Search Results

Search found 2668 results on 107 pages for 'implements'.

Page 31/107 | < Previous Page | 27 28 29 30 31 32 33 34 35 36 37 38  | Next Page >

  • Interfaces and Virtuals Everywhere????

    - by David V. Corbin
    First a disclaimer; this post is about micro-optimization of C# programs and does not apply to most common scenarios - but when it does, it is important to know. Many developers are in the habit of declaring member virtual to allow for future expansion or using interface based designs1. Few of these developers think about what the runtime performance impact of this decision is. A simple test will show that this decision can have a serious impact. For our purposes, we used a simple loop to time the execution of 1 billion calls to both non-virtual and virtual implementations of a method that took no parameters and had a void return type: Direct Call:     1.5uS Virtual Call:   13.0uS The overhead of the call increased by nearly an order of magnitude! Once again, it is important to realize that if the method does anything of significance then this ratio drops quite quickly. If the method does just 1mS of work, then the differential only accounts for a 1% decrease in performance. Additionally the method in question must be called thousands of times in order to produce a meaqsurable impact at the application level. Yet let us consider a situation such as the per-pixel processing of a graphics processing application. Here we may have a method which is called millions of times and even the slightest increase in overhead can have significant ramification. In this case using either explicit virtuals or interface based constructs is likely to be a mistake. In conclusion, good design principles should always be the driving force behind descisions such as these; but remember that these decisions do not come for free.   1) When a concrete class member implements an interface it does not need to be explicitly marked as virtual (unless, of course, it is to be overriden in a derived concerete class). Nevertheless, when accessed via the interface it behaves exactly as if it had been marked as virtual.

    Read the article

  • C++11 Tidbits: access control under SFINAE conditions

    - by Paolo Carlini
    Lately I have been spending quite a bit of time on the SFINAE ("Substitution failure is not an error") features of C++, fixing and tweaking various bits of the GCC implementation. An important missing piece was the implementation of the resolution of DR 1170 which, in a nutshell, mandates that access checking is done as part of the substitution process. Consider: class C { typedef int type; }; template <class T, class = typename T::type> auto f(int) - char; template <class> auto f(...) -> char (&)[2]; static_assert (sizeof(f<C>(0)) == 2, "Ouch"); According to the resolution, the static_assert should not fire, and the snippet should compile successfully. The reason being that the first f overload must be removed from the candidate set because C::type is private to C. On the other hand, before the resolution of DR 1170, the expected behavior was for the first overload to remain in the candidate set, win over the second one, to eventually lead to an access control error (*). GCC mainline (would be 4.8) finally implements the DR, thus benefiting the many modern programming techniques heavily exploiting SFINAE, among which certainly the GNU C++ runtime library itself, which relies on it for the internals of <type_traits> and in several other places. Note that the resolution of the DR is active even in C++98 mode, not just in C++11 mode, because it turned out that the traditional behavior, as implemented in GCC, wasn't fully consistent in all the possible circumstances. (*) In practice, GCC didn't really implement this, the static_assert triggered instead.

