Search Results

Search found 8391 results on 336 pages for 'partial hash arguments'.

Page 311/336 | < Previous Page | 307 308 309 310 311 312 313 314 315 316 317 318  | Next Page >

  • CI Deployment Of Azure Web Roles Using TeamCity

    - by srkirkland
    After recently migrating an important new website to use Windows Azure “Web Roles” I wanted an easier way to deploy new versions to the Azure Staging environment as well as a reliable process to rollback deployments to a certain “known good” source control commit checkpoint.  By configuring our JetBrains’ TeamCity CI server to utilize Windows Azure PowerShell cmdlets to create new automated deployments, I’ll show you how to take control of your Azure publish process. Step 0: Configuring your Azure Project in Visual Studio Before we can start looking at automating the deployment, we should make sure manual deployments from Visual Studio are working properly.  Detailed information for setting up deployments can be found at http://msdn.microsoft.com/en-us/library/windowsazure/ff683672.aspx#PublishAzure or by doing some quick Googling, but the basics are as follows: Install the prerequisite Windows Azure SDK Create an Azure project by right-clicking on your web project and choosing “Add Windows Azure Cloud Service Project” (or by manually adding that project type) Configure your Role and Service Configuration/Definition as desired Right-click on your azure project and choose “Publish,” create a publish profile, and push to your web role You don’t actually have to do step #4 and create a publish profile, but it’s a good exercise to make sure everything is working properly.  Once your Windows Azure project is setup correctly, we are ready to move on to understanding the Azure Publish process. Understanding the Azure Publish Process The actual Windows Azure project is fairly simple at its core—it builds your dependent roles (in our case, a web role) against a specific service and build configuration, and outputs two files: ServiceConfiguration.Cloud.cscfg: This is just the file containing your package configuration info, for example Instance Count, OsFamily, ConnectionString and other Setting information. ProjectName.Azure.cspkg: This is the package file that contains the guts of your deployment, including all deployable files. When you package your Azure project, these two files will be created within the directory ./[ProjectName].Azure/bin/[ConfigName]/app.publish/.  If you want to build your Azure Project from the command line, it’s as simple as calling MSBuild on the “Publish” target: msbuild.exe /target:Publish Windows Azure PowerShell Cmdlets The last pieces of the puzzle that make CI automation possible are the Azure PowerShell Cmdlets (http://msdn.microsoft.com/en-us/library/windowsazure/jj156055.aspx).  These cmdlets are what will let us create deployments without Visual Studio or other user intervention. Preparing TeamCity for Azure Deployments Now we are ready to get our TeamCity server setup so it can build and deploy Windows Azure projects, which we now know requires the Azure SDK and the Windows Azure PowerShell Cmdlets. Installing the Azure SDK is easy enough, just go to https://www.windowsazure.com/en-us/develop/net/ and click “Install” Once this SDK is installed, I recommend running a test build to make sure your project is building correctly.  You’ll want to setup your build step using MSBuild with the “Publish” target against your solution file.  Mine looks like this: Assuming the build was successful, you will now have the two *.cspkg and *cscfg files within your build directory.  If the build was red (failed), take a look at the build logs and keep an eye out for “unsupported project type” or other build errors, which will need to be addressed before the CI deployment can be completed. With a successful build we are now ready to install and configure the Windows Azure PowerShell Cmdlets: Follow the instructions at http://msdn.microsoft.com/en-us/library/windowsazure/jj554332 to install the Cmdlets and configure PowerShell After installing the Cmdlets, you’ll need to get your Azure Subscription Info using the Get-AzurePublishSettingsFile command. Store the resulting *.publishsettings file somewhere you can get to easily, like C:\TeamCity, because you will need to reference it later from your deploy script. Scripting the CI Deploy Process Now that the cmdlets are installed on our TeamCity server, we are ready to script the actual deployment using a TeamCity “PowerShell” build runner.  