Search Results

Search found 1794 results on 72 pages for 'embarrassingly parallel'.

Page 31/72 | < Previous Page | 27 28 29 30 31 32 33 34 35 36 37 38  | Next Page >

  • T-SQL Tuesday #33: Trick Shots: Undocumented, Underdocumented, and Unknown Conspiracies!

    - by Most Valuable Yak (Rob Volk)
    Mike Fal (b | t) is hosting this month's T-SQL Tuesday on Trick Shots.  I love this choice because I've been preoccupied with sneaky/tricky/evil SQL Server stuff for a long time and have been presenting on it for the past year.  Mike's directives were "Show us a cool trick or process you developed…It doesn’t have to be useful", which most of my blogging definitely fits, and "Tell us what you learned from this trick…tell us how it gave you insight in to how SQL Server works", which is definitely a new concept.  I've done a lot of reading and watching on SQL Server Internals and even attended training, but sometimes I need to go explore on my own, using my own tools and techniques.  It's an itch I get every few months, and, well, it sure beats workin'. I've found some people to be intimidated by SQL Server's internals, and I'll admit there are A LOT of internals to keep track of, but there are tons of excellent resources that clearly document most of them, and show how knowing even the basics of internals can dramatically improve your database's performance.  It may seem like rocket science, or even brain surgery, but you don't have to be a genius to understand it. Although being an "evil genius" can help you learn some things they haven't told you about. ;) This blog post isn't a traditional "deep dive" into internals, it's more of an approach to find out how a program works.  It utilizes an extremely handy tool from an even more extremely handy suite of tools, Sysinternals.  I'm not the only one who finds Sysinternals useful for SQL Server: Argenis Fernandez (b | t), Microsoft employee and former T-SQL Tuesday host, has an excellent presentation on how to troubleshoot SQL Server using Sysinternals, and I highly recommend it.  Argenis didn't cover the Strings.exe utility, but I'll be using it to "hack" the SQL Server executable (DLL and EXE) files. Please note that I'm not promoting software piracy or applying these techniques to attack SQL Server via internal knowledge. This is strictly educational and doesn't reveal any proprietary Microsoft information.  And since Argenis works for Microsoft and demonstrated Sysinternals with SQL Server, I'll just let him take the blame for it. :P (The truth is I've used Strings.exe on SQL Server before I ever met Argenis.) Once you download and install Strings.exe you can run it from the command line.  For our purposes we'll want to run this in the Binn folder of your SQL Server instance (I'm referencing SQL Server 2012 RTM): cd "C:\Program Files\Microsoft SQL Server\MSSQL11\MSSQL\Binn" C:\Program Files\Microsoft SQL Server\MSSQL11\MSSQL\Binn> strings *sql*.dll > sqldll.txt C:\Program Files\Microsoft SQL Server\MSSQL11\MSSQL\Binn> strings *sql*.exe > sqlexe.txt   I've limited myself to DLLs and EXEs that have "sql" in their names.  There are quite a few more but I haven't examined them in any detail. (Homework assignment for you!) If you run this yourself you'll get 2 text files, one with all the extracted strings from every SQL DLL file, and the other with the SQL EXE strings.  You can open these in Notepad, but you're better off using Notepad++, EditPad, Emacs, Vim or another more powerful text editor, as these will be several megabytes in size. And when you do open it…you'll find…a TON of gibberish.  (If you think that's bad, just try opening the raw DLL or EXE file in Notepad.  And by the way, don't do this in production, or even on a running instance of SQL Server.)  Even if you don't clean up the file, you can still use your editor's search function to find a keyword like "SELECT" or some other item you expect to be there.  As dumb as this sounds, I sometimes spend my lunch break just scanning the raw text for anything interesting.  I'm boring like that. Sometimes though, having these files available can lead to some incredible learning experiences.  For me the most recent time was after reading Joe Sack's post on non-parallel plan reasons.  He mentions a new SQL Server 2012 execution plan element called NonParallelPlanReason, and demonstrates a query that generates "MaxDOPSetToOne".  Joe (formerly on the Microsoft SQL Server product team, so he knows this stuff) mentioned that this new element was not currently documented and tried a few more examples to see what other reasons could be generated. Since I'd already run Strings.exe on the SQL Server DLLs and EXE files, it was easy to run grep/find/findstr for MaxDOPSetToOne on those extracts.  Once I found which files it belonged to (sqlmin.dll) I opened the text to see if the other reasons were listed.  As you can see in my comment on Joe's blog, there were about 20 additional non-parallel reasons.  And while it's not "documentation" of this underdocumented feature, the names are pretty self-explanatory about what can prevent parallel processing. I especially like the ones about cursors – more ammo! - and am curious about the PDW compilation and Cloud DB replication reasons. One reason completely stumped me: NoParallelHekatonPlan.  What the heck is a hekaton?  Google and Wikipedia were vague, and the top results were not in English.  I found one reference to Greek, stating "hekaton" can be translated as "hundredfold"; with a little more Wikipedia-ing this leads to hecto, the prefix for "one hundred" as a unit of measure.  I'm not sure why Microsoft chose hekaton for such a plan name, but having already learned some Greek I figured I might as well dig some more in the DLL text for hekaton.  Here's what I found: hekaton_slow_param_passing Occurs when a Hekaton procedure call dispatch goes to slow parameter passing code path The reason why Hekaton parameter passing code took the slow code path hekaton_slow_param_pass_reason sp_deploy_hekaton_database sp_undeploy_hekaton_database sp_drop_hekaton_database sp_checkpoint_hekaton_database sp_restore_hekaton_database e:\sql11_main_t\sql\ntdbms\hekaton\sqlhost\sqllang\hkproc.cpp e:\sql11_main_t\sql\ntdbms\hekaton\sqlhost\sqllang\matgen.cpp e:\sql11_main_t\sql\ntdbms\hekaton\sqlhost\sqllang\matquery.cpp e:\sql11_main_t\sql\ntdbms\hekaton\sqlhost\sqllang\sqlmeta.cpp e:\sql11_main_t\sql\ntdbms\hekaton\sqlhost\sqllang\resultset.cpp Interesting!  The first 4 entries (in red) mention parameters and "slow code".  Could this be the foundation of the mythical DBCC RUNFASTER command?  Have I been passing my parameters the slow way all this time? And what about those sp_xxxx_hekaton_database procedures (in blue)? Could THEY be the secret to a faster SQL Server? Could they promise a "hundredfold" improvement in performance?  Are these special, super-undocumented DIB (databases in black)? I decided to look in the SQL Server system views for any objects with hekaton in the name, or references to them, in hopes of discovering some new code that would answer all my questions: SELECT name FROM sys.all_objects WHERE name LIKE '%hekaton%' SELECT name FROM sys.all_objects WHERE object_definition(OBJECT_ID) LIKE '%hekaton%' Which revealed: name ------------------------ (0 row(s) affected) name ------------------------ sp_createstats sp_recompile sp_updatestats (3 row(s) affected)   Hmm.  Well that didn't find much.  Looks like these procedures are seriously undocumented, unknown, perhaps forbidden knowledge. Maybe a part of some unspeakable evil? (No, I'm not paranoid, I just like mysteries and thought that punching this up with that kind of thing might keep you reading.  I know I'd fall asleep without it.) OK, so let's check out those 3 procedures and see what they reveal when I search for "Hekaton": sp_createstats: -- filter out local temp tables, Hekaton tables, and tables for which current user has no permissions -- Note that OBJECTPROPERTY returns NULL on type="IT" tables, thus we only call it on type='U' tables   OK, that's interesting, let's go looking down a little further: ((@table_type<>'U') or (0 = OBJECTPROPERTY(@table_id, 'TableIsInMemory'))) and -- Hekaton table   Wellllll, that tells us a few new things: There's such a thing as Hekaton tables (UPDATE: I'm not the only one to have found them!) They are not standard user tables and probably not in memory UPDATE: I misinterpreted this because I didn't read all the code when I wrote this blog post. The OBJECTPROPERTY function has an undocumented TableIsInMemory option Let's check out sp_recompile: -- (3) Must not be a Hekaton procedure.   And once again go a little further: if (ObjectProperty(@objid, 'IsExecuted') <> 0 AND ObjectProperty(@objid, 'IsInlineFunction') = 0 AND ObjectProperty(@objid, 'IsView') = 0 AND -- Hekaton procedure cannot be recompiled -- Make them go through schema version bumping branch, which will fail ObjectProperty(@objid, 'ExecIsCompiledProc') = 0)   And now we learn that hekaton procedures also exist, they can't be recompiled, there's a "schema version bumping branch" somewhere, and OBJECTPROPERTY has another undocumented option, ExecIsCompiledProc.  (If you experiment with this you'll find this option returns null, I think it only works when called from a system object.) This is neat! Sadly sp_updatestats doesn't reveal anything new, the comments about hekaton are the same as sp_createstats.  But we've ALSO discovered undocumented features for the OBJECTPROPERTY function, which we can now search for: SELECT name, object_definition(OBJECT_ID) FROM sys.all_objects WHERE object_definition(OBJECT_ID) LIKE '%OBJECTPROPERTY(%'   I'll leave that to you as more homework.  I should add that searching the system procedures was recommended long ago by the late, great Ken Henderson, in his Guru's Guide books, as a great way to find undocumented features.  That seems to be really good advice! Now if you're a programmer/hacker, you've probably been drooling over the last 5 entries for hekaton (in green), because these are the names of source code files for SQL Server!  Does this mean we can access the source code for SQL Server?  As The Oracle suggested to Neo, can we return to The Source??? Actually, no. Well, maybe a little bit.  While you won't get the actual source code from the compiled DLL and EXE files, you'll get references to source files, debugging symbols, variables and module names, error messages, and even the startup flags for SQL Server.  And if you search for "DBCC" or "CHECKDB" you'll find a really nice section listing all the DBCC commands, including the undocumented ones.  Granted those are pretty easy to find online, but you may be surprised what those web sites DIDN'T tell you! (And neither will I, go look for yourself!)  And as we saw earlier, you'll also find execution plan elements, query processing rules, and who knows what else.  It's also instructive to see how Microsoft organizes their source directories, how various components (storage engine, query processor, Full Text, AlwaysOn/HADR) are split into smaller modules. There are over 2000 source file references, go do some exploring! So what did we learn?  We can pull strings out of executable files, search them for known items, browse them for unknown items, and use the results to examine internal code to learn even more things about SQL Server.  We've even learned how to use command-line utilities!  We are now 1337 h4X0rz!  (Not really.  I hate that leetspeak crap.) Although, I must confess I might've gone too far with the "conspiracy" part of this post.  I apologize for that, it's just my overactive imagination.  There's really no hidden agenda or conspiracy regarding SQL Server internals.  It's not The Matrix.  It's not like you'd find anything like that in there: Attach Matrix Database DM_MATRIX_COMM_PIPELINES MATRIXXACTPARTICIPANTS dm_matrix_agents   Alright, enough of this paranoid ranting!  Microsoft are not really evil!  It's not like they're The Borg from Star Trek: ALTER FEDERATION DROP ALTER FEDERATION SPLIT DROP FEDERATION   #tsql2sday

    Read the article

  • Running a simple integration scenario using the Oracle Big Data Connectors on Hadoop/HDFS cluster