    Read the article

  • ASMLib

    - by wcoekaer
    Oracle ASMlib on Linux has been a topic of discussion a number of times since it was released way back when in 2004. There is a lot of confusion around it and certainly a lot of misinformation out there for no good reason. Let me try to give a bit of history around Oracle ASMLib. Oracle ASMLib was introduced at the time Oracle released Oracle Database 10g R1. 10gR1 introduced a very cool important new features called Oracle ASM (Automatic Storage Management). A very simplistic description would be that this is a very sophisticated volume manager for Oracle data. Give your devices directly to the ASM instance and we manage the storage for you, clustered, highly available, redundant, performance, etc, etc... We recommend using Oracle ASM for all database deployments, single instance or clustered (RAC). The ASM instance manages the storage and every Oracle server process opens and operates on the storage devices like it would open and operate on regular datafiles or raw devices. So by default since 10gR1 up to today, we do not interact differently with ASM managed block devices than we did before with a datafile being mapped to a raw device. All of this is without ASMLib, so ignore that one for now. Standard Oracle on any platform that we support (Linux, Windows, Solaris, AIX, ...) does it the exact same way. You start an ASM instance, it handles storage management, all the database instances use and open that storage and read/write from/to it. There are no extra pieces of software needed, including on Linux. ASM is fully functional and selfcontained without any other components. In order for the admin to provide a raw device to ASM or to the database, it has to have persistent device naming. If you booted up a server where a raw disk was named /dev/sdf and you give it to ASM (or even just creating a tablespace without asm on that device with datafile '/dev/sdf') and next time you boot up and that device is now /dev/sdg, you end up with an error. Just like you can't just change datafile names, you can't change device filenames without telling the database, or ASM. persistent device naming on Linux, especially back in those days ways to say it bluntly, a nightmare. In fact there were a number of issues (dating back to 2004) : Linux async IO wasn't pretty persistent device naming including permissions (had to be owned by oracle and the dba group) was very, very difficult to manage system resource usage in terms of open file descriptors So given the above, we tried to find a way to make this easier on the admins, in many ways, similar to why we started working on OCFS a few years earlier - how can we make life easier for the admins on Linux. A feature of Oracle ASM is the ability for third parties to write an extension using what's called ASMLib. It is possible for any third party OS or storage vendor to write a library using a specific Oracle defined interface that gets used by the ASM instance and by the database instance when available. This interface offered 2 components : Define an IO interface - allow any IO to the devices to go through ASMLib Define device discovery - implement an external way of discovering, labeling devices to provide to ASM and the Oracle database instance This is similar to a library that a number of companies have implemented over many years called libODM (Oracle Disk Manager). ODM was specified many years before we introduced ASM and allowed third party vendors to implement their own IO routines so that the database would use this library if installed and make use of the library open/read/write/close,.. routines instead of the standard OS interfaces. PolyServe back in the day used this to optimize their storage solution, Veritas used (and I believe still uses) this for their filesystem. It basically allowed, in particular, filesystem vendors to write libraries that could optimize access to their storage or filesystem.. so ASMLib was not something new, it was basically based on the same model. You have libodm for just database access, you have libasm for asm/database access. Since this library interface existed, we decided to do a reference implementation on Linux. We wrote an ASMLib for Linux that could be used on any Linux platform and other vendors could see how this worked and potentially implement their own solution. As I mentioned earlier, ASMLib and ODMLib are libraries for third party extensions. ASMLib for Linux, since it was a reference implementation implemented both interfaces, the storage discovery part and the IO part. There are 2 components : Oracle ASMLib - the userspace library with config tools (a shared object and some scripts) oracleasm.ko - a kernel module that implements the asm device for /dev/oracleasm/* The userspace library is a binary-only module since it links with and contains Oracle header files but is generic, we only have one asm library for the various Linux platforms. This library is opened by Oracle ASM and by Oracle database processes and this library interacts with the OS through the asm device (/dev/asm). It can install on Oracle Linux, on SuSE SLES, on Red Hat RHEL,.. The library itself doesn't actually care much about the OS version, the kernel module and device cares. The support tools are simple scripts that allow the admin to label devices and scan for disks and devices. This way you can say create an ASM disk label foo on, currently /dev/sdf... So if /dev/sdf disappears and next time is /dev/sdg, we just scan for the label foo and we discover it as /dev/sdg and life goes on without any worry. Also, when the database needs access to the device, we don't have to worry about file permissions or anything it will be taken care of. So it's a convenience thing. The kernel module oracleasm.ko is a Linux kernel module/device driver. It implements a device /dev/oracleasm/* and any and all IO goes through ASMLib - /dev/oracleasm. This kernel module is obviously a very specific Oracle related device driver but it was released under the GPL v2 so anyone could easily build it for their Linux distribution kernels. Advantages for using ASMLib : A good async IO interface for the database, the entire IO interface is based on an optimal ASYNC model for performance A single file descriptor per Oracle process, not one per device or datafile per process reducing # of open filehandles overhead Device scanning and labeling built-in so you do not have to worry about messing with udev or devlabel, permissions or the likes which can be very complex and error prone. Just like with OCFS and OCFS2, each kernel version (major or minor) has to get a new version of the device drivers. We started out building the oracleasm kernel module rpms for many distributions, SLES (in fact in the early days still even for this thing called United Linux) and RHEL. The driver didn't make sense to get pushed into upstream Linux because it's unique and specific to the Oracle database. As it takes a huge effort in terms of build infrastructure and QA and release management to build kernel modules for every architecture, every linux distribution and every major and minor version we worked with the vendors to get them to add this tiny kernel module to their infrastructure. (60k source code file). The folks at SuSE understood this was good for them and their customers and us and added it to SLES. So every build coming from SuSE for SLES contains the oracleasm.ko module. We weren't as successful with other vendors so for quite some time we continued to build it for RHEL and of course as we introduced Oracle Linux end of 2006 also for Oracle Linux. With Oracle Linux it became easy for us because we just added the code to our build system and as we churned out Oracle Linux kernels whether it was for a public release or for customers that needed a one off fix where they also used asmlib, we didn't have to do any extra work it was just all nicely integrated. With the introduction of Oracle Linux's Unbreakable Enterprise Kernel and our interest in being able to exploit ASMLib more, we started working on a very exciting project called Data Integrity. Oracle (Martin Petersen in particular) worked for many years with the T10 standards committee and storage vendors and implemented Linux kernel support for DIF/DIX, data protection in the Linux kernel, note to those that wonder, yes it's all in mainline Linux and under the GPL. This basically gave us all the features in the Linux kernel to checksum a data block, send it to the storage adapter, which can then validate that block and checksum in firmware before it sends it over the wire to the storage array, which can then do another checksum and to the actual DISK which does a final validation before writing the block to the physical media. So what was missing was the ability for a userspace application (read: Oracle RDBMS) to write a block which then has a checksum and validation all the way down to the disk. application to disk. Because we have ASMLib we had an entry into the Linux kernel and Martin added support in ASMLib (kernel driver + userspace) for this functionality. Now, this is all based on relatively current Linux kernels, the oracleasm kernel module depends on the main kernel to have support for it so we can make use of it. Thanks to UEK and us having the ability to ship a more modern, current version of the Linux kernel we were able to introduce this feature into ASMLib for Linux from Oracle. This combined with the fact that we build the asm kernel module when we build every single UEK kernel allowed us to continue improving ASMLib and provide it to our customers. So today, we (Oracle) provide Oracle ASMLib for Oracle Linux and in particular on the Unbreakable Enterprise Kernel. We did the build/testing/delivery of ASMLib for RHEL until RHEL5 but since RHEL6 decided that it was too much effort for us to also maintain all the build and test environments for RHEL and we did not have the ability to use the latest kernel features to introduce the Data Integrity features and we didn't want to end up with multiple versions of asmlib as maintained by us. SuSE SLES still builds and comes with the oracleasm module and they do all the work and RHAT it certainly welcome to do the same. They don't have to rebuild the userspace library, it's really about the kernel module. And finally to re-iterate a few important things : Oracle ASM does not in any way require ASMLib to function completely. ASMlib is a small set of extensions, in particular to make device management easier but there are no extra features exposed through Oracle ASM with ASMLib enabled or disabled. Often customers confuse ASMLib with ASM. again, ASM exists on every Oracle supported OS and on every supported Linux OS, SLES, RHEL, OL withoutASMLib Oracle ASMLib userspace is available for OTN and the kernel module is shipped along with OL/UEK for every build and by SuSE for SLES for every of their builds ASMLib kernel module was built by us for RHEL4 and RHEL5 but we do not build it for RHEL6, nor for the OL6 RHCK kernel. Only for UEK ASMLib for Linux is/was a reference implementation for any third party vendor to be able to offer, if they want to, their own version for their own OS or storage ASMLib as provided by Oracle for Linux continues to be enhanced and evolve and for the kernel module we use UEK as the base OS kernel hope this helps.

