Search Results

Search found 1333 results on 54 pages for 'geometry shader'.

Page 30/54 | < Previous Page | 26 27 28 29 30 31 32 33 34 35 36 37  | Next Page >

  • geomipmapping using displacement mapping (and glVertexAttribDivisor)

    - by Will
    I wake up with a clear vision, but sadly my laptop card doesn't do displacement mapping nor glVertexAttribDivisor so I can't test it out; I'm left sharing here: With geomipmapping, the grid at any factor is transposable - if you pass in an offset - say as a uniform - you can reuse the same vertex and index array again and again. If you also pass in the offset into the heightmap as a uniform, the vertex shader can do displacement mapping. If the displacement map is mipmapped, you get the advantages of trilinear filtering for distant maps. And, if the scenery is closer, rather than exposing that the you have a world made out of quads, you can use your transposable grid vertex array and indices to do vertex-shader interpolation (fancy splines) to do super-smooth infinite zoom? So I have some questions: does it work? In theory, in practice? does anyone do it? Does this technique have a name? Papers, demos, anything I can look at? does glVertexAttribDivisor mean that you can have a single glMultiDrawElementsEXT or similar approach to draw all your terrain tiles in one call rather than setting up the uniforms and emitting each tile? Would this offer any noticeable gains? does a heightmap that is GL_LUMINANCE take just one byte per pixel(=vertex)? (On mainstream cards, obviously. Does storage vary in practice?) Does going to the effort of reusing the same vertices and indices mean that you can basically fill the GPU RAM with heightmap and not a lot else, giving you either bigger landscapes or more detailed landscapes/meshes for the same bang? is mipmapping the displacement map going to work? On future cards? Is it going to introduce unsurmountable inaccuracies if it is enabled?

    Read the article

  • Mandelbrot set not displaying properly

    - by brainydexter
    I am trying to render mandelbrot set using glsl. I'm not sure why its not rendering the correct shape. Does the mandelbrot calculation require values to be within a range for the (x,y) [ or (real, imag) ] ? Here is a screenshot: I render a quad as follows: float w2 = 6; float h2 = 5; glBegin(GL_QUADS); glVertex3f(-w2, h2, 0.0); glVertex3f(-w2, -h2, 0.0); glVertex3f(w2, -h2, 0.0); glVertex3f(w2, h2, 0.0); glEnd(); My vertex shader: varying vec3 Position; void main(void) { Position = gl_Vertex.xyz; gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; } My fragment shader (where all the meat is): uniform float MAXITERATIONS; varying vec3 Position; void main (void) { float zoom = 1.0; float centerX = 0.0; float centerY = 0.0; float real = Position.x * zoom + centerX; float imag = Position.y * zoom + centerY; float r2 = 0.0; float iter; for(iter = 0.0; iter < MAXITERATIONS && r2 < 4.0; ++iter) { float tempreal = real; real = (tempreal * tempreal) + (imag * imag); imag = 2.0 * real * imag; r2 = (real * real) + (imag * imag); } vec3 color; if(r2 < 4.0) color = vec3(1.0); else color = vec3( iter / MAXITERATIONS ); gl_FragColor = vec4(color, 1.0); }

    Read the article

  • How is constant buffer allocation handled in DX11?

    - by Marek
    I'm starting with DX11 and I'm not sure if I'm doing the things right. I want to have both pixel and vertex shader program in one file. Both use some shared and some different constant buffers. So it looks like this: Shader.fx cbuffer ForVS : register(b0) { float4x4 wvp; }; cbuffer ForVSandPS : register(b1) { float4 stuff; float4 stuff2; }; cbuffer ForVS2 : register(b2) { float4 stuff; float4 stuff2; }; cbuffer ForPS : register(b3) { float4 stuff; float4 stuff2; }; .... And in code I use mContext->VSSetConstantBuffers( 0, 1, bufferVS); mContext->VSSetConstantBuffers( 1, 1, bufferVS_PS); mContext->VSSetConstantBuffers( 2, 1, bufferVS2); mContext->PSSetConstantBuffers( 1, 1, bufferVS_PS); mContext->PSSetConstantBuffers( 3, 1, bufferPS); The numbering of buffers in PS is what bugs me, is it alright to bind random slots to shaders (in this example 1 and 3)? Does that mean it still uses just two buffers or does it initialize 0 and 2 buffer pointers to empty? Thank you.

    Read the article

  • How can I make an infinite cave using stage3d?

    - by ifree
    I want to make an infinite cave in my 3d game using flash stage3d. But I got no idea about how to build that cave. Can anyone can give me some solution or hint? update: I've tried agal fragment shader like squeae tunnel in shader toy code: var fragmentProgramCode:String = AGALUtils.build() .mov("ft0","v0") .div("ft1","ft0.xy","fc3.xy") .mul("ft2","fc6.x","ft1") .sub("ft3","ft2","fc5.x")//vec2 p = -1.0 + 2.0 * gl_FragCoord.xy / resolution.xy; .mul("ft1","ft3.x","ft3.x") .mul("ft2","ft3.y","ft3.y") .pow("ft4","ft1","fc6.z")//float r = pow( pow(p.x*p.x,16.0) + pow(p.y*p.y,16.0), 1.0/32.0 ); .pow("ft5","ft2","fc6.z") .add("ft1","ft4","ft5") .pow("ft4","ft1","fc6.w") .mov("ft5","fc5")//uv .sub("ft1","fc7.x","ft4") .add("ft5.x","fc7.x","ft1")//uv.x = .5*time + 0.5/r; .mov("ft6","fc0")//for atan .atan2("ft5.y","ft3.y","ft3.x",new <String>["fc7.y","fc5.x","fc7.z","fc7.w","fc8.x","fc8.y","fc8.z","fc8.w","fc9.x","fc9.y"],"ft6") .tex("ft0","ft5","fs0","repeat","linear","nomip")//tex .mul("ft1","ft4","ft4") .mul("ft2","ft1","ft4")//r*r*r .mul("ft1","ft0.xyz","ft2") .mov("ft0.w","fc5.x") .mov("oc","ft1").toString() it can only apply one material,but my project requires different types of material (like floor,ceilling). so ,I create a 3d model Is there anyway to make that 3d model render like "infinity cave"? use agal to make each side of cave's texture move? thanks for your help

    Read the article

  • VNC grey screen and start on boot 12.04

    - by Siriss
    I have 12.04 LTS installed and I am trying to get VNC to work. I want to be able to connect to existing sessions, and have it start on boot. I followed this guide and have left a comment to try and fix my problems but no dice. I have also tried all solutions I have found on google, including the one here, but I could not get it to work (I am missing something easy I am sure). When I connect to the VNC session I get a grey screen with three checkboxes: Accept clipboard from viewers Send clipboard to viewers Send primary selection to viewers Here is my xstartup: #!/bin/sh # Uncomment the following two lines for normal desktop: unset SESSION_MANAGER # exec /etc/X11/xinit/xinitrc gnome-session -session=gnome-classic & [ -x /etc/vnc/xstartup ] && exec /etc/vnc/xstartup [ -r $HOME/.Xresources ] && xrdb $HOME/.Xresources xsetroot -solid grey vncconfig -iconic & #x-terminal-emulator -geometry 80x24+10+10 -ls -title "$VNCDESKTOP Desktop" & #x-window-manager & I have also edited my to include: /usr/bin/vncserver -geometry 1024x768 It does not start on boot, but when I run the command it starts, but I get the grey screen. Any help would be greatly appreciated. Thank you!!

