Search Results

Search found 3140 results on 126 pages for 'stencil buffer'.

Page 30/126 | < Previous Page | 26 27 28 29 30 31 32 33 34 35 36 37  | Next Page >

  • Problem with reading and writing to binary file in C++

    - by Reem
    I need to make a file that contains "name" which is a string -array of char- and "data" which is array of bytes -array of char in C++- but the first problem I faced is how to separate the "name" from the "data"? newline character could work in this case (assuming that I don't have "\n" in the name) but I could have special characters in the "data" part so there's no way to know when it ends so I'm putting an int value in the file before the data which has the size of the "data"! I tried to do this with code as follow: if((fp = fopen("file.bin","wb")) == NULL) { return false; } char buffer[] = "first data\n"; fwrite( buffer ,1,sizeof(buffer),fp ); int number[1]; number[0]=10; fwrite( number ,1,1, fp ); char data[] = "1234567890"; fwrite( data , 1, number[0], fp ); fclose(fp); but I didn't know if the "int" part was right, so I tried many other codes including this one: char buffer[] = "first data\n"; fwrite( buffer ,1,sizeof(buffer),fp ); int size=10; fwrite( &size ,sizeof size,1, fp ); char data[] = "1234567890"; fwrite( data , 1, number[0], fp ); I see 4 "NULL" characters in the file when I open it instead of seeing an integer. Is that normal? The other problem I'm facing is reading that again from the file! The code I tried to read didn't work at all :( I tried it with "fread" but I'm not sure if I should use "fseek" with it or it just read the other character after it. Forgive me but I'm a beginner :(

    Read the article

  • iPhone AES encryption issue

    - by Dilshan
    Hi, I use following code to encrypt using AES. - (NSData*)AES256EncryptWithKey:(NSString*)key theMsg:(NSData *)myMessage { // 'key' should be 32 bytes for AES256, will be null-padded otherwise char keyPtr[kCCKeySizeAES256 + 1]; // room for terminator (unused) bzero(keyPtr, sizeof(keyPtr)); // fill with zeroes (for padding) // fetch key data [key getCString:keyPtr maxLength:sizeof(keyPtr) encoding:NSUTF8StringEncoding]; NSUInteger dataLength = [myMessage length]; //See the doc: For block ciphers, the output size will always be less than or //equal to the input size plus the size of one block. //That's why we need to add the size of one block here size_t bufferSize = dataLength + kCCBlockSizeAES128; void* buffer = malloc(bufferSize); size_t numBytesEncrypted = 0; CCCryptorStatus cryptStatus = CCCrypt(kCCEncrypt, kCCAlgorithmAES128, kCCOptionPKCS7Padding, keyPtr, kCCKeySizeAES256, NULL /* initialization vector (optional) */, [myMessage bytes], dataLength, /* input */ buffer, bufferSize, /* output */ &numBytesEncrypted); if (cryptStatus == kCCSuccess) { //the returned NSData takes ownership of the buffer and will free it on deallocation return [NSData dataWithBytesNoCopy:buffer length:numBytesEncrypted]; } free(buffer); //free the buffer; return nil; } However the following code chunk returns null if I tried to print the encryptmessage variable. Same thing applies to decryption as well. What am I doing wrong here? NSData *encrData = [self AES256EncryptWithKey:theKey theMsg:myMessage]; NSString *encryptmessage = [[NSString alloc] initWithData:encrData encoding:NSUTF8StringEncoding]; Thank you

    Read the article

  • Storing "binary" data type in C program

    - by puchu
    I need to create a program that converts one number system to other number systems. I used itoa in Windows (Dev C++) and my only problem is that I do not know how to convert binary numbers to other number systems. All the other number systems conversion work accordingly. Does this involve something like storing the input to be converted using %? Here is a snippet of my work: case 2: { printf("\nEnter a binary number: "); scanf("%d", &num); itoa(num,buffer,8); printf("\nOctal %s",buffer); itoa(num,buffer,10); printf("\nDecimal %s",buffer); itoa(num,buffer,16); printf("\nHexadecimal %s \n",buffer); break; } For decimal I used %d, for octal I used %o and for hexadecimal I used %x. What could be the correct one for binary? Thanks for future answers!

    Read the article

  • Canvas draw calls are rendering out of sequence

    - by Tom Murray
    I have the following code for writing draw calls to a "back buffer" canvas, then placing those in a main canvas using drawImage. This is for optimization purposes and to ensure all images get placed in sequence. Before placing the buffer canvas on top of the main one, I'm using fillRect to create a dark-blue background on the main canvas. However, the blue background is rendering after the sprites. This is unexpected, as I am making its fillRect call first. Here is my code: render: function() { this.buffer.clearRect(0,0,this.w,this.h); this.context.fillStyle = "#000044"; this.context.fillRect(0,0,this.w,this.h); for (var i in this.renderQueue) { for (var ii = 0; ii < this.renderQueue[i].length; ii++) { sprite = this.renderQueue[i][ii]; // Draw it! this.buffer.fillStyle = "green"; this.buffer.fillRect(sprite.x, sprite.y, sprite.w, sprite.h); } } this.context.drawImage(this.bufferCanvas,0,0); } This also happens when I use fillRect on the buffer canvas, instead of the main one. Changing the globalCompositeOperation between 'source-over' and 'destination-over' (for both contexts) does nothing to change this. Paradoxically, if I instead place the blue fillRect inside the nested for loops with the other draw calls, it works as expected... Thanks in advance!

    Read the article

  • Pixel Perfect Collision Detection in Cocos2dx

    - by Happybirthday
    I am trying to port the pixel perfect collision detection in Cocos2d-x the original version was made for Cocos2D and can be found here: http://www.cocos2d-iphone.org/forums/topic/pixel-perfect-collision-detection-using-color-blending/ Here is my code for the Cocos2d-x version bool CollisionDetection::areTheSpritesColliding(cocos2d::CCSprite *spr1, cocos2d::CCSprite *spr2, bool pp, CCRenderTexture* _rt) { bool isColliding = false; CCRect intersection; CCRect r1 = spr1-boundingBox(); CCRect r2 = spr2-boundingBox(); intersection = CCRectMake(fmax(r1.getMinX(),r2.getMinX()), fmax( r1.getMinY(), r2.getMinY()) ,0,0); intersection.size.width = fmin(r1.getMaxX(), r2.getMaxX() - intersection.getMinX()); intersection.size.height = fmin(r1.getMaxY(), r2.getMaxY() - intersection.getMinY()); // Look for simple bounding box collision if ( (intersection.size.width0) && (intersection.size.height0) ) { // If we're not checking for pixel perfect collisions, return true if (!pp) { return true; } unsigned int x = intersection.origin.x; unsigned int y = intersection.origin.y; unsigned int w = intersection.size.width; unsigned int h = intersection.size.height; unsigned int numPixels = w * h; //CCLog("Intersection X and Y %d, %d", x, y); //CCLog("Number of pixels %d", numPixels); // Draw into the RenderTexture _rt-beginWithClear( 0, 0, 0, 0); // Render both sprites: first one in RED and second one in GREEN glColorMask(1, 0, 0, 1); spr1-visit(); glColorMask(0, 1, 0, 1); spr2-visit(); glColorMask(1, 1, 1, 1); // Get color values of intersection area ccColor4B *buffer = (ccColor4B *)malloc( sizeof(ccColor4B) * numPixels ); glReadPixels(x, y, w, h, GL_RGBA, GL_UNSIGNED_BYTE, buffer); _rt-end(); // Read buffer unsigned int step = 1; for(unsigned int i=0; i 0 && color.g 0) { isColliding = true; break; } } // Free buffer memory free(buffer); } return isColliding; } My code is working perfectly if I send the "pp" parameter as false. That is if I do only a bounding box collision but I am not able to get it working correctly for the case when I need Pixel Perfect collision. I think the opengl masking code is not working as I intended. Here is the code for "_rt" _rt = CCRenderTexture::create(visibleSize.width, visibleSize.height); _rt-setPosition(ccp(origin.x + visibleSize.width * 0.5f, origin.y + visibleSize.height * 0.5f)); this-addChild(_rt, 1000000); _rt-setVisible(true); //For testing I think I am making a mistake with the implementation of this CCRenderTexture Can anyone guide me with what I am doing wrong ? Thank you for your time :)