    - by hamsun
    Between the elephant ( the tradional image of the Hadoop framework) and the Oracle Iron Man (Big Data..) an english setter could be seen as the link to the right data Data, Data, Data, we are living in a world where data technology based on popular applications , search engines, Webservers, rich sms messages, email clients, weather forecasts and so on, have a predominant role in our life. More and more technologies are used to analyze/track our behavior, try to detect patterns, to propose us "the best/right user experience" from the Google Ad services, to Telco companies or large consumer sites (like Amazon:) ). The more we use all these technologies, the more we generate data, and thus there is a need of huge data marts and specific hardware/software servers (as the Exadata servers) in order to treat/analyze/understand the trends and offer new services to the users. Some of these "data feeds" are raw, unstructured data, and cannot be processed effectively by normal SQL queries. Large scale distributed processing was an emerging infrastructure need and the solution seemed to be the "collocation of compute nodes with the data", which in turn leaded to MapReduce parallel patterns and the development of the Hadoop framework, which is based on MapReduce and a distributed file system (HDFS) that runs on larger clusters of rather inexpensive servers. Several Oracle products are using the distributed / aggregation pattern for data calculation ( Coherence, NoSql, times ten ) so once that you are familiar with one of these technologies, lets says with coherence aggregators, you will find the whole Hadoop, MapReduce concept very similar. Oracle Big Data Appliance is based on the Cloudera Distribution (CDH), and the Oracle Big Data Connectors can be plugged on a Hadoop cluster running the CDH distribution or equivalent Hadoop clusters. In this paper, a "lab like" implementation of this concept is done on a single Linux X64 server, running an Oracle Database 11g Enterprise Edition Release 11.2.0.4.0, and a single node Apache hadoop-1.2.1 HDFS cluster, using the SQL connector for HDFS. The whole setup is fairly simple: Install on a Linux x64 server ( or virtual box appliance) an Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 server Get the Apache Hadoop distribution from: http://mir2.ovh.net/ftp.apache.org/dist/hadoop/common/hadoop-1.2.1. Get the Oracle Big Data Connectors from: http://www.oracle.com/technetwork/bdc/big-data-connectors/downloads/index.html?ssSourceSiteId=ocomen. Check the java version of your Linux server with the command: java -version java version "1.7.0_40" Java(TM) SE Runtime Environment (build 1.7.0_40-b43) Java HotSpot(TM) 64-Bit Server VM (build 24.0-b56, mixed mode) Decompress the hadoop hadoop-1.2.1.tar.gz file to /u01/hadoop-1.2.1 Modify your .bash_profile export HADOOP_HOME=/u01/hadoop-1.2.1 export PATH=$PATH:$HADOOP_HOME/bin export HIVE_HOME=/u01/hive-0.11.0 export PATH=$PATH:$HADOOP_HOME/bin:$HIVE_HOME/bin (also see my sample .bash_profile) Set up ssh trust for Hadoop process, this is a mandatory step, in our case we have to establish a "local trust" as will are using a single node configuration copy the new public keys to the list of authorized keys connect and test the ssh setup to your localhost: We will run a "pseudo-Hadoop cluster", in what is called "local standalone mode", all the Hadoop java components are running in one Java process, this is enough for our demo purposes. We need to "fine tune" some Hadoop configuration files, we have to go at our $HADOOP_HOME/conf, and modify the files: core-site.xml hdfs-site.xml mapred-site.xml check that the hadoop binaries are referenced correctly from the command line by executing: hadoop -version As Hadoop is managing our "clustered HDFS" file system we have to create "the mount point" and format it , the mount point will be declared to core-site.xml as: The layout under the /u01/hadoop-1.2.1/data will be created and used by other hadoop components (MapReduce = /mapred/...) HDFS is using the /dfs/... layout structure format the HDFS hadoop file system: Start the java components for the HDFS system As an additional check, you can use the GUI Hadoop browsers to check the content of your HDFS configurations: Once our HDFS Hadoop setup is done you can use the HDFS file system to store data ( big data : )), and plug them back and forth to Oracle Databases by the means of the Big Data Connectors ( which is the next configuration step). You can create / use a Hive db, but in our case we will make a simple integration of "raw data" , through the creation of an External Table to a local Oracle instance ( on the same Linux box, we run the Hadoop HDFS one node cluster and one Oracle DB). Download some public "big data", I use the site: http://france.meteofrance.com/france/observations, from where I can get *.csv files for my big data simulations :). Here is the data layout of my example file: Download the Big Data Connector from the OTN (oraosch-2.2.0.zip), unzip it to your local file system (see picture below) Modify your environment in order to access the connector libraries , and make the following test: [oracle@dg1 bin]$./hdfs_stream Usage: hdfs_stream locationFile [oracle@dg1 bin]$ Load the data to the Hadoop hdfs file system: hadoop fs -mkdir bgtest_data hadoop fs -put obsFrance.txt bgtest_data/obsFrance.txt hadoop fs -ls /user/oracle/bgtest_data/obsFrance.txt [oracle@dg1 bg-data-raw]$ hadoop fs -ls /user/oracle/bgtest_data/obsFrance.txt Found 1 items -rw-r--r-- 1 oracle supergroup 54103 2013-10-22 06:10 /user/oracle/bgtest_data/obsFrance.txt [oracle@dg1 bg-data-raw]$hadoop fs -ls hdfs:///user/oracle/bgtest_data/obsFrance.txt Found 1 items -rw-r--r-- 1 oracle supergroup 54103 2013-10-22 06:10 /user/oracle/bgtest_data/obsFrance.txt Check the content of the HDFS with the browser UI: Start the Oracle database, and run the following script in order to create the Oracle database user, the Oracle directories for the Oracle Big Data Connector (dg1 it’s my own db id replace accordingly yours): #!/bin/bash export ORAENV_ASK=NO export ORACLE_SID=dg1 . oraenv sqlplus /nolog <<EOF CONNECT / AS sysdba; CREATE OR REPLACE DIRECTORY osch_bin_path AS '/u01/orahdfs-2.2.0/bin'; CREATE USER BGUSER IDENTIFIED BY oracle; GRANT CREATE SESSION, CREATE TABLE TO BGUSER; GRANT EXECUTE ON sys.utl_file TO BGUSER; GRANT READ, EXECUTE ON DIRECTORY osch_bin_path TO BGUSER; CREATE OR REPLACE DIRECTORY BGT_LOG_DIR as '/u01/BG_TEST/logs'; GRANT READ, WRITE ON DIRECTORY BGT_LOG_DIR to BGUSER; CREATE OR REPLACE DIRECTORY BGT_DATA_DIR as '/u01/BG_TEST/data'; GRANT READ, WRITE ON DIRECTORY BGT_DATA_DIR to BGUSER; EOF Put the following in a file named t3.sh and make it executable, hadoop jar $OSCH_HOME/jlib/orahdfs.jar \ oracle.hadoop.exttab.ExternalTable \ -D oracle.hadoop.exttab.tableName=BGTEST_DP_XTAB \ -D oracle.hadoop.exttab.defaultDirectory=BGT_DATA_DIR \ -D oracle.hadoop.exttab.dataPaths="hdfs:///user/oracle/bgtest_data/obsFrance.txt" \ -D oracle.hadoop.exttab.columnCount=7 \ -D oracle.hadoop.connection.url=jdbc:oracle:thin:@//localhost:1521/dg1 \ -D oracle.hadoop.connection.user=BGUSER \ -D oracle.hadoop.exttab.printStackTrace=true \ -createTable --noexecute then test the creation fo the external table with it: [oracle@dg1 samples]$ ./t3.sh ./t3.sh: line 2: /u01/orahdfs-2.2.0: Is a directory Oracle SQL Connector for HDFS Release 2.2.0 - Production Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved. Enter Database Password:] The create table command was not executed. The following table would be created. CREATE TABLE "BGUSER"."BGTEST_DP_XTAB" ( "C1" VARCHAR2(4000), "C2" VARCHAR2(4000), "C3" VARCHAR2(4000), "C4" VARCHAR2(4000), "C5" VARCHAR2(4000), "C6" VARCHAR2(4000), "C7" VARCHAR2(4000) ) ORGANIZATION EXTERNAL ( TYPE ORACLE_LOADER DEFAULT DIRECTORY "BGT_DATA_DIR" ACCESS PARAMETERS ( RECORDS DELIMITED BY 0X'0A' CHARACTERSET AL32UTF8 STRING SIZES ARE IN CHARACTERS PREPROCESSOR "OSCH_BIN_PATH":'hdfs_stream' FIELDS TERMINATED BY 0X'2C' MISSING FIELD VALUES ARE NULL ( "C1" CHAR(4000), "C2" CHAR(4000), "C3" CHAR(4000), "C4" CHAR(4000), "C5" CHAR(4000), "C6" CHAR(4000), "C7" CHAR(4000) ) ) LOCATION ( 'osch-20131022081035-74-1' ) ) PARALLEL REJECT LIMIT UNLIMITED; The following location files would be created. osch-20131022081035-74-1 contains 1 URI, 54103 bytes 54103 hdfs://localhost:19000/user/oracle/bgtest_data/obsFrance.txt Then remove the --noexecute flag and create the external Oracle table for the Hadoop data. Check the results: The create table command succeeded. CREATE TABLE "BGUSER"."BGTEST_DP_XTAB" ( "C1" VARCHAR2(4000), "C2" VARCHAR2(4000), "C3" VARCHAR2(4000), "C4" VARCHAR2(4000), "C5" VARCHAR2(4000), "C6" VARCHAR2(4000), "C7" VARCHAR2(4000) ) ORGANIZATION EXTERNAL ( TYPE ORACLE_LOADER DEFAULT DIRECTORY "BGT_DATA_DIR" ACCESS PARAMETERS ( RECORDS DELIMITED BY 0X'0A' CHARACTERSET AL32UTF8 STRING SIZES ARE IN CHARACTERS PREPROCESSOR "OSCH_BIN_PATH":'hdfs_stream' FIELDS TERMINATED BY 0X'2C' MISSING FIELD VALUES ARE NULL ( "C1" CHAR(4000), "C2" CHAR(4000), "C3" CHAR(4000), "C4" CHAR(4000), "C5" CHAR(4000), "C6" CHAR(4000), "C7" CHAR(4000) ) ) LOCATION ( 'osch-20131022081719-3239-1' ) ) PARALLEL REJECT LIMIT UNLIMITED; The following location files were created. osch-20131022081719-3239-1 contains 1 URI, 54103 bytes 54103 hdfs://localhost:19000/user/oracle/bgtest_data/obsFrance.txt This is the view from the SQL Developer: and finally the number of lines in the oracle table, imported from our Hadoop HDFS cluster SQL select count(*) from "BGUSER"."BGTEST_DP_XTAB"; COUNT(*) ---------- 1151 In a next post we will integrate data from a Hive database, and try some ODI integrations with the ODI Big Data connector. Our simplistic approach is just a step to show you how these unstructured data world can be integrated to Oracle infrastructure. Hadoop, BigData, NoSql are great technologies, they are widely used and Oracle is offering a large integration infrastructure based on these services. Oracle University presents a complete curriculum on all the Oracle related technologies: NoSQL: Introduction to Oracle NoSQL Database Using Oracle NoSQL Database Big Data: Introduction to Big Data Oracle Big Data Essentials Oracle Big Data Overview Oracle Data Integrator: Oracle Data Integrator 12c: New Features Oracle Data Integrator 11g: Integration and Administration Oracle Data Integrator: Administration and Development Oracle Data Integrator 11g: Advanced Integration and Development Oracle Coherence 12c: Oracle Coherence 12c: New Features Oracle Coherence 12c: Share and Manage Data in Clusters Oracle Coherence 12c: Oracle GoldenGate 11g: Fundamentals for Oracle Oracle GoldenGate 11g: Fundamentals for SQL Server Oracle GoldenGate 11g Fundamentals for Oracle Oracle GoldenGate 11g Fundamentals for DB2 Oracle GoldenGate 11g Fundamentals for Teradata Oracle GoldenGate 11g Fundamentals for HP NonStop Oracle GoldenGate 11g Management Pack: Overview Oracle GoldenGate 11g Troubleshooting and Tuning Oracle GoldenGate 11g: Advanced Configuration for Oracle Other Resources: Apache Hadoop : http://hadoop.apache.org/ is the homepage for these technologies. "Hadoop Definitive Guide 3rdEdition" by Tom White is a classical lecture for people who want to know more about Hadoop , and some active "googling " will also give you some more references. About the author: Eugene Simos is based in France and joined Oracle through the BEA-Weblogic Acquisition, where he worked for the Professional Service, Support, end Education for major accounts across the EMEA Region. He worked in the banking sector, ATT, Telco companies giving him extensive experience on production environments. Eugen currently specializes in Oracle Fusion Middleware teaching an array of courses on Weblogic/Webcenter, Content,BPM /SOA/Identity-Security/GoldenGate/Virtualisation/Unified Comm Suite) throughout the EMEA region.