    Read the article

  • cocos2d/OpenGL multitexturing problem

    - by Gajoo
    I've got a simple shader to test multitextureing the problem is both samplers are using same image as their reference. the shader code is basically just this : vec4 mid = texture2D(u_texture,v_texCoord); float g = texture2D(u_guide,v_guideCoord); gl_FragColor = vec4(g , mid.g,0,1); and this is how I'm calling draw function : int last_State; glGetIntegerv(GL_ACTIVE_TEXTURE, &last_State); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, getTexture()->getName()); glActiveTexture(GL_TEXTURE1); glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, mGuideTexture->getName()); ccGLEnableVertexAttribs( kCCVertexAttribFlag_TexCoords |kCCVertexAttribFlag_Position); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, 0, vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, 0, texCoord); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); glDisable(GL_TEXTURE_2D); I've already check mGuideTexture->getName() and getTexture()->getName() are returning correct textures. but looking at the result I can tell, both samplers are reading from getTexture()->getName(). here are some screen shots showing what is happening : The image rendered Using above codes The image rendered when I change textures passed to samples I'm expecting to see green objects from the first picture with red objects hanging from the top.

    Read the article

  • Happy Tau Day! (Or: How Some Mathematicians Think We Should Retire Pi) [Video]

    - by Jason Fitzpatrick
    When you were in school you learned all about Pi and its relationship to circles and turn-based geometry. Some mathematicians are rallying for a new lesson, on about Tau. Michael Hartl is a mathematician on a mission, a mission to get people away from using Pi and to start using Tau. His manifesto opens: Welcome to The Tau Manifesto. This manifesto is dedicated to one of the most important numbers in mathematics, perhaps the most important: the circle constant relating the circumference of a circle to its linear dimension. For millennia, the circle has been considered the most perfect of shapes, and the circle constant captures the geometry of the circle in a single number. Of course, the traditional choice of circle constant is p—but, as mathematician Bob Palais notes in his delightful article “p Is Wrong!”,1 p is wrong. It’s time to set things right. Why is Pi wrong? Among the arguments is that Tau is the ration of a circumference to the radius of a circle and defining circles by their radius is more natural and that Pi is a 2-factor number but with Tau everything is based of a single unit–three quarters of a turn around a Tau-defined circle is simply three quarters of a Tau radian. Watch the video above to see the Tau sequence (which begins 6.2831853071…) turned into a musical composition. For more information about Tau hit up the link below to read the manifesto. The Tau Manifesto [TauDay] HTG Explains: Photography with Film-Based CamerasHow to Clean Your Dirty Smartphone (Without Breaking Something)What is a Histogram, and How Can I Use it to Improve My Photos?

    Read the article

  • Simplest way to render image over top of another with another image used as mask in OpenGL?

    - by Adam Naylor
    The effect I'm looking for is to have a single large background image that is always visible (at full alpha) and then show a second image (what I call a light map or specular map) that is partially shown over the top based on a third image (which is effectively a mask). The effect is similar to this effect except instead of simply darkening or lightening the background image using the third image it needs to mask the second without effecting the first at all. The third image is the only one that moves therefore hard baking the third images alpha into the second image isn't an option. If my explanation isn't clear I'll provide visual examples when I have more time. I'd prefer not to go down a shader route as I haven't taught myself this area yet so unless I have too I'd rather try to achieve this with simple alpha blending. Happy to use a shader approach. Cheers. Additional These third images are obviously light sources being cast onto the first image showing the specular information from the second image to simulate the light 'shining' off the objects in the first image. The solution I implement will need to allow two light sources to potentially overlap so my current thoughts are that the alpha values of the two images will need to be combined (Added?) to produce a final image which masks the second image? Don't worry about things like coloured lights. For this technique the lights are all considered white.

    Read the article

  • XNA 4.0, Combining model draw calls

    - by MayContainNuts
    I have the following problem: The levels in my game are made up of a Large Quantity of small Models and because of that I am experiencing frame rate problems. I already did some research and came to the conclusion that the amount of draw calls I am making must be the root of my problems. I've looked around for a while now and couldn't quite find a satisfying solution. I can't cull any of those models, in a worst case scenario there could be 1000 of them visible at the same time. I also looked at Hardware geometry Instancing, but I don't think that's quite what I'm looking for, because the level consists of a lot of different parts. So, what I'd like to do is combining 100 or 200 of these Models into a single large one and draw it as a whole 'chunk'. The whole geometry is static so it wouldn't have to be changed after combining, but different parts of it would have to use different textures (I think I can accomplish that with a texture atlas). But I have no idea how to to that, so does anybody have any suggestions?

    Read the article

  • Boolean checks with a single quadtree, or multiple quadtrees?

    - by Djentleman
    I'm currently developing a 2D sidescrolling shooter game for PC (think metroidvania but with a lot more happening at once). Using XNA. I'm utilising quadtrees for my spatial partitioning system. All objects will be encompassed by standard bounding geometry (box or sphere) with possible pixel-perfect collision detection implemented after geometry collision (depends on how optimised I can get it). These are my collision scenarios, with < representing object overlap (multiplayer co-op is the reason for the player<player scenario): Collision scenarios (true = collision occurs): Player <> Player = false Enemy <> Enemy = false Player <> Enemy = true PlayerBullet <> Enemy = true PlayerBullet <> Player = false PlayerBullet <> EnemyBullet = true PlayerBullet <> PlayerBullet = false EnemyBullet <> Player = true EnemyBullet <> Enemy = false EnemyBullet <> EnemyBullet = false Player <> Environment = true Enemy <> Environment = true PlayerBullet <> Environment = true EnemyBullet <> Environment = true Going off this information and the fact that were will likely be several hundred objects rendering on-screen at any given time, my question is as follows: Which method is likely to be the most efficient/optimised and why: Using a single quadtree with boolean checks for collision between the different types of objects. Using three quadtrees at once (player, enemy, environment), only testing the player and enemy trees against each other while testing both the player and enemy trees against the environment tree.

    Read the article

  • GLSL Normals not transforming propertly

    - by instancedName
    I've been stuck on this problem for two days. I've read many articles about transforming normals, but I'm just totaly stuck. I understand choping off W component for "turning off" translation, and doing inverse/traspose transformation for non-uniform scaling problem, but my bug seems to be from a different source. So, I've imported a simple ball into OpenGL. Only transformation that I'm applying is rotation over time. But when my ball rotates, the illuminated part of the ball moves around just as it would if direction light direction was changing. I just can't figure out what is the problem. Can anyone help me with this? Here's the GLSL code: Vertex Shader: #version 440 core uniform mat4 World, View, Projection; layout(location = 0) in vec3 VertexPosition; layout(location = 1) in vec3 VertexColor; layout(location = 2) in vec3 VertexNormal; out vec4 Color; out vec3 Normal; void main() { Color = vec4(VertexColor, 1.0); vec4 n = World * vec4(VertexNormal, 0.0f); Normal = n.xyz; gl_Position = Projection * View * World * vec4(VertexPosition, 1.0); } Fragment Shader: #version 440 core uniform vec3 LightDirection = vec3(0.0, 0.0, -1.0); uniform vec3 LightColor = vec3(1f); in vec4 Color; in vec3 Normal; out vec4 FragColor; void main() { diffuse = max(0.0, dot(normalize(-LightDirection), normalize(Normal))); vec4 scatteredLight = vec4(LightColor * diffuse, 1.0f); FragColor = min(Color * scatteredLight, vec4(1.0)); }