    Read the article

  • How do I make time?

    - by SystemNetworks
    I wanted to output a text for a certain amount of time. One way is to use threads. Are there any other ways? I can't use threads for slick2d. This is my code when I use threads for slick: package javagame; import org.newdawn.slick.GameContainer; import org.newdawn.slick.Graphics; import org.newdawn.slick.Image; import java.util.Random; import org.newdawn.slick.Input; import org.newdawn.slick.*; import org.newdawn.slick.state.*; import org.lwjgl.input.Mouse; public class thread1 implements Runnable { String showUp; int timeLeft; public thread1(String s) { s = showUp; } public void run(Graphics g) { try { g.drawString("%s is sleeping %d", 500, 500); Thread.sleep(timeLeft); g.drawString("%s is awake", 600,600); } catch(Exception e) { } } @Override public void run() { // TODO Auto-generated method stub run(); } } It auto generates a new run() And also when I call it to my main class it has stack overflow!

    Read the article

  • Best practice with pyGTK and Builder XML files

    - by Phoenix87
    I usually design GUI with Glade, thus producing a series of Builder XML files (one such file for each application window). Now my idea is to define a class, e.g. MainWindow, that inherits from gtk.Window and that implements all the signal handlers for the application main window. The problem is that when I retrieve the main window from the containing XML file, it is returned as a gtk.Window instance. The solution I have adopted so far is the following: I have defined a class "Window" in the following way class Window(): def __init__(self, win_name): builder = gtk.Builder() self.builder = builder builder.add_from_file("%s.glade" % win_name) self.window = builder.get_object(win_name) builder.connect_signals(self) def run(self): return self.window.run() def show_all(self): return self.window.show_all() def destroy(self): return self.window.destroy() def child(self, name): return self.builder.get_object(name) In the actual application code I have then defined a new class, say MainWindow, that inherits frow Window, and that looks like class Main(Window): def __init__(self): Window.__init__(self, "main") ### Signal handlers ##################################################### def on_mnu_file_quit_activated(self, widget, data = None): ... The string "main" refers to the main window, called "main", which resides into the XML Builder file "main.glade" (this is a sort of convention I decided to adopt). So the question is: how can I inherit from gtk.Window directly, by defining, say, the class Foo(gtk.Window), and recast the return value of builder.get_object(win_name) to Foo?

    Read the article

  • Looking Under the Hood of ...

    - by rickramsey
    copyright 2012 Rob Lang Fair is fair. Our last post featured a conversation with the beautiful and talented Eva Mendez, so today we're featuring something for those of you who prefer the other gender of our fair species. This dude has quite the hardware challenge ahead of him. He hasn't begun to find out what's really under that hood. Life is much easier for you and me, thanks to Jeff Wright and Suzanne Zorn. They wrote a wicked cool article about Oracle VM Server for SPARC. Here's a little bit about it... Looking Under the Hood of Networking in Oracle VM Server for x86 Oracle VM Server for SPARC lets you create logical networks out of physical Ethernet ports, bonded ports, VLAN segments, virtual MAC addresses (VNICs), and network channels. You can then assign channels (or "roles") to each logical network so that it handles the type of traffic you want it to. Greg King explains how you go about doing this, and how Oracle VM Server for SPARC implements the network infrastructure you configured. He also describes how the VM interacts with paravirtualized guest operating systems, hardware virtualized operating systems, and VLANs. Finally, he provides an example that shows you how it all looks from the VM Manager view, the logical view, and the command line view of Oracle VM Server for x86. More Resources for Oracle VM Server for x86 If you liked Greg and Suzanne's paper, you can ... Download Oracle VM Server for x86 here Find technical resources for Oracle VM Server for x86 here Now, if we could just come up with a name for this awesome product that doesn't feel like I'm talking with a mouthful of marbles ... :-) - Rick Website Newsletter Facebook Twitter

    Read the article

  • Question about separating game core engine from game graphics engine...