    Read the article

  • iPhone SDK: Audio Queue control

    - by codemercenary
    Hi all, I am new to the audio queue services so I have taken an example from a book called iPhone Cool Projects where it describes how to stream audio. I want to extend this to being able to play a continuous playlist of links to mp3 files like an internet radio. The problem with the example code it that it does not detect when a stream ends and does not call AudioQueueStop at any point, so I added a counter to number of buffers added to the queue, and then decrement this counter each time audioQueueOutputCallback is called by the queue. This works fine except if when the buffer count goes to 0, and then I add a call AudioQueueFlush(audioQueue) and then AudioQueueStop(audioQueue, false) I get an error. If I only call AudioQueueReset, it continues to load the buffers again, but plays them out faster then it loads them... getting stuck in a loop and then crashing. 2010-04-14 13:56:29.745 AudioPlayer[2269:207] init player with URL 2010-04-14 13:56:29.941 AudioPlayer[2269:207] did recieve data 2010-04-14 13:56:29.942 AudioPlayer[2269:207] audio request didReceiveData 2010-04-14 13:56:29.944 AudioPlayer[2269:207] >>> start audio queue 2010-04-14 13:56:29.960 AudioPlayer[2269:207] packetCallback count 2 2010-04-14 13:56:29.961 AudioPlayer[2269:207] add buffer: 1 2010-04-14 13:56:29.962 AudioPlayer[2269:207] did recieve data 2010-04-14 13:56:29.963 AudioPlayer[2269:207] audio request didReceiveData 2010-04-14 13:56:29.963 AudioPlayer[2269:207] packetCallback count 1 2010-04-14 13:56:29.964 AudioPlayer[2269:207] add buffer: 2 2010-04-14 13:56:29.965 AudioPlayer[2269:207] packetCallback count 13 2010-04-14 13:56:29.967 AudioPlayer[2269:207] add buffer: 3 2010-04-14 13:56:29.968 AudioPlayer[2269:207] done with buffer: 3 2010-04-14 13:56:29.969 AudioPlayer[2269:207] done with buffer: 2 2010-04-14 13:56:29.974 AudioPlayer[2269:207] done with buffer: 1 So this loop continues some 20 - 30 times and then it crashes. The first time it plays an audio file it queues up the buffers and then plays sound, but doesn't callback to delete them until some 100 or more have been played. Can anyone explain this behavior? I read that there was a limit of 1 audio queue for MP3 playback for the iPhone. Is that still true? If not then I suppose I should use another audio queue for the next mp3 stream. I've had a look through the apple docs but it doesn't explain this in any particular detail. A better insight into this would be great. TIA.

    Read the article

  • MySQL daemon keeps terminating unexpectedly

    - by Yehia A.Salam
    The MySQL daemon on my CentOS server keeps crashing, i got the logs from /var/logs/mysqld but still i am not sure how to fix this: 121114 16:22:56 mysqld_safe mysqld from pid file /var/run/mysqld/mysqld.pid ended 121114 21:55:11 mysqld_safe Starting mysqld daemon with databases from /var/lib/mysql 121114 21:55:11 [Note] Plugin 'FEDERATED' is disabled. 121114 21:55:11 InnoDB: The InnoDB memory heap is disabled 121114 21:55:11 InnoDB: Mutexes and rw_locks use GCC atomic builtins 121114 21:55:11 InnoDB: Compressed tables use zlib 1.2.3 121114 21:55:11 InnoDB: Using Linux native AIO 121114 21:55:11 InnoDB: Initializing buffer pool, size = 128.0M 121114 21:55:11 InnoDB: Completed initialization of buffer pool 121114 21:55:11 InnoDB: highest supported file format is Barracuda. InnoDB: The log sequence number in ibdata files does not match InnoDB: the log sequence number in the ib_logfiles! 121114 21:55:11 InnoDB: Database was not shut down normally! InnoDB: Starting crash recovery. InnoDB: Reading tablespace information from the .ibd files... InnoDB: Restoring possible half-written data pages from the doublewrite InnoDB: buffer... 121114 21:55:12 InnoDB: Waiting for the background threads to start 121114 21:55:13 InnoDB: 1.1.6 started; log sequence number 77177262 121114 21:55:13 [Note] Event Scheduler: Loaded 0 events 121114 21:55:13 [Note] /usr/libexec/mysqld: ready for connections. Version: '5.5.12' socket: '/var/lib/mysql/mysql.sock' port: 3306 MySQL Community Server (GPL) by Remi 121115 00:19:44 mysqld_safe Number of processes running now: 0 121115 00:19:44 mysqld_safe mysqld restarted 121115 0:19:47 [Note] Plugin 'FEDERATED' is disabled. 121115 0:19:47 InnoDB: The InnoDB memory heap is disabled 121115 0:19:47 InnoDB: Mutexes and rw_locks use GCC atomic builtins 121115 0:19:47 InnoDB: Compressed tables use zlib 1.2.3 121115 0:19:47 InnoDB: Using Linux native AIO 121115 0:19:47 InnoDB: Initializing buffer pool, size = 128.0M InnoDB: mmap(137363456 bytes) failed; errno 12 121115 0:19:47 InnoDB: Completed initialization of buffer pool 121115 0:19:47 InnoDB: Fatal error: cannot allocate memory for the buffer pool 121115 0:19:47 [ERROR] Plugin 'InnoDB' init function returned error. 121115 0:19:47 [ERROR] Plugin 'InnoDB' registration as a STORAGE ENGINE failed. 121115 0:19:47 [ERROR] Unknown/unsupported storage engine: InnoDB 121115 0:19:47 [ERROR] Aborting Edit #1 total used free shared buffers cached Mem: 496 370 126 0 24 110 -/+ buffers/cache: 234 261 Swap: 1023 9 1014 Edit #2 Also, largest table in my mysql is 20MB, so my the memory used should be pretty moderate. SELECT CONCAT(table_schema, '.', table_name), CONCAT(ROUND(table_rows / 1000000, 2), 'M') rows, CONCAT(ROUND(data_length / ( 1024 * 1024 * 1024 ), 2), 'G') DATA, CONCAT(ROUND(index_length / ( 1024 * 1024 * 1024 ), 2), 'G') idx, CONCAT(ROUND(( data_length + index_length ) / ( 1024 * 1024 * 1024 ), 2), 'G') total_size, ROUND(index_length / data_length, 2) idxfrac FROM information_schema.TABLES ORDER BY data_length + index_length DESC LIMIT 10;

    Read the article

  • sending mail using mutt + emacs

    - by laks
    How to sent mail from emacs? I found this There are two ways to send the message. C-c C-s (mail-send) sends the message and marks the mail buffer unmodified, but leaves that buffer selected so that you can modify the message (perhaps with new recipients) and send it again. C-c C-c (mail-send-and-exit) sends and then deletes the window or switches to another buffer But both ( ctrl+c ctrl+s ) and (ctrl-c crtl+c) are not working

    Read the article

  • sending mail using mutt + emacs

    - by laks
    How to sent mail from emacs? I found this There are two ways to send the message. C-c C-s (mail-send) sends the message and marks the mail buffer unmodified, but leaves that buffer selected so that you can modify the message (perhaps with new recipients) and send it again. C-c C-c (mail-send-and-exit) sends and then deletes the window or switches to another buffer But both ( ctrl+c ctrl+s ) and (ctrl-c crtl+c) are not working

    Read the article

  • calling concurrently Graphics.Draw and new Bitmap from memory in thread take long time

