. Has anyone else seen these kind of problems under .NET 4.0? Does everyone else see the same behavior as me on their computer when running runtests.bat? #@$@#$?? Is there a fix for this? test.cs using System; public class Program { public static bool IsGuid(object item) { return item is Guid; } public static void Main() { Console.Write(IsGuid(Guid.NewGuid())); } } runtest.bat @echo off rem Usage: rem runtest -- runs with csc.exe x86 .NET 4.0 rem runtest 64 -- runs with csc.exe x64 .NET 4.0 rem runtest v3.5 -- runs with csc.exe x86 .NET 3.5 rem runtest v3.5 64 -- runs with csc.exe x64 .NET 3.5 set version=v4.0.30319 set platform=Framework for %%a in (%*) do ( if "%%a" == "64" (set platform=Framework64) if "%%a" == "v3.5" (set version=v3.5) ) echo Compiler: %platform%\%version%\csc.exe set csc="C:\Windows\Microsoft.NET\%platform%\%version%\csc.exe" set make=%csc% /nologo /nowarn:1607 test.cs rem CS1607: Referenced assembly targets a different processor rem This happens if you compile for x64 using csc32, or x86 using csc64 %make% /platform:x86 test.exe echo =^> x86 %make% /platform:x86 /optimize test.exe echo =^> x86 (Optimized) %make% /platform:x86 /debug test.exe echo =^> x86 (Debug) %make% /platform:x86 /debug /optimize test.exe echo =^> x86 (Debug + Optimized) %make% /platform:x64 test.exe echo =^> x64 %make% /platform:x64 /optimize test.exe echo =^> x64 (Optimized) %make% /platform:x64 /debug test.exe echo =^> x64 (Debug) %make% /platform:x64 /debug /optimize test.exe echo =^> x64 (Debug + Optimized) %make% /platform:AnyCPU test.exe echo =^> AnyCPU %make% /platform:AnyCPU /optimize test.exe echo =^> AnyCPU (Optimized) %make% /platform:AnyCPU /debug test.exe echo =^> AnyCPU (Debug) %make% /platform:AnyCPU /debug /optimize test.exe echo =^> AnyCPU (Debug + Optimized) Test Results When running the runtest.bat I get the following results on my Win7 x64 install. > runtest 32 v4.0 Compiler: Framework\v4.0.30319\csc.exe False => x86 False => x86 (Optimized) True => x86 (Debug) False => x86 (Debug + Optimized) True => x64 True => x64 (Optimized) True => x64 (Debug) True => x64 (Debug + Optimized) True => AnyCPU True => AnyCPU (Optimized) True => AnyCPU (Debug) True => AnyCPU (Debug + Optimized) > runtest 64 v4.0 Compiler: Framework64\v4.0.30319\csc.exe False => x86 False => x86 (Optimized) True => x86 (Debug) False => x86 (Debug + Optimized) True => x64 True => x64 (Optimized) True => x64 (Debug) True => x64 (Debug + Optimized) True => AnyCPU True => AnyCPU (Optimized) True => AnyCPU (Debug) True => AnyCPU (Debug + Optimized) > runtest 32 v3.5 Compiler: Framework\v3.5\csc.exe True => x86 True => x86 (Optimized) True => x86 (Debug) True => x86 (Debug + Optimized) True => x64 True => x64 (Optimized) True => x64 (Debug) True => x64 (Debug + Optimized) True => AnyCPU True => AnyCPU (Optimized) True => AnyCPU (Debug) True => AnyCPU (Debug + Optimized) > runtest 64 v3.5 Compiler: Framework64\v3.5\csc.exe True => x86 True => x86 (Optimized) True => x86 (Debug) True => x86 (Debug + Optimized) True => x64 True => x64 (Optimized) True => x64 (Debug) True => x64 (Debug + Optimized) True => AnyCPU True => AnyCPU (Optimized) True => AnyCPU (Debug) True => AnyCPU (Debug + Optimized) tl;dr

    Read the article

  • code optimization; switch versus if's

    - by KaiserJohaan
    Hello, I have a question about whether to use 'case' or 'ifs' in a function that gets called quite alot. Here's the following as it is now, in 'ifs'; the code is self-explanatory: int identifyMsg(char* textbuff) { if (!strcmp(textbuff,"text")) { return 1; } if (!strcmp(textbuff,"name")) { return 2; } if (!strcmp(textbuff,"list")) { return 3; } if (!strcmp(textbuff,"remv")) { return 4; } if (!strcmp(textbuff,"ipad")) { return 5; } if (!strcmp(textbuff,"iprm")) { return 6; } return 0; } My question is: Would a switch perform better? I know if using ifs, I can place the most likely options at the top.