    - by Conrad Clark
    Suppose I have a SquareObject class, which implements IDrawable, an interface which contains the method void Draw(). I want to separate drawing logic itself from the game core engine. My main idea is to create a static class which is responsible to dispatch actions to the graphic engine. public static class DrawDispatcher<T> { private static Action<T> DrawAction = new Action<T>((ObjectToDraw)=>{}); public static void SetDrawAction(Action<T> action) { DrawAction = action; } public static void Dispatch(this T Obj) { DrawAction(Obj); } } public static class Extensions { public static void DispatchDraw<T>(this object Obj) { DrawDispatcher<T>.DispatchDraw((T)Obj); } } Then, on the core side: public class SquareObject: GameObject, IDrawable { #region Interface public void Draw() { this.DispatchDraw<SquareObject>(); } #endregion } And on the graphics side: public static class SquareRender{ //stuff here public static void Initialize(){ DrawDispatcher<SquareObject>.SetDrawAction((Square)=>{//my square rendering logic}); } } Do this "pattern" follow best practices? And a plus, I could easily change the render scheme of each object by changing the DispatchDraw parameter, as in: public class SuperSquareObject: GameObject, IDrawable { #region Interface public void Draw() { this.DispatchDraw<SquareObject>(); } #endregion } public class RedSquareObject: GameObject, IDrawable { #region Interface public void Draw() { this.DispatchDraw<RedSquareObject>(); } #endregion } RedSquareObject would have its own render method, but SuperSquareObject would render as a normal SquareObject I'm just asking because i do not want to reinvent the wheel, and there may be a design pattern similar (and better) to this that I may be not acknowledged of. Thanks in advance!

    Read the article

  • Clients with multiple proxy and multithreading callbacks

    - by enzom83
    I created a sessionful web service using WCF, and in particular I used the NetTcpBinding binding. In addition to methods to initiate and terminate a session, other methods allow the client to send to one or more tasks to be performed (the results are returned via callback, so the service is duplex), but they also allow you to know the status of the service. Assuming you activate the same service on multiple endpoints, and assuming that the client knows these endpoints (for example, it could maintain a List of endpoints), the client should connect with one or more replicas of the same service. The client periodically updates the status of the service, so when it needs to perform a new task (the task is submitted by the user via UI), it selects the service currently less loaded and sends the task to it. Periodically, the client also initiates a maintenance procedure in order to disconnect from one or more overloaded service and in order to connect with new services. I created a client proxy using the svcutil tool. I wish each proxy can be used simultaneously by different threads, for example, in addition to the thread that submits the tasks using a proxy, there are also the following two threads which act periodically: a thread that periodically sends a request to the service in order to obtain the updated state; a thread that periodically selects a proxy to close and instantiates a new proxy to replace the closed one. To achieve these objectives, is it sufficient to create an array of proxies and manage their opening and closing in separate threads? I think I read that the proxy method calls are thread safe, so I would not need to perform a lock before requesting updates to the service. However, when the maintenance procedure (which is activated on its own thread) decides to close a proxy, should I perform a lock? Finally, each proxy is also associated with an object that implements the callback interface for the service: are the callbacks (invoked on the client) executed on different threads on the client? I would like to wrap the management of the proxy in one or more classes so that it can then easily manage within a WPF application.

    Read the article

  • What is the difference between Callback<T> and Java 8's Supplier<T>?

    - by Dan Pantry
    I've been switching over to Java from C# after some recommendations from some over at CodeReview. So, when I was looking into LWJGL, one thing I remembered was that every call to Display must be executed on the same thread that the Display.create() method was invoked on. Remembering this, I whipped up a class that looks a bit like this. public class LwjglDisplayWindow implements DisplayWindow { private final static int TargetFramesPerSecond = 60; private final Scheduler _scheduler; public LwjglDisplayWindow(Scheduler displayScheduler, DisplayMode displayMode) throws LWJGLException { _scheduler = displayScheduler; Display.setDisplayMode(displayMode); Display.create(); } public void dispose() { Display.destroy(); } @Override public int getTargetFramesPerSecond() { return TargetFramesPerSecond; } @Override public Future<Boolean> isClosed() { return _scheduler.schedule(() -> Display.isCloseRequested()); } } While writing this class you'll notice that I created a method called isClosed() that returns a Future<Boolean>. This dispatches a function to my Scheduler interface (which is nothing more than a wrapper around an ScheduledExecutorService. While writing the schedule method on the Scheduler I noticed that I could either use a Supplier<T> argument or a Callable<T> argument to represent the function that is passed in. ScheduledExecutorService didn't contain an override for Supplier<T> but I noticed that the lambda expression () -> Display.isCloseRequested() is actually type compatible with both Callable<bool> and Supplier<bool>. My question is, is there a difference between those two, semantically or otherwise - and if so, what is it, so I can adhere to it?

    Read the article

  • Verfication vs validation again, does testing belong to verification? If so, which?