    - by Abdul jalil
    Example1 public partial class Form1 : Form { public Form1() { InitializeComponent(); pro = new Thread(new ThreadStart(Producer)); con = new Thread(new ThreadStart(Consumer)); } private AutoResetEvent m_DataAvailableEvent = new AutoResetEvent(false); Queue<Bitmap> queue = new Queue<Bitmap>(); Thread pro; Thread con ; public void Producer() { MemoryStream[] ms = new MemoryStream[3]; for (int y = 0; y < 3; y++) { StreamReader reader = new StreamReader("image"+(y+1)+".JPG"); BinaryReader breader = new BinaryReader(reader.BaseStream); byte[] buffer=new byte[reader.BaseStream.Length]; breader.Read(buffer,0,buffer.Length); ms[y] = new MemoryStream(buffer); } while (true) { for (int x = 0; x < 3; x++) { Bitmap bmp = new Bitmap(ms[x]); queue.Enqueue(bmp); m_DataAvailableEvent.Set(); Thread.Sleep(6); } } } public void Consumer() { Graphics g= pictureBox1.CreateGraphics(); while (true) { m_DataAvailableEvent.WaitOne(); Bitmap bmp = queue.Dequeue(); if (bmp != null) { // Bitmap bmp = new Bitmap(ms); g.DrawImage(bmp,new Point(0,0)); bmp.Dispose(); } } } private void pictureBox1_Click(object sender, EventArgs e) { con.Start(); pro.Start(); } } when Creating bitmap and Drawing to picture box are in seperate thread then Bitmap bmp = new Bitmap(ms[x]) take 45.591 millisecond and g.DrawImage(bmp,new Point(0,0)) take 41.430 milisecond when i make bitmap from memoryStream and draw it to picture box in one thread then Bitmap bmp = new Bitmap(ms[x]) take 29.619 and g.DrawImage(bmp,new Point(0,0)) take 35.540 the code is for Example 2 is why it take more time to draw and bitmap take time in seperate thread and how to reduce the time when processing in seperate thread. i am using ANTS performance profiler 4.3 public Form1() { InitializeComponent(); pro = new Thread(new ThreadStart(Producer)); con = new Thread(new ThreadStart(Consumer)); } private AutoResetEvent m_DataAvailableEvent = new AutoResetEvent(false); Queue<MemoryStream> queue = new Queue<MemoryStream>(); Thread pro; Thread con ; public void Producer() { MemoryStream[] ms = new MemoryStream[3]; for (int y = 0; y < 3; y++) { StreamReader reader = new StreamReader("image"+(y+1)+".JPG"); BinaryReader breader = new BinaryReader(reader.BaseStream); byte[] buffer=new byte[reader.BaseStream.Length]; breader.Read(buffer,0,buffer.Length); ms[y] = new MemoryStream(buffer); } while (true) { for (int x = 0; x < 3; x++) { // Bitmap bmp = new Bitmap(ms[x]); queue.Enqueue(ms[x]); m_DataAvailableEvent.Set(); Thread.Sleep(6); } } } public void Consumer() { Graphics g= pictureBox1.CreateGraphics(); while (true) { m_DataAvailableEvent.WaitOne(); //Bitmap bmp = queue.Dequeue(); MemoryStream ms= queue.Dequeue(); if (ms != null) { Bitmap bmp = new Bitmap(ms); g.DrawImage(bmp,new Point(0,0)); bmp.Dispose(); } } } private void pictureBox1_Click(object sender, EventArgs e) { con.Start(); pro.Start(); }

    Read the article

  • Help with Silverlight Sockets and Message delivery

    - by pixel3cs
    There are 4 months since I stopped developing my Silverlight Multiplayer Chess game. The problem was a bug wich I couldn't reproduce. Sice I got some free time this week I managed to discover the problem and I am now able to reproduce the bug. It seems that if I send 10 messages from client, one after another, with no delay between them, just like in the below example // when I press Enter, the client will 10 messages with no delay between them private void textBox_KeyDown(object sender, KeyEventArgs e) { if (e.Key == Key.Enter && textBox.Text.Length > 0) { for (int i = 0; i < 10; i++) { MessageBuilder mb = new MessageBuilder(); mb.Writer.Write((byte)GameCommands.NewChatMessageInTable); mb.Writer.Write(string.Format("{0}{2}: {1}", ClientVars.PlayerNickname, textBox.Text, i)); SendChatMessageEvent(mb.GetMessage()); //System.Threading.Thread.Sleep(100); } textBox.Text = string.Empty; } } // the method used by client to send a message to server public void SendData(Message message) { if (socket.Connected) { SocketAsyncEventArgs myMsg = new SocketAsyncEventArgs(); myMsg.RemoteEndPoint = socket.RemoteEndPoint; byte[] buffer = message.Buffer; myMsg.SetBuffer(buffer, 0, buffer.Length); socket.SendAsync(myMsg); } else { string err = "Server does not respond. You are disconnected."; socket.Close(); uiContext.Post(this.uiClient.ProcessOnErrorData, err); } } // the method used by server to receive data from client private void OnDataReceived(IAsyncResult async) { ClientSocketPacket client = async.AsyncState as ClientSocketPacket; int count = 0; try { if (client.Socket.Connected) count = client.Socket.EndReceive(async); // THE PROBLEM IS HERE // IF SERVER WAS RECEIVE ALL MESSAGES SEPARATELY, ONE BY ONE, THE COUNT // WAS ALWAYS 15, BUT BECAUSE THE SERVER RECEIVE 3 MESSAGES IN 1, THE COUNT // IS SOMETIME 45 } catch { HandleException(client); } client.MessageStream.Write(client.Buffer, 0, count); Message message; while (client.MessageStream.Read(out message)) { message.Tag = client; ThreadPool.QueueUserWorkItem(new WaitCallback(this.processingThreadEvent.ServerGotData), message); totalReceivedBytes += message.Buffer.Length; } try { if (client.Socket.Connected) client.Socket.BeginReceive(client.Buffer, 0, client.Buffer.Length, 0, new AsyncCallback(OnDataReceived), client); } catch { HandleException(client); } } there are sent only 3 big messages, and every big message contain 3 or 4 small messages. This is not the behavior I want. If I put a 100 milliseconds delay between message delivery, everything is work fine, but in a real world scenario users can send messages to server even at 1 millisecond between them. Are there any settings to be done in order to make the client send only one message at a time, or Even if I receive 3 messages in 1, are they full messages all the time (I dont't want to receive 2.5 messages in one big message) ? because if they are, I can read them and treat this new situation

    Read the article

  • TCP client in C and server in Java

    - by faldren
    I would like to communicate with 2 applications : a client in C which send a message to the server in TCP and the server in Java which receive it and send an acknowledgement. Here is the client (the code is a thread) : static void *tcp_client(void *p_data) { if (p_data != NULL) { char const *message = p_data; int sockfd, n; struct sockaddr_in serv_addr; struct hostent *server; char buffer[256]; sockfd = socket(AF_INET, SOCK_STREAM, 0); if (sockfd < 0) { error("ERROR opening socket"); } server = gethostbyname(ALARM_PC_IP); if (server == NULL) { fprintf(stderr,"ERROR, no such host\n"); exit(0); } bzero((char *) &serv_addr, sizeof(serv_addr)); serv_addr.sin_family = AF_INET; bcopy((char *)server->h_addr, (char *)&serv_addr.sin_addr.s_addr, server->h_length); serv_addr.sin_port = htons(TCP_PORT); if (connect(sockfd,(struct sockaddr *) &serv_addr,sizeof(serv_addr)) < 0) { error("ERROR connecting"); } n = write(sockfd,message,strlen(message)); if (n < 0) { error("ERROR writing to socket"); } bzero(buffer,256); n = read(sockfd,buffer,255); if (n < 0) { error("ERROR reading from socket"); } printf("Message from the server : %s\n",buffer); close(sockfd); } return 0; } And the java server : try { int port = 9015; ServerSocket server=new ServerSocket(port); System.out.println("Server binded at "+((server.getInetAddress()).getLocalHost()).getHostAddress()+":"+port); System.out.println("Run the Client"); while (true) { Socket socket=server.accept(); BufferedReader in= new BufferedReader(new InputStreamReader(socket.getInputStream())); System.out.println(in.readLine()); PrintStream out=new PrintStream(socket.getOutputStream()); out.print("Welcome by server\n"); out.flush(); out.close(); in.close(); System.out.println("finished"); } } catch(Exception err) { System.err.println("* err"+err); } With n = read(sockfd,buffer,255); the client is waiting a response and for the server, the message is never ended so it doesn't send a response with PrintStream. If I remove these lines : bzero(buffer,256); n = read(sockfd,buffer,255); if (n < 0) { error("ERROR reading from socket"); } printf("Message from the server : %s\n",buffer); The server knows that the message is finished but the client can't receive the response. How solve that ? Thank you