    Read the article

  • Optimizing Solaris 11 SHA-1 on Intel Processors

    - by danx
    SHA-1 is a "hash" or "digest" operation that produces a 160 bit (20 byte) checksum value on arbitrary data, such as a file. It is intended to uniquely identify text and to verify it hasn't been modified. Max Locktyukhin and others at Intel have improved the performance of the SHA-1 digest algorithm using multiple techniques. This code has been incorporated into Solaris 11 and is available in the Solaris Crypto Framework via the libmd(3LIB), the industry-standard libpkcs11(3LIB) library, and Solaris kernel module sha1. The optimized code is used automatically on systems with a x86 CPU supporting SSSE3 (Intel Supplemental SSSE3). Intel microprocessor architectures that support SSSE3 include Nehalem, Westmere, Sandy Bridge microprocessor families. Further optimizations are available for microprocessors that support AVX (such as Sandy Bridge). Although SHA-1 is considered obsolete because of weaknesses found in the SHA-1 algorithm—NIST recommends using at least SHA-256, SHA-1 is still widely used and will be with us for awhile more. Collisions (the same SHA-1 result for two different inputs) can be found with moderate effort. SHA-1 is used heavily though in SSL/TLS, for example. And SHA-1 is stronger than the older MD5 digest algorithm, another digest option defined in SSL/TLS. Optimizations Review SHA-1 operates by reading an arbitrary amount of data. The data is read in 512 bit (64 byte) blocks (the last block is padded in a specific way to ensure it's a full 64 bytes). Each 64 byte block has 80 "rounds" of calculations (consisting of a mixture of "ROTATE-LEFT", "AND", and "XOR") applied to the block. Each round produces a 32-bit intermediate result, called W[i]. Here's what each round operates: The first 16 rounds, rounds 0 to 15, read the 512 bit block 32 bits at-a-time. These 32 bits is used as input to the round. The remaining rounds, rounds 16 to 79, use the results from the previous rounds as input. Specifically for round i it XORs the results of rounds i-3, i-8, i-14, and i-16 and rotates the result left 1 bit. The remaining calculations for the round is a series of AND, XOR, and ROTATE-LEFT operators on the 32-bit input and some constants. The 32-bit result is saved as W[i] for round i. The 32-bit result of the final round, W[79], is the SHA-1 checksum. Optimization: Vectorization The first 16 rounds can be vectorized (computed in parallel) because they don't depend on the output of a previous round. As for the remaining rounds, because of step 2 above, computing round i depends on the results of round i-3, W[i-3], one can vectorize 3 rounds at-a-time. Max Locktyukhin found through simple factoring, explained in detail in his article referenced below, that the dependencies of round i on the results of rounds i-3, i-8, i-14, and i-16 can be replaced instead with dependencies on the results of rounds i-6, i-16, i-28, and i-32. That is, instead of initializing intermediate result W[i] with: W[i] = (W[i-3] XOR W[i-8] XOR W[i-14] XOR W[i-16]) ROTATE-LEFT 1 Initialize W[i] as follows: W[i] = (W[i-6] XOR W[i-16] XOR W[i-28] XOR W[i-32]) ROTATE-LEFT 2 That means that 6 rounds could be vectorized at once, with no additional calculations, instead of just 3! This optimization is independent of Intel or any other microprocessor architecture, although the microprocessor has to support vectorization to use it, and exploits one of the weaknesses of SHA-1. Optimization: SSSE3 Intel SSSE3 makes use of 16 %xmm registers, each 128 bits wide. The 4 32-bit inputs to a round, W[i-6], W[i-16], W[i-28], W[i-32], all fit in one %xmm register. The following code snippet, from Max Locktyukhin's article, converted to ATT assembly syntax, computes 4 rounds in parallel with just a dozen or so SSSE3 instructions: movdqa W_minus_04, W_TMP pxor W_minus_28, W // W equals W[i-32:i-29] before XOR // W = W[i-32:i-29] ^ W[i-28:i-25] palignr $8, W_minus_08, W_TMP // W_TMP = W[i-6:i-3], combined from // W[i-4:i-1] and W[i-8:i-5] vectors pxor W_minus_16, W // W = (W[i-32:i-29] ^ W[i-28:i-25]) ^ W[i-16:i-13] pxor W_TMP, W // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) movdqa W, W_TMP // 4 dwords in W are rotated left by 2 psrld $30, W // rotate left by 2 W = (W >> 30) | (W << 2) pslld $2, W_TMP por W, W_TMP movdqa W_TMP, W // four new W values W[i:i+3] are now calculated paddd (K_XMM), W_TMP // adding 4 current round's values of K movdqa W_TMP, (WK(i)) // storing for downstream GPR instructions to read A window of the 32 previous results, W[i-1] to W[i-32] is saved in memory on the stack. This is best illustrated with a chart. Without vectorization, computing the rounds is like this (each "R" represents 1 round of SHA-1 computation): RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR With vectorization, 4 rounds can be computed in parallel: RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR Optimization: AVX The new "Sandy Bridge" microprocessor architecture, which supports AVX, allows another interesting optimization. SSSE3 instructions have two operands, a input and an output. AVX allows three operands, two inputs and an output. In many cases two SSSE3 instructions can be combined into one AVX instruction. The difference is best illustrated with an example. Consider these two instructions from the snippet above: pxor W_minus_16, W // W = (W[i-32:i-29] ^ W[i-28:i-25]) ^ W[i-16:i-13] pxor W_TMP, W // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) With AVX they can be combined in one instruction: vpxor W_minus_16, W, W_TMP // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) This optimization is also in Solaris, although Sandy Bridge-based systems aren't widely available yet. As an exercise for the reader, AVX also has 256-bit media registers, %ymm0 - %ymm15 (a superset of 128-bit %xmm0 - %xmm15). Can %ymm registers be used to parallelize the code even more? Optimization: Solaris-specific In addition to using the Intel code described above, I performed other minor optimizations to the Solaris SHA-1 code: Increased the digest(1) and mac(1) command's buffer size from 4K to 64K, as previously done for decrypt(1) and encrypt(1). This size is well suited for ZFS file systems, but helps for other file systems as well. Optimized encode functions, which byte swap the input and output data, to copy/byte-swap 4 or 8 bytes at-a-time instead of 1 byte-at-a-time. Enhanced the Solaris mdb(1) and kmdb(1) debuggers to display all 16 %xmm and %ymm registers (mdb "$x" command). Previously they only displayed the first 8 that are available in 32-bit mode. Can't optimize if you can't debug :-). Changed the SHA-1 code to allow processing in "chunks" greater than 2 Gigabytes (64-bits) Performance I measured performance on a Sun Ultra 27 (which has a Nehalem-class Xeon 5500 Intel W3570 microprocessor @3.2GHz). Turbo mode is disabled for consistent performance measurement. Graphs are better than words and numbers, so here they are: The first graph shows the Solaris digest(1) command before and after the optimizations discussed here, contained in libmd(3LIB). I ran the digest command on a half GByte file in swapfs (/tmp) and execution time decreased from 1.35 seconds to 0.98 seconds. The second graph shows the the results of an internal microbenchmark that uses the Solaris libpkcs11(3LIB) library. The operations are on a 128 byte buffer with 10,000 iterations. The results show operations increased from 320,000 to 416,000 operations per second. Finally the third graph shows the results of an internal kernel microbenchmark that uses the Solaris /kernel/crypto/amd64/sha1 module. The operations are on a 64Kbyte buffer with 100 iterations. third graph shows the results of an internal kernel microbenchmark that uses the Solaris /kernel/crypto/amd64/sha1 module. The operations are on a 64Kbyte buffer with 100 iterations. The results show for 1 kernel thread, operations increased from 410 to 600 MBytes/second. For 8 kernel threads, operations increase from 1540 to 1940 MBytes/second. Availability This code is in Solaris 11 FCS. It is available in the 64-bit libmd(3LIB) library for 64-bit programs and is in the Solaris kernel. You must be running hardware that supports Intel's SSSE3 instructions (for example, Intel Nehalem, Westmere, or Sandy Bridge microprocessor architectures). The easiest way to determine if SSSE3 is available is with the isainfo(1) command. For example, nehalem $ isainfo -v $ isainfo -v 64-bit amd64 applications sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu If the output also shows "avx", the Solaris executes the even-more optimized 3-operand AVX instructions for SHA-1 mentioned above: sandybridge $ isainfo -v 64-bit amd64 applications avx xsave pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications avx xsave pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this code. Solaris libraries and kernel automatically determine if it's running on SSSE3 or AVX-capable machines and execute the correctly-tuned code for that microprocessor. Summary The Solaris 11 Crypto Framework, via the sha1 kernel module and libmd(3LIB) and libpkcs11(3LIB) libraries, incorporated a useful SHA-1 optimization from Intel for SSSE3-capable microprocessors. As with other Solaris optimizations, they come automatically "under the hood" with the current Solaris release. References "Improving the Performance of the Secure Hash Algorithm (SHA-1)" by Max Locktyukhin (Intel, March 2010). The source for these SHA-1 optimizations used in Solaris "SHA-1", Wikipedia Good overview of SHA-1 FIPS 180-1 SHA-1 standard (FIPS, 1995) NIST Comments on Cryptanalytic Attacks on SHA-1 (2005, revised 2006)

    Read the article

  • Organizations &amp; Architecture UNISA Studies &ndash; Chap 7

    - by MarkPearl
    Learning Outcomes Name different device categories Discuss the functions and structure of I/.O modules Describe the principles of Programmed I/O Describe the principles of Interrupt-driven I/O Describe the principles of DMA Discuss the evolution characteristic of I/O channels Describe different types of I/O interface Explain the principles of point-to-point and multipoint configurations Discuss the way in which a FireWire serial bus functions Discuss the principles of InfiniBand architecture External Devices An external device attaches to the computer by a link to an I/O module. The link is used to exchange control, status, and data between the I/O module and the external device. External devices can be classified into 3 categories… Human readable – e.g. video display Machine readable – e.g. magnetic disk Communications – e.g. wifi card I/O Modules An I/O module has two major functions… Interface to the processor and memory via the system bus or central switch Interface to one or more peripheral devices by tailored data links Module Functions The major functions or requirements for an I/O module fall into the following categories… Control and timing Processor communication Device communication Data buffering Error detection I/O function includes a control and timing requirement, to coordinate the flow of traffic between internal resources and external devices. Processor communication involves the following… Command decoding Data Status reporting Address recognition The I/O device must be able to perform device communication. This communication involves commands, status information, and data. An essential task of an I/O module is data buffering due to the relative slow speeds of most external devices. An I/O module is often responsible for error detection and for subsequently reporting errors to the processor. I/O Module Structure An I/O module functions to allow the processor to view a wide range of devices in a simple minded way. The I/O module may hide the details of timing, formats, and the electro mechanics of an external device so that the processor can function in terms of simple reads and write commands. An I/O channel/processor is an I/O module that takes on most of the detailed processing burden, presenting a high-level interface to the processor. There are 3 techniques are possible for I/O operations Programmed I/O Interrupt[t I/O DMA Access Programmed I/O When a processor is executing a program and encounters an instruction relating to I/O it executes that instruction by issuing a command to the appropriate I/O module. With programmed I/O, the I/O module will perform the requested action and then set the appropriate bits in the I/O status register. The I/O module takes no further actions to alert the processor. I/O Commands To execute an I/O related instruction, the processor issues an address, specifying the particular I/O module and external device, and an I/O command. There are four types of I/O commands that an I/O module may receive when it is addressed by a processor… Control – used to activate a peripheral and tell it what to do Test – Used to test various status conditions associated with an I/O module and its peripherals Read – Causes the I/O module to obtain an item of data from the peripheral and place it in an internal buffer Write – Causes the I/O module to take an item of data form the data bus and subsequently transmit that data item to the peripheral The main disadvantage of this technique is it is a time consuming process that keeps the processor busy needlessly I/O Instructions With programmed I/O there is a close correspondence between the I/O related instructions that the processor fetches from memory and the I/O commands that the processor issues to an I/O module to execute the instructions. Typically there will be many I/O devices connected through I/O modules to the system – each device is given a unique identifier or address – when the processor issues an I/O command, the command contains the address of the address of the desired device, thus each I/O module must interpret the address lines to determine if the command is for itself. When the processor, main memory and I/O share a common bus, two modes of addressing are possible… Memory mapped I/O Isolated I/O (for a detailed explanation read page 245 of book) The advantage of memory mapped I/O over isolated I/O is that it has a large repertoire of instructions that can be used, allowing more efficient programming. The disadvantage of memory mapped I/O over isolated I/O is that valuable memory address space is sued up. Interrupts driven I/O Interrupt driven I/O works as follows… The processor issues an I/O command to a module and then goes on to do some other useful work The I/O module will then interrupts the processor to request service when is is ready to exchange data with the processor The processor then executes the data transfer and then resumes its former processing Interrupt Processing The occurrence of an interrupt triggers a number of events, both in the processor hardware and in software. When an I/O device completes an I/O operations the following sequence of hardware events occurs… The device issues an interrupt signal to the processor The processor finishes execution of the current instruction before responding to the interrupt The processor tests for an interrupt – determines that there is one – and sends an acknowledgement signal to the device that issues the interrupt. The acknowledgement allows the device to remove its interrupt signal The processor now needs to prepare to transfer control to the interrupt routine. To begin, it needs to save information needed to resume the current program at the point of interrupt. The minimum information required is the status of the processor and the location of the next instruction to be executed. The processor now loads the program counter with the entry location of the interrupt-handling program that will respond to this interrupt. It also saves the values of the process registers because the Interrupt operation may modify these The interrupt handler processes the interrupt – this includes examination of status information relating to the I/O operation or other event that caused an interrupt When interrupt processing is complete, the saved register values are retrieved from the stack and restored to the registers Finally, the PSW and program counter values from the stack are restored. Design Issues Two design issues arise in implementing interrupt I/O Because there will be multiple I/O modules, how does the processor determine which device issued the interrupt? If multiple interrupts have occurred, how does the processor decide which one to process? Addressing device recognition, 4 general categories of techniques are in common use… Multiple interrupt lines Software poll Daisy chain Bus arbitration For a detailed explanation of these approaches read page 250 of the textbook. Interrupt driven I/O while more efficient than simple programmed I/O still requires the active intervention of the processor to transfer data between memory and an I/O module, and any data transfer must traverse a path through the processor. Thus is suffers from two inherent drawbacks… The I/O transfer rate is limited by the speed with which the processor can test and service a device The processor is tied up in managing an I/O transfer; a number of instructions must be executed for each I/O transfer Direct Memory Access When large volumes of data are to be moved, an efficient technique is direct memory access (DMA) DMA Function DMA involves an additional module on the system bus. The DMA module is capable of mimicking the processor and taking over control of the system from the processor. It needs to do this to transfer data to and from memory over the system bus. DMA must the bus only when the processor does not need it, or it must force the processor to suspend operation temporarily (most common – referred to as cycle stealing). When the processor wishes to read or write a block of data, it issues a command to the DMA module by sending to the DMA module the following information… Whether a read or write is requested using the read or write control line between the processor and the DMA module The address of the I/O device involved, communicated on the data lines The starting location in memory to read from or write to, communicated on the data lines and stored by the DMA module in its address register The number of words to be read or written, communicated via the data lines and stored in the data count register The processor then continues with other work, it delegates the I/O operation to the DMA module which transfers the entire block of data, one word at a time, directly to or from memory without going through the processor. When the transfer is complete, the DMA module sends an interrupt signal to the processor, this the processor is involved only at the beginning and end of the transfer. I/O Channels and Processors Characteristics of I/O Channels As one proceeds along the evolutionary path, more and more of the I/O function is performed without CPU involvement. The I/O channel represents an extension of the DMA concept. An I/O channel ahs the ability to execute I/O instructions, which gives it complete control over I/O operations. In a computer system with such devices, the CPU does not execute I/O instructions – such instructions are stored in main memory to be executed by a special purpose processor in the I/O channel itself. Two types of I/O channels are common A selector channel controls multiple high-speed devices. A multiplexor channel can handle I/O with multiple characters as fast as possible to multiple devices. The external interface: FireWire and InfiniBand Types of Interfaces One major characteristic of the interface is whether it is serial or parallel parallel interface – there are multiple lines connecting the I/O module and the peripheral, and multiple bits are transferred simultaneously serial interface – there is only one line used to transmit data, and bits must be transmitted one at a time With new generation serial interfaces, parallel interfaces are becoming less common. In either case, the I/O module must engage in a dialogue with the peripheral. In general terms the dialog may look as follows… The I/O module sends a control signal requesting permission to send data The peripheral acknowledges the request The I/O module transfers data The peripheral acknowledges receipt of data For a detailed explanation of FireWire and InfiniBand technology read page 264 – 270 of the textbook