    - by user970696
    I have asked before and created a lot of controversy so I tried to collect some data and ask similar question again. E.g. V&V where all testing is only validation: http://www.buzzle.com/editorials/4-5-2005-68117.asp According to ISO 12207, testing is done in validation: •Prepare Test Requirements,Cases and Specifications •Conduct the Tests In verification, it mentiones. The code implements proper event sequence, consistent interfaces, correct data and control flow, completeness, appropriate allocation timing and sizing budgets, and error definition, isolation, and recovery. and The software components and units of each software item have been completely and correctly integrated into the software item Not sure how to verify without testing but it is not there as a technique. From IEEE: Verification: The process of evaluating software to determine whether the products of a given development phase satisfy the conditions imposed at the start of that phase. [IEEE-STD-610]. Validation: The process of evaluating software during or at the end of the development process to determine whether it satisfies specified requirements. [IEEE-STD-610] At the end of development phase? That would mean UAT.. So the question is, what testing (unit, integration, system, uat) will be considered verification or validation? I do not understand why some say dynamic verification is testing, while others that only validation. An example: I am testing an application. System requirements say there are two fields with max. lenght of 64 characters and Save button. Use case say: User will fill in first and last name and save. When checking the fields and Save button presence, I would say its verification. When I follow the use case, its validation. So its both together, done on the system as a whole.

    Read the article

  • Would it be possible to create an open source software library, entirely developed and moderated by an open community?

    - by Steven Jeuris
    Call it democratic software development, or open source on steroids if you will. I'm not just talking about the possibility of providing a patch which can be approved by the library owner. Think more along the lines of how Stack Exchange works. Anyone can post code, and through community moderation it is cleaned up and eventually valid code ends up in the final library. For complex libraries an elaborate system should probably be created, but for a simple library it is my belief this is already possible even within the Stack Exchange platform. Take a library of extension methods for .NET for example. Everybody goes their own way and implements their own subset of what they feel is important, open-source library or not. People want to share their code, but there is no suitable platform for it. extensionmethod.net is the result of answering this call for extension methods, but the framework hopelessly falls short; there is no order, or structure at all. You don't know whether an idea is any good until you try it, so I decided to create an Extension Methods proposal on Area51. I belief with proper moderation, it could be possible for the site to be more than a Q&A site, and that an actual library (or subsets of it) could be extracted from it. Has anything like this been attempted before? Are there platforms better suited for this?

    Read the article

  • Basic AppFabric Service Bus Programming Lifecycle

    - by kaleidoscope
    The tasks required to create an application that access the AppFabric Service Bus are as follows: Create a service namespace. This service namespace contains the resources used by the AppFabric Service Bus to support the application. Define the AppFabric Service Bus contract. A contract specifies the signature of the service, the data it exchanges, and other required inputs, behavior specifications, and object invariants. Implement the contract. To implement a service contract, create a class that implements the interface and specify custom runtime behaviors. Configure the service by specifying endpoint and other behavior information. Build and run the service. Build and run the client application. As with any iterative, service-oriented software development, it may not always be appropriate to follow the preceding steps sequentially, or even start from step 1. For example, if you want to build a client for a pre-existing service, you start at step 5. Or, if you are building a host service that others will use, you can skip step 6. Source: http://msdn.microsoft.com/en-us/library/ee173580.aspx   Sarang, K

    Read the article

  • A short but intense GCC Gathering in London

    - by user817571
    About one week ago I joined in London many long time GCC friends and acquaintances for a gathering organized by Google (in particular I guess should be thanked Diego and Ian). Only a weekend, and I wasn't able to attend on Sunday morning, but a very good occasion to raise some issues in a very relaxed way, in particular those at the border between areas of competence, which are the most difficult to discuss during the normal work days. If you are interested in a general overview and some notes this is a good link: http://gcc.gnu.org/wiki/GCCGathering2011 As you may easily guess, the third topic is mine, which I managed to have up quite early on Friday morning thanks to the votes of some good friends like Dodji (the ordering of the topics resulted from democratic voting on Friday evening!). I learned a lot from the discussion: for example that certainly the new C++11 'final' should be exploited largely in the c++ front-end; the various reasons why devirtualization can be quite trick (but I'm really confident that Martin and Honza are going to make a good progress also basing on a set of short testcases which I promised to collect); that, as explained by Ian, the gold linker already implements the nice --icf (Identical Code Folding) facility, which some friends of mine are definitely going to like (however, see: http://sourceware.org/bugzilla/show_bug.cgi?id=12919). I also enjoyed the observations made by Lawrence, where he remarked that in C+11 we are going to see more pointer iterations implicitly produced by the new range-based for-loop and we really want to make sure the loop optimizers are able to deal with those as well as loops explicitly using a counter. All in all, I really hope we are going to do it again!

    Read the article

  • Should you create a class within a method?

    - by Amndeep7
    I have made a program using Java that is an implementation of this project: http://nifty.stanford.edu/2009/stone-random-art/sml/index.html. Essentially, you create a mathematical expression and, using the pixel coordinate as input, make a picture. After I initially implemented this in serial, I then implemented it in parallel due to the fact that if the picture size is too large or if the mathematical expression is too complex (especially considering the fact that I made the expression recursively), it takes a really long time. During this process, I realized that I needed two classes which implemented the Runnable interface as I had to put in parameters for the run method, which you aren't allowed to do directly. One of these classes ended up being a medium sized static inner class (not large enough to make an independent class file for it though). The other though, just needed a few parameters to determine some indexes and the size of the for loop that I was making run in parallel - here it is: class DataConversionRunnable implements Runnable { int jj, kk, w; DataConversionRunnable(int column, int matrix, int wid) { jj = column; kk = matrix; w = wid; } public void run() { for(int i = 0; i < w; i++) colorvals[kk][jj][i] = (int) ((raw[kk][jj][i] + 1.0) * 255 / 2.0); increaseCounter(); } } My question is should I make it a static inner class or can I just create it in a method? What is the general programming convention followed in this case?