Before we look at any code, here’s a breakdown of our deployment algorithm: Setup your variables, including the location of the *.cspkg and *cscfg files produced in the earlier MSBuild step (remember, the folder is something like [ProjectName].Azure/bin/[ConfigName]/app.publish/ Import the Windows Azure PowerShell Cmdlets Import and set your Azure Subscription information (this is basically your authentication/authorization step, so protect your settings file Now look for a current deployment, and if you find one Upgrade it, else Create a new deployment Pretty simple and straightforward.  Now let’s look at the code (also available as a gist here: https://gist.github.com/3694398): $subscription = "[Your Subscription Name]" $service = "[Your Azure Service Name]" $slot = "staging" #staging or production $package = "[ProjectName]\bin\[BuildConfigName]\app.publish\[ProjectName].cspkg" $configuration = "[ProjectName]\bin\[BuildConfigName]\app.publish\ServiceConfiguration.Cloud.cscfg" $timeStampFormat = "g" $deploymentLabel = "ContinuousDeploy to $service v%build.number%"   Write-Output "Running Azure Imports" Import-Module "C:\Program Files (x86)\Microsoft SDKs\Windows Azure\PowerShell\Azure\*.psd1" Import-AzurePublishSettingsFile "C:\TeamCity\[PSFileName].publishsettings" Set-AzureSubscription -CurrentStorageAccount $service -SubscriptionName $subscription   function Publish(){ $deployment = Get-AzureDeployment -ServiceName $service -Slot $slot -ErrorVariable a -ErrorAction silentlycontinue   if ($a[0] -ne $null) { Write-Output "$(Get-Date -f $timeStampFormat) - No deployment is detected. Creating a new deployment. " } if ($deployment.Name -ne $null) { #Update deployment inplace (usually faster, cheaper, won't destroy VIP) Write-Output "$(Get-Date -f $timeStampFormat) - Deployment exists in $servicename. Upgrading deployment." UpgradeDeployment } else { CreateNewDeployment } }   function CreateNewDeployment() { write-progress -id 3 -activity "Creating New Deployment" -Status "In progress" Write-Output "$(Get-Date -f $timeStampFormat) - Creating New Deployment: In progress"   $opstat = New-AzureDeployment -Slot $slot -Package $package -Configuration $configuration -label $deploymentLabel -ServiceName $service   $completeDeployment = Get-AzureDeployment -ServiceName $service -Slot $slot $completeDeploymentID = $completeDeployment.deploymentid   write-progress -id 3 -activity "Creating New Deployment" -completed -Status "Complete" Write-Output "$(Get-Date -f $timeStampFormat) - Creating New Deployment: Complete, Deployment ID: $completeDeploymentID" }   function UpgradeDeployment() { write-progress -id 3 -activity "Upgrading Deployment" -Status "In progress" Write-Output "$(Get-Date -f $timeStampFormat) - Upgrading Deployment: In progress"   # perform Update-Deployment $setdeployment = Set-AzureDeployment -Upgrade -Slot $slot -Package $package -Configuration $configuration -label $deploymentLabel -ServiceName $service -Force   $completeDeployment = Get-AzureDeployment -ServiceName $service -Slot $slot $completeDeploymentID = $completeDeployment.deploymentid   write-progress -id 3 -activity "Upgrading Deployment" -completed -Status "Complete" Write-Output "$(Get-Date -f $timeStampFormat) - Upgrading Deployment: Complete, Deployment ID: $completeDeploymentID" }   Write-Output "Create Azure Deployment" Publish   Creating the TeamCity Build Step The only thing left is to create a second build step, after your MSBuild “Publish” step, with the build runner type “PowerShell”.  Then set your script to “Source Code,” the script execution mode to “Put script into PowerShell stdin with “-Command” arguments” and then copy/paste in the above script (replacing the placeholder sections with your values).  This should look like the following:   Wrap Up After combining the MSBuild /target:Publish step (which creates the necessary Windows Azure *.cspkg and *.cscfg files) and a PowerShell script step which utilizes the Azure PowerShell Cmdlets, we have a fully deployable build configuration in TeamCity.  You can configure this step to run whenever you’d like using build triggers – for example, you could even deploy whenever a new master branch deploy comes in and passes all required tests. In the script I’ve hardcoded that every deployment goes to the Staging environment on Azure, but you could deploy straight to Production if you want to, or even setup a deployment configuration variable and set it as desired. After your TeamCity Build Configuration is complete, you’ll see something that looks like this: Whenever you click the “Run” button, all of your code will be compiled, published, and deployed to Windows Azure! One additional enormous benefit of automating the process this way is that you can easily deploy any specific source control changeset by clicking the little ellipsis button next to "Run.”  This will bring up a dialog like the one below, where you can select the last change to use for your deployment.  Since Azure Web Role deployments don’t have any rollback functionality, this is a critical feature.   Enjoy!