    Read the article

  • CodePlex Daily Summary for Monday, January 31, 2011

    CodePlex Daily Summary for Monday, January 31, 2011Popular ReleasesMVC Controls Toolkit: Mvc Controls Toolkit 0.8: Fixed the following bugs: *Variable name error in the jvascript file that prevented the use of the deleted item template of the Datagrid *Now after the changes applied to an item of the DataGrid are cancelled all input fields are reset to the very initial value they had. *Other minor bugs. Added: *This version is available both for MVC2, and MVC 3. The MVC 3 version has a release number of 0.85. This way one can install both version. *Client Validation support has been added to all control...Office Web.UI: Beta preview (Source): This is the first Beta. it includes full source code and all available controls. Some designers are not ready, and some features are not finalized allready (missing properties, draft styles) ThanksASP.net Ribbon: Version 2.2: This release brings some new controls (part of Office Web.UI). A few bugs are fixed and it includes the "auto resize" feature as you resize the window. (It can cause an infinite loop when the window is too reduced, it's why this release is not marked as "stable"). I will release more versions 2.3, 2.4... until V3 which will be the official launch of Office Web.UI. Both products will evolve at the same speed. Thanks.Barcode Rendering Framework: 2.1.1.0: Final release for VS2008 Finally fixed bugs with code 128 symbology.HERB.IQ: HERB.IQ.UPGRADE.0.5.3.exe: HERB.IQ.UPGRADE.0.5.3.exexUnit.net - Unit Testing for .NET: xUnit.net 1.7: xUnit.net release 1.7Build #1540 Important notes for Resharper users: Resharper support has been moved to the xUnit.net Contrib project. Important note for TestDriven.net users: If you are having issues running xUnit.net tests in TestDriven.net, especially on 64-bit Windows, we strongly recommend you upgrade to TD.NET version 3.0 or later. This release adds the following new features: Added support for ASP.NET MVC 3 Added Assert.Equal(double expected, double actual, int precision) Ad...DoddleReport - Automatic HTML/Excel/PDF Reporting: DoddleReport 1.0: DoddleReport will add automatic tabular-based reporting (HTML/PDF/Excel/etc) for any LINQ Query, IEnumerable, DataTable or SharePoint List For SharePoint integration please click Here PDF Reporting has been placed into a separate assembly because it requies AbcPdf http://www.websupergoo.com/download.htmSpark View Engine: Spark v1.5: Release Notes There have been a lot of minor changes going on since version 1.1, but most important to note are the major changes which include: Support for HTML5 "section" tag. Spark has now renamed its own section tag to "segment" instead to avoid clashes. You can still use "section" in a Spark sense for legacy support by specifying ParseSectionAsSegment = true if needed while you transition Bindings - this is a massive feature that further simplifies your views by giving you a powerful ...Marr DataMapper: Marr DataMapper 1.0.0 beta: First release.WPF Application Framework (WAF): WPF Application Framework (WAF) 2.0.0.3: Version: 2.0.0.3 (Milestone 3): This release contains the source code of the WPF Application Framework (WAF) and the sample applications. Requirements .NET Framework 4.0 (The package contains a solution file for Visual Studio 2010) The unit test projects require Visual Studio 2010 Professional Remark The sample applications are using Microsoft’s IoC container MEF. However, the WPF Application Framework (WAF) doesn’t force you to use the same IoC container in your application. You can use ...Rawr: Rawr 4.0.17 Beta: Rawr is now web-based. The link to use Rawr4 is: http://elitistjerks.com/rawr.phpThis is the Cataclysm Beta Release. More details can be found at the following link http://rawr.codeplex.com/Thread/View.aspx?ThreadId=237262 and on the Version Notes page: http://rawr.codeplex.com/wikipage?title=VersionNotes As of the 4.0.16 release, you can now also begin using the new Downloadable WPF version of Rawr!This is a pre-alpha release of the WPF version, there are likely to be a lot of issues. If you...Squiggle - A Free open source LAN Messenger: Squiggle 2.5 Beta: In this release following are the new features: Localization: Support for Arabic, French, German and Chinese (Simplified) Bridge: Connect two Squiggle nets across the WAN or different subnets Aliases: Special codes with special meaning can be embedded in message like (version),(datetime),(time),(date),(you),(me) Commands: cls, /exit, /offline, /online, /busy, /away, /main Sound notifications: Get audio alerts on contact online, message received, buzz Broadcast for group: You can ri...VivoSocial: VivoSocial 7.4.2: Version 7.4.2 of VivoSocial has been released. If you experienced any issues with the previous version, please update your modules to the 7.4.2 release and see if they persist. If you have any questions about this release, please post them in our Support forums. If you are experiencing a bug or would like to request a new feature, please submit it to our issue tracker. Web Controls * Updated Business Objects and added a new SQL Data Provider File. Groups * Fixed a security issue whe...PHP Manager for IIS: PHP Manager 1.1.1 for IIS 7: This is a minor release of PHP Manager for IIS 7. It contains all the functionality available in 56962 plus several bug fixes (see change list for more details). Also, this release includes Russian language support. SHA1 codes for the downloads are: PHPManagerForIIS-1.1.0-x86.msi - 6570B4A8AC8B5B776171C2BA0572C190F0900DE2 PHPManagerForIIS-1.1.0-x64.msi - 12EDE004EFEE57282EF11A8BAD1DC1ADFD66A654mojoPortal: 2.3.6.1: see release notes on mojoportal.com http://www.mojoportal.com/mojoportal-2361-released.aspx Note that we have separate deployment packages for .NET 3.5 and .NET 4.0 The deployment package downloads on this page are pre-compiled and ready for production deployment, they contain no C# source code. To download the source code see the Source Code Tab I recommend getting the latest source code using TortoiseHG, you can get the source code corresponding to this release here.Parallel Programming with Microsoft Visual C++: Drop 6 - Chapters 4 and 5: This is Drop 6. It includes: Drafts of the Preface, Introduction, Chapters 2-7, Appendix B & C and the glossary Sample code for chapters 2-7 and Appendix A & B. The new material we'd like feedback on is: Chapter 4 - Parallel Aggregation Chapter 5 - Futures The source code requires Visual Studio 2010 in order to run. There is a known bug in the A-Dash sample when the user attempts to cancel a parallel calculation. We are working to fix this.NodeXL: Network Overview, Discovery and Exploration for Excel: NodeXL Excel Template, version 1.0.1.160: The NodeXL Excel template displays a network graph using edge and vertex lists stored in an Excel 2007 or Excel 2010 workbook. What's NewThis release improves NodeXL's Twitter and Pajek features. See the Complete NodeXL Release History for details. Installation StepsFollow these steps to install and use the template: Download the Zip file. Unzip it into any folder. Use WinZip or a similar program, or just right-click the Zip file in Windows Explorer and select "Extract All." Close Ex...Kooboo CMS: Kooboo CMS 3.0 CTP: Files in this downloadkooboo_CMS.zip: The kooboo application files Content_DBProvider.zip: Additional content database implementation of MSSQL, RavenDB and SQLCE. Default is XML based database. To use them, copy the related dlls into web root bin folder and remove old content provider dlls. Content provider has the name like "Kooboo.CMS.Content.Persistence.SQLServer.dll" View_Engines.zip: Supports of Razor, webform and NVelocity view engine. Copy the dlls into web root bin folder to enable...UOB & ME: UOB ME 2.6: UOB ME 2.6????: ???? V1.0: ???? V1.0 ??New ProjectsAuto Complete Control for ASP.NET: Autocomplete Control is a fully functional ASP.NET control for word suggestions and autocomplete. We had been using Ajax Control Toolkit AutoComplete Extender in our projects before, but we have needed some extra features and functionalities.Cours ESIEE: MAJ des cours ESIEE depuis la plateforme Icampus et autres documentsEngineering World Expenses: Demo expenses application for Engineering World 2011Entity Framework / Linq to Sql Poco Code Generator: Poco Orm data access layer (Dto) code generator for Entity Framework and Linq to Sql. Customizable code generation via simple templating system. Utilizes Managed Extensibility Framework (MEF) in order for application parts to dynamically composed and plug-able.linqish.py: Python module for manipulating iterables. An implementation of the .Net Framework's Linq to Objects for Python.Machinekey setter: This code sample is Windows Azure SDK 1.3 custom plugin. This sample do working at set custom key to machinekey of web.config file in your WebRole.MapReduce.NET: MapReduce.NET intends to implement the original paper proposed by Google on MapReduce.Marr DataMapper: Marr DataMapper provides a fast and easy to use wrapper around ADO.NET that enables you to focus more on your data access queries without having to write plumbing code. Load one-to-one, one-to-many, and hierarchical entity models with ease. No special base class required.Orchard Silverlight: Orchard module enabling embedding Silverlight applications and creating Silverlight-based content.RouteMagic: Library of useful routing helpers and classes.Smart Skelta Utilites: Smart Skelta Utilies will provide utilties like Visual Studio 2008 Skelta Starter Kit(Project Templates and Project Item Templates),Code Snippets for Skelta Components,Skleta Attachment Extracter Web based Logger,Skelta Server utility and others for skelta based development.Solfix: Solfix is a programming language tbat is work-in-progress, but it has a lot of functionality! You can make applications for console to windows applications. The main point of Solfix is to make coding easier and less time than before.SQLite Manager: A minimal manage for sqlite databases.State Search: StateSearch provides state search algoritms such as A*, IDA*, BestFirst, etc to solve problems such as puzzles and/or path searchingTable Check Custom Field Type: SharePoint Custom Field Type for displaying a list of values with checkboxes and people editors.testsgb: testWindows Phone 7 Extension Framework: An extension method framework for Windows Phone 7 to make your code more fluent and adding a lot of common functions you don't need to reproduce.

    Read the article

  • Solving Big Problems with Oracle R Enterprise, Part II

    - by dbayard
    Part II – Solving Big Problems with Oracle R Enterprise In the first post in this series (see https://blogs.oracle.com/R/entry/solving_big_problems_with_oracle), we showed how you can use R to perform historical rate of return calculations against investment data sourced from a spreadsheet.  We demonstrated the calculations against sample data for a small set of accounts.  While this worked fine, in the real-world the problem is much bigger because the amount of data is much bigger.  So much bigger that our approach in the previous post won’t scale to meet the real-world needs. From our previous post, here are the challenges we need to conquer: The actual data that needs to be used lives in a database, not in a spreadsheet The actual data is much, much bigger- too big to fit into the normal R memory space and too big to want to move across the network The overall process needs to run fast- much faster than a single processor The actual data needs to be kept secured- another reason to not want to move it from the database and across the network And the process of calculating the IRR needs to be integrated together with other database ETL activities, so that IRR’s can be calculated as part of the data warehouse refresh processes In this post, we will show how we moved from sample data environment to working with full-scale data.  This post is based on actual work we did for a financial services customer during a recent proof-of-concept. Getting started with the Database At this point, we have some sample data and our IRR function.  We were at a similar point in our customer proof-of-concept exercise- we had sample data but we did not have the full customer data yet.  So our database was empty.  But, this was easily rectified by leveraging the transparency features of Oracle R Enterprise (see https://blogs.oracle.com/R/entry/analyzing_big_data_using_the).  The following code shows how we took our sample data SimpleMWRRData and easily turned it into a new Oracle database table called IRR_DATA via ore.create().  The code also shows how we can access the database table IRR_DATA as if it was a normal R data.frame named IRR_DATA. If we go to sql*plus, we can also check out our new IRR_DATA table: At this point, we now have our sample data loaded in the database as a normal Oracle table called IRR_DATA.  So, we now proceeded to test our R function working with database data. As our first test, we retrieved the data from a single account from the IRR_DATA table, pull it into local R memory, then call our IRR function.  This worked.  No SQL coding required! Going from Crawling to Walking Now that we have shown using our R code with database-resident data for a single account, we wanted to experiment with doing this for multiple accounts.  In other words, we wanted to implement the split-apply-combine technique we discussed in our first post in this series.  Fortunately, Oracle R Enterprise provides a very scalable way to do this with a function called ore.groupApply().  You can read more about ore.groupApply() here: https://blogs.oracle.com/R/entry/analyzing_big_data_using_the1 Here is an example of how we ask ORE to take our IRR_DATA table in the database, split it by the ACCOUNT column, apply a function that calls our SimpleMWRR() calculation, and then combine the results. (If you are following along at home, be sure to have installed our myIRR package on your database server via  “R CMD INSTALL myIRR”). The interesting thing about ore.groupApply is that the calculation is not actually performed in my desktop R environment from which I am running.  What actually happens is that ore.groupApply uses the Oracle database to perform the work.  And the Oracle database is what actually splits the IRR_DATA table by ACCOUNT.  Then the Oracle database takes the data for each account and sends it to an embedded R engine running on the database server to apply our R function.  Then the Oracle database combines all the individual results from the calls to the R function. This is significant because now the embedded R engine only needs to deal with the data for a single account at a time.  Regardless of whether we have 20 accounts or 1 million accounts or more, the R engine that performs the calculation does not care.  Given that normal R has a finite amount of memory to hold data, the ore.groupApply approach overcomes the R memory scalability problem since we only need to fit the data from a single account in R memory (not all of the data for all of the accounts). Additionally, the IRR_DATA does not need to be sent from the database to my desktop R program.  Even though I am invoking ore.groupApply from my desktop R program, because the actual SimpleMWRR calculation is run by the embedded R engine on the database server, the IRR_DATA does not need to leave the database server- this is both a performance benefit because network transmission of large amounts of data take time and a security benefit because it is harder to protect private data once you start shipping around your intranet. Another benefit, which we will discuss in a few paragraphs, is the ability to leverage Oracle database parallelism to run these calculations for dozens of accounts at once. From Walking to Running ore.groupApply is rather nice, but it still has the drawback that I run this from a desktop R instance.  This is not ideal for integrating into typical operational processes like nightly data warehouse refreshes or monthly statement generation.  But, this is not an issue for ORE.  Oracle R Enterprise lets us run this from the database using regular SQL, which is easily integrated into standard operations.  That is extremely exciting and the way we actually did these calculations in the customer proof. As part of Oracle R Enterprise, it provides a SQL equivalent to ore.groupApply which it refers to as “rqGroupEval”.  To use rqGroupEval via SQL, there is a bit of simple setup needed.  Basically, the Oracle Database needs to know the structure of the input table and the grouping column, which we are able to define using the database’s pipeline table function mechanisms. Here is the setup script: At this point, our initial setup of rqGroupEval is done for the IRR_DATA table.  The next step is to define our R function to the database.  We do that via a call to ORE’s rqScriptCreate. Now we can test it.  The SQL you use to run rqGroupEval uses the Oracle database pipeline table function syntax.  The first argument to irr_dataGroupEval is a cursor defining our input.  You can add additional where clauses and subqueries to this cursor as appropriate.  The second argument is any additional inputs to the R function.  The third argument is the text of a dummy select statement.  The dummy select statement is used by the database to identify the columns and datatypes to expect the R function to return.  The fourth argument is the column of the input table to split/group by.  The final argument is the name of the R function as you defined it when you called rqScriptCreate(). The Real-World Results In our real customer proof-of-concept, we had more sophisticated calculation requirements than shown in this simplified blog example.  For instance, we had to perform the rate of return calculations for 5 separate time periods, so the R code was enhanced to do so.  In addition, some accounts needed a time-weighted rate of return to be calculated, so we extended our approach and added an R function to do that.  And finally, there were also a few more real-world data irregularities that we needed to account for, so we added logic to our R functions to deal with those exceptions.  For the full-scale customer test, we loaded the customer data onto a Half-Rack Exadata X2-2 Database Machine.  As our half-rack had 48 physical cores (and 96 threads if you consider hyperthreading), we wanted to take advantage of that CPU horsepower to speed up our calculations.  To do so with ORE, it is as simple as leveraging the Oracle Database Parallel Query features.  Let’s look at the SQL used in the customer proof: Notice that we use a parallel hint on the cursor that is the input to our rqGroupEval function.  That is all we need to do to enable Oracle to use parallel R engines. Here are a few screenshots of what this SQL looked like in the Real-Time SQL Monitor when we ran this during the proof of concept (hint: you might need to right-click on these images to be able to view the images full-screen to see the entire image): From the above, you can notice a few things (numbers 1 thru 5 below correspond with highlighted numbers on the images above.  You may need to right click on the above images and view the images full-screen to see the entire image): The SQL completed in 110 seconds (1.8minutes) We calculated rate of returns for 5 time periods for each of 911k accounts (the number of actual rows returned by the IRRSTAGEGROUPEVAL operation) We accessed 103m rows of detailed cash flow/market value data (the number of actual rows returned by the IRR_STAGE2 operation) We ran with 72 degrees of parallelism spread across 4 database servers Most of our 110seconds was spent in the “External Procedure call” event On average, we performed 8,200 executions of our R function per second (110s/911k accounts) On average, each execution was passed 110 rows of data (103m detail rows/911k accounts) On average, we did 41,000 single time period rate of return calculations per second (each of the 8,200 executions of our R function did rate of return calculations for 5 time periods) On average, we processed over 900,000 rows of database data in R per second (103m detail rows/110s) R + Oracle R Enterprise: Best of R + Best of Oracle Database This blog post series started by describing a real customer problem: how to perform a lot of calculations on a lot of data in a short period of time.  While standard R proved to be a very good fit for writing the necessary calculations, the challenge of working with a lot of data in a short period of time remained. This blog post series showed how Oracle R Enterprise enables R to be used in conjunction with the Oracle Database to overcome the data volume and performance issues (as well as simplifying the operations and security issues).  It also showed that we could calculate 5 time periods of rate of returns for almost a million individual accounts in less than 2 minutes. In a future post, we will take the same R function and show how Oracle R Connector for Hadoop can be used in the Hadoop world.  In that next post, instead of having our data in an Oracle database, our data will live in Hadoop and we will how to use the Oracle R Connector for Hadoop and other Oracle Big Data Connectors to move data between Hadoop, R, and the Oracle Database easily.