    Read the article

  • SQL Server and Hyper-V Dynamic Memory - Part 1

    - by SQLOS Team
    SQL and Dynamic Memory Blog Post Series   Hyper-V Dynamic Memory is a new feature in Windows Server 2008 R2 SP1 that allows the memory assigned to guest virtual machines to vary according to demand. Using this feature with SQL Server is supported, but how well does it work in an environment where available memory can vary dynamically, especially since SQL Server likes memory, and is not very eager to let go of it? The next three posts will look at this question in detail. In Part 1 Serdar Sutay, a program manager in the Windows Hyper-V team, introduces Dynamic Memory with an overview of the basic architecture, configuration and monitoring concepts. In subsequent parts we will look at SQL Server memory handling, and develop some guidelines on using SQL Server with Dynamic Memory.   Part 1: Dynamic Memory Introduction   In virtualized environments memory is often the bottleneck for reaching higher VM densities. In Windows Server 2008 R2 SP1 Hyper-V introduced a new feature “Dynamic Memory” to improve VM densities on Hyper-V hosts. Dynamic Memory increases the memory utilization in virtualized environments by enabling VM memory to be changed dynamically when the VM is running.   This brings up the question of how to utilize this feature with SQL Server VMs as SQL Server performance is very sensitive to the memory being used. In the next three posts we’ll discuss the internals of Dynamic Memory, SQL Server Memory Management and how to use Dynamic Memory with SQL Server VMs.   Memory Utilization Efficiency in Virtualized Environments   The primary reason memory is usually the bottleneck for higher VM densities is that users tend to be generous when assigning memory to their VMs. Here are some memory sizing practices we’ve heard from customers:   ·         I assign 4 GB of memory to my VMs. I don’t know if all of it is being used by the applications but no one complains. ·         I take the minimum system requirements and add 50% more. ·         I go with the recommendations provided by my software vendor.   In reality correctly sizing a virtual machine requires significant effort to monitor the memory usage of the applications. Since this is not done in most environments, VMs are usually over-provisioned in terms of memory. In other words, a SQL Server VM that is assigned 4 GB of memory may not need to use 4 GB.   How does Dynamic Memory help?   Dynamic Memory improves the memory utilization by removing the requirement to determine the memory need for an application. Hyper-V determines the memory needed by applications in the VM by evaluating the memory usage information in the guest with Dynamic Memory. VMs can start with a small amount of memory and they can be assigned more memory dynamically based on the workload of applications running inside.   Overview of Dynamic Memory Concepts   ·         Startup Memory: Startup Memory is the starting amount of memory when Dynamic Memory is enabled for a VM. Dynamic Memory will make sure that this amount of memory is always assigned to the VMs by default.   ·         Maximum Memory: Maximum Memory specifies the maximum amount of memory that a VM can grow to with Dynamic Memory. ·         Memory Demand: Memory Demand is the amount determined by Dynamic Memory as the memory needed by the applications in the VM. In Windows Server 2008 R2 SP1, this is equal to the total amount of committed memory of the VM. ·         Memory Buffer: Memory Buffer is the amount of memory assigned to the VMs in addition to their memory demand to satisfy immediate memory requirements and file cache needs.   Once Dynamic Memory is enabled for a VM, it will start with the “Startup Memory”. After the boot process Dynamic Memory will determine the “Memory Demand” of the VM. Based on this memory demand it will determine the amount of “Memory Buffer” that needs to be assigned to the VM. Dynamic Memory will assign the total of “Memory Demand” and “Memory Buffer” to the VM as long as this value is less than “Maximum Memory” and as long as physical memory is available on the host.   What happens when there is not enough physical memory available on the host?   Once there is not enough physical memory on the host to satisfy VM needs, Dynamic Memory will assign less than needed amount of memory to the VMs based on their importance. A concept known as “Memory Weight” is used to determine how much VMs should be penalized based on their needed amount of memory. “Memory Weight” is a configuration setting on the VM. It can be configured to be higher for the VMs with high performance requirements. Under high memory pressure on the host, the “Memory Weight” of the VMs are evaluated in a relative manner and the VMs with lower relative “Memory Weight” will be penalized more than the ones with higher “Memory Weight”.   Dynamic Memory Configuration   Based on these concepts “Startup Memory”, “Maximum Memory”, “Memory Buffer” and “Memory Weight” can be configured as shown below in Windows Server 2008 R2 SP1 Hyper-V Manager. Memory Demand is automatically calculated by Dynamic Memory once VMs start running.     Dynamic Memory Monitoring    In Windows Server 2008 R2 SP1, Hyper-V Manager displays the memory status of VMs in the following three columns:         ·         Assigned Memory represents the current physical memory assigned to the VM. In regular conditions this will be equal to the sum of “Memory Demand” and “Memory Buffer” assigned to the VM. When there is not enough memory on the host, this value can go below the Memory Demand determined for the VM. ·         Memory Demand displays the current “Memory Demand” determined for the VM. ·         Memory Status displays the current memory status of the VM. This column can represent three values for a VM: o   OK: In this condition the VM is assigned the total of Memory Demand and Memory Buffer it needs. o   Low: In this condition the VM is assigned all the Memory Demand and a certain percentage of the Memory Buffer it needs. o   Warning: In this condition the VM is assigned a lower memory than its Memory Demand. When VMs are running in this condition, it’s likely that they will exhibit performance problems due to internal paging happening in the VM.    So far so good! But how does it work with SQL Server?   SQL Server is aggressive in terms of memory usage for good reasons. This raises the question: How do SQL Server and Dynamic Memory work together? To understand the full story, we’ll first need to understand how SQL Server Memory Management works. This will be covered in our second post in “SQL and Dynamic Memory” series. Meanwhile if you want to dive deeper into Dynamic Memory you can check the below posts from the Windows Virtualization Team Blog:   http://blogs.technet.com/virtualization/archive/2010/03/18/dynamic-memory-coming-to-hyper-v.aspx   http://blogs.technet.com/virtualization/archive/2010/03/25/dynamic-memory-coming-to-hyper-v-part-2.aspx   http://blogs.technet.com/virtualization/archive/2010/04/07/dynamic-memory-coming-to-hyper-v-part-3.aspx   http://blogs.technet.com/b/virtualization/archive/2010/04/21/dynamic-memory-coming-to-hyper-v-part-4.aspx   http://blogs.technet.com/b/virtualization/archive/2010/05/20/dynamic-memory-coming-to-hyper-v-part-5.aspx   http://blogs.technet.com/b/virtualization/archive/2010/07/12/dynamic-memory-coming-to-hyper-v-part-6.aspx   - Serdar Sutay   Originally posted at http://blogs.msdn.com/b/sqlosteam/