    Read the article

  • Android: how do I switch between game scenes in a game? Any tutorials?

    - by Flavio
    I am trying to create a simple game using the Android SDK without using AndEngine (or any other game engine). I have plenty of experience designing games from the past, but I'm having lots of trouble trying to use the Android SDK to make my game. By far my biggest hurdle right now is switching between views. That is, for example, going from the menu to the first level, etc. I am using a traditional model I learned (I think it's called a scene stack or something?) in which you push the current scene onto a stack and the game's main loop runs the top item of the stack. This model seems non-trivial to implement in the Android SDK, mostly because Android seems to be picky about which thread instantiates which view. My issue is that I want the first level to show up when you press a button on the main menu, but when I instantiate the first level (the level class extends SurfaceView and implements SurfaceHolder.Callback) I get a runtime error complaining that the thread that runs the main menu can't instantiate this class. Something about calling Looper.prepare(). I figured at this point I was probably doing things wrong. I'm not sure how to specifically phrase my issue into a question, so maybe I should leave it as either 1) Does anybody know a good way (or the 'proper' way) to switch between scenes in an Android game? or 2) Are there any tutorials out there which show how to create a game that doesn't take place entirely in one scene? (I have googled for a while to no avail... maybe someone else knows of one?) Thanks!

    Read the article

  • Using runtime generic type reflection to build a smarter DAO

    - by kerry
    Have you ever wished you could get the runtime type of your generic class? I wonder why they didn’t put this in the language. It is possible, however, with reflection: Consider a data access object (DAO) (note: I had to use brackets b/c the arrows were messing with wordpress): public interface Identifiable { public Long getId(); } public interface Dao { public T findById(Long id); public void save(T obj); public void delete(T obj); } Using reflection, we can create a DAO implementation base class, HibernateDao, that will work for any object: import java.lang.reflect.Field; import java.lang.reflect.ParameterizedType; public class HibernateDao implements Dao { private final Class clazz; public HibernateDao(Session session) { // the magic ParameterizedType parameterizedType = (ParameterizedType) clazz.getGenericSuperclass(); return (Class) parameterizedType.getActualTypeArguments()[0]; } public T findById(Long id) { return session.get(clazz, id); } public void save(T obj) { session.saveOrUpdate(obj); } public void delete(T obj) { session.delete(obj); } } Then, all we have to do is extend from the class: public class BookDaoHibernateImpl extends HibernateDao { }

    Read the article

  • Benefits of classic OOP over Go-like language

    - by tylerl
    I've been thinking a lot about language design and what elements would be necessary for an "ideal" programming language, and studying Google's Go has led me to question a lot of otherwise common knowledge. Specifically, Go seems to have all of the interesting benefits from object oriented programming without actually having any of the structure of an object oriented language. There are no classes, only structures; there is no class/structure inheritance -- only structure embedding. There aren't any hierarchies, no parent classes, no explicit interface implementations. Instead, type casting rules are based on a loose system similar to duck-typing, such that if a struct implements the necessary elements of a "Reader" or a "Request" or an "Encoding", then you can cast it and use it as one. Does such a system obsolete the concept of OOP? Or is there something about OOP as implemented in C++ and Java and C# that is inherently more capable, more maintainable, somehow more powerful that you have to give up when moving to a language like Go? What benefit do you have to give up to gain the simplicity that this new paradigm represents?

    Read the article

  • An alternative to multiple inheritance when creating an abstraction layer?

    - by sebf
    In my project I am creating an abstraction layer for some APIs. The purpose of the layer is to make multi-platform easier, and also to simplify the APIs to the feature set that I need while also providing some functionality, the implementation of which will be unique to each platform. At the moment, I have implemented it by defining and abstract class, which has methods which creates objects that implement interfaces. The abstract class and these interfaces define the capabilities of my abstraction layer. The implementation of these in my layer should of course be arbitrary from the POV view of my application, but I have done it, for my first API, by creating chains of subclasses which add more specific functionality as the features of the APIs they expose become less generic. An example would probably demonstrate this better: //The interface as seen by the application interface IGenericResource { byte[] GetSomeData(); } interface ISpecificResourceOne : IGenericResource { int SomePropertyOfResourceOne {get;} } interface ISpecificResourceTwo : IGenericResource { string SomePropertyOfResourceTwo {get;} } public abstract class MyLayer { ISpecificResourceOne CreateResourceOne(); ISpecificResourceTwo CreateResourceTwo(); void UseResourceOne(ISpecificResourceOne one); void UseResourceTwo(ISpecificResourceTwo two); } //The layer as created in my library public class LowLevelResource : IGenericResource { byte[] GetSomeData() {} } public class ResourceOne : LowLevelResource, ISpecificResourceOne { int SomePropertyOfResourceOne {get{}} } public class ResourceTwo : ResourceOne, ISpecificResourceTwo { string SomePropertyOfResourceTwo {get {}} } public partial class Implementation : MyLayer { override UseResourceOne(ISpecificResourceOne one) { DoStuff((ResourceOne)one); } } As can be seen, I am essentially trying to have two inheritance chains on the same object, but of course I can't do this so I simulate the second version with interfaces. The thing is though, I don't like using interfaces for this; it seems wrong, in my mind an interface defines a contract, any class that implements that interface should be able to be used where that interface is used but here that is clearly not the case because the interfaces are being used to allow an object from the layer to masquerade as something else, without the application needing to have access to its definition. What technique would allow me to define a comprehensive, intuitive collection of objects for an abstraction layer, while their implementation remains independent? (Language is C#)