    Read the article

  • Dojo and Separate JavaScript File

    - by Bunch
    For a project I needed to use the ArcGIS API for some mapping. To use this you need to use Dojo but in this case all it really comes down to is adding some require lines and a addOnLoad on your web page. At first everything was working great, the maps rendered and the various layers would populate as needed. Once it was working I started moving the various javascript functions into their own files to keep everything nice and neat. Then the problems started, mainly the map would not show up any more. So that was a pretty big problem. Luckily the fix was pretty simple, just move the dojo.addOnLoad line into it’s own script tag. If I had the dojo.addOnLoad in the same script block as the various require lines it would not work as expected. Works: <script type="text/javascript" language="javascript" src="javascript/test.js" />     <script type="text/javascript">       dojo.require("esri.map");       dojo.require("esri.tasks.locator");       dojo.require("esri.tasks.query");       dojo.require("esri.tasks.geometry");  </script>  <script type="text/javascript">      dojo.addOnLoad(init);  </script> Does not work: <script type="text/javascript" language="javascript" src="javascript/test.js" /> <script type="text/javascript">       dojo.require("esri.map");       dojo.require("esri.tasks.locator");       dojo.require("esri.tasks.query");       dojo.require("esri.tasks.geometry");       dojo.addOnLoad(init); </script> Technorati Tags: JavaScript,Dojo

    Read the article

  • Deferred rendering order?

    - by Nick Wiggill
    There are some effects for which I must do multi-pass rendering. I've got the basics set up (FBO rendering etc.), but I'm trying to get my head around the most suitable setup. Here's what I'm thinking... The framebuffer objects: FBO 1 has a color attachment and a depth attachment. FBO 2 has a color attachment. The render passes: Render g-buffer: normals and depth (used by outline & DoF blur shaders); output to FBO no. 1. Render solid geometry, bold outlines (as in toon shader), and fog; output to FBO no. 2. (can all render via a single fragment shader -- I think.) (optional) DoF blur the scene; output to the default frame buffer OR ELSE render FBO2 directly to default frame buffer. (optional) Mesh wireframes; composite over what's already in the default framebuffer. Does this order seem viable? Any obvious mistakes?

    Read the article

  • Learning OpenGL GLSL - VAO buffer problems?

    - by Bleary
    I've just started digging through OpenGL and GLSL, and now stumbled on something I can't get my head around this one!? I've stepped back to loading a simple cube and using a simple shader on it, but the result is triangles drawn incorrectly and/or missing. The code I had working perfectly on meshes, but was attempting to move to using VAOs so none of the code for storing the vertices and indices has changed. http://i.stack.imgur.com/RxxZ5.jpg http://i.stack.imgur.com/zSU50.jpg What I have for creating the VAO and buffers is this //Create the Vertex array object glGenVertexArrays(1, &vaoID); // Finally create our vertex buffer objects glGenBuffers(VBO_COUNT, mVBONames); glBindVertexArray(vaoID); // Save vertex attributes into GPU glBindBuffer(GL_ARRAY_BUFFER, mVBONames[VERTEX_VBO]); // Copy data into the buffer object glBufferData(GL_ARRAY_BUFFER, lPolygonVertexCount*VERTEX_STRIDE*sizeof(GLfloat), lVertices, GL_STATIC_DRAW); glEnableVertexAttribArray(pos); glVertexAttribPointer(pos, 3, GL_FLOAT, GL_FALSE, VERTEX_STRIDE*sizeof(GLfloat),0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mVBONames[INDEX_VBO]); glBufferData(GL_ELEMENT_ARRAY_BUFFER, lPolygonCount*sizeof(unsigned int), lIndices, GL_STATIC_DRAW); glBindVertexArray(0); And the code for drawing the mesh. glBindVertexArray(vaoID); glUseProgram(shader->programID); GLsizei lOffset = mSubMeshes[pMaterialIndex]->IndexOffset*sizeof(unsigned int); const GLsizei lElementCount = mSubMeshes[pMaterialIndex]->TriangleCount*TRIAGNLE_VERTEX_COUNT; glDrawElements(GL_TRIANGLES, lElementCount, GL_UNSIGNED_SHORT, reinterpret_cast<const GLvoid*>(lOffset)); // All the points are indeed in the correct place!? //glPointSize(10.0f); //glDrawElements(GL_POINTS, lElementCount, GL_UNSIGNED_SHORT, 0); glUseProgram(0); glBindVertexArray(0); Eyes have become bleary looking at this today so any thoughts or a fresh set of eyes would be greatly appreciated.

    Read the article

  • Android 2D terrain scrolling

    - by Nikola Ninkovic
    I want to make infinite 2D terrain based on my algorithm.Then I want to move it along Y axis (to the left) This is how I did it : public class Terrain { Queue<Integer> _bottom; Paint _paint; Bitmap _texture; Point _screen; int _numberOfColumns = 100; int _columnWidth = 20; public Terrain(int screenWidth, int screenHeight, Bitmap texture) { _bottom = new LinkedList<Integer>(); _screen = new Point(screenWidth, screenHeight); _numberOfColumns = screenWidth / 6; _columnWidth = screenWidth / _numberOfColumns; for(int i=0;i<=_numberOfColumns;i++) { // Generate terrain point and put it into _bottom queue } _paint = new Paint(); _paint.setStyle(Paint.Style.FILL); _paint.setShader(new BitmapShader(texture, Shader.TileMode.REPEAT, Shader.TileMode.REPEAT)); } public void update() { _bottom.remove(); // Algorithm calculates next point _bottom.add(nextPoint); } public void draw(Canvas canvas) { Iterator<Integer> i = _bottom.iterator(); int counter = 0; Path path = new Path(); path.moveTo(0, _screen.y); while (i.hasNext()) { path.lineTo(counter, _screen.y-i.next()); counter += _columnWidth; } path.lineTo(_screen.x, _screen.y); path.lineTo(0, _screen.y); canvas.drawPath(path2, _paint); } } The problem is that the game is too 'fast', so I tried with pausing thread with Thread.sleep(50); in run() method of my game thread but then it looks too torn. Well, is there any way to slow down drawing of my terrain ?

    Read the article

  • Having the same texture data in different ID3D11Texture2D

    - by bdmnd
    Sorry if this has been answered elsewhere - I'm rather new to DX. My question concerns conservation of resources - specifically textures in VRAM. I assume that upon returning from a call to CreateTexture2D, a copy of any textures data supplied has been copied elsewhere, likely VRAM. Does DX11 have any facility for having multiple ID3D11Texture2D objects which point to the same data? This might at first seem silly, but imagine a ID3D11Texture2D which is an array of textures. In one material, an artist has chosen to blend three identically sized maps, saved on disk as A.dds, B.dds, and C.dds. Then imagine they have another material which also uses three maps, but this time A.dds, B.dds, and D.dds. The shader code knows the diffuse texture is a texture array, and also has the number of layers baked (three in each case). I would essentially like to set up just two ID3D11Texture2D objects, one for each material, but I don't want to waste VRAM for two identical copies of A.dds and B.dds. I could use explicit texture arrays, of course, but this reduces the number of resources available to the shader and can complicate code somewhat more than would otherwise be needed.