    Read the article

  • CodePlex Daily Summary for Wednesday, July 30, 2014

    CodePlex Daily Summary for Wednesday, July 30, 2014Popular ReleasesGhostscript.NET: Ghostscript.NET v.1.1.9.: v.1.1.9. fixed problem with the PDF invisible layers (the optional content groups which will be left unmarked if processtrailerattrs is not executed). fixed text rasterization problem for some pdf's, it seems that the 'pdfopen begin' did not initialize everything required to render pdf properly so we replaced it with the 'runpdfopen' method which corrects everything (problem reported by "xatabhk"). changed GhostscriptRasterizer methods to support Stream insted of the MemoryStream. fixed...Recaptcha for .NET: Recaptcha for .NET v1.5: What's NewMinor bug fixes Support for legacy .NET framework 4.0 and ASP.NET MVC 4. Support for .NET Framework 4.5.1.Azure Storage Explorer: Azure Storage Explorer 6 Preview 1: Welcome to Azure Storage Explorer 6 Preview 1 This is the first release of the latest Azure Storage Explorer, code-named Phoenix. What's New?Here are some important things to know about version 6: Open Source Now being run as a full open source project. Full source code on CodePlex. Collaboration encouraged! Updated Code Base Brand-new code base (WPF/C#/.NET 4.5) Visual Studio 2013 solution (previously VS2010) Uses the Task Parallel Library (TPL) for asynchronous background operat...Wsus Package Publisher: release v1.3.1407.29: Updated WPP to recognize the very latest console version. Some files was missing into the latest release of WPP which lead to crash when trying to make a custom update. Add a workaround to avoid clipboard modification when double-clicking on a label when creating a custom update. Add the ability to publish detectoids. (This feature is still in a BETA phase. Packages relying on these detectoids to determine which computers need to be updated, may apply to all computers).VG-Ripper & PG-Ripper: PG-Ripper 1.4.32: changes NEW: Added Support for 'ImgMega.com' links NEW: Added Support for 'ImgCandy.net' links NEW: Added Support for 'ImgPit.com' links NEW: Added Support for 'Img.yt' links FIXED: 'Radikal.ru' links FIXED: 'ImageTeam.org' links FIXED: 'ImgSee.com' links FIXED: 'Img.yt' linksAsp.Net MVC-4,Entity Framework and JQGrid Demo with Todo List WebApplication: Asp.Net MVC-4,Entity Framework and JQGrid Demo: Asp.Net MVC-4,Entity Framework and JQGrid Demo with simple Todo List WebApplication, Overview TodoList is a simple web application to create, store and modify Todo tasks to be maintained by the users, which comprises of following fields to the user (Task Name, Task Description, Severity, Target Date, Task Status). TodoList web application is created using MVC - 4 architecture, code-first Entity Framework (ORM) and Jqgrid for displaying the data.Waterfox: Waterfox 31.0 Portable: New features in Waterfox 31.0: Added support for Unicode 7.0 Experimental support for WebCL New features in Firefox 31.0:New Add the search field to the new tab page Support of Prefer:Safe http header for parental control mozilla::pkix as default certificate verifier Block malware from downloaded files Block malware from downloaded files audio/video .ogg and .pdf files handled by Firefox if no application specified Changed Removal of the CAPS infrastructure for specifying site-sp...SuperSocket, an extensible socket server framework: SuperSocket 1.6.3: The changes below are included in this release: fixed an exception when collect a server's status but it has been stopped fixed a bug that can cause an exception in case of sending data when the connection dropped already fixed the log4net missing issue for a QuickStart project fixed a warning in a QuickStart projectYnote Classic: Ynote Classic 2.8.5 Beta: Several Changes - Multiple Carets and Multiple Selections - Improved Startup Time - Improved Syntax Highlighting - Search Improvements - Shell Command - Improved StabilityTEBookConverter: 1.2: Fixed: Could not start convertion in some cases Fixed: Progress show during convertion was truncated Fixed: Stopping convertion didn't reset program titleSharePoint 2010 & 2013 Google Maps V3 WebPart: SPGoogleMap webpart - SharePoint 2013 - July 2014: Google API key support added. The webpart does not need it but if you have one you can use it.QuieNet: Version 2.0: Replaced autoplay prevention mechanism: instead of replacing the player itself, only the function that starts the player is replaced. This only works for video players for now, and live streams are handled as before.XamlImageConverter: Xaml Image Converter 3.11: Improvements: - ASP.NET 64bit support for html2pdf. - Attribute to suppress parallel execution. - Ghostscript rendering. - No need for a snapshot for a imagemap, you can use original svg image.Automatic Parallel Computing: APC SDK 2.1: Features: integration with Amazon DynamoDB. Includes: Investment Club Benchmark Investor Ranking BenchmarkCatchException (Manage Exception): CatchMe Exception Version 1.0: Code SourceDnnFoundation Skin for DnnCMS: DnnC DnnFoundation Skin: First release of the DnnC DnnFoundation SkinQND Operations Manager SNMP Monitoring: QND.SNMP.Library version 1.0.0.103: fixed bug #1815FlMML customized: FlMML customized c.s.30938: ????????LFO、?????LFO??????。 ???·Y·????LFO、??????????????????。 ???LFO????????????????????。CS-Script Source: Release v3.8.4: CSScript.Evaluator is migrated to Mono v3.3.0 Added aggregating //css_ignore_ns from the imported scripts cs-script.7z - CS-Script Suite (binaries, documentation, samples) cs-script.ExtensionPack.7z - CS-Script Extension Pack (additional binaries and samples) cs-scriptDocs.7z - CS-Script DocumentationDotSpatial: DotSpatial 1.7: DotSpatial.Full - includes all DotSpatial libraries, extensions and DemoMap application DotSpatial.Core - includes only DotSpatial core libraries Entire list of changes see in the issue tracker. Main changes: Improved common stability, optimized memory and speed when loading and rendering shapefiles, fixed some memory leaks in rasters and shape layers. Simplified plugin infrastructure. Now there are predefined implementations for all required components (IStatusControl, IDockManager, IHead...New ProjectsAdmin QuikView for Dynamics CRM 2013: Admin QuickView is a gives you a quick hierarchical snapshot of all active Business Units, Teams, Security Roles and Users in your Dynamics CRM Organization.All bots: Windows Phone app to chat with bots from http://www.pandorabots.com/Calculator Proj: Calculator with power hexadecimal binary option and more... Computational Network Toolkit (CNTK): Computational networks (CNs) generalize models that can be described as a series of computational steps such as DNN, CNN, RNN, LSTM, and maximum entropy models.DelegateExpressionizer: Library is intended to decompile delegate code at runtime and build and appropriate expression tree.Hystaspes: Logistics Management System: Logistics Management SystemKinect Experiments: This repository contains various code samples, proof-of-concepts and utilities for Kinect for Windows (v1.8 and v2)ppcs: Placement Project Version 1.0.0.0Reusable MVC Partial View with JQuery Datatables: Reusable jQuery DataTables integrated with in a Partial View of MVC 4.0 is a reusable control/view written entirely in C# and JQuery, my aim was to create a MVCShared Code Project Template for Visual Studio 2013 Update 2: This Project contains the source code for a Shared Project template for VS 2013 which extends the shareing of code to all Project types besides universal apps. Text word search: This project is a sample for searching words in a notepad or a word file through wpf platform. Trace And Watch: Trace And Watch is a Pintool developed to assist in finding 32-bit integer errors.Vtron Automatic tester screen parameters: VTRONWalli: Walli is an open source SalesForce integrated developer environment(IDE) application written in .NET.Windows Kirlian WiFi App: Illustrates the radio field generated by WiFiWOMPS - What's new On My PLEX Server: Purpose of this project is to send an user a weekly or daily email of all new content add to their Plex library.

    Read the article

  • ASP.NET Localization: Enabling resource expressions with an external resource assembly

    - by Brian Schroer
    I have several related projects that need the same localized text, so my global resources files are in a shared assembly that’s referenced by each of those projects. It took an embarrassingly long time to figure out how to have my .resx files generate “public” properties instead of “internal” so I could have a shared resources assembly (apparently it was pretty tricky pre-VS2008, and my “googling” bogged me down some out-of-date instructions). It’s easy though – Just change the “Custom Tool” to “PublicResXFileCodeGenerator”:    …which can be done via the “Access Modifier” dropdown of the resource file designer window:   A reference to my shared resources DLL gives me the ability to use the resources in code, but by default, the ASP.NET resource expression syntax: <asp:Button ID="BeerButton" runat="server" Text="<%$ Resources:MyResources, Beer %>" />   …assumes that your resources are in your web site project.   To make resource expressions work with my shared resources assembly, I added two classes to the resources assembly: 1) a custom IResourceProvider implementation:   1: using System; 2: using System.Web.Compilation; 3: using System.Globalization; 4:   5: namespace DuffBeer 6: { 7: public class CustomResourceProvider : IResourceProvider 8: { 9: public object GetObject(string resourceKey, CultureInfo culture) 10: { 11: return MyResources.ResourceManager.GetObject(resourceKey, culture); 12: } 13:   14: public System.Resources.IResourceReader ResourceReader 15: { 16: get { throw new NotSupportedException(); } 17: } 18: } 19: }   2) and a custom factory class inheriting from the ResourceProviderFactory base class:   1: using System; 2: using System.Web.Compilation; 3:   4: namespace DuffBeer 5: { 6: public class CustomResourceProviderFactory : ResourceProviderFactory 7: { 8: public override IResourceProvider CreateGlobalResourceProvider(string classKey) 9: { 10: return new CustomResourceProvider(); 11: } 12:   13: public override IResourceProvider CreateLocalResourceProvider(string virtualPath) 14: { 15: throw new NotSupportedException(String.Format( 16: "{0} does not support local resources.", 17: this.GetType().Name)); 18: } 19: } 20: }   In the “system.web / globalization” section of my web.config file, I point the “resourceProviderFactoryType" property to my custom factory:   <system.web> <globalization culture="auto:en-US" uiCulture="auto:en-US" resourceProviderFactoryType="DuffBeer.CustomResourceProviderFactory, DuffBeer" />   This simple approach met my needs for these projects , but if you want to create reusable resource provider and factory classes that allow you to specify the assembly in the resource expression, the instructions are here.

    Read the article

  • Best practice for organizing/storing character/monster data in an RPG?