    Read the article

  • how to avoid flickering in awt [on hold]

    - by Ishanth
    import java.awt.event.*; import java.awt.*; class circle1 extends Frame implements KeyListener { public int a=300; public int b=70; public int pacx=360; public int pacy=270; public circle1() { setTitle("circle"); addKeyListener(this); repaint(); } public void paint(Graphics g) { g.fillArc (a, b, 60, 60,pacx,pacy); } public void keyPressed(KeyEvent e) { int key=e.getKeyCode(); System.out.println(key); if(key==38) { b=b-5; //move pacman up pacx=135;pacy=270; //packman mouth upside if(b==75&&a>=20||b==75&&a<=945) { b=b+5; } else { repaint(); } } else if(key==40) { b=b+5; //move pacman downside pacx=315; pacy=270; //packman mouth down if(b==645&&a>=20||b==645&&a<=940) { b=b-5; } else{ repaint(); } } else if(key==37) { a=a-5; //move pacman leftside pacx=227; pacy=270; //packman mouth left if(a==15&&b>=75||a==15&&b<=640) { a=a+5; } else { repaint(); } } else if(key==39) { a=a+5; //move pacman rightside pacx=42;pacy=270; //packman mouth right if(a==945&&a>=80||a==945&&b<=640) { a=a-5; } else { repaint(); } } } public void keyReleased(KeyEvent e){} public void keyTyped(KeyEvent e){} public static void main(String args[]) { circle1 c=new circle1(); c.setVisible(true); c.setSize(400,400); } }

    Read the article

  • design in agile process

    - by ying
    Recently I had an interview with dev team in a company. The team uses agile + TDD. The code exercise implements a video rental store which generates statement to calc total rental fee for each type of video (new release, children, etc) for a customer. The existing code use object like: Statement to generate statement and calc fee where big switch statement sits to use enum to determine how to calc rental fee customer holds a list of rentals movie base class and derived class for each type of movie (NEW, CHILDREN, ACTION, etc) The code originally doesn't compile as the owner was assumed to be hit by a bus. So here is what I did: outlined the improvement over object model to have better responsibility for each class. use strategy pattern to replace switch statement and weave them in config But the team says it's waste of time because there is no requirement for it and UAT test suite works and is the only guideline goes into architecture decision. The underlying story is just to get pricing feature out and not saying anything about how to do it. So the discussion is focused on why should time be spent on refactor the switch statement. In my understanding, agile methodology doesn't mean zero design upfront and such code smell should be avoided at the beginning. Also any unit/UAT test suite won't detect such code smell, otherwise sonar, findbugs won't exist. Here I want to ask: is there such a thing called agile design in the agile methodology? Just like agile documentation. how to define agile design upfront? how to know enough is enough? In my understanding, ballpark architecture and data contract among components should be defined before/when starting project, not the details. Am I right? anyone can explain what the team is really looking for in this kind of setup? is it design aspect or agile aspect? how to implement minimum viable product concept in the agile process in the real world project? Is it must that you feel embarrassed to be MVP?

    Read the article

  • design for supporting entities with images

    - by brainydexter
    I have multiple entities like Hotels, Destination Cities etc which can contain images. The way I have my system setup right now is, I think of all the images belonging to this universal set (a table in the DB contains filePaths to all the images). When I have to add an image to an entity, I see if the entity exists in this universal set of images. If it exists, attach the reference to this image, else create a new image. E.g.: class ImageEntityHibernateDAO { public void addImageToEntity(IContainImage entity, String filePath, String title, String altText) { ImageEntity image = this.getImage(filePath); if (image == null) image = new ImageEntity(filePath, title, altText); getSession().beginTransaction(); entity.getImages().add(image); getSession().getTransaction().commit(); } } My question is: Earlier I had to write this code for each entity (and each entity would have a Set collection). So, instead of re-writing the same code, I created the following interface: public interface IContainImage { Set<ImageEntity> getImages(); } Entities which have image collections also implements IContainImage interface. Now, for any entity that needs to support adding Image functionality, all I have to invoke from the DAO looks something like this: // in DestinationDAO::addImageToDestination { imageDao.addImageToEntity(destination, imageFileName, imageTitle, imageAltText); // in HotelDAO::addImageToHotel { imageDao.addImageToEntity(hotel, imageFileName, imageTitle, imageAltText); It'd be great help if someone can provide me some critique on this design ? Are there any serious flaws that I'm not seeing right away ?