    Read the article

  • SQL Server and Hyper-V Dynamic Memory - Part 1

    - by SQLOS Team
    SQL and Dynamic Memory Blog Post Series   Hyper-V Dynamic Memory is a new feature in Windows Server 2008 R2 SP1 that allows the memory assigned to guest virtual machines to vary according to demand. Using this feature with SQL Server is supported, but how well does it work in an environment where available memory can vary dynamically, especially since SQL Server likes memory, and is not very eager to let go of it? The next three posts will look at this question in detail. In Part 1 Serdar Sutay, a program manager in the Windows Hyper-V team, introduces Dynamic Memory with an overview of the basic architecture, configuration and monitoring concepts. In subsequent parts we will look at SQL Server memory handling, and develop some guidelines on using SQL Server with Dynamic Memory.   Part 1: Dynamic Memory Introduction   In virtualized environments memory is often the bottleneck for reaching higher VM densities. In Windows Server 2008 R2 SP1 Hyper-V introduced a new feature “Dynamic Memory” to improve VM densities on Hyper-V hosts. Dynamic Memory increases the memory utilization in virtualized environments by enabling VM memory to be changed dynamically when the VM is running.   This brings up the question of how to utilize this feature with SQL Server VMs as SQL Server performance is very sensitive to the memory being used. In the next three posts we’ll discuss the internals of Dynamic Memory, SQL Server Memory Management and how to use Dynamic Memory with SQL Server VMs.   Memory Utilization Efficiency in Virtualized Environments   The primary reason memory is usually the bottleneck for higher VM densities is that users tend to be generous when assigning memory to their VMs. Here are some memory sizing practices we’ve heard from customers:   ·         I assign 4 GB of memory to my VMs. I don’t know if all of it is being used by the applications but no one complains. ·         I take the minimum system requirements and add 50% more. ·         I go with the recommendations provided by my software vendor.   In reality correctly sizing a virtual machine requires significant effort to monitor the memory usage of the applications. Since this is not done in most environments, VMs are usually over-provisioned in terms of memory. In other words, a SQL Server VM that is assigned 4 GB of memory may not need to use 4 GB.   How does Dynamic Memory help?   Dynamic Memory improves the memory utilization by removing the requirement to determine the memory need for an application. Hyper-V determines the memory needed by applications in the VM by evaluating the memory usage information in the guest with Dynamic Memory. VMs can start with a small amount of memory and they can be assigned more memory dynamically based on the workload of applications running inside.   Overview of Dynamic Memory Concepts   ·         Startup Memory: Startup Memory is the starting amount of memory when Dynamic Memory is enabled for a VM. Dynamic Memory will make sure that this amount of memory is always assigned to the VMs by default.   ·         Maximum Memory: Maximum Memory specifies the maximum amount of memory that a VM can grow to with Dynamic Memory. ·         Memory Demand: Memory Demand is the amount determined by Dynamic Memory as the memory needed by the applications in the VM. In Windows Server 2008 R2 SP1, this is equal to the total amount of committed memory of the VM. ·         Memory Buffer: Memory Buffer is the amount of memory assigned to the VMs in addition to their memory demand to satisfy immediate memory requirements and file cache needs.   Once Dynamic Memory is enabled for a VM, it will start with the “Startup Memory”. After the boot process Dynamic Memory will determine the “Memory Demand” of the VM. Based on this memory demand it will determine the amount of “Memory Buffer” that needs to be assigned to the VM. Dynamic Memory will assign the total of “Memory Demand” and “Memory Buffer” to the VM as long as this value is less than “Maximum Memory” and as long as physical memory is available on the host.   What happens when there is not enough physical memory available on the host?   Once there is not enough physical memory on the host to satisfy VM needs, Dynamic Memory will assign less than needed amount of memory to the VMs based on their importance. A concept known as “Memory Weight” is used to determine how much VMs should be penalized based on their needed amount of memory. “Memory Weight” is a configuration setting on the VM. It can be configured to be higher for the VMs with high performance requirements. Under high memory pressure on the host, the “Memory Weight” of the VMs are evaluated in a relative manner and the VMs with lower relative “Memory Weight” will be penalized more than the ones with higher “Memory Weight”.   Dynamic Memory Configuration   Based on these concepts “Startup Memory”, “Maximum Memory”, “Memory Buffer” and “Memory Weight” can be configured as shown below in Windows Server 2008 R2 SP1 Hyper-V Manager. Memory Demand is automatically calculated by Dynamic Memory once VMs start running.     Dynamic Memory Monitoring    In Windows Server 2008 R2 SP1, Hyper-V Manager displays the memory status of VMs in the following three columns:         ·         Assigned Memory represents the current physical memory assigned to the VM. In regular conditions this will be equal to the sum of “Memory Demand” and “Memory Buffer” assigned to the VM. When there is not enough memory on the host, this value can go below the Memory Demand determined for the VM. ·         Memory Demand displays the current “Memory Demand” determined for the VM. ·         Memory Status displays the current memory status of the VM. This column can represent three values for a VM: o   OK: In this condition the VM is assigned the total of Memory Demand and Memory Buffer it needs. o   Low: In this condition the VM is assigned all the Memory Demand and a certain percentage of the Memory Buffer it needs. o   Warning: In this condition the VM is assigned a lower memory than its Memory Demand. When VMs are running in this condition, it’s likely that they will exhibit performance problems due to internal paging happening in the VM.    So far so good! But how does it work with SQL Server?   SQL Server is aggressive in terms of memory usage for good reasons. This raises the question: How do SQL Server and Dynamic Memory work together? To understand the full story, we’ll first need to understand how SQL Server Memory Management works. This will be covered in our second post in “SQL and Dynamic Memory” series. Meanwhile if you want to dive deeper into Dynamic Memory you can check the below posts from the Windows Virtualization Team Blog:   http://blogs.technet.com/virtualization/archive/2010/03/18/dynamic-memory-coming-to-hyper-v.aspx   http://blogs.technet.com/virtualization/archive/2010/03/25/dynamic-memory-coming-to-hyper-v-part-2.aspx   http://blogs.technet.com/virtualization/archive/2010/04/07/dynamic-memory-coming-to-hyper-v-part-3.aspx   http://blogs.technet.com/b/virtualization/archive/2010/04/21/dynamic-memory-coming-to-hyper-v-part-4.aspx   http://blogs.technet.com/b/virtualization/archive/2010/05/20/dynamic-memory-coming-to-hyper-v-part-5.aspx   http://blogs.technet.com/b/virtualization/archive/2010/07/12/dynamic-memory-coming-to-hyper-v-part-6.aspx   - Serdar Sutay   Originally posted at http://blogs.msdn.com/b/sqlosteam/