    - by eclecto
    Synopsis: Attempting to build a cross-platform RPG app in Adobe Flash Builder and am trying to figure out the best class hierarchy and the best way to store the static data used to build each of the individual "hero" and "monster" types. My programming experience, particularly in AS3, is embarrassingly small. My ultra-alpha method is to include a "_class" object in the constructor for each instance. The _class, in turn, is a static Object pulled from a class created specifically for that purpose, so things look something like this: // Character.as package { public class Character extends Sprite { public var _strength:int; // etc. public function Character(_class:Object) { _strength = _class._strength; // etc. } } } // MonsterClasses.as package { public final class MonsterClasses extends Object { public static const Monster1:Object={ _strength:50, // etc. } // etc. } } // Some other class in which characters/monsters are created. // Create a new instance of Character var myMonster = new Character(MonsterClasses.Monster1); Another option I've toyed with is the idea of making each character class/monster type its own subclass of Character, but I'm not sure if it would be efficient or even make sense considering that these classes would only be used to store variables and would add no new methods. On the other hand, it would make creating instances as simple as var myMonster = new Monster1; and potentially cut down on the overhead of having to read a class containing the data for, at a conservative preliminary estimate, over 150 monsters just to fish out the one monster I want (assuming, and I really have no idea, that such a thing might cause any kind of slowdown in execution). But long story short, I want a system that's both efficient at compile time and easy to work with during coding. Should I stick with what I've got or try a different method? As a subquestion, I'm also assuming here that the best way to store data that will be bundled with the final game and not read externally is simply to declare everything in AS3. Seems to me that if I used, say, XML or JSON I'd have to use the associated AS3 classes and methods to pull in the data, parse it, and convert it to AS3 object(s) anyway, so it would be inefficient. Right?

    Read the article

  • SSAS processing error: Client unable to establish connection; 08001; Encryption not supported on the client.; 08001

    - by Kevin Shyr
    After getting the cube to successfully deploy and process on Friday, I was baffled on Monday that the newly added dimension caused the cube processing to break.  I then followed the first instinct, discarded all my changes to reverted back to the version on Friday, and had no luck.  The error message (attached below) did not help as I was looking for some kind of SQL service error.  After examining the windows server log and the SQL server log, I just couldn't see anything wrong with it.After swearing for some time, and with the help of going off and working on something else for a while.  I came back to the solution and looked at the data source.  Even though I know I have never changed the provider (the default setup gave me SQL native client), I decided to change it and give OLE DB a try.This simple change allows my cube to process successfully again.  While I don't understand why the same settings that worked last week doesn't work this week, I don't have all the information to say with certainty that nothing has changed in the environment (firewall changes, server updates, etc.).SSAS processing error:<Batch >  <Parallel>    <Process xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ddl2="http://schemas.microsoft.com/analysisservices/2003/engine/2" xmlns:ddl2_2="http://schemas.microsoft.com/analysisservices/2003/engine/2/2" xmlns:ddl100_100="http://schemas.microsoft.com/analysisservices/2008/engine/100/100" xmlns:ddl200="http://schemas.microsoft.com/analysisservices/2010/engine/200" xmlns:ddl200_200="http://schemas.microsoft.com/analysisservices/2010/engine/200/200">      <Object>        <DatabaseID>DWH Sales Facts</DatabaseID>        <CubeID>DWH Sales Facts</CubeID>      </Object>      <Type>ProcessFull</Type>      <WriteBackTableCreation>UseExisting</WriteBackTableCreation>    </Process>  </Parallel></Batch>                Processing Dimension 'Date' completed.                                Errors and Warnings from Response                OLE DB error: OLE DB or ODBC error: A network-related or instance-specific error has occurred while establishing a connection to SQL Server. Server is not found or not accessible. Check if instance name is correct and if SQL Server is configured to allow remote connections. For more information see SQL Server Books Online.; 08001; Client unable to establish connection; 08001; Encryption not supported on the client.; 08001.                Errors in the high-level relational engine. A connection could not be made to the data source with the DataSourceID of 'DWH Sales Facts', Name of 'DWH Sales Facts'.                Errors in the OLAP storage engine: An error occurred while the dimension, with the ID of 'Currency', Name of 'Currency' was being processed.                Errors in the OLAP storage engine: An error occurred while the 'Currency Dim ID' attribute of the 'Currency' dimension from the 'DWH Sales Facts' database was being processed.                Internal error: The operation terminated unsuccessfully.                Server: The operation has been cancelled.

    Read the article

  • GPU Debugging with VS 11

    - by Daniel Moth
    With VS 11 Developer Preview we have invested tremendously in parallel debugging for both CPU (managed and native) and GPU debugging. I'll be doing a whole bunch of blog posts on those topics, and in this post I just wanted to get people started with GPU debugging, i.e. with debugging C++ AMP code. First I invite you to watch 6 minutes of a glimpse of the C++ AMP debugging experience though this video (ffw to minute 51:54, up until minute 59:16). Don't read the rest of this post, just go watch that video, ideally download the High Quality WMV. Summary GPU debugging essentially means debugging the lambda that you pass to the parallel_for_each call (plus any functions you call from the lambda, of course). CPU debugging means debugging all the code above and below the parallel_for_each call, i.e. all the code except the restrict(direct3d) lambda and the functions that it calls. With VS 11 you have to choose what debugger you want to use for a particular debugging session, CPU or GPU. So you can place breakpoints all over your code, then choose what debugger you want (CPU or GPU), and you'll only be able to hit breakpoints for the code type that the debugger engine understands – the remaining breakpoints will appear as unbound. If you want to hit the unbound breakpoints, you'd have to stop debugging, and start again with the other debugger. Sorry. We suck. We know. But once you are past that limitation, I think you'll find the experience truly rewarding – seriously! Switching debugger engines With the Developer Preview bits, one way to switch the debugger engine is through the project properties – see the screenshots that follow. This one is showing the CPU option selected, which is basically the default that you are all familiar with: This screenshot is showing the GPU option selected, by changing the debugger launcher (notice that this applies for both the local and remote case): You actually do not have to open the project properties just for switching the debugger engine, you can switch the selection from the toolbar in VS 11 Developer Preview too – see following screenshot (the effect is the same as if you opened the project properties and switched there) Breakpoint behavior Here are two screenshots, one showing a debugging session for CPU and the other a debugging session for GPU (notice the unbound breakpoints in each case) …and here is the GPU case (where we cannot bind the CPU breakpoints but can the GPU breakpoint, which is actually hit) Give C++ AMP debugging a try So to debug your C++ AMP code, pull down the drop down under the 'play' button to select the 'GPU C++ Direct3D Compute Debugger' menu option, then hit F5 (or the 'play' button itself). Then you can explore debugging by exploring the menus under the Debug and under the Debug->Windows menus. One way to do that exploration is through the C++ AMP debugging walkthrough on MSDN. Another way to explore the C++ AMP debugging experience, you can use the moth.cpp code file, which is what I used in my BUILD session debugger demo. Note that for my demo I was using the latest internal VS11 bits, so your experience with the Developer Preview bits won't be identical to what you saw me demonstrate, but it shouldn't be far off. Stay tuned for a lot more content on the parallel debugger in VS 11, both CPU and GPU, both managed and native. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • When to implement: Together with or after the source product?

    - by Jeremy Oosthuizen
    Somebody recently relayed a prospect's question to me: How hard would it be to implement OUBI after the source product (CC&B, WAM or NMS) has already been implemented? Fact is that MOST non-OUBI Data Warehouse / Business Intelligence implementations take place after the source application(s) are in place and hopefully stable. If an organization decides that they need better reporting and management information, then the logical path (see The Data Warehouse Institute's Data Warehouse Maturity Model) is to a Data Warehouse -- no matter when their last applications were implemented. If there is a pre-built Data Warehouse for their specific application, or even for the desired business process in their industry, they're in luck. Else they have to design and build from scratch, using a toolset. The implementation of a toolset is unlike the implementation of OUBI which, like OBI Apps, contain pre-built ETL routines and user content. Much has been written before about the advantages of that. So, because OUBI is designed specifically for Oracle Utilities transactional products, we often implement them in parallel -- with OUBI lagging a little behind by necessity, like Reporting. Customers know from the start they're going to need the solution, and therefore purchase the products at the same time. My biggest argument FOR a parallel installation/implementation of OUBI with the source product is two-fold: - There could be things (which is the technical term for data elements) that customers figure out they need when implementing OUBI, which are often easier added to the source product's implementation project, than to add later; - OUBI's ETL often points out errors (severe or not) with converted data, which are easier to fix during the source product's implementation project, or it may even be impossible to fix afterwards. The Conversion routines sometimes miss these errors, because the source system can live with the not-quite-perfect converted data. If the data can't be properly extracted, i.e. the proper Dimensions linked to the Facts, then it can't get into OUBI. That means it can't be analyzed effectively along with the rest of the organization's data. Then there is also the throw-away-work argument, which may be significant. The operational / transactional system cannot go live without reports on Day 1. A lot of those reports would be taken care of by the implementation of OUBI. If OUBI is implemented after go-live, those reports STILL have to be built during the source product's implementation project, but they become throw-away after the OUBI implementation. I have sometimes been told that it is better to implement OUBI after the source product, because it cuts down on scope and risk for the source product's implementation project. All I can say to that, is bah humbug. No, seriously, given the arguments above, planning has to include the OUBI implementation and it has to be managed properly -- just like any other implementation. If so, it should not add any risk and it should be included in the scope from the start. The answer to the prospect's question is therefore that it is not that much more difficult; after all, most DW/BI implemenations are done like that. They just have to consider the points above.

    Read the article

  • Analysis Services (SSAS) - Unexpected Internal Error when processing (ProcessUpdate). Workaround/Resolution

    - by James Rogers
    Many implementations require the use of ProcessUpdate to support Type 1 slowly changing dimensions. ProcessUpdate drops all of the affected indexes and aggregations in partitions affected by data that changes in the Dimension on which the ProcessUpdate is being performed. Twice now I have had situations where the processing fails with "Internal error: An unexpected exception occurred." Any subsequent ProcessUpdate processing will also fail with the same error. In talking with Microsoft the issue is corrupt indexes for the Dimension(s) being processed in the partitions of the affected measure group. I cannot guarantee that the following will correct your problem but it did in my case and saved us quite a bit of down time.   Workaround: ProcessIndexes on the entire cube that is being processed and throwing the error. This corrected the problem on both 2008 and 2008 R2.   Pros:  Does not require a complete rebuild of the data (ProcessFull) for either the Dimension or Cube. User access can continue while this ProcessIndexes in underway.   Cons: Can take a long time, especially on large cubes with many partitions, dimensions and/or aggregations. Query Performance is usually severely impacted due to the memory and CPU requirements for Aggregation and Index building   <Batch http://schemas.microsoft.com/analysisservices/2003/engine"http://schemas.microsoft.com/analysisservices/2003/engine">  <Parallel>     <Process xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ddl2="http://schemas.microsoft.com/analysisservices/2003/engine/2" xmlns:ddl2_2="http://schemas.microsoft.com/analysisservices/2003/engine/2/2" xmlns:ddl100_100="http://schemas.microsoft.com/analysisservices/2008/engine/100/100" xmlns:ddl200="http://schemas.microsoft.com/analysisservices/2010/engine/200" xmlns:ddl200_200="http://schemas.microsoft.com/analysisservices/2010/engine/200/200">       <Object>         <DatabaseID>MyDatabase</DatabaseID>         <CubeID>MyCube</CubeID>       </Object>       <Type>ProcessIndexes</Type>       <WriteBackTableCreation>UseExisting</WriteBackTableCreation>     </Process>  </Parallel> </Batch>   The cube where the corruption exists can be found by having Profiler running while the ProcessUpdate is executing. The first partition that displays the "The Job has ended in failure." message in the TextData column will be part of the cube/measuregroup that has the corruption. You can try to run ProcessIndexes on just that measure group. This may correct the problem and save additional time if you have other large measure groups in the cube that are not affected by the corruption.   Remember to execute your normal ProcessUpdate batch after the successful completion of the ProcessIndexes. The ProcessIndexes does not pick up data changes.   Things that did not work: ProcessClearIndexes - why this doesn't work and ProcessIndexes does is unclear at this point. ProcessFull on the partition in question. In my latest case, this would clear up the problem for that partition. However, the next partition the ProcessUpdate touched that had data in it would generate and error. This leads me to believe the corruption problem will exist in all partitions in the affected measure group that have data in them.   NOTE: I experience this problem in both a SQL 2008 and SQL 2008 R2 Analysis Services environment, on separate built from the same relational database. This leads me to believe that some data condition in the tables used for the Dimension processing caused the corruption since the two environments were on physically separate hardware. I am waiting on Microsoft to analyze the dumps to give us more insight into what actually caused the corruption and will update this post accordingly.

    Read the article

  • Triangle Line-Segment Intersection - detecting near misses

    - by Will
    A ray is a very poor approximation of a player! I think approximating a player with a sphere traveling a straight line each game tick will solve my problems of the player intersecting edges of scenery because their line segment missed it yet their own model is not infinitely thin... I have a 3D triangle and a line segment. I have the normal triangle-line-segment intersection code which I admit I have only a woolly grasp of. To model movement and compute collisions of the player I have to determine if a line passes within sphere-radius of a triangle. But I can find no convenient line near-miss intersection code! Here's the classic triangle intersection ### commented ### code with my starting assumptions: function triangle_ray_intersection(a,b,c,ray_origin,ray_dir,ray_radius) { // http://softsurfer.com/Archive/algorithm_0105/algorithm_0105.htm#intersect_RayTriangle%28%29 // get triangle edge vectors and plane normal var u = vec3_sub(b,a); var v = vec3_sub(c,a); var n = vec3_cross(u,v); if(n[0]==0 && n[1]==0 && n[2]==0) return null; // triangle is degenerate var w0 = vec3_sub(ray_origin,a); var j = vec3_dot(n,ray_dir); if(Math.abs(j) < 0.00000001) { //### if parallel, might still pass within ray_radius of it return null; // parallel, disjoint or on plane } var i = -vec3_dot(n,w0); // get intersect point of ray with triangle plane var k = i / j; if(k < 0.0) return null; // ray goes away from triangle //### as its a line segment, k > 1+ray_radius means no intersect var hit = vec3_add(ray_origin,vec3_scale(ray_dir,k)); // intersect point of ray and plane // is I inside T? //### here I'm a bit lost; this is presumably computing barycentric coordinates? var uu = vec3_dot(u,u); var uv = vec3_dot(u,v); var vv = vec3_dot(v,v); var w = vec3_sub(hit,a); var wu = vec3_dot(w,u); var wv = vec3_dot(w,v); var D = uv * uv - uu * vv; var s = (uv * wv - vv * wu) / D; //### therefore, compute if its within ray_radius scaled to the 0..1 of barycentric coordinates? if(s<0.0 || s>1.0) return null; // I is outside T var t = (uv * wu - uu * wv) / D; if(t<0.0 || (s+t)>1.0) return null; // I is outside T //### finally, if it passses a barycentric test it might still be too far //### to a point; must check that its distance from a corner is within ray_radius too if more than one barycentric coord is >1 //### so we have rounded corners... return [hit,n]; // I is in T } Given the distance between the point of plane intersection and each corner, I ought to be able to determine distance at world scale of how far beyond the edge - beyond 1.0 in barycentric coordinates for each axis - that point is... At this point my head explodes! Is this the right track? What's the actual code? UPDATE: you can earn 100 pts on SO if you answer this question there...! How can you determine if a line segment passes within some distance of a triangle?