    Read the article

  • How do I improve terrain rendering batch counts using DirectX?

    - by gamer747
    We have determined that our terrain rendering system needs some work to minimize the number of batches being transferred to the GPU in order to improve performance. I'm looking for suggestions on how best to improve what we're trying to accomplish. We logically split our terrain mesh into smaller grid cells which are 32x32 world units. Each cell has meta data that dictates the four 256x256 textures that are used for spatting along with the alpha blend data, shadow, and light mappings. Each cell contains 81 vertices in a 9x9 grid. Presently, we examine each cell and determine the four textures that are being used to spat the cell. We combine that geometry with any other cell that perhaps uses the same four textures regardless of spat order. If the spat order for a cell differs, the blend map is adjusted so that the spat order is maintained the same as other like cells and blending happens in the right order too. But even with this batching approach, it isn't uncommon when looking out across an area of open terrain to have between 1200-1700 batch count depending upon how frequently textures differ or have different texture blends are between cells. We are only doing frustum culling presently. So using texture spatting, are there other alternatives that can reduce the batch count and allow rendering to be extremely performance-friendly even under DirectX9c? We considered using texture atlases since we're targeting DirectX 9c & older OpenGL platforms but trying to repeat textures using atlases and shaders result in seam artifacts which we haven't been able to eliminate with the exception of disabling mipmapping. Disabling mipmapping results in poor quality textures from a distance. How have others batched together terrain geometry such that one could spat terrain using various textures, minimizing batch count and texture state switches so that rendering performance isn't negatively impacted?

    Read the article

  • Complex shading using one single (small) texture

    - by teodron
    Recently I stumbled upon a demo reel in UDK about how one can attain beautiful results using just one (rather tiny) texture that's being sent to the shader pipeline. The famous link is this one. Basically, the author states that they've used just one texture and give a snapshot of the technique here. I see that every RGBA channel contains different grayscale information.. and that info could be used to inside a shader to obtain a colour blended output. The problem is that the reel displays a fairly complex scene. To top that, the author even makes use of a normal map. How did they manage to fit a normal map in an already cluttered texture? It makes sense to have a half-space normal map by using only RG from an RGB texture, but what about the rest of the information? Since it was proven to be possible, could someone please explain how it was done (the big picture, not the dirty details!)!? Here's the texture being used. Click to see in full size.

    Read the article

  • ERROR #342: DEVICE_SHADER_LINKAGE_SEMANTICNAME_NOT_FOUND

    - by Telanor
    I've stared at this for at least half an hour now and I cannot figure out what directx is complaining about. I know this error normally means you put float3 instead of a float4 or something like that, but I've checked over and over and as far as I can tell, everything matches. This is the full error message: D3D11: ERROR: ID3D11DeviceContext::DrawIndexed: Input Assembler - Vertex Shader linkage error: Signatures between stages are incompatible. The input stage requires Semantic/Index (COLOR,0) as input, but it is not provided by the output stage. [ EXECUTION ERROR #342: DEVICE_SHADER_LINKAGE_SEMANTICNAME_NOT_FOUND ] This is the vertex shader's input signature as seen in PIX: // Input signature: // // Name Index Mask Register SysValue Format Used // -------------------- ----- ------ -------- -------- ------ ------ // POSITION 0 xyz 0 NONE float xyz // NORMAL 0 xyz 1 NONE float // COLOR 0 xyzw 2 NONE float The HLSL structure looks like this: struct VertexShaderInput { float3 Position : POSITION0; float3 Normal : NORMAL0; float4 Color: COLOR0; }; The input layout, from PIX, is: The C# structure holding the data looks like this: [StructLayout(LayoutKind.Sequential)] public struct PositionColored { public static int SizeInBytes = Marshal.SizeOf(typeof(PositionColored)); public static InputElement[] InputElements = new[] { new InputElement("POSITION", 0, Format.R32G32B32_Float, 0), new InputElement("NORMAL", 0, Format.R32G32B32_Float, 0), new InputElement("COLOR", 0, Format.R32G32B32A32_Float, 0) }; Vector3 position; Vector3 normal; Vector4 color; #region Properties ... #endregion public PositionColored(Vector3 position, Vector3 normal, Vector4 color) { this.position = position; this.normal = normal; this.color = color; } public override string ToString() { StringBuilder sb = new StringBuilder(base.ToString()); sb.Append(" Position="); sb.Append(position); sb.Append(" Color="); sb.Append(Color); return sb.ToString(); } } SizeInBytes comes out to 40, which is correct (4*3 + 4*3 + 4*4 = 40). Can anyone find where the mistake is?

    Read the article

  • How to setup my texture cordinates correctly in GLSL 150 and OpenGL 3.3?

    - by RubyKing
    I'm trying to do texture mapping in GLSL 150 and OpenGL 3.3 Here are my shaders I've tried my best to get this correct as possible hopefully this is :) I'm guessing you want to know what the problem is well my texture shows but not in its fullest form just one section of it not the full texture on the quad. All I can think of is its the texture cordinates in the main.cpp which is at the bottom of this post. FRAGMENT SHADER #version 150 in vec2 Texcoord_VSPS; out vec4 color; // Values that stay constant for the whole mesh. uniform sampler2D myTextureSampler; //Main Entry Point void main() { // Output color = color of the texture at the specified UV color = texture2D( myTextureSampler, Texcoord_VSPS ); } VERTEX SHADER #version 150 //Position Container in vec3 position; //Container for TexCoords attribute vec2 Texcoord0; out vec2 Texcoord_VSPS; //out vec2 ex_texcoord; //TO USE A DIFFERENT COORDINATE SYSTEM JUST MULTIPLY THE MATRIX YOU WANT //Main Entry Point void main() { //Translations and w Cordinates stuff gl_Position = vec4(position.xyz, 1.0); Texcoord_VSPS = Texcoord0; } LINK TO MAIN.CPP http://pastebin.com/t7Vg9L0k

    Read the article

  • Multiple passes in direct3d10

    - by innochenti
    I begin to learning direct3d10 and stuck with multiple passes. As input I have a triangle(that stored in vb/ib) and effect file: //some vertex shader and globals goes there. skip them to preserve simplicity float4 ColorPixelShader(PixelInputType input) : SV_Target { return float4(1,0,0,0); } float4 ColorPixelShader1(PixelInputType input) : SV_Target { return float4(0,1,0,0); } technique10 ColorTechnique { pass pass0 { SetVertexShader(CompileShader(vs_4_0, ColorVertexShader())); SetPixelShader(CompileShader(ps_4_0, ColorPixelShader())); SetGeometryShader(NULL); } pass pass1 { SetVertexShader(CompileShader(vs_4_0, ColorVertexShader())); SetPixelShader(CompileShader(ps_4_0, ColorPixelShader1())); SetGeometryShader(NULL); } } And some render code: pass1->Apply(0); device->DrawIndexed(indexCount, 0, 0); pass2->Apply(0); device->DrawIndexed(indexCount, 0, 0); What I'd expect to see is the green triangle, but it always shows me red triangle. What am I doing wrong? Also, I've got another question - should I set vertex shader in every pass? I've added ColorVertexShader1 that translates vertex position by some delta, and 've got following picture: http://imgur.com/Oe7Qj

    Read the article

  • TemplateBinding with Converter - what is wrong?