    Read the article

  • SQL SERVER – Guest Post – Jonathan Kehayias – Wait Type – Day 16 of 28

    - by pinaldave
    Jonathan Kehayias (Blog | Twitter) is a MCITP Database Administrator and Developer, who got started in SQL Server in 2004 as a database developer and report writer in the natural gas industry. After spending two and a half years working in TSQL, in late 2006, he transitioned to the role of SQL Database Administrator. His primary passion is performance tuning, where he frequently rewrites queries for better performance and performs in depth analysis of index implementation and usage. Jonathan blogs regularly on SQLBlog, and was a coauthor of Professional SQL Server 2008 Internals and Troubleshooting. On a personal note, I think Jonathan is extremely positive person. In every conversation with him I have found that he is always eager to help and encourage. Every time he finds something needs to be approved, he has contacted me without hesitation and guided me to improve, change and learn. During all the time, he has not lost his focus to help larger community. I am honored that he has accepted to provide his views on complex subject of Wait Types and Queues. Currently I am reading his series on Extended Events. Here is the guest blog post by Jonathan: SQL Server troubleshooting is all about correlating related pieces of information together to indentify where exactly the root cause of a problem lies. In my daily work as a DBA, I generally get phone calls like, “So and so application is slow, what’s wrong with the SQL Server.” One of the funny things about the letters DBA is that they go so well with Default Blame Acceptor, and I really wish that I knew exactly who the first person was that pointed that out to me, because it really fits at times. A lot of times when I get this call, the problem isn’t related to SQL Server at all, but every now and then in my initial quick checks, something pops up that makes me start looking at things further. The SQL Server is slow, we see a number of tasks waiting on ASYNC_IO_COMPLETION, IO_COMPLETION, or PAGEIOLATCH_* waits in sys.dm_exec_requests and sys.dm_exec_waiting_tasks. These are also some of the highest wait types in sys.dm_os_wait_stats for the server, so it would appear that we have a disk I/O bottleneck on the machine. A quick check of sys.dm_io_virtual_file_stats() and tempdb shows a high write stall rate, while our user databases show high read stall rates on the data files. A quick check of some performance counters and Page Life Expectancy on the server is bouncing up and down in the 50-150 range, the Free Page counter consistently hits zero, and the Free List Stalls/sec counter keeps jumping over 10, but Buffer Cache Hit Ratio is 98-99%. Where exactly is the problem? In this case, which happens to be based on a real scenario I faced a few years back, the problem may not be a disk bottleneck at all; it may very well be a memory pressure issue on the server. A quick check of the system spec’s and it is a dual duo core server with 8GB RAM running SQL Server 2005 SP1 x64 on Windows Server 2003 R2 x64. Max Server memory is configured at 6GB and we think that this should be enough to handle the workload; or is it? This is a unique scenario because there are a couple of things happening inside of this system, and they all relate to what the root cause of the performance problem is on the system. If we were to query sys.dm_exec_query_stats for the TOP 10 queries, by max_physical_reads, max_logical_reads, and max_worker_time, we may be able to find some queries that were using excessive I/O and possibly CPU against the system in their worst single execution. We can also CROSS APPLY to sys.dm_exec_sql_text() and see the statement text, and also CROSS APPLY sys.dm_exec_query_plan() to get the execution plan stored in cache. Ok, quick check, the plans are pretty big, I see some large index seeks, that estimate 2.8GB of data movement between operators, but everything looks like it is optimized the best it can be. Nothing really stands out in the code, and the indexing looks correct, and I should have enough memory to handle this in cache, so it must be a disk I/O problem right? Not exactly! If we were to look at how much memory the plan cache is taking by querying sys.dm_os_memory_clerks for the CACHESTORE_SQLCP and CACHESTORE_OBJCP clerks we might be surprised at what we find. In SQL Server 2005 RTM and SP1, the plan cache was allowed to take up to 75% of the memory under 8GB. I’ll give you a second to go back and read that again. Yes, you read it correctly, it says 75% of the memory under 8GB, but you don’t have to take my word for it, you can validate this by reading Changes in Caching Behavior between SQL Server 2000, SQL Server 2005 RTM and SQL Server 2005 SP2. In this scenario the application uses an entirely adhoc workload against SQL Server and this leads to plan cache bloat, and up to 4.5GB of our 6GB of memory for SQL can be consumed by the plan cache in SQL Server 2005 SP1. This in turn reduces the size of the buffer cache to just 1.5GB, causing our 2.8GB of data movement in this expensive plan to cause complete flushing of the buffer cache, not just once initially, but then another time during the queries execution, resulting in excessive physical I/O from disk. Keep in mind that this is not the only query executing at the time this occurs. Remember the output of sys.dm_io_virtual_file_stats() showed high read stalls on the data files for our user databases versus higher write stalls for tempdb? The memory pressure is also forcing heavier use of tempdb to handle sorting and hashing in the environment as well. The real clue here is the Memory counters for the instance; Page Life Expectancy, Free List Pages, and Free List Stalls/sec. The fact that Page Life Expectancy is fluctuating between 50 and 150 constantly is a sign that the buffer cache is experiencing constant churn of data, once every minute to two and a half minutes. If you add to the Page Life Expectancy counter, the consistent bottoming out of Free List Pages along with Free List Stalls/sec consistently spiking over 10, and you have the perfect memory pressure scenario. All of sudden it may not be that our disk subsystem is the problem, but is instead an innocent bystander and victim. Side Note: The Page Life Expectancy counter dropping briefly and then returning to normal operating values intermittently is not necessarily a sign that the server is under memory pressure. The Books Online and a number of other references will tell you that this counter should remain on average above 300 which is the time in seconds a page will remain in cache before being flushed or aged out. This number, which equates to just five minutes, is incredibly low for modern systems and most published documents pre-date the predominance of 64 bit computing and easy availability to larger amounts of memory in SQL Servers. As food for thought, consider that my personal laptop has more memory in it than most SQL Servers did at the time those numbers were posted. I would argue that today, a system churning the buffer cache every five minutes is in need of some serious tuning or a hardware upgrade. Back to our problem and its investigation: There are two things really wrong with this server; first the plan cache is excessively consuming memory and bloated in size and we need to look at that and second we need to evaluate upgrading the memory to accommodate the workload being performed. In the case of the server I was working on there were a lot of single use plans found in sys.dm_exec_cached_plans (where usecounts=1). Single use plans waste space in the plan cache, especially when they are adhoc plans for statements that had concatenated filter criteria that is not likely to reoccur with any frequency.  SQL Server 2005 doesn’t natively have a way to evict a single plan from cache like SQL Server 2008 does, but MVP Kalen Delaney, showed a hack to evict a single plan by creating a plan guide for the statement and then dropping that plan guide in her blog post Geek City: Clearing a Single Plan from Cache. We could put that hack in place in a job to automate cleaning out all the single use plans periodically, minimizing the size of the plan cache, but a better solution would be to fix the application so that it uses proper parameterized calls to the database. You didn’t write the app, and you can’t change its design? Ok, well you could try to force parameterization to occur by creating and keeping plan guides in place, or we can try forcing parameterization at the database level by using ALTER DATABASE <dbname> SET PARAMETERIZATION FORCED and that might help. If neither of these help, we could periodically dump the plan cache for that database, as discussed as being a problem in Kalen’s blog post referenced above; not an ideal scenario. The other option is to increase the memory on the server to 16GB or 32GB, if the hardware allows it, which will increase the size of the plan cache as well as the buffer cache. In SQL Server 2005 SP1, on a system with 16GB of memory, if we set max server memory to 14GB the plan cache could use at most 9GB  [(8GB*.75)+(6GB*.5)=(6+3)=9GB], leaving 5GB for the buffer cache.  If we went to 32GB of memory and set max server memory to 28GB, the plan cache could use at most 16GB [(8*.75)+(20*.5)=(6+10)=16GB], leaving 12GB for the buffer cache. Thankfully we have SQL Server 2005 Service Pack 2, 3, and 4 these days which include the changes in plan cache sizing discussed in the Changes to Caching Behavior between SQL Server 2000, SQL Server 2005 RTM and SQL Server 2005 SP2 blog post. In real life, when I was troubleshooting this problem, I spent a week trying to chase down the cause of the disk I/O bottleneck with our Server Admin and SAN Admin, and there wasn’t much that could be done immediately there, so I finally asked if we could increase the memory on the server to 16GB, which did fix the problem. It wasn’t until I had this same problem occur on another system that I actually figured out how to really troubleshoot this down to the root cause.  I couldn’t believe the size of the plan cache on the server with 16GB of memory when I actually learned about this and went back to look at it. SQL Server is constantly telling a story to anyone that will listen. As the DBA, you have to sit back and listen to all that it’s telling you and then evaluate the big picture and how all the data you can gather from SQL about performance relate to each other. One of the greatest tools out there is actually a free in the form of Diagnostic Scripts for SQL Server 2005 and 2008, created by MVP Glenn Alan Berry. Glenn’s scripts collect a majority of the information that SQL has to offer for rapid troubleshooting of problems, and he includes a lot of notes about what the outputs of each individual query might be telling you. When I read Pinal’s blog post SQL SERVER – ASYNC_IO_COMPLETION – Wait Type – Day 11 of 28, I noticed that he referenced Checking Memory Related Performance Counters in his post, but there was no real explanation about why checking memory counters is so important when looking at an I/O related wait type. I thought I’d chat with him briefly on Google Talk/Twitter DM and point this out, and offer a couple of other points I noted, so that he could add the information to his blog post if he found it useful.  Instead he asked that I write a guest blog for this. I am honored to be a guest blogger, and to be able to share this kind of information with the community. The information contained in this blog post is a glimpse at how I do troubleshooting almost every day of the week in my own environment. SQL Server provides us with a lot of information about how it is running, and where it may be having problems, it is up to us to play detective and find out how all that information comes together to tell us what’s really the problem. This blog post is written by Jonathan Kehayias (Blog | Twitter). Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: MVP, Pinal Dave, PostADay, Readers Contribution, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • 550 “Overwrite permission denied” when editing a file via FTP

    - by nodebunny
    DreamHost recently moved my accounts to a new shared box, and now I can't edit files via UltraEdit's built in FTP client, which messes up my work flow! What did they do that this is not working now? It stopped working after they moved me. Here's the output from the FTP console in UltraEdit 10/26/2011 10:42:36 AM: 220 DreamHost FTP Server 10/26/2011 10:42:36 AM: USER nodebunny 10/26/2011 10:42:36 AM: 331 Password required for ninjawww 10/26/2011 10:42:36 AM: PASS xxxxxxxx 10/26/2011 10:42:36 AM: 230 User nodebunny logged in 10/26/2011 10:42:36 AM: FEAT 10/26/2011 10:42:36 AM: 211-Features: LANG ja-JP.UTF-8;ja-JP;zh-TW;fr-FR;zh-CN;en-US*;bg-BG;ko-KR.UTF-8;ko-KR MDTM MFMT TVFS UTF8 MFF modify;UNIX.group;UNIX.mode; MLST modify*;perm*;size*;type*;unique*;UNIX.group*;UNIX.mode*;UNIX.owner*; REST STREAM SIZE 211 End 10/26/2011 10:42:36 AM: OPTS UTF8 ON 10/26/2011 10:42:36 AM: 200 UTF8 set to on 10/26/2011 10:42:36 AM: PWD 10/26/2011 10:42:36 AM: 257 "/" is the current directory 10/26/2011 10:42:36 AM: PWD 10/26/2011 10:42:36 AM: 257 "/" is the current directory 10/26/2011 10:42:36 AM: CWD /dev/proj/nodebunny 10/26/2011 10:42:36 AM: 250 CWD command successful 10/26/2011 10:42:36 AM: PWD 10/26/2011 10:42:36 AM: 257 "/dev/proj/nodebunny/lib/Buffer" is the current directory 10/26/2011 10:42:36 AM: PWD 10/26/2011 10:42:37 AM: 257 "/dev/proj/nodebunny/lib/Buffer" is the current directory 10/26/2011 10:42:37 AM: TYPE I 10/26/2011 10:42:37 AM: 200 Type set to I 10/26/2011 10:42:37 AM: PORT 10,15,55,125,226,16 10/26/2011 10:42:37 AM: 200 PORT command successful 10/26/2011 10:42:37 AM: STOR Buffer.pm 10/26/2011 10:42:37 AM: 550 Buffer.pm: Overwrite permission denied