    Read the article

  • ODI 11g – Oracle Multi Table Insert

    - by David Allan
    With the IKM Oracle Multi Table Insert you can generate Oracle specific DML for inserting into multiple target tables from a single query result – without reprocessing the query or staging its result. When designing this to exploit the IKM you must split the problem into the reusable parts – the select part goes in one interface (I named SELECT_PART), then each target goes in a separate interface (INSERT_SPECIAL and INSERT_REGULAR). So for my statement below… /*INSERT_SPECIAL interface */ insert  all when 1=1 And (INCOME_LEVEL > 250000) then into SCOTT.CUSTOMERS_NEW (ID, NAME, GENDER, BIRTH_DATE, MARITAL_STATUS, INCOME_LEVEL, CREDIT_LIMIT, EMAIL, USER_CREATED, DATE_CREATED, USER_MODIFIED, DATE_MODIFIED) values (ID, NAME, GENDER, BIRTH_DATE, MARITAL_STATUS, INCOME_LEVEL, CREDIT_LIMIT, EMAIL, USER_CREATED, DATE_CREATED, USER_MODIFIED, DATE_MODIFIED) /* INSERT_REGULAR interface */ when 1=1  then into SCOTT.CUSTOMERS_SPECIAL (ID, NAME, GENDER, BIRTH_DATE, MARITAL_STATUS, INCOME_LEVEL, CREDIT_LIMIT, EMAIL, USER_CREATED, DATE_CREATED, USER_MODIFIED, DATE_MODIFIED) values (ID, NAME, GENDER, BIRTH_DATE, MARITAL_STATUS, INCOME_LEVEL, CREDIT_LIMIT, EMAIL, USER_CREATED, DATE_CREATED, USER_MODIFIED, DATE_MODIFIED) /*SELECT*PART interface */ select        CUSTOMERS.EMAIL EMAIL,     CUSTOMERS.CREDIT_LIMIT CREDIT_LIMIT,     UPPER(CUSTOMERS.NAME) NAME,     CUSTOMERS.USER_MODIFIED USER_MODIFIED,     CUSTOMERS.DATE_MODIFIED DATE_MODIFIED,     CUSTOMERS.BIRTH_DATE BIRTH_DATE,     CUSTOMERS.MARITAL_STATUS MARITAL_STATUS,     CUSTOMERS.ID ID,     CUSTOMERS.USER_CREATED USER_CREATED,     CUSTOMERS.GENDER GENDER,     CUSTOMERS.DATE_CREATED DATE_CREATED,     CUSTOMERS.INCOME_LEVEL INCOME_LEVEL from    SCOTT.CUSTOMERS   CUSTOMERS where    (1=1) Firstly I create a SELECT_PART temporary interface for the query to be reused and in the IKM assignment I state that it is defining the query, it is not a target and it should not be executed. Then in my INSERT_SPECIAL interface loading a target with a filter, I set define query to false, then set true for the target table and execute to false. This interface uses the SELECT_PART query definition interface as a source. Finally in my final interface loading another target I set define query to false again, set target table to true and execute to true – this is the go run it indicator! To coordinate the statement construction you will need to create a package with the select and insert statements. With 11g you can now execute the package in simulation mode and preview the generated code including the SQL statements. Hopefully this helps shed some light on how you can leverage the Oracle MTI statement. A similar IKM exists for Teradata. The ODI IKM Teradata Multi Statement supports this multi statement request in 11g, here is an extract from the paper at www.teradata.com/white-papers/born-to-be-parallel-eb3053/ Teradata Database offers an SQL extension called a Multi-Statement Request that allows several distinct SQL statements to be bundled together and sent to the optimizer as if they were one. Teradata Database will attempt to execute these SQL statements in parallel. When this feature is used, any sub-expressions that the different SQL statements have in common will be executed once, and the results shared among them. It works in the same way as the ODI MTI IKM, multiple interfaces orchestrated in a package, each interface contributes some SQL, the last interface in the chain executes the multi statement.

    Read the article

  • F# and the rose-tinted reflection

    - by CliveT
    We're already seeing increasing use of many cores on client desktops. It is a change that has been long predicted. It is not just a change in architecture, but our notions of efficiency in a program. No longer can we focus on the asymptotic complexity of an algorithm by counting the steps that a single core processor would take to execute it. Instead we'll soon be more concerned about the scalability of the algorithm and how well we can increase the performance as we increase the number of cores. This may even lead us to throw away our most efficient algorithms, and switch to less efficient algorithms that scale better. We might even be willing to waste cycles in order to speculatively execute at the algorithm rather than the hardware level. State is the big headache in this parallel world. At the hardware level, main memory doesn't necessarily contain the definitive value corresponding to a particular address. An update to a location might still be held in a CPU's local cache and it might be some time before the value gets propagated. To get the latest value, and the notion of "latest" takes a lot of defining in this world of rapidly mutating state, the CPUs may well need to communicate to decide who has the definitive value of a particular address in order to avoid lost updates. At the user program level, this means programmers will need to lock objects before modifying them, or attempt to avoid the overhead of locking by understanding the memory models at a very deep level. I think it's this need to avoid statefulness that has led to the recent resurgence of interest in functional languages. In the 1980s, functional languages started getting traction when research was carried out into how programs in such languages could be auto-parallelised. Sadly, the impracticality of some of the languages, the overheads of communication during this parallel execution, and rapid improvements in compiler technology on stock hardware meant that the functional languages fell by the wayside. The one thing that these languages were good at was getting rid of implicit state, and this single idea seems like a solution to the problems we are going to face in the coming years. Whether these languages will catch on is hard to predict. The mindset for writing a program in a functional language is really very different from the way that object-oriented problem decomposition happens - one has to focus on the verbs instead of the nouns, which takes some getting used to. There are a number of hybrid functional/object languages that have been becoming more popular in recent times. These half-way houses make it easy to use functional ideas for some parts of the program while still allowing access to the underlying object-focused platform without a great deal of impedance mismatch. One example is F# running on the CLR which, in Visual Studio 2010, has because a first class member of the pack. Inside Visual Studio 2010, the tooling for F# has improved to the point where it is easy to set breakpoints and watch values change while debugging at the source level. In my opinion, it is the tooling support that will enable the widespread adoption of functional languages - without this support, people will put off any transition into the functional world for as long as they possibly can. Without tool support it will make it hard to learn these languages. One tool that doesn't currently support F# is Reflector. The idea of decompiling IL to a functional language is daunting, but F# is potentially so important I couldn't dismiss the idea. As I'm currently developing Reflector 6.5, I thought it wise to take four days just to see how far I could get in doing so, even if it achieved little more than to be clearer on how much was possible, and how long it might take. You can read what happened here, and of the insights it gave us on ways to improve the tool.

    Read the article

  • Give a session on C++ AMP – here is how

    - by Daniel Moth
    Ever since presenting on C++ AMP at the AMD Fusion conference in June, then the Gamefest conference in August, and the BUILD conference in September, I've had numerous requests about my material from folks that want to re-deliver the same session. The C++ AMP session I put together has evolved over the 3 presentations to its final form that I used at BUILD, so that is the one I recommend you base yours on. Please get the slides and the recording from channel9 (I'll refer to slide numbers below). This is how I've been presenting the C++ AMP session: Context (slide 3, 04:18-08:18) Start with a demo, on my dual-GPU machine. I've been using the N-Body sample (for VS 11 Developer Preview). (slide 4) Use an nvidia slide that has additional examples of performance improvements that customers enjoy with heterogeneous computing. (slide 5) Talk a bit about the differences today between CPU and GPU hardware, leading to the fact that these will continue to co-exist and that GPUs are great for data parallel algorithms, but not much else today. One is a jack of all trades and the other is a number cruncher. (slide 6) Use the APU example from amd, as one indication that the hardware space is still in motion, emphasizing that the C++ AMP solution is a data parallel API, not a GPU API. It has a future proof design for hardware we have yet to see. (slide 7) Provide more meta-data, as blogged about when I first introduced C++ AMP. Code (slide 9-11) Introduce C++ AMP coding with a simplistic array-addition algorithm – the slides speak for themselves. (slide 12-13) index<N>, extent<N>, and grid<N>. (Slide 14-16) array<T,N>, array_view<T,N> and comparison between them. (Slide 17) parallel_for_each. (slide 18, 21) restrict. (slide 19-20) actual restrictions of restrict(direct3d) – the slides speak for themselves. (slide 22) bring it altogether with a matrix multiplication example. (slide 23-24) accelerator, and accelerator_view. (slide 26-29) Introduce tiling incl. tiled matrix multiplication [tiling probably deserves a whole session instead of 6 minutes!]. IDE (slide 34,37) Briefly touch on the concurrency visualizer. It supports GPU profiling, but enhancements specific to C++ AMP we hope will come at the Beta timeframe, which is when I'll be spending more time talking about it. (slide 35-36, 51:54-59:16) Demonstrate the GPU debugging experience in VS 11. Summary (slide 39) Re-iterate some of the points of slide 7, and add the point that the C++ AMP spec will be open for other compiler vendors to implement, even on other platforms (in fact, Microsoft is actively working on that). (slide 40) Links to content – see slide – including where all your questions should go: http://social.msdn.microsoft.com/Forums/en/parallelcppnative/threads.   "But I don't have time for a full blown session, I only need 2 (or just 1, or 3) C++ AMP slides to use in my session on related topic X" If all you want is a small number of slides, you can take some from the session above and customize them. But because I am so nice, I have created some slides for you, including talking points in the notes section. Download them here. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • SQL Azure: Notes on Building a Shard Technology

    - by Herve Roggero
    In Chapter 10 of the book on SQL Azure (http://www.apress.com/book/view/9781430229612) I am co-authoring, I am digging deeper in what it takes to write a Shard. It's actually a pretty cool exercise, and I wanted to share some thoughts on how I am designing the technology. A Shard is a technology that spreads the load of database requests over multiple databases, as transparently as possible. The type of shard I am building is called a Vertical Partition Shard  (VPS). A VPS is a mechanism by which the data is stored in one or more databases behind the scenes, but your code has no idea at design time which data is in which database. It's like having a mini cloud for records instead of services. Imagine you have three SQL Azure databases that have the same schema (DB1, DB2 and DB3), you would like to issue a SELECT * FROM Users on all three databases, concatenate the results into a single resultset, and order by last name. Imagine you want to ensure your code doesn't need to change if you add a new database to the shard (DB4). Now imagine that you want to make sure all three databases are queried at the same time, in a multi-threaded manner so your code doesn't have to wait for three database calls sequentially. Then, imagine you would like to obtain a breadcrumb (in the form of a new, virtual column) that gives you a hint as to which database a record came from, so that you could update it if needed. Now imagine all that is done through the standard SqlClient library... and you have the Shard I am currently building. Here are some lessons learned and techniques I am using with this shard: Parellel Processing: Querying databases in parallel is not too hard using the Task Parallel Library; all you need is to lock your resources when needed Deleting/Updating Data: That's not too bad either as long as you have a breadcrumb. However it becomes more difficult if you need to update a single record and you don't know in which database it is. Inserting Data: I am using a round-robin approach in which each new insert request is directed to the next database in the shard. Not sure how to deal with Bulk Loads just yet... Shard Databases:  I use a static collection of SqlConnection objects which needs to be loaded once; from there on all the Shard commands use this collection Extension Methods: In order to make it look like the Shard commands are part of the SqlClient class I use extension methods. For example I added ExecuteShardQuery and ExecuteShardNonQuery methods to SqlClient. Exceptions: Capturing exceptions in a multi-threaded code is interesting... but I kept it simple for now. I am using the ConcurrentQueue to store my exceptions. Database GUID: Every database in the shard is given a GUID, which is calculated based on the connection string's values. DataTable. The Shard methods return a DataTable object which can be bound to objects.  I will be sharing the code soon as an open-source project in CodePlex. Please stay tuned on twitter to know when it will be available (@hroggero). Or check www.bluesyntax.net for updates on the shard. Thanks!