    Read the article

  • C#: LINQ vs foreach - Round 1.

    - by James Michael Hare
    So I was reading Peter Kellner's blog entry on Resharper 5.0 and its LINQ refactoring and thought that was very cool.  But that raised a point I had always been curious about in my head -- which is a better choice: manual foreach loops or LINQ?    The answer is not really clear-cut.  There are two sides to any code cost arguments: performance and maintainability.  The first of these is obvious and quantifiable.  Given any two pieces of code that perform the same function, you can run them side-by-side and see which piece of code performs better.   Unfortunately, this is not always a good measure.  Well written assembly language outperforms well written C++ code, but you lose a lot in maintainability which creates a big techncial debt load that is hard to offset as the application ages.  In contrast, higher level constructs make the code more brief and easier to understand, hence reducing technical cost.   Now, obviously in this case we're not talking two separate languages, we're comparing doing something manually in the language versus using a higher-order set of IEnumerable extensions that are in the System.Linq library.   Well, before we discuss any further, let's look at some sample code and the numbers.  First, let's take a look at the for loop and the LINQ expression.  This is just a simple find comparison:       // find implemented via LINQ     public static bool FindViaLinq(IEnumerable<int> list, int target)     {         return list.Any(item => item == target);     }         // find implemented via standard iteration     public static bool FindViaIteration(IEnumerable<int> list, int target)     {         foreach (var i in list)         {             if (i == target)             {                 return true;             }         }           return false;     }   Okay, looking at this from a maintainability point of view, the Linq expression is definitely more concise (8 lines down to 1) and is very readable in intention.  You don't have to actually analyze the behavior of the loop to determine what it's doing.   So let's take a look at performance metrics from 100,000 iterations of these methods on a List<int> of varying sizes filled with random data.  For this test, we fill a target array with 100,000 random integers and then run the exact same pseudo-random targets through both searches.                       List<T> On 100,000 Iterations     Method      Size     Total (ms)  Per Iteration (ms)  % Slower     Any         10       26          0.00046             30.00%     Iteration   10       20          0.00023             -     Any         100      116         0.00201             18.37%     Iteration   100      98          0.00118             -     Any         1000     1058        0.01853             16.78%     Iteration   1000     906         0.01155             -     Any         10,000   10,383      0.18189             17.41%     Iteration   10,000   8843        0.11362             -     Any         100,000  104,004     1.8297              18.27%     Iteration   100,000  87,941      1.13163             -   The LINQ expression is running about 17% slower for average size collections and worse for smaller collections.  Presumably, this is due to the overhead of the state machine used to track the iterators for the yield returns in the LINQ expressions, which seems about right in a tight loop such as this.   So what about other LINQ expressions?  After all, Any() is one of the more trivial ones.  I decided to try the TakeWhile() algorithm using a Count() to get the position stopped like the sample Pete was using in his blog that Resharper refactored for him into LINQ:       // Linq form     public static int GetTargetPosition1(IEnumerable<int> list, int target)     {         return list.TakeWhile(item => item != target).Count();     }       // traditionally iterative form     public static int GetTargetPosition2(IEnumerable<int> list, int target)     {         int count = 0;           foreach (var i in list)         {             if(i == target)             {                 break;             }               ++count;         }           return count;     }   Once again, the LINQ expression is much shorter, easier to read, and should be easier to maintain over time, reducing the cost of technical debt.  