    Read the article

  • Rendering with Direct3D

    - by Jamie
    Hi, I'm slightly confused about how Direct3D rendering works. Basically, as long as I render to one surface, everything is fine. But when I try rendering to multiple surfaces, it seems like everything is still rendered to one surface. I think there's something wrong with my calls. For each update cycle this is what I do 1. device-BeginScene() 2. sprite-Begin(...) ... A bunch of GetRenderTarget to store the old render target, then SetRenderTarget to set a new surface, and then things like CreateVertexBuffer, SetTexture, etc to draw on the new render target. Then resetting to the old render target. sprite-Draw([the back buffer]) (the back buffer is actually another surface, not the actual back buffer. But here it is being drawn onto the actual back buffer, I think) sprite-End() device-EndScene() device-Present(...) Also, it seems like if I mix sprite drawing and non-sprite drawing onto a surface, that first one set of render commands is executed and then the other set, rather than in order by when each command was called. If anyone could shed light on any of this, it would be much appreciated.

    Read the article

  • JavaCV IplImage to LWJGL Texture

    - by rendrag
    As a side project I've been attempting to make a dynamic display (for example a screen within a game) that shows images from my webcam. I've been messing around with JavaCV and LWJGL for the past few months and have a basic understanding of how they both work. I found this after scouring google, but I get an error that the ByteBuffer isn't big enough. IplImage img = cam.getFrame(); ByteBuffer buffer = img.asByteBuffer(); int textureID = glGenTextures(); //Generate texture ID glBindTexture(GL_TEXTURE_2D, textureID); //Bind texture ID //I don't know how much of the following is necessary //Setup wrap mode glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL12.GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL12.GL_CLAMP_TO_EDGE); //Setup texture scaling filtering glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); //Send texture data to OpenGL - this is the line that actually does stuff and that OpenGL has a problem with glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL12.GL_BGR, GL_UNSIGNED_BYTE, buffer); That last line throws this- Exception in thread "Thread-0" java.lang.IllegalArgumentException: Number of remaining buffer elements is 144, must be at least 921600. Because at most 921600 elements can be returned, a buffer with at least 921600 elements is required, regardless of actual returned element count at org.lwjgl.BufferChecks.throwBufferSizeException(BufferChecks.java:162) at org.lwjgl.BufferChecks.checkBufferSize(BufferChecks.java:189) at org.lwjgl.BufferChecks.checkBuffer(BufferChecks.java:230) at org.lwjgl.opengl.GL11.glTexImage2D(GL11.java:2845) at tests.TextureTest.getTexture(TextureTest.java:78) at tests.TextureTest.update(TextureTest.java:43) at lib.game.AbstractGame$1.run(AbstractGame.java:52) at java.lang.Thread.run(Thread.java:679)

    Read the article

  • Perl - can't flush STDOUT or STDERR

    - by Jim Salter
    Perl 5.14 from stock Ubuntu Precise repos. Trying to write a simple wrapper to monitor progress on copying from one stream to another: use IO::Handle; while ($bufsize = read (SOURCE, $buffer, 1048576)) { STDERR->printflush ("Transferred $xferred of $sendsize bytes\n"); $xferred += $bufsize; print TARGET $buffer; } This does not perform as expected (writing a line each time the 1M buffer is read). I end up seeing the first line (with a blank value of $xferred), and then the 7th and 8th lines (on an 8MB transfer). Been pounding my brains out on this for hours - I've read the perldocs, I've read the classic "Suffering from Buffering" article, I've tried everything from select and $|++ to IO::Handle to binmode (STDERR, "::unix") to you name it. I've also tried flushing TARGET with each line using IO::Handle (TARGET-flush). No dice. Has anybody else ever encountered this? I don't have any ideas left. Sleeping one second "fixes" the problem, but obviously I don't want to sleep a second every time I read a buffer just so my progress will output on the screen! FWIW, the problem is exactly the same whether I'm outputting to STDERR or STDOUT.

    Read the article

  • How to create per-vertex normals when reusing vertex data?

    - by Chris Smith
    I am displaying a cube using a vertex buffer object (gl.ELEMENT_ARRAY_BUFFER). This allows me to specify vertex indicies, rather than having duplicate vertexes. In the case of displaying a simple cube, this means I only need to have eight vertices total. Opposed to needing three vertices per triangle, times two triangles per face, times six faces. Sound correct so far? My question is, how do I now deal with vertex attribute data such as color, texture coordinates, and normals when reusing vertices using the vertex buffer object? If I am reusing the same vertex data in my indexed vertex buffer, how can I differentiate when vertex X is used as part of the cube's front face versus the cube's left face? In both cases I would like the surface normal and texture coordinates to be different. I understand I could average the surface normal, however I would like to render a cube. Also, this still doesn't work for texture coordinates. Is there a way to save memory using a vertex buffer object while being able to provide different vertex attribute data based on context? (Per-triangle would be idea.) Or should I just duplicate each vertex for each context in which it gets rendered. (So there is a one-to-one mapping between vertex, normal, color, etc.) Note: I'm using OpenGL ES.

    Read the article

  • Netcat I/O enhancements

    - by user13277689
    When Netcat integrated into OpenSolaris it was already clear that there will be couple of enhancements needed. The biggest set of the changes made after Solaris 11 Express was released brings various I/O enhancements to netcat shipped with Solaris 11. Also, since Solaris 11, the netcat package is installed by default in all distribution forms (live CD, text install, ...). Now, let's take a look at the new functionality: /usr/bin/netcat alternative program name (symlink) -b bufsize I/O buffer size -E use exclusive bind for the listening socket -e program program to execute -F no network close upon EOF on stdin -i timeout extension of timeout specification -L timeout linger on close timeout -l -p port addr previously not allowed usage -m byte_count Quit after receiving byte_count bytes -N file pattern for UDP scanning -I bufsize size of input socket buffer -O bufsize size of output socket buffer -R redir_spec port redirection addr/port[/{tcp,udp}] syntax of redir_spec -Z bypass zone boundaries -q timeout timeout after EOF on stdin Obviously, the Swiss army knife of networking tools just got a bit thicker. While by themselves the options are pretty self explanatory, their combination together with other options, context of use or boundary values of option arguments make it possible to construct small but powerful tools. For example: the port redirector allows to convert TCP stream to UDP datagrams. the buffer size specification makes it possible to send one byte TCP segments or to produce IP fragments easily. the socket linger option can be used to produce TCP RST segments by setting the timeout to 0 execute option makes it possible to simulate TCP/UDP servers or clients with shell/python/Perl/whatever script etc. If you find some other helpful ways use please share via comments. Manual page nc(1) contains more details, along with examples on how to use some of these new options.

    Read the article

  • What is UVIndex and how do I use it on OpenGL?