    Read the article

  • Give a session on C++ AMP – here is how

    - by Daniel Moth
    Ever since presenting on C++ AMP at the AMD Fusion conference in June, then the Gamefest conference in August, and the BUILD conference in September, I've had numerous requests about my material from folks that want to re-deliver the same session. The C++ AMP session I put together has evolved over the 3 presentations to its final form that I used at BUILD, so that is the one I recommend you base yours on. Please get the slides and the recording from channel9 (I'll refer to slide numbers below). This is how I've been presenting the C++ AMP session: Context (slide 3, 04:18-08:18) Start with a demo, on my dual-GPU machine. I've been using the N-Body sample (for VS 11 Developer Preview). (slide 4) Use an nvidia slide that has additional examples of performance improvements that customers enjoy with heterogeneous computing. (slide 5) Talk a bit about the differences today between CPU and GPU hardware, leading to the fact that these will continue to co-exist and that GPUs are great for data parallel algorithms, but not much else today. One is a jack of all trades and the other is a number cruncher. (slide 6) Use the APU example from amd, as one indication that the hardware space is still in motion, emphasizing that the C++ AMP solution is a data parallel API, not a GPU API. It has a future proof design for hardware we have yet to see. (slide 7) Provide more meta-data, as blogged about when I first introduced C++ AMP. Code (slide 9-11) Introduce C++ AMP coding with a simplistic array-addition algorithm – the slides speak for themselves. (slide 12-13) index<N>, extent<N>, and grid<N>. (Slide 14-16) array<T,N>, array_view<T,N> and comparison between them. (Slide 17) parallel_for_each. (slide 18, 21) restrict. (slide 19-20) actual restrictions of restrict(direct3d) – the slides speak for themselves. (slide 22) bring it altogether with a matrix multiplication example. (slide 23-24) accelerator, and accelerator_view. (slide 26-29) Introduce tiling incl. tiled matrix multiplication [tiling probably deserves a whole session instead of 6 minutes!]. IDE (slide 34,37) Briefly touch on the concurrency visualizer. It supports GPU profiling, but enhancements specific to C++ AMP we hope will come at the Beta timeframe, which is when I'll be spending more time talking about it. (slide 35-36, 51:54-59:16) Demonstrate the GPU debugging experience in VS 11. Summary (slide 39) Re-iterate some of the points of slide 7, and add the point that the C++ AMP spec will be open for other compiler vendors to implement, even on other platforms (in fact, Microsoft is actively working on that). (slide 40) Links to content – see slide – including where all your questions should go: http://social.msdn.microsoft.com/Forums/en/parallelcppnative/threads.   "But I don't have time for a full blown session, I only need 2 (or just 1, or 3) C++ AMP slides to use in my session on related topic X" If all you want is a small number of slides, you can take some from the session above and customize them. But because I am so nice, I have created some slides for you, including talking points in the notes section. Download them here. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • SQL Server Optimizer Malfunction?

    - by Tony Davis
    There was a sharp intake of breath from the audience when Adam Machanic declared the SQL Server optimizer to be essentially "stuck in 1997". It was during his fascinating "Query Tuning Mastery: Manhandling Parallelism" session at the recent PASS SQL Summit. Paraphrasing somewhat, Adam (blog | @AdamMachanic) offered a convincing argument that the optimizer often delivers flawed plans based on assumptions that are no longer valid with today’s hardware. In 1997, when Microsoft engineers re-designed the database engine for SQL Server 7.0, SQL Server got its initial implementation of a cost-based optimizer. Up to SQL Server 2000, the developer often had to deploy a steady stream of hints in SQL statements to combat the occasionally wilful plan choices made by the optimizer. However, with each successive release, the optimizer has evolved and improved in its decision-making. It is still prone to the occasional stumble when we tackle difficult problems, join large numbers of tables, perform complex aggregations, and so on, but for most of us, most of the time, the optimizer purrs along efficiently in the background. Adam, however, challenged further any assumption that the current optimizer is competent at providing the most efficient plans for our more complex analytical queries, and in particular of offering up correctly parallelized plans. He painted a picture of a present where complex analytical queries have become ever more prevalent; where disk IO is ever faster so that reads from disk come into buffer cache faster than ever; where the improving RAM-to-data ratio means that we have a better chance of finding our data in cache. Most importantly, we have more CPUs at our disposal than ever before. To get these queries to perform, we not only need to have the right indexes, but also to be able to split the data up into subsets and spread its processing evenly across all these available CPUs. Improvements such as support for ColumnStore indexes are taking things in the right direction, but, unfortunately, deficiencies in the current Optimizer mean that SQL Server is yet to be able to exploit properly all those extra CPUs. Adam’s contention was that the current optimizer uses essentially the same costing model for many of its core operations as it did back in the days of SQL Server 7, based on assumptions that are no longer valid. One example he gave was a "slow disk" bias that may have been valid back in 1997 but certainly is not on modern disk systems. Essentially, the optimizer assesses the relative cost of serial versus parallel plans based on the assumption that there is no IO cost benefit from parallelization, only CPU. It assumes that a single request will saturate the IO channel, and so a query would not run any faster if we parallelized IO because the disk system simply wouldn’t be able to handle the extra pressure. As such, the optimizer often decides that a serial plan is lower cost, often in cases where a parallel plan would improve performance dramatically. It was challenging and thought provoking stuff, as were his techniques for driving parallelism through query logic based on subsets of rows that define the "grain" of the query. I highly recommend you catch the session if you missed it. I’m interested to hear though, when and how often people feel the force of the optimizer’s shortcomings. Barring mistakes, such as stale statistics, how often do you feel the Optimizer fails to find the plan you think it should, and what are the most common causes? Is it fighting to induce it toward parallelism? Combating unexpected plans, arising from table partitioning? Something altogether more prosaic? Cheers, Tony.

    Read the article

  • About the K computer

    - by nospam(at)example.com (Joerg Moellenkamp)
    Okay ? after getting yet another mail because of the new #1 on the Top500 list, I want to add some comments from my side: Yes, the system is using SPARC processor. And that is great news for a SPARC fan like me. It is using the SPARC VIIIfx processor from Fujitsu clocked at 2 GHz. No, it isn't the only one. Most people are saying there are two in the Top500 list using SPARC (#77 JAXA and #1 K) but in fact there are three. The Tianhe-1 (#2 on the Top500 list) super computer contains 2048 Galaxy "FT-1000" 1 GHz 8-core processors. Don't know it? The FeiTeng-1000 ? this proc is a 8 core, 8 threads per core, 1 ghz processor made in China. And it's SPARC based. By the way ? this sounds really familiar to me ? perhaps the people just took the opensourced UltraSPARC-T2 design, because some of the parameters sound just to similar. However it looks like that Tianhe-1 is using the SPARCs as input nodes and not as compute notes. No, I don't see it as the next M-series processor. Simple reason: You can't create SMP systems out of them ? it simply hasn't the functionality to do so. Even when there are multiple CPUs on a single board, they are not connected like an SMP/NUMA machine to a shared memory machine ? they are connected with the cluster interconnect (in this case the Tofu interconnect) and work like a large cluster. Yes, it has a lot of oomph in Linpack ? however I assume a lot came from the extensions to the SPARCv9 standard. No, Linpack has no relevance for any commercial workload ? Linpack is such a special load, that even some HPC people are arguing that it isn't really a good benchmark for HPC. It's embarrassingly parallel, it can work with relatively small interconnects compared to the interconnects in SMP systems (however we get in spheres SMP interconnects where a few years ago). Amdahl isn't hitting that hard when running Linpack. Yes, it's a good move to use SPARC. At some time in the last 10 years, there was an interesting twist in perception: SPARC was considered as proprietary architecture and x86 was the open architecture. However it's vice versa ? try to create a x86 clone and you have a lot of intellectual property problems, create a SPARC clone and you have to spend 100 bucks or so to get the specification from the SPARC Foundation and develop your own SPARC processor. Fujitsu is doing this for a long time now. So they had their own processor, their own know-how. So why was SPARC a good choice? Well ? essentially Fujitsu can do what they want with their core as it is their core, for example adding the extensions to the SPARCv9 chipset ? getting Intel to create extensions to x86 to help you with your product is a little bit harder. So Fujitsu could do they needed to do with their processor in order to create such a supercomputer. No, the K is really using no FPGA or GPU as accelerators. The K is really using the CPU at doing this job. Yes, it has a significantly enhanced FPU capable to execute 8 instructions in parallel. No, it doesn't run Solaris. Yes, it uses Linux. No, it doesn't hurt me ... as my colleague Roland Rambau (he knows a lot about HPC) said once to me ... it doesn't matter which OS is staying out of the way of the workload in HPC.

    Read the article

  • Faster Memory Allocation Using vmtasks

    - by Steve Sistare
    You may have noticed a new system process called "vmtasks" on Solaris 11 systems: % pgrep vmtasks 8 % prstat -p 8 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP 8 root 0K 0K sleep 99 -20 9:10:59 0.0% vmtasks/32 What is vmtasks, and why should you care? In a nutshell, vmtasks accelerates creation, locking, and destruction of pages in shared memory segments. This is particularly helpful for locked memory, as creating a page of physical memory is much more expensive than creating a page of virtual memory. For example, an ISM segment (shmflag & SHM_SHARE_MMU) is locked in memory on the first shmat() call, and a DISM segment (shmflg & SHM_PAGEABLE) is locked using mlock() or memcntl(). Segment operations such as creation and locking are typically single threaded, performed by the thread making the system call. In many applications, the size of a shared memory segment is a large fraction of total physical memory, and the single-threaded initialization is a scalability bottleneck which increases application startup time. To break the bottleneck, we apply parallel processing, harnessing the power of the additional CPUs that are always present on modern platforms. For sufficiently large segments, as many of 16 threads of vmtasks are employed to assist an application thread during creation, locking, and destruction operations. The segment is implicitly divided at page boundaries, and each thread is given a chunk of pages to process. The per-page processing time can vary, so for dynamic load balancing, the number of chunks is greater than the number of threads, and threads grab chunks dynamically as they finish their work. Because the threads modify a single application address space in compressed time interval, contention on locks protecting VM data structures locks was a problem, and we had to re-scale a number of VM locks to get good parallel efficiency. The vmtasks process has 1 thread per CPU and may accelerate multiple segment operations simultaneously, but each operation gets at most 16 helper threads to avoid monopolizing CPU resources. We may reconsider this limit in the future. Acceleration using vmtasks is enabled out of the box, with no tuning required, and works for all Solaris platform architectures (SPARC sun4u, SPARC sun4v, x86). The following tables show the time to create + lock + destroy a large segment, normalized as milliseconds per gigabyte, before and after the introduction of vmtasks: ISM system ncpu before after speedup ------ ---- ------ ----- ------- x4600 32 1386 245 6X X7560 64 1016 153 7X M9000 512 1196 206 6X T5240 128 2506 234 11X T4-2 128 1197 107 11x DISM system ncpu before after speedup ------ ---- ------ ----- ------- x4600 32 1582 265 6X X7560 64 1116 158 7X M9000 512 1165 152 8X T5240 128 2796 198 14X (I am missing the data for T4 DISM, for no good reason; it works fine). The following table separates the creation and destruction times: ISM, T4-2 before after ------ ----- create 702 64 destroy 495 43 To put this in perspective, consider creating a 512 GB ISM segment on T4-2. Creating the segment would take 6 minutes with the old code, and only 33 seconds with the new. If this is your Oracle SGA, you save over 5 minutes when starting the database, and you also save when shutting it down prior to a restart. Those minutes go directly to your bottom line for service availability.

    Read the article

  • Is Rails Metal (& Rack) a good way to implement a high traffic web service api?

    - by Greg
    I am working on a very typical web application. The main component of the user experience is a widget that a site owner would install on their front page. Every time their front page loads, the widget talks to our server and displays some of the data that returns. So there are two components to this web application: the front end UI that the site owner uses to configure their widget the back end component that responds to the widget's web api call Previously we had all of this running in PHP. Now we are experimenting with Rails, which is fantastic for #1 (the front end UI). The question is how to do #2, the back serving of widget information, efficiently. Obviously this is much higher load than the front end, since it is called every time the front page loads on one of our clients' websites. I can see two obvious approaches: A. Parallel Stack: Set up a parallel stack that uses something other than rails (e.g. our old PHP-based approach) but accesses the same database as the front end B. Rails Metal: Use Rails Metal/Rack to bypass the Rails routing mechanism, but keep the api call responder within the Rails app My main question: Is Rails/Metal a reasonable approach for something like this? But also... Will the overhead of loading the Rails environment still be too heavy? Is there a way to get even closer to the metal with Rails, bypassing most of the environment? Will Rails/Metal performance approach the perf of a similar task on straight PHP (just looking for ballpark here)? And... Is there a 'C' option that would be much better than both A and B? That is, something before going to the lengths of C code compiled to binary and installed as an nginx or apache module? Thanks in advance for any insights.

    Read the article

  • solve a classic map-reduce problem with opencl?

    - by liuliu
    I am trying to parallel a classic map-reduce problem (which can parallel well with MPI) with OpenCL, namely, the AMD implementation. But the result bothers me. Let me brief about the problem first. There are two type of data that flow into the system: the feature set (30 parameters for each) and the sample set (9000+ dimensions for each). It is a classic map-reduce problem in the sense that I need to calculate the score of every feature on every sample (Map). And then, sum up the overall score for every feature (Reduce). There are around 10k features and 30k samples. I tried different ways to solve the problem. First, I tried to decompose the problem by features. The problem is that the score calculation consists of random memory access (pick some of the 9000+ dimensions and do plus/subtraction calculations). Since I cannot coalesce memory access, it costs. Then, I tried to decompose the problem by samples. The problem is that to sum up overall score, all threads are competing for few score variables. It keeps overwriting the score which turns out to be incorrect. (I cannot carry out individual score first and sum up later because it requires 10k * 30k * 4 bytes). The first method I tried gives me the same performance on i7 860 CPU with 8 threads. However, I don't think the problem is unsolvable: it is remarkably similar to ray tracing problem (for which you carry out calculation that millions of rays against millions of triangles). Any ideas?

    Read the article

  • animation extender in datalist control in asp.net 2008

    - by BibiBuBu
    Good Day! i have a question that how can i use animation extender in datalist control in asp.net with c#. i want the animation when i click the delete button (delete button will be in repeater). so that when i remove one record then it shows animation to bring the next record. it is in update panel. <cc1:AnimationExtender ID="AnimationExtender1" runat="server" Enabled="True" TargetControlID="btnDeleteId"> <Animations> <OnClick> <Sequence> <EnableAction Enabled="false" /> <Parallel Duration=".2"> <Resize Height="0" Width="0" Unit="px" /> <FadeOut /> </Parallel> <HideAction /> </Sequence> </OnClick> </Animations> </cc1:AnimationExtender> now if i put my button id in the Target control id then it gives error that it should not be in same update panel etc... but over all nothing working for animation. i am binding my datalist in itemDataBound....e.g. ImageButton imgbtn = (ImageButton)e.Item.FindControl("imgBtnPic"); Label lblAvatar = (Label)e.Item.FindControl("lblAvatar"); LinkButton lbName = (LinkButton)e.Item.FindControl("lbtnName"); Can somebody please suggest me something. thanks

    Read the article

< Previous Page | 27 28 29 30 31 32 33 34 35 36 37 38  | Next Page >