So I ran these through the same test data:                       List<T> On 100,000 Iterations     Method      Size     Total (ms)  Per Iteration (ms)  % Slower     TakeWhile   10       41          0.00041             128%     Iteration   10       18          0.00018             -     TakeWhile   100      171         0.00171             88%     Iteration   100      91          0.00091             -     TakeWhile   1000     1604        0.01604             94%     Iteration   1000     825         0.00825             -     TakeWhile   10,000   15765       0.15765             92%     Iteration   10,000   8204        0.08204             -     TakeWhile   100,000  156950      1.5695              92%     Iteration   100,000  81635       0.81635             -     Wow!  I expected some overhead due to the state machines iterators produce, but 90% slower?  That seems a little heavy to me.  So then I thought, well, what if TakeWhile() is not the right tool for the job?  The problem is TakeWhile returns each item for processing using yield return, whereas our for-loop really doesn't care about the item beyond using it as a stop condition to evaluate. So what if that back and forth with the iterator state machine is the problem?  Well, we can quickly create an (albeit ugly) lambda that uses the Any() along with a count in a closure (if a LINQ guru knows a better way PLEASE let me know!), after all , this is more consistent with what we're trying to do, we're trying to find the first occurence of an item and halt once we find it, we just happen to be counting on the way.  This mostly matches Any().       // a new method that uses linq but evaluates the count in a closure.     public static int TakeWhileViaLinq2(IEnumerable<int> list, int target)     {         int count = 0;         list.Any(item =>             {                 if(item == target)                 {                     return true;                 }                   ++count;                 return false;             });         return count;     }     Now how does this one compare?                         List<T> On 100,000 Iterations     Method         Size     Total (ms)  Per Iteration (ms)  % Slower     TakeWhile      10       41          0.00041             128%     Any w/Closure  10       23          0.00023             28%     Iteration      10       18          0.00018             -     TakeWhile      100      171         0.00171             88%     Any w/Closure  100      116         0.00116             27%     Iteration      100      91          0.00091             -     TakeWhile      1000     1604        0.01604             94%     Any w/Closure  1000     1101        0.01101             33%     Iteration      1000     825         0.00825             -     TakeWhile      10,000   15765       0.15765             92%     Any w/Closure  10,000   10802       0.10802             32%     Iteration      10,000   8204        0.08204             -     TakeWhile      100,000  156950      1.5695              92%     Any w/Closure  100,000  108378      1.08378             33%     Iteration      100,000  81635       0.81635             -     Much better!  It seems that the overhead of TakeAny() returning each item and updating the state in the state machine is drastically reduced by using Any() since Any() iterates forward until it finds the value we're looking for -- for the task we're attempting to do.   So the lesson there is, make sure when you use a LINQ expression you're choosing the best expression for the job, because if you're doing more work than you really need, you'll have a slower algorithm.  But this is true of any choice of algorithm or collection in general.     Even with the Any() with the count in the closure it is still about 30% slower, but let's consider that angle carefully.  For a list of 100,000 items, it was the difference between 1.01 ms and 0.82 ms roughly in a List<T>.  That's really not that bad at all in the grand scheme of things.  Even running at 90% slower with TakeWhile(), for the vast majority of my projects, an extra millisecond to save potential errors in the long term and improve maintainability is a small price to pay.  And if your typical list is 1000 items or less we're talking only microseconds worth of difference.   It's like they say: 90% of your performance bottlenecks are in 2% of your code, so over-optimizing almost never pays off.  So personally, I'll take the LINQ expression wherever I can because they will be easier to read and maintain (thus reducing technical debt) and I can rely on Microsoft's development to have coded and unit tested those algorithm fully for me instead of relying on a developer to code the loop logic correctly.   If something's 90% slower, yes, it's worth keeping in mind, but it's really not until you start get magnitudes-of-order slower (10x, 100x, 1000x) that alarm bells should really go off.  And if I ever do need that last millisecond of performance?  Well then I'll optimize JUST THAT problem spot.  To me it's worth it for the readability, speed-to-market, and maintainability.