    - by MartyIX
    I'm creating a game desk. I wanted to specify field size (one field is a square) as a attached property and with this data set value of ViewPort which would draw 2x2 matrix (and tile mode would do the rest of game desk). I'm quite at loss what is wrong because the binding doesn't work. Testing line in XAML for the behaviour I would like to have: <DrawingBrush Viewport="0,0,100,100" ViewportUnits="Absolute" TileMode="None"> The game desk is based on this sample of DrawingPaint: http://msdn.microsoft.com/en-us/library/aa970904.aspx (an image is here) XAML: <Window x:Class="Sokoban.Window1" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:local="clr-namespace:Sokoban" Title="Window1" Height="559" Width="419"> <Window.Resources> <local:FieldSizeToRectConverter x:Key="fieldSizeConverter" /> <Style x:Key="GameDesk" TargetType="{x:Type Rectangle}"> <Setter Property="local:GameDeskProperties.FieldSize" Value="50" /> <Setter Property="Fill"> <Setter.Value> <!--<DrawingBrush Viewport="0,0,100,100" ViewportUnits="Absolute" TileMode="None">--> <DrawingBrush Viewport="{TemplateBinding local:GameDeskProperties.FieldSize, Converter={StaticResource fieldSizeConverter}}" ViewportUnits="Absolute" TileMode="None"> <DrawingBrush.Drawing> <DrawingGroup> <GeometryDrawing Brush="CornflowerBlue"> <GeometryDrawing.Geometry> <RectangleGeometry Rect="0,0,100,100" /> </GeometryDrawing.Geometry> </GeometryDrawing> <GeometryDrawing Brush="Azure"> <GeometryDrawing.Geometry> <GeometryGroup> <RectangleGeometry Rect="0,0,50,50" /> <RectangleGeometry Rect="50,50,50,50" /> </GeometryGroup> </GeometryDrawing.Geometry> </GeometryDrawing> </DrawingGroup> </DrawingBrush.Drawing> </DrawingBrush> </Setter.Value> </Setter> </Style> </Window.Resources> <StackPanel> <Rectangle Style="{StaticResource GameDesk}" Width="300" Height="150" /> </StackPanel> </Window> Converter and property definition: using System; using System.Collections.Generic; using System.Text; using System.Windows.Controls; using System.Windows; using System.Diagnostics; using System.Windows.Data; namespace Sokoban { public class GameDeskProperties : Panel { public static readonly DependencyProperty FieldSizeProperty; static GameDeskProperties() { PropertyChangedCallback fieldSizeChanged = new PropertyChangedCallback(OnFieldSizeChanged); PropertyMetadata fieldSizeMetadata = new PropertyMetadata(50, fieldSizeChanged); FieldSizeProperty = DependencyProperty.RegisterAttached("FieldSize", typeof(int), typeof(GameDeskProperties), fieldSizeMetadata); } public static int GetFieldSize(DependencyObject target) { return (int)target.GetValue(FieldSizeProperty); } public static void SetFieldSize(DependencyObject target, int value) { target.SetValue(FieldSizeProperty, value); } static void OnFieldSizeChanged(DependencyObject target, DependencyPropertyChangedEventArgs e) { Debug.WriteLine("FieldSize just changed: " + e.NewValue); } } [ValueConversion(/* sourceType */ typeof(int), /* targetType */ typeof(Rect))] public class FieldSizeToRectConverter : IValueConverter { public object Convert(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture) { Debug.Assert(targetType == typeof(int)); int fieldSize = int.Parse(value.ToString()); return new Rect(0, 0, 2 * fieldSize, 2 * fieldSize); } public object ConvertBack(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture) { // should not be called in our example throw new NotImplementedException(); } } }

    Read the article

  • optimizing iPhone OpenGL ES fill rate

    - by NateS
    I have an Open GL ES game on the iPhone. My framerate is pretty sucky, ~20fps. Using the Xcode OpenGL ES performance tool on an iPhone 3G, it shows: Renderer Utilization: 95% to 99% Tiler Utilization: ~27% I am drawing a lot of pretty large images with a lot of blending. If I reduce the number of images drawn, framerates go from ~20 to ~40, though the performance tool results stay about the same (renderer still maxed). I think I'm being limited by the fill rate of the iPhone 3G, but I'm not sure. My questions are: How can I determine with more granularity where the bottleneck is? That is my biggest problem, I just don't know what is taking all the time. If it is fillrate, is there anything I do to improve it besides just drawing less? I am using texture atlases. I have tried to minimize image binds, though it isn't always possible (drawing order, not everything fits on one 1024x1024 texture, etc). Every frame I do 10 image binds. This seem pretty reasonable, but I could be mistaken. I'm using vertex arrays and glDrawArrays. I don't really have a lot of geometry. I can try to be more precise if needed. Each image is 2 triangles and I try to batch things were possible, though often (maybe half the time) images are drawn with individual glDrawArrays calls. Besides the images, I have ~60 triangles worth of geometry being rendered in ~6 glDrawArrays calls. I often glTranslate before calling glDrawArrays. Would it improve the framerate to switch to VBOs? I don't think it is a huge amount of geometry, but maybe it is faster for other reasons? Are there certain things to watch out for that could reduce performance? Eg, should I avoid glTranslate, glColor4g, etc? I'm using glScissor in a 3 places per frame. Each use consists of 2 glScissor calls, one to set it up, and one to reset it to what it was. I don't know if there is much of a performance impact here. If I used PVRTC would it be able to render faster? Currently all my images are GL_RGBA. I don't have memory issues. Here is a rough idea of what I'm drawing, in this order: 1) Switch to perspective matrix. 2) Draw a full screen background image 3) Draw a full screen image with translucency (this one has a scrolling texture). 4) Draw a few sprites. 5) Switch to ortho matrix. 6) Draw a few sprites. 7) Switch to perspective matrix. 8) Draw sprites and some other textured geometry. 9) Switch to ortho matrix. 10) Draw a few sprites (eg, game HUD). Steps 1-6 draw a bunch of background stuff. 8 draws most of the game content. 10 draws the HUD. As you can see, there are many layers, some of them full screen and some of the sprites are pretty large (1/4 of the screen). The layers use translucency, so I have to draw them in back-to-front order. This is further complicated by needing to draw various layers in ortho and others in perspective. I will gladly provide additional information if reqested. Thanks in advance for any performance tips or general advice on my problem!