    Read the article

  • compile time if && return string reference optimization

    - by Truncheon
    Hi. I'm writing a series classes that inherit from a base class using virtual. They are INT, FLOAT and STRING objects that I want to use in a scripting language. I'm trying to implement weak typing, but I don't want STRING objects to return copies of themselves when used in the following way (instead I would prefer to have a reference returned which can be used in copying): a = "hello "; b = "world"; c = a + b; I have written the following code as a mock example: #include <iostream> #include <string> #include <cstdio> #include <cstdlib> std::string dummy("<int object cannot return string reference>"); struct BaseImpl { virtual bool is_string() = 0; virtual int get_int() = 0; virtual std::string get_string_copy() = 0; virtual std::string const& get_string_ref() = 0; }; struct INT : BaseImpl { int value; INT(int i = 0) : value(i) { std::cout << "constructor called\n"; } INT(BaseImpl& that) : value(that.get_int()) { std::cout << "copy constructor called\n"; } bool is_string() { return false; } int get_int() { return value; } std::string get_string_copy() { char buf[33]; sprintf(buf, "%i", value); return buf; } std::string const& get_string_ref() { return dummy; } }; struct STRING : BaseImpl { std::string value; STRING(std::string s = "") : value(s) { std::cout << "constructor called\n"; } STRING(BaseImpl& that) { if (that.is_string()) value = that.get_string_ref(); else value = that.get_string_copy(); std::cout << "copy constructor called\n"; } bool is_string() { return true; } int get_int() { return atoi(value.c_str()); } std::string get_string_copy() { return value; } std::string const& get_string_ref() { return value; } }; struct Base { BaseImpl* impl; Base(BaseImpl* p = 0) : impl(p) {} ~Base() { delete impl; } }; int main() { Base b1(new INT(1)); Base b2(new STRING("Hello world")); Base b3(new INT(*b1.impl)); Base b4(new STRING(*b2.impl)); std::cout << "\n"; std::cout << b1.impl->get_int() << "\n"; std::cout << b2.impl->get_int() << "\n"; std::cout << b3.impl->get_int() << "\n"; std::cout << b4.impl->get_int() << "\n"; std::cout << "\n"; std::cout << b1.impl->get_string_ref() << "\n"; std::cout << b2.impl->get_string_ref() << "\n"; std::cout << b3.impl->get_string_ref() << "\n"; std::cout << b4.impl->get_string_ref() << "\n"; std::cout << "\n"; std::cout << b1.impl->get_string_copy() << "\n"; std::cout << b2.impl->get_string_copy() << "\n"; std::cout << b3.impl->get_string_copy() << "\n"; std::cout << b4.impl->get_string_copy() << "\n"; return 0; } It was necessary to add an if check in the STRING class to determine whether its safe to request a reference instead of a copy: Script code: a = "test"; b = a; c = 1; d = "" + c; /* not safe to request reference by standard */ C++ code: STRING(BaseImpl& that) { if (that.is_string()) value = that.get_string_ref(); else value = that.get_string_copy(); std::cout << "copy constructor called\n"; } If was hoping there's a way of moving that if check into compile time, rather than run time.

    Read the article

  • MySQL query optimization - distinct, order by and limit

    - by Manuel Darveau
    I am trying to optimize the following query: select distinct this_.id as y0_ from Rental this_ left outer join RentalRequest rentalrequ1_ on this_.id=rentalrequ1_.rental_id left outer join RentalSegment rentalsegm2_ on rentalrequ1_.id=rentalsegm2_.rentalRequest_id where this_.DTYPE='B' and this_.id<=1848978 and this_.billingStatus=1 and rentalsegm2_.endDate between 1273631699529 and 1274927699529 order by rentalsegm2_.id asc limit 0, 100; This query is done multiple time in a row for paginated processing of records (with a different limit each time). It returns the ids I need in the processing. My problem is that this query take more than 3 seconds. I have about 2 million rows in each of the three tables. Explain gives: +----+-------------+--------------+--------+-----------------------------------------------------+---------------+---------+--------------------------------------------+--------+----------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+--------------+--------+-----------------------------------------------------+---------------+---------+--------------------------------------------+--------+----------------------------------------------+ | 1 | SIMPLE | rentalsegm2_ | range | index_endDate,fk_rentalRequest_id_BikeRentalSegment | index_endDate | 9 | NULL | 449904 | Using where; Using temporary; Using filesort | | 1 | SIMPLE | rentalrequ1_ | eq_ref | PRIMARY,fk_rental_id_BikeRentalRequest | PRIMARY | 8 | solscsm_main.rentalsegm2_.rentalRequest_id | 1 | Using where | | 1 | SIMPLE | this_ | eq_ref | PRIMARY,index_billingStatus | PRIMARY | 8 | solscsm_main.rentalrequ1_.rental_id | 1 | Using where | +----+-------------+--------------+--------+-----------------------------------------------------+---------------+---------+--------------------------------------------+--------+----------------------------------------------+ I tried to remove the distinct and the query ran three times faster. explain without the query gives: +----+-------------+--------------+--------+-----------------------------------------------------+---------------+---------+--------------------------------------------+--------+-----------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+--------------+--------+-----------------------------------------------------+---------------+---------+--------------------------------------------+--------+-----------------------------+ | 1 | SIMPLE | rentalsegm2_ | range | index_endDate,fk_rentalRequest_id_BikeRentalSegment | index_endDate | 9 | NULL | 451972 | Using where; Using filesort | | 1 | SIMPLE | rentalrequ1_ | eq_ref | PRIMARY,fk_rental_id_BikeRentalRequest | PRIMARY | 8 | solscsm_main.rentalsegm2_.rentalRequest_id | 1 | Using where | | 1 | SIMPLE | this_ | eq_ref | PRIMARY,index_billingStatus | PRIMARY | 8 | solscsm_main.rentalrequ1_.rental_id | 1 | Using where | +----+-------------+--------------+--------+-----------------------------------------------------+---------------+---------+--------------------------------------------+--------+-----------------------------+ As you can see, the Using temporary is added when using distinct. I already have an index on all fields used in the where clause. Is there anything I can do to optimize this query? Thank you very much!