    - by Delta
    I am a noob in OpenGL ES 2.0 (for WebGL) and I'm trying to draw a simple model I've made with a 3D tool and exported to .fbx format. I've been able to draw some models that only have: A vertex buffer, a index buffer for the vertices, a normal buffer and a texture coordinate buffer, but this model now has a "UVIndex" and I'm not sure where am I supposed to put this UVIndex. My code looks like this: GL.bindBuffer(GL.ARRAY_BUFFER, this.Model.House.VertexBuffer); GL.vertexAttribPointer(this.Shader.TextureAndLighting.Attribute["vPosition"],3,GL.FLOAT, false, 0, 0); GL.bindBuffer(GL.ARRAY_BUFFER, this.Model.House.NormalBuffer); GL.vertexAttribPointer(this.Shader.TextureAndLighting.Attribute["vNormal"], 3, GL.FLOAT, false, 0, 0); GL.bindBuffer(GL.ARRAY_BUFFER, this.Model.House.TexCoordBuffer); GL.vertexAttribPointer(this.Shader.TextureAndLighting.Attribute["TexCoord"], 2, GL.FLOAT, false, 0, 0); GL.bindBuffer(GL.ELEMENT_ARRAY_BUFFER, this.Model.House.IndexBuffer); GL.bindTexture(GL.TEXTURE_2D, this.Texture.HTex1); GL.activeTexture(GL.TEXTURE0); GL.drawElements(GL.TRIANGLES, this.Model.House.IndexBuffer.Length, GL.UNSIGNED_SHORT, 0); But my model renders totally incorrect and I think it has to do with the fact that I am ignoring this "UVIndex" in the .fbx file, since I've never drawn any model that uses this UVIndex I really have no clue on what to do with it. This is the json file containing the model's data: http://pastebin.com/raw.php?i=G294TVmz

    Read the article

  • What calls trigger a new batch?

    - by sebf
    I am finding my project is starting to show performance degradation and I need to optimize it. The answer to my previous question and this presentation from NVidia have helped greatly in understanding the performance characteristics of code using the GPU but there are a couple of things that aren't clear that I need to know to optimize my drawing. Specifically, what calls make the distinction between batches. I know that any state changes cause a new batch, so that includes: Render State Changes Buffer Changes Shader Changes Render Target Changes Correct? What else counts as a 'state change'? Does each Draw**Primitive() call constitute a new batch? Even if I were to issue the same call twice, with no state changes, or call it once on on part of the buffer, then again on another? If I were to update a buffer, but not change the bindings, would that be a new batch? That presentation and a DX9 page suggest using all of the texture slots available, which I take to mean loading multiple objects in 'parallel' by mapping their buffers/shaders/textures to slots 1-16. But I am not sure how this works - surely to do this you would need to change the buffer binding and that would count as a state change? (or is it a case of you do but it saves 16 calls so its OK?)

    Read the article

  • Emacs stops taking input when a file has changed on disk [migrated]

    - by recf
    I'm using Emacs v24.3.1 on Windows 8. I had a file change on disk while I had an Emacs buffer open with that file. As soon as I attempt to make a change to the buffer, a message appears in the minibuffer. Fileblah.txt changed on disk; really edit the buffer? (y, n, r or C-h) I would expect to be able to hit r to have it reload the disk version of the file, but nothing happens. Emacs completely stops responding to input. None of the listed keys work, nor do any other keys as far as I can tell. I can't C-g out of the minibuffer. Alt-F4 doesn't work, not does Close window from the task bar. I have to kill the process from task manager. Anyone have any idea what I'm doing wrong here? In cases it's various modes not playing nice with each other, for reference, my init.el is here. Nothing complex. Here's the breakdown: better-defaults (ido-mode, remove menu-bar, uniquify buffer `forward, saveplace) recentf-mode custom frame title visual-line-mode require final newline and delete trailing whitespace on save Markdown mode with auto-mode-alist Flyspell with Aspell backend Powershell mode with auto-mode-alist Ruby auto-mode-alist Puppet mode with auto-mode-alist Feature (Gherkin) mode with auto-mode-alist The specific file was a markdown file with Github-flavored Markdown mode and Flyspell mode enabled.

    Read the article

  • Ignoring focusLost(), SWT.Verify, or other SWT listeners in Java code.

    - by Zoot
    Outside of the actual SWT listener, is there any way to ignore a listener via code? For example, I have a java program that implements SWT Text Widgets, and the widgets have: SWT.Verify listeners to filter out unwanted text input. ModifyListeners to wait for the correct number of valid input characters and automatically set focus (using setFocus())to the next valid field, skipping the other text widgets in the tab order. focusLost(FocusEvent) FocusListeners that wait for the loss of focus from the text widget to perform additional input verification and execute an SQL query based on the user input. The issue I run into is clearing the text widgets. One of the widgets has the format "####-##" (Four Numbers, a hyphen, then two numbers) and I have implemented this listener, which is a modified version of SWT Snippet Snippet179. The initial text for this text widget is " - " to provide visual feedback to the user as to the expected format. Only numbers are acceptable input, and the program automatically skips past the hyphen at the appropriate point. /* * This listener was adapted from the "verify input in a template (YYYY/MM/DD)" SWT Code * Snippet (also known as Snippet179), from the Snippets page of the SWT Project. * SWT Code Snippets can be found at: * http://www.eclipse.org/swt/snippets/ */ textBox.addListener(SWT.Verify, new Listener() { boolean ignore; public void handleEvent(Event e) { if (ignore) return; e.doit = false; StringBuffer buffer = new StringBuffer(e.text); char[] chars = new char[buffer.length()]; buffer.getChars(0, chars.length, chars, 0); if (e.character == '\b') { for (int i = e.start; i < e.end; i++) { switch (i) { case 0: /* [x]xxx-xx */ case 1: /* x[x]xx-xx */ case 2: /* xx[x]x-xx */ case 3: /* xxx[x]-xx */ case 5: /* xxxx-[x]x */ case 6: /* xxxx-x[x] */ { buffer.append(' '); break; } case 4: /* xxxx[-]xx */ { buffer.append('-'); break; } default: return; } } textBox.setSelection(e.start, e.start + buffer.length()); ignore = true; textBox.insert(buffer.toString()); ignore = false; textBox.setSelection(e.start, e.start); return; } int start = e.start; if (start > 6) return; int index = 0; for (int i = 0; i < chars.length; i++) { if (start + index == 4) { if (chars[i] == '-') { index++; continue; } buffer.insert(index++, '-'); } if (chars[i] < '0' || '9' < chars[i]) return; index++; } String newText = buffer.toString(); int length = newText.length(); textBox.setSelection(e.start, e.start + length); ignore = true; textBox.insert(newText); ignore = false; /* * After a valid key press, verifying if the input is completed * and passing the cursor to the next text box. */ if (7 == textBox.getCaretPosition()) { /* * Attempting to change the text after receiving a known valid input that has no results (0000-00). */ if ("0000-00".equals(textBox.getText())) { // "0000-00" is the special "Erase Me" code for these text boxes. ignore = true; textBox.setText(" - "); ignore = false; } // Changing focus to a different textBox by using "setFocus()" method. differentTextBox.setFocus(); } } } ); As you can see, the only method I've figured out to clear this text widget from a different point in the code is by assigning "0000-00" textBox.setText("000000") and checking for that input in the listener. When that input is received, the listener changes the text back to " - " (four spaces, a hyphen, then two spaces). There is also a focusLost Listener that parses this text widget for spaces, then in order to avoid unnecessary SQL queries, it clears/resets all fields if the input is invalid (i.e contains spaces). // Adding focus listener to textBox to wait for loss of focus to perform SQL statement. textBox.addFocusListener(new FocusAdapter() { @Override public void focusLost(FocusEvent evt) { // Get the contents of otherTextBox and textBox. (otherTextBox must be <= textBox) String boxFour = otherTextBox.getText(); String boxFive = textBox.getText(); // If either text box has spaces in it, don't perform the search. if (boxFour.contains(" ") || boxFive.contains(" ")) { // Don't perform SQL statements. Debug statement. System.out.println("Tray Position input contains spaces. Ignoring."); //Make all previous results invisible, if any. labels.setVisible(false); differentTextBox.setText(""); labelResults.setVisible(false); } else { //... Perform SQL statement ... } } } ); OK. Often, I use SWT MessageBox widgets in this code to communicate to the user, or wish to change the text widgets back to an empty state after verifying the input. The problem is that messageboxes seem to create a focusLost event, and using the .setText(string) method is subject to SWT.Verify listeners that are present on the text widget. Any suggestions as to selectively ignoring these listeners in code, but keeping them present for all other user input? Thank you in advance for your assistance.

    Read the article

< Previous Page | 26 27 28 29 30 31 32 33 34 35 36 37  | Next Page >