    Read the article

  • whats the name of this pattern?

    - by Wes
    I see this a lot in frameworks. You have a master class which other classes register with. The master class then decides which of the registered classes to delegate the request to. An example based passed in class may be something this. public interface Processor { public boolean canHandle(Object objectToHandle); public void handle(Object objectToHandle); } public class EvenNumberProcessor extends Processor { public boolean canHandle(Object objectToHandle) { if (!isNumeric(objectToHandle)){ return false } return isEven(objectToHandle); } public void handle(objectToHandle) { //Optionally call canHandleAgain to ensure the calling class is fufilling its contract doSomething(); } } public class OddNumberProcessor extends Processor { public boolean canHandle(Object objectToHandle) { if (!isNumeric(objectToHandle)){ return false } return isOdd(objectToHandle); } public void handle(objectToHandle) { //Optionally call canHandleAgain to ensure the calling class is fufilling its contract doSomething(); } } //Can optionally implement processor interface public class processorDelegator { private List processors; public void addProcessor(Processor processor) { processors.add(processor); } public void process(Object objectToProcess) { //Lookup relevant processor either by keeping a list of what they can process //Or query each one to see if it can process the object. chosenProcessor=chooseProcessor(objectToProcess); chosenProcessor.handle(objectToProcess); } } Note there are a few variations I see on this. In one variation the sub classes provide a list of things they can process which the ProcessorDelegator understands. The other variation which is listed above in fake code is where each is queried in turn. This is similar to chain of command but I don't think its the same as chain of command means that the processor needs to pass to other processors. The other variation is where the ProcessorDelegator itself implements the interface which means you can get trees of ProcessorDelegators which specialise further. In the above example you could have a numeric processor delegator which delegates to an even/odd processor and a string processordelegator which delegates to different strings. My question is does this pattern have a name.

    Read the article

  • On developing deep programming knowledge

    - by Robert Harvey
    Occasionally I see questions about edge cases and other weirdness on Stack Overflow that are easily answered by the likes of Jon Skeet and Eric Lippert, demonstrating a deep knowledge of the language and its many intricacies, like this one: You might think that in order to use a foreach loop, the collection you are iterating over must implement IEnumerable or IEnumerable<T>. But as it turns out, that is not actually a requirement. What is required is that the type of the collection must have a public method called GetEnumerator, and that must return some type that has a public property getter called Current and a public method MoveNext that returns a bool. If the compiler can determine that all of those requirements are met then the code is generated to use those methods. Only if those requirements are not met do we check to see if the object implements IEnumerable or IEnumerable<T>. That's cool stuff to know. I can understand why Eric knows this; he's on the compiler team, so he has to know. But what about those who demonstrate such deep knowledge who are not insiders? How do mere mortals (who are not on the C# compiler team) find out about stuff like this? Specifically, are there methods these folks use to systematically root out such knowledge, explore it and internalize it (make it their own)?

    Read the article

  • Live Updates in PrimeFaces Line Chart

    - by Geertjan
    In the Facelets file: <p:layoutUnit position="center"> <h:form> <p:poll interval="3" update=":chartPanel" autoStart="true" /> </h:form> <p:panelGrid columns="1" id="chartPanel"> <p:lineChart xaxisLabel="Time" yaxisLabel="Position" value="#{chartController.linearModel}" legendPosition="nw" animate="true" style="height:400px;width: 1000px;"/> </p:panelGrid> </p:layoutUnit> The controler: import java.io.Serializable; import javax.inject.Named; import org.primefaces.model.chart.CartesianChartModel; import org.primefaces.model.chart.ChartSeries; @Named public class ChartController implements Serializable { private CartesianChartModel model; private ChartSeries data; public ChartController() { createLinearModel(); } private void createLinearModel() { model = new CartesianChartModel(); model.addSeries(getStockChartData("Stock Chart")); } private ChartSeries getStockChartData(String label) { data = new ChartSeries(); data.setLabel(label); for (int i = 1; i <= 20; i++) { data.getData().put(i, (int) (Math.random() * 1000)); } return data; } public CartesianChartModel getLinearModel() { return model; } } Based on this sample.

    Read the article

  • relationship between the model and the renderer

    - by acrilige
    I tried to build a simple graphics engine, and faced with this problems: i have a list of models that i need to draw, and object (renderer) that implements IRenderer interface with method DrawObject(Object* obj). Implementation of renderer depends on using graphics library (opengl/directx). 1st question: model should not know nothing about renderer implementation, but in this case where can i hold (cache) information that depends on renderer implementation? For example, if model have this definition: class Model { public: Model(); Vertex* GetVertices() const; private: Vertex* m_vertices; }; what is the best way to cache, for example, vertex buffer of this model for dx11? Hold it in renderer object? 2nd question: what is the best way for model to say renderer HOW it must be rendered (for example with texture, bump mapping, or may be just in one color). I thought it can be done with flags, like this: model-SetRenderOptions(RENDER_TEXTURE | RENDER_BUMPMAPPING | RENDER_LIGHTING); and in Renderer::DrawModel method check for each flag. But looks like it will become uncomfortable with the options count growth...

    Read the article

< Previous Page | 27 28 29 30 31 32 33 34 35 36 37 38  | Next Page >