    Read the article

  • Atmospheric scattering OpenGL 3.3

    - by user1419305
    Im currently trying to convert a shader by Sean O'Neil to version 330 so i can try it out in a application im writing. Im having some issues with deprecated functions, so i replaced them, but im almost completely new to glsl, so i probably did a mistake somewhere. Original shaders can be found here: http://www.gamedev.net/topic/592043-solved-trying-to-use-atmospheric-scattering-oneill-2004-but-get-black-sphere/ My horrible attempt at converting them: Vertex Shader: #version 330 core layout(location = 0) in vec3 vertexPosition_modelspace; //layout(location = 1) in vec2 vertexUV; layout(location = 2) in vec3 vertexNormal_modelspace; uniform vec3 v3CameraPos; uniform vec3 v3LightPos; uniform vec3 v3InvWavelength; uniform float fCameraHeight; uniform float fCameraHeight2; uniform float fOuterRadius; uniform float fOuterRadius2; uniform float fInnerRadius; uniform float fInnerRadius2; uniform float fKrESun; uniform float fKmESun; uniform float fKr4PI; uniform float fKm4PI; uniform float fScale; uniform float fScaleDepth; uniform float fScaleOverScaleDepth; // passing in matrixes for transformations uniform mat4 MVP; uniform mat4 V; uniform mat4 M; const int nSamples = 4; const float fSamples = 4.0; out vec3 v3Direction; out vec4 gg_FrontColor; out vec4 gg_FrontSecondaryColor; float scale(float fCos) { float x = 1.0 - fCos; return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25)))); } void main(void) { vec3 v3Pos = vertexPosition_modelspace; vec3 v3Ray = v3Pos - v3CameraPos; float fFar = length(v3Ray); v3Ray /= fFar; vec3 v3Start = v3CameraPos; float fHeight = length(v3Start); float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fCameraHeight)); float fStartAngle = dot(v3Ray, v3Start) / fHeight; float fStartOffset = fDepth*scale(fStartAngle); float fSampleLength = fFar / fSamples; float fScaledLength = fSampleLength * fScale; vec3 v3SampleRay = v3Ray * fSampleLength; vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5; vec3 v3FrontColor = vec3(0.0, 0.0, 0.0); for(int i=0; i<nSamples; i++) { float fHeight = length(v3SamplePoint); float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight)); float fLightAngle = dot(v3LightPos, v3SamplePoint) / fHeight; float fCameraAngle = dot(v3Ray, v3SamplePoint) / fHeight; float fScatter = (fStartOffset + fDepth*(scale(fLightAngle) - scale(fCameraAngle))); vec3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI)); v3FrontColor += v3Attenuate * (fDepth * fScaledLength); v3SamplePoint += v3SampleRay; } gg_FrontSecondaryColor.rgb = v3FrontColor * fKmESun; gg_FrontColor.rgb = v3FrontColor * (v3InvWavelength * fKrESun); gl_Position = MVP * vec4(vertexPosition_modelspace,1); v3Direction = v3CameraPos - v3Pos; } Fragment Shader: #version 330 core uniform vec3 v3LightPos; uniform float g; uniform float g2; in vec3 v3Direction; out vec4 FragColor; in vec4 gg_FrontColor; in vec4 gg_FrontSecondaryColor; void main (void) { float fCos = dot(v3LightPos, v3Direction) / length(v3Direction); float fMiePhase = 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + fCos*fCos) / pow(1.0 + g2 - 2.0*g*fCos, 1.5); FragColor = gg_FrontColor + fMiePhase * gg_FrontSecondaryColor; FragColor.a = FragColor.b; } I wrote a function to render a sphere, and im trying to render this shader onto a inverted version of it, the sphere works completely fine, with normals and all. My problem is that the sphere gets rendered all black, so the shader is not working. This is how i'm trying to render the atmosphere inside my main rendering loop. glUseProgram(programAtmosphere); glBindTexture(GL_TEXTURE_2D, 0); //###################### glUniform3f(v3CameraPos, getPlayerPos().x, getPlayerPos().y, getPlayerPos().z); glUniform3f(v3LightPos, lightPos.x / sqrt(lightPos.x * lightPos.x + lightPos.y * lightPos.y), lightPos.y / sqrt(lightPos.x * lightPos.x + lightPos.y * lightPos.y), 0); glUniform3f(v3InvWavelength, 1.0 / pow(0.650, 4.0), 1.0 / pow(0.570, 4.0), 1.0 / pow(0.475, 4.0)); glUniform1fARB(fCameraHeight, 1); glUniform1fARB(fCameraHeight2, 1); glUniform1fARB(fInnerRadius, 6350); glUniform1fARB(fInnerRadius2, 6350 * 6350); glUniform1fARB(fOuterRadius, 6450); glUniform1fARB(fOuterRadius2, 6450 * 6450); glUniform1fARB(fKrESun, 0.0025 * 20.0); glUniform1fARB(fKmESun, 0.0015 * 20.0); glUniform1fARB(fKr4PI, 0.0025 * 4.0 * 3.141592653); glUniform1fARB(fKm4PI, 0.0015 * 4.0 * 3.141592653); glUniform1fARB(fScale, 1.0 / (6450 - 6350)); glUniform1fARB(fScaleDepth, 0.25); glUniform1fARB(fScaleOverScaleDepth, 4.0 / (6450 - 6350)); glUniform1fARB(g, -0.85); glUniform1f(g2, -0.85 * -0.85); // vertices glEnableVertexAttribArray(0); glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer[1]); glVertexAttribPointer( 0, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? 0, // stride (void*)0 // array buffer offset ); // normals glEnableVertexAttribArray(2); glBindBuffer(GL_ARRAY_BUFFER, normalbuffer[1]); glVertexAttribPointer( 2, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? 0, // stride (void*)0 // array buffer offset ); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementbuffer[1]); glUniformMatrix4fv(ModelMatrixAT, 1, GL_FALSE, &ModelMatrix[0][0]); glUniformMatrix4fv(ViewMatrixAT, 1, GL_FALSE, &ViewMatrix[0][0]); glUniformMatrix4fv(ModelViewPAT, 1, GL_FALSE, &MVP[0][0]); // Draw the triangles glDrawElements( GL_TRIANGLES, // mode cubeIndices[1], // count GL_UNSIGNED_SHORT, // type (void*)0 // element array buffer offset ); Any ideas?