    Read the article

  • Optimization t-sql query

    - by phenevo
    Hi, I'm newbie in t-sql, and I wonder why this query executes so long ? Is there any way to optimize this ?? update aggregateflags set value=@value where objecttype=@objecttype and objectcode=@objectcode and storagetype=@storagetype and value != 2 and type=@type IF @@ROWCOUNT=0 Select * from aggregateflags where objecttype=@objecttype and objectcode=@objectcode and storagetype=@storagetype and value = 2 and type=@type IF @@ROWCOUNT=0 insert into aggregateflags (objectcode,objecttype,value,type,storagetype) select @objectcode,@objecttype,@value,@type,@storagetype @value int @storagetype int @type int @objectcode nvarchar(100) @objecttype int There is not foreign key.

    Read the article

  • SQL optimization: deletes taking a long time

    - by Will
    I have an Oracle SQL query as part of a stored proc: DELETE FROM item i WHERE NOT EXISTS (SELECT 1 FROM item_queue q WHERE q.n=i.n) AND NOT EXISTS (SELECT 1 FROM tool_queue t WHERE t.n=i.n); A bit about the tables: item contains about 10k rows with an index on the n column item_queue contains about 1mil rows also with index on n column tool_queue contains about 5mil rows indexed as well I am wondering if the query/subqueries can be optimized somehow to make them run faster, I thought that deletes were generally fairly fast

    Read the article

  • Python optimization problem?

    - by user342079
    Alright, i had this homework recently (don't worry, i've already done it, but in c++) but I got curious how i could do it in python. The problem is about 2 light sources that emit light. I won't get into details tho. Here's the code (that I've managed to optimize a bit in the latter part): import math, array import numpy as np from PIL import Image size = (800,800) width, height = size s1x = width * 1./8 s1y = height * 1./8 s2x = width * 7./8 s2y = height * 7./8 r,g,b = (255,255,255) arr = np.zeros((width,height,3)) hy = math.hypot print 'computing distances (%s by %s)'%size, for i in xrange(width): if i%(width/10)==0: print i, if i%20==0: print '.', for j in xrange(height): d1 = hy(i-s1x,j-s1y) d2 = hy(i-s2x,j-s2y) arr[i][j] = abs(d1-d2) print '' arr2 = np.zeros((width,height,3),dtype="uint8") for ld in [200,116,100,84,68,52,36,20,8,4,2]: print 'now computing image for ld = '+str(ld) arr2 *= 0 arr2 += abs(arr%ld-ld/2)*(r,g,b)/(ld/2) print 'saving image...' ar2img = Image.fromarray(arr2) ar2img.save('ld'+str(ld).rjust(4,'0')+'.png') print 'saved as ld'+str(ld).rjust(4,'0')+'.png' I have managed to optimize most of it, but there's still a huge performance gap in the part with the 2 for-s, and I can't seem to think of a way to bypass that using common array operations... I'm open to suggestions :D

    Read the article

  • MySQL Optimization 20 gig table

    - by user169743
    I have a 20 gig table that has a large amount of inserts and updates daily. This table is also frequently searched. I'd like to know if the MySQL indices can become fragmented and perhaps need to be rebuilt or something similar. I'm finding it difficult to figure out which of the CHECK TABLE, REPAIR TABLE or something similar? Any guidance appreciated, I'm a db newb.