    Read the article

  • .NET to iOS: From WinForms to the iPad

    - by RobertChipperfield
    One of the great things about working at Red Gate is getting to play with new technology - and right now, that means mobile. A few weeks ago, we decided that a little research into the tablet computing arena was due, and purely from a numbers point of view, that suggested the iPad as a good target device. A quick trip to iPhoneDevCon in San Diego later, and Marine and I came back full of ideas, and with some concept of how iOS development was meant to work. Here's how we went from there to the release of Stacks & Heaps, our geeky take on the classic "Snakes & Ladders" game. Step 1: Buy a Mac I've played with many operating systems in my time: from the original BBC Model B, through DOS, Windows, Linux, and others, but I'd so far managed to avoid buying fruit-flavoured computer hardware! If you want to develop for the iPhone, iPad or iPod Touch, that's the first thing that needs to change. If you've not used OS X before, the first thing you'll realise is that everything is different! In the interests of avoiding a flame war in the comments section, I'll only go so far as to say that a lot of my Windows-flavoured muscle memory no longer worked. If you're in the UK, you'll also realise your keyboard is lacking a # key, and that " and @ are the other way around from normal. The wonderful Ukelele keyboard layout editor restores some sanity here, as long as you don't look at the keyboard when you're typing. I couldn't give up the PC entirely, but a handy application called Synergy comes to the rescue - it lets you share a single keyboard and mouse between multiple machines. There's a few limitations: Alt-Tab always seems to go to the Mac, and Windows 7's UAC dialogs require the local mouse for security reasons, but it gets you a long way at least. Step 2: Register as an Apple Developer You can register as an Apple Developer free of charge, and that lets you download XCode and the iOS SDK. You also get the iPhone / iPad emulator, which is handy, since you'll need to be a paid member before you can deploy your apps to a real device. You can either enroll as an individual, or as a company. They both cost the same ($99/year), but there's a few differences between them. If you register as a company, you can add multiple developers to your team (all for the same $99 - not $99 per developer), and you get to use your company name in the App Store. However, you'll need to send off significantly more documentation to Apple, and I suspect the process takes rather longer than for an individual, where they just need to verify some credit card details. Here's a tip: if you're registering as a company, do so as early as possible. The approval process can take a while to complete, so get the application in in plenty of time. Step 3: Learn to love the square brackets! Objective-C is the language of the iPad. C and C++ are also supported, and if you're doing some serious game development, you'll probably spend most of your time in C++ talking OpenGL, but for forms-based apps, you'll be interacting with a lot of the Objective-C SDK. Like shifting from Ctrl-C to Cmd-C, it feels a little odd at first, with the familiar string.format(.) turning into: NSString *myString = [NSString stringWithFormat:@"Hello world, it's %@", [NSDate date]]; Thankfully XCode's auto-complete is normally passable, if not up to Visual Studio's standards, which coupled with a huge amount of content on Stack Overflow means you'll soon get to grips with the API. You'll need to get used