    Read the article

  • Issues with HLSL and lighting

    - by numerical25
    I am trying figure out whats going on with my HLSL code but I have no way of debugging it cause C++ gives off no errors. The application just closes when I run it. I am trying to add lighting to a 3d plane I made. below is my HLSL. The problem consist when my Pixel shader method returns the struct "outColor" . If I change the return value back to the struct "psInput" , everything goes back to working again. My light vectors and colors are at the top of the fx file // PS_INPUT - input variables to the pixel shader // This struct is created and fill in by the // vertex shader cbuffer Variables { matrix Projection; matrix World; float TimeStep; }; struct PS_INPUT { float4 Pos : SV_POSITION; float4 Color : COLOR0; float3 Normal : TEXCOORD0; float3 ViewVector : TEXCOORD1; }; float specpower = 80.0f; float3 camPos = float3(0.0f, 9.0, -256.0f); float3 DirectLightColor = float3(1.0f, 1.0f, 1.0f); float3 DirectLightVector = float3(0.0f, 0.602f, 0.70f); float3 AmbientLightColor = float3(1.0f, 1.0f, 1.0f); /*************************************** * Lighting functions ***************************************/ /********************************* * CalculateAmbient - * inputs - * vKa material's reflective color * lightColor - the ambient color of the lightsource * output - ambient color *********************************/ float3 CalculateAmbient(float3 vKa, float3 lightColor) { float3 vAmbient = vKa * lightColor; return vAmbient; } /********************************* * CalculateDiffuse - * inputs - * material color * The color of the direct light * the local normal * the vector of the direct light * output - difuse color *********************************/ float3 CalculateDiffuse(float3 baseColor, float3 lightColor, float3 normal, float3 lightVector) { float3 vDiffuse = baseColor * lightColor * saturate(dot(normal, lightVector)); return vDiffuse; } /********************************* * CalculateSpecular - * inputs - * viewVector * the direct light vector * the normal * output - specular highlight *********************************/ float CalculateSpecular(float3 viewVector, float3 lightVector, float3 normal) { float3 vReflect = reflect(lightVector, normal); float fSpecular = saturate(dot(vReflect, viewVector)); fSpecular = pow(fSpecular, specpower); return fSpecular; } /********************************* * LightingCombine - * inputs - * ambient component * diffuse component * specualr component * output - phong color color *********************************/ float3 LightingCombine(float3 vAmbient, float3 vDiffuse, float fSpecular) { float3 vCombined = vAmbient + vDiffuse + fSpecular.xxx; return vCombined; } //////////////////////////////////////////////// // Vertex Shader - Main Function /////////////////////////////////////////////// PS_INPUT VS(float4 Pos : POSITION, float4 Color : COLOR, float3 Normal : NORMAL) { PS_INPUT psInput; float4 newPosition; newPosition = Pos; newPosition.y = sin((newPosition.x * TimeStep) + (newPosition.z / 3.0f)) * 5.0f; // Pass through both the position and the color psInput.Pos = mul(newPosition , Projection ); psInput.Color = Color; psInput.ViewVector = normalize(camPos - psInput.Pos); return psInput; } /////////////////////////////////////////////// // Pixel Shader /////////////////////////////////////////////// //Anthony!!!!!!!!!!! Find out how color works when multiplying them float4 PS(PS_INPUT psInput) : SV_Target { float3 normal = -normalize(psInput.Normal); float3 vAmbient = CalculateAmbient(psInput.Color, AmbientLightColor); float3 vDiffuse = CalculateDiffuse(psInput.Color, DirectLightColor, normal, DirectLightVector); float fSpecular = CalculateSpecular(psInput.ViewVector, DirectLightVector, normal); float4 outColor; outColor.rgb = LightingCombine(vAmbient, vDiffuse, fSpecular); outColor.a = 1.0f; //Below is where the error begins return outColor; } // Define the technique technique10 Render { pass P0 { SetVertexShader( CompileShader( vs_4_0, VS() ) ); SetGeometryShader( NULL ); SetPixelShader( CompileShader( ps_4_0, PS() ) ); } } Below is some of my c++ code. Reason I am showing this is because it is pretty much what creates the surface normals for my shaders to evaluate. for the lighting for(int z=0; z < NUM_ROWS; ++z) { for(int x = 0; x < NUM_COLS; ++x) { int curVertex = x + (z * NUM_VERTSX); indices[curIndex] = curVertex; indices[curIndex + 1] = curVertex + NUM_VERTSX; indices[curIndex + 2] = curVertex + 1; D3DXVECTOR3 v0 = vertices[indices[curIndex]].pos; D3DXVECTOR3 v1 = vertices[indices[curIndex + 1]].pos; D3DXVECTOR3 v2 = vertices[indices[curIndex + 2]].pos; D3DXVECTOR3 normal; D3DXVECTOR3 cross; D3DXVec3Cross(&cross, &D3DXVECTOR3(v2 - v0),&D3DXVECTOR3(v1 - v0)); D3DXVec3Normalize(&normal, &cross); vertices[indices[curIndex]].normal = normal; vertices[indices[curIndex + 1]].normal = normal; vertices[indices[curIndex + 2]].normal = normal; indices[curIndex + 3] = curVertex + 1; indices[curIndex + 4] = curVertex + NUM_VERTSX; indices[curIndex + 5] = curVertex + NUM_VERTSX + 1; v0 = vertices[indices[curIndex + 3]].pos; v1 = vertices[indices[curIndex + 4]].pos; v2 = vertices[indices[curIndex + 5]].pos; D3DXVec3Cross(&cross, &D3DXVECTOR3(v2 - v0),&D3DXVECTOR3(v1 - v0)); D3DXVec3Normalize(&normal, &cross); vertices[indices[curIndex + 3]].normal = normal; vertices[indices[curIndex + 4]].normal = normal; vertices[indices[curIndex + 5]].normal = normal; curIndex += 6; } } and below is my c++ code, in it's entirety. showing the drawing and also calling on the passes #include "MyGame.h" //#include "CubeVector.h" /* This code sets a projection and shows a turning cube. What has been added is the project, rotation and a rasterizer to change the rasterization of the cube. The issue that was going on was something with the effect file which was causing the vertices not to be rendered correctly.*/ typedef struct { ID3D10Effect* pEffect; ID3D10EffectTechnique* pTechnique; //vertex information ID3D10Buffer* pVertexBuffer; ID3D10Buffer* pIndicesBuffer; ID3D10InputLayout* pVertexLayout; UINT numVertices; UINT numIndices; }ModelObject; ModelObject modelObject; // World Matrix D3DXMATRIX WorldMatrix; // View Matrix D3DXMATRIX ViewMatrix; // Projection Matrix D3DXMATRIX ProjectionMatrix; ID3D10EffectMatrixVariable* pProjectionMatrixVariable = NULL; //grid information #define NUM_COLS 16 #define NUM_ROWS 16 #define CELL_WIDTH 32 #define CELL_HEIGHT 32 #define NUM_VERTSX (NUM_COLS + 1) #define NUM_VERTSY (NUM_ROWS + 1) // timer variables LARGE_INTEGER timeStart; LARGE_INTEGER timeEnd; LARGE_INTEGER timerFreq; double currentTime; float anim_rate; // Variable to hold how long since last frame change float lastElaspedFrame = 0; // How long should the frames last float frameDuration = 0.5; bool MyGame::InitDirect3D() { if(!DX3dApp::InitDirect3D()) { return false; } // Get the timer frequency QueryPerformanceFrequency(&timerFreq); float freqSeconds = 1.0f / timerFreq.QuadPart; lastElaspedFrame = 0; D3D10_RASTERIZER_DESC rastDesc; rastDesc.FillMode = D3D10_FILL_WIREFRAME; rastDesc.CullMode = D3D10_CULL_FRONT; rastDesc.FrontCounterClockwise = true; rastDesc.DepthBias = false; rastDesc.DepthBiasClamp = 0; rastDesc.SlopeScaledDepthBias = 0; rastDesc.DepthClipEnable = false; rastDesc.ScissorEnable = false; rastDesc.MultisampleEnable = false; rastDesc.AntialiasedLineEnable = false; ID3D10RasterizerState *g_pRasterizerState; mpD3DDevice->CreateRasterizerState(&rastDesc, &g_pRasterizerState); mpD3DDevice->RSSetState(g_pRasterizerState); // Set up the World Matrix D3DXMatrixIdentity(&WorldMatrix); D3DXMatrixLookAtLH(&ViewMatrix, new D3DXVECTOR3(200.0f, 60.0f, -20.0f), new D3DXVECTOR3(200.0f, 50.0f, 0.0f), new D3DXVECTOR3(0.0f, 1.0f, 0.0f)); // Set up the projection matrix D3DXMatrixPerspectiveFovLH(&ProjectionMatrix, (float)D3DX_PI * 0.5f, (float)mWidth/(float)mHeight, 0.1f, 100.0f); pTimeVariable = NULL; if(!CreateObject()) { return false; } return true; } //These are actions that take place after the clearing of the buffer and before the present void MyGame::GameDraw() { static float rotationAngle = 0.0f; // create the rotation matrix using the rotation angle D3DXMatrixRotationY(&WorldMatrix, rotationAngle); rotationAngle += (float)D3DX_PI * 0.0f; // Set the input layout mpD3DDevice->IASetInputLayout(modelObject.pVertexLayout); // Set vertex buffer UINT stride = sizeof(VertexPos); UINT offset = 0; mpD3DDevice->IASetVertexBuffers(0, 1, &modelObject.pVertexBuffer, &stride, &offset); mpD3DDevice->IASetIndexBuffer(modelObject.pIndicesBuffer, DXGI_FORMAT_R32_UINT, 0); pTimeVariable->SetFloat((float)currentTime); // Set primitive topology mpD3DDevice->IASetPrimitiveTopology(D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST); // Combine and send the final matrix to the shader D3DXMATRIX finalMatrix = (WorldMatrix * ViewMatrix * ProjectionMatrix); pProjectionMatrixVariable->SetMatrix((float*)&finalMatrix); // make sure modelObject is valid // Render a model object D3D10_TECHNIQUE_DESC techniqueDescription; modelObject.pTechnique->GetDesc(&techniqueDescription); // Loop through the technique passes for(UINT p=0; p < techniqueDescription.Passes; ++p) { modelObject.pTechnique->GetPassByIndex(p)->Apply(0); // draw the cube using all 36 vertices and 12 triangles mpD3DDevice->DrawIndexed(modelObject.numIndices,0,0); } } //Render actually incapsulates Gamedraw, so you can call data before you actually clear the buffer or after you //present data void MyGame::Render() { // Get the start timer count QueryPerformanceCounter(&timeStart); currentTime += anim_rate; DX3dApp::Render(); QueryPerformanceCounter(&timeEnd); anim_rate = ( (float)timeEnd.QuadPart - (float)timeStart.QuadPart ) / timerFreq.QuadPart; } bool MyGame::CreateObject() { VertexPos vertices[NUM_VERTSX * NUM_VERTSY]; for(int z=0; z < NUM_VERTSY; ++z) { for(int x = 0; x < NUM_VERTSX; ++x) { vertices[x + z * NUM_VERTSX].pos.x = (float)x * CELL_WIDTH; vertices[x + z * NUM_VERTSX].pos.z = (float)z * CELL_HEIGHT; vertices[x + z * NUM_VERTSX].pos.y = (float)(rand() % CELL_HEIGHT); vertices[x + z * NUM_VERTSX].color = D3DXVECTOR4(1.0, 0.0f, 0.0f, 0.0f); } } DWORD indices[NUM_VERTSX * NUM_VERTSY * 6]; int curIndex = 0; for(int z=0; z < NUM_ROWS; ++z) { for(int x = 0; x < NUM_COLS; ++x) { int curVertex = x + (z * NUM_VERTSX); indices[curIndex] = curVertex; indices[curIndex + 1] = curVertex + NUM_VERTSX; indices[curIndex + 2] = curVertex + 1; D3DXVECTOR3 v0 = vertices[indices[curIndex]].pos; D3DXVECTOR3 v1 = vertices[indices[curIndex + 1]].pos; D3DXVECTOR3 v2 = vertices[indices[curIndex + 2]].pos; D3DXVECTOR3 normal; D3DXVECTOR3 cross; D3DXVec3Cross(&cross, &D3DXVECTOR3(v2 - v0),&D3DXVECTOR3(v1 - v0)); D3DXVec3Normalize(&normal, &cross); vertices[indices[curIndex]].normal = normal; vertices[indices[curIndex + 1]].normal = normal; vertices[indices[curIndex + 2]].normal = normal; indices[curIndex + 3] = curVertex + 1; indices[curIndex + 4] = curVertex + NUM_VERTSX; indices[curIndex + 5] = curVertex + NUM_VERTSX + 1; v0 = vertices[indices[curIndex + 3]].pos; v1 = vertices[indices[curIndex + 4]].pos; v2 = vertices[indices[curIndex + 5]].pos; D3DXVec3Cross(&cross, &D3DXVECTOR3(v2 - v0),&D3DXVECTOR3(v1 - v0)); D3DXVec3Normalize(&normal, &cross); vertices[indices[curIndex + 3]].normal = normal; vertices[indices[curIndex + 4]].normal = normal; vertices[indices[curIndex + 5]].normal = normal; curIndex += 6; } } //Create Layout D3D10_INPUT_ELEMENT_DESC layout[] = { {"POSITION",0,DXGI_FORMAT_R32G32B32_FLOAT, 0 , 0, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"COLOR",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 12, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"NORMAL",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 28, D3D10_INPUT_PER_VERTEX_DATA, 0} }; UINT numElements = (sizeof(layout)/sizeof(layout[0])); modelObject.numVertices = sizeof(vertices)/sizeof(VertexPos); //Create buffer desc D3D10_BUFFER_DESC bufferDesc; bufferDesc.Usage = D3D10_USAGE_DEFAULT; bufferDesc.ByteWidth = sizeof(VertexPos) * modelObject.numVertices; bufferDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER; bufferDesc.CPUAccessFlags = 0; bufferDesc.MiscFlags = 0; D3D10_SUBRESOURCE_DATA initData; initData.pSysMem = vertices; //Create the buffer HRESULT hr = mpD3DDevice->CreateBuffer(&bufferDesc, &initData, &modelObject.pVertexBuffer); if(FAILED(hr)) return false; modelObject.numIndices = sizeof(indices)/sizeof(DWORD); bufferDesc.ByteWidth = sizeof(DWORD) * modelObject.numIndices; bufferDesc.BindFlags = D3D10_BIND_INDEX_BUFFER; initData.pSysMem = indices; hr = mpD3DDevice->CreateBuffer(&bufferDesc, &initData, &modelObject.pIndicesBuffer); if(FAILED(hr)) return false; ///////////////////////////////////////////////////////////////////////////// //Set up fx files LPCWSTR effectFilename = L"effect.fx"; modelObject.pEffect = NULL; hr = D3DX10CreateEffectFromFile(effectFilename, NULL, NULL, "fx_4_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, mpD3DDevice, NULL, NULL, &modelObject.pEffect, NULL, NULL); if(FAILED(hr)) return false; pProjectionMatrixVariable = modelObject.pEffect->GetVariableByName("Projection")->AsMatrix(); pTimeVariable = modelObject.pEffect->GetVariableByName("TimeStep")->AsScalar(); //Dont sweat the technique. Get it! LPCSTR effectTechniqueName = "Render"; modelObject.pTechnique = modelObject.pEffect->GetTechniqueByName(effectTechniqueName); if(modelObject.pTechnique == NULL) return false; //Create Vertex layout D3D10_PASS_DESC passDesc; modelObject.pTechnique->GetPassByIndex(0)->GetDesc(&passDesc); hr = mpD3DDevice->CreateInputLayout(layout, numElements, passDesc.pIAInputSignature, passDesc.IAInputSignatureSize, &modelObject.pVertexLayout); if(FAILED(hr)) return false; return true; }

    Read the article

< Previous Page | 26 27 28 29 30 31 32 33 34 35 36 37  | Next Page >