    Read the article

  • Rails/mysql SUM distinct records - optimization

    - by pepernik
    Hey. How would you optimize this SQL SELECT SUM(tmp.cost) FROM ( SELECT DISTINCT clients.id as client, countries.credits_cost AS cost FROM countries INNER JOIN clients ON clients.country_id = countries.id INNER JOIN clients_groups ON clients_groups.client_id=clients.id WHERE clients_groups.group_id IN (1,2,3,4,5,6,7,8,9) GROUP BY clients.id ) AS tmp; I'm using this example as part of my Ruby on Rails project. Note that my nested SQL (tmp) can have more then 10 milion records. You can split that in more SQLs if the performance is better. Should I add any indexes to make it quicker (i have it on IDs)?

    Read the article

  • Odd optimization problem under MSVC

    - by Goz
    I've seen this blog: http://igoro.com/archive/gallery-of-processor-cache-effects/ The "weirdness" in part 7 is what caught my interest. My first thought was "Thats just C# being weird". Its not I wrote the following C++ code. volatile int* p = (volatile int*)_aligned_malloc( sizeof( int ) * 8, 64 ); memset( (void*)p, 0, sizeof( int ) * 8 ); double dStart = t.GetTime(); for (int i = 0; i < 200000000; i++) { //p[0]++;p[1]++;p[2]++;p[3]++; // Option 1 //p[0]++;p[2]++;p[4]++;p[6]++; // Option 2 p[0]++;p[2]++; // Option 3 } double dTime = t.GetTime() - dStart; The timing I get on my 2.4 Ghz Core 2 Quad go as follows: Option 1 = ~8 cycles per loop. Option 2 = ~4 cycles per loop. Option 3 = ~6 cycles per loop. Now This is confusing. My reasoning behind the difference comes down to the cache write latency (3 cycles) on my chip and an assumption that the cache has a 128-bit write port (This is pure guess work on my part). On that basis in Option 1: It will increment p[0] (1 cycle) then increment p[2] (1 cycle) then it has to wait 1 cycle (for cache) then p[1] (1 cycle) then wait 1 cycle (for cache) then p[3] (1 cycle). Finally 2 cycles for increment and jump (Though its usually implemented as decrement and jump). This gives a total of 8 cycles. In Option 2: It can increment p[0] and p[4] in one cycle then increment p[2] and p[6] in another cycle. Then 2 cycles for subtract and jump. No waits needed on cache. Total 4 cycles. In option 3: It can increment p[0] then has to wait 2 cycles then increment p[2] then subtract and jump. The problem is if you set case 3 to increment p[0] and p[4] it STILL takes 6 cycles (which kinda blows my 128-bit read/write port out of the water). So ... can anyone tell me what the hell is going on here? Why DOES case 3 take longer? Also I'd love to know what I've got wrong in my thinking above, as i obviously have something wrong! Any ideas would be much appreciated! :) It'd also be interesting to see how GCC or any other compiler copes with it as well! Edit: Jerry Coffin's idea gave me some thoughts. I've done some more tests (on a different machine so forgive the change in timings) with and without nops and with different counts of nops case 2 - 0.46 00401ABD jne (401AB0h) 0 nops - 0.68 00401AB7 jne (401AB0h) 1 nop - 0.61 00401AB8 jne (401AB0h) 2 nops - 0.636 00401AB9 jne (401AB0h) 3 nops - 0.632 00401ABA jne (401AB0h) 4 nops - 0.66 00401ABB jne (401AB0h) 5 nops - 0.52 00401ABC jne (401AB0h) 6 nops - 0.46 00401ABD jne (401AB0h) 7 nops - 0.46 00401ABE jne (401AB0h) 8 nops - 0.46 00401ABF jne (401AB0h) 9 nops - 0.55 00401AC0 jne (401AB0h) I've included the jump statetements so you can see that the source and destination are in one cache line. You can also see that we start to get a difference when we are 13 bytes or more apart. Until we hit 16 ... then it all goes wrong. So Jerry isn't right (though his suggestion DOES help a bit), however something IS going on. I'm more and more intrigued to try and figure out what it is now. It does appear to be more some sort of memory alignment oddity rather than some sort of instruction throughput oddity. Anyone want to explain this for an inquisitive mind? :D Edit 3: Interjay has a point on the unrolling that blows the previous edit out of the water. With an unrolled loop the performance does not improve. You need to add a nop in to make the gap between jump source and destination the same as for my good nop count above. Performance still sucks. Its interesting that I need 6 nops to improve performance though. I wonder how many nops the processor can issue per cycle? If its 3 then that account for the cache write latency ... But, if thats it, why is the latency occurring? Curiouser and curiouser ...

    Read the article

< Previous Page | 26 27 28 29 30 31 32 33 34 35 36 37  | Next Page >