to some terminology changes, though; here's an incomplete approximation: Coming from a .NET background, there's some luxuries you no longer have developing Objective C in XCode: Generics! Remember back in .NET 1.1, when all collections were just objects? Yup, we're back there now. ReSharper. Or, more generally, very much refactoring support. The not-many-keystrokes to rename a class, its file, and al references to it in Visual Studio turns into a much more painful experience in XCode. Garbage collection. This is actually rather less of an issue than you might expect: if you follow the rules, the reference counting provided by Objective C gets you a long way without too much pain. Circular references are their usual problematic self, though. Decent exception handling. You do have exceptions, but they're nowhere near as widely used. Generally, if something goes wrong, you get nil (see translation table above) back. Which brings me on to. Calling a method on a nil object isn't a failure - it just returns nil itself! There's many arguments for and against this, but personally I fall into the "stuff should fail as quickly and explicitly as possible" camp. Less specifically, I found that there's more chance of code failing at runtime rather than getting caught at compile-time: using the @selector(.) syntax to pass a method signature isn't (can't be) checked at compile-time, so the first you know about a typo is a crash when you try and call it. The solution to this is of course lots of great testing, both automated and manual, but I still find comfort in provably correct type safety being enforced in addition to testing. Step 4: Submit to the App Store Assuming you want to distribute to more than a handful of devices, you're going to need to submit your app to the Apple App Store. There's a few gotchas in terms of getting builds signed with the right certificates, and you'll be bouncing around between XCode and iTunes Connect a fair bit, but eventually you get everything checked off the to-do list, and are ready to upload your first binary! With some amount of anticipation, I pressed the Upload button in XCode, ready to release our creation into the world, but was instead greeted by an error informing me my XML file was malformed. Uh. A little Googling later, and it turned out that a simple rename from "Stacks&Heaps.app" to "StacksAndHeaps.app" worked around an XML escaping bug, and we were good to go. The next step is to wait for approval (or otherwise). After a couple of weeks of intensive development, this part is agonising. Did we make it? The Apple jury is still out at the moment, but our fingers are firmly crossed! In the meantime, you can see some screenshots and leave us your email address if you'd like us to get in touch when it does go live at the MobileFoo website. Step 5: Profit! Actually, that wasn't the idea here: Stacks & Heaps is free; there's no adverts, and we're not going to sell all your data either. So why did we do it? We wanted to get an idea of what it's like to move from coding for a desktop environment, to something completely different. We don't know whether in a year's time, the iPad will still be the dominant force, or whether Android will have smoothed out some bugs, tweaked the performance, and polished the UI, but I think it's a fairly sure bet that the tablet form factor is here to stay. We want to meet people who are using it, start chatting to them, and find out about some of the pain they're feeling. What better way to do that than do it ourselves, and get to write a cool game in the process?

    Read the article

  • ASP.NET MVC JavaScript Routing

    - by zowens
    Have you ever done this sort of thing in your ASP.NET MVC view? The weird thing about this isn’t the alert function, it’s the code block containing the Url formation using the ASP.NET MVC UrlHelper. The terrible thing about this experience is the obvious lack of IntelliSense and this ugly inline JavaScript code. Inline JavaScript isn’t portable to other pages beyond the current page of execution. It is generally considered bad practice to use inline JavaScript in your public-facing pages. How ludicrous would it be to copy and paste the entire jQuery code base into your pages…? Not something you’d ever consider doing. The problem is that your URLs have to be generated by ASP.NET at runtime and really can’t be copied to your JavaScript code without some trickery. How about this? Does the hard-coded URL bother you? It really bothers me. The typical solution to this whole routing in JavaScript issue is to just hard-code your URLs into your JavaScript files and call it done. But what if your URLs change? You have to now go an track down the places in JavaScript and manually replace them. What if you get the pattern wrong? Do you have tests around it? This isn’t something you should have to worry about.   The Solution To Our Problems The solution is to port routing over to JavaScript. Does that sound daunting to you? It’s actually not very hard, but I decided to create my own generator that will do all the work for you. What I have created is a very basic port of the route formation feature of ASP.NET routing. It will generate the formatted URLs based on your routing patterns. Here’s how you’d do this: Does that feel familiar? It looks a lot like something you’d do inside of your ASP.NET MVC views… but this is inside of a JavaScript file… just a plain ol’ .js file.  Your first question might be why do you have to have that “.toUrl()” thing. The reason is that I wanted to make POST and GET requests dead simple. Here’s how you’d do a POST request (and the same would work with a GET request):   The first parameter is extra data passed to the post request and the second parameter is a function that handles the success of the POST request. If you’re familiar with jQuery’s Ajax goodness, you’ll know how to use it. (if not, check out http://api.jquery.com/jQuery.Post/ and the parameters are essentially the same). But we still haven’t gotten rid of the magic strings. We still have controller names and action names represented as strings. This is going to blow your mind… If you’ve seen T4MVC, this will look familiar. We’re essentially doing the same sort of thing with my JavaScript router, but we’re porting the concept to JavaScript. The good news is that parameters to the controllers are directly reflected in the action function, just like T4MVC. And the even better news… IntlliSense is easily transferred to the JavaScript version if you’re using Visual Studio as your JavaScript editor. The additional data parameter gives you the ability to pass extra routing data to the URL formatter.   About the Magic You may be wondering how this all work. It’s actually quite simple. I’ve built a simple jQuery pluggin (called routeManager) that hangs off the main jQuery namespace and routes all the URLs. Every time your solution builds, a routing file will be generated with this pluggin, all your route and controller definitions along with your documentation. Then by the power of Visual Studio, you get some really slick IntelliSense that is hard to live without. But there are a few steps you have to take before this whole thing is going to work. First and foremost, you need a reference to the JsRouting.Core.dll to your projects containing controllers or routes. Second, you have to specify your routes in a bit of a non-standard way. See, we can’t just pull routes out of your App_Start in your Global.asax. We force you to build a route source like this: The way we determine the routes is by pulling in all RouteSources and generating routes based upon the mapped routes. There are various reasons why we can’t use RouteCollection (different post for another day)… but in this case, you get the same route mapping experience. Converting the RouteSource to a RouteCollection is trivial (there’s an extension method for that). Next thing you have to do is generate a documentation XML file. This is done by going to the project settings, going to the build tab and clicking the checkbox. (this isn’t required, but nice to have). The final thing you need to do is hook up the generation mechanism. Pop open your project file and look for the AfterBuild step. Now change the build step task to look like this: The “PathToOutputExe” is the path to the JsRouting.Output.exe file. This will change based on where you put the EXE. The “PathToOutputJs” is a path to the output JavaScript file. The “DicrectoryOfAssemblies” is a path to the directory containing controller and routing DLLs. The JsRouting.Output.exe executable pulls in all these assemblies and scans them for controllers and route sources.   Now that wasn’t too bad, was it :)   The State of the Project This is definitely not complete… I have a lot of plans for this little project of mine. For starters, I need to look at the generation mechanism. Either I will be creating a utility that will do the project file manipulation or I will go a different direction. I’d like some feedback on this if you feel partial either way. Another thing I don’t support currently is areas. While this wouldn’t be too hard to support, I just don’t use areas and I wanted something up quickly (this is, after all, for a current project of mine). I’ll be adding support shortly. There are a few things that I haven’t covered in this post that I will most certainly be covering in another post, such as routing constraints and how these will be translated to JavaScript. I decided to open source this whole thing, since it’s a nice little utility I think others should really be using. Currently we’re using ASP.NET MVC 2, but it should work with MVC 3 as well. I’ll upgrade it as soon as MVC 3 is released. Along those same lines, I’m investigating how this could be put on the NuGet feed. Show me the Bits! OK, OK! The code is posted on my GitHub account. Go nuts. Tell me what you think. Tell me what you want. Tell me that you hate it. All feedback is welcome! https://github.com/zowens/ASP.NET-MVC-JavaScript-Routing

    Read the article

  • Writing Unit Tests for an ASP.NET MVC Action Method that handles Ajax Request and Normal Request

    - by shiju
    In this blog post, I will demonstrate how to write unit tests for an ASP.NET MVC action method, which handles both Ajax request and normal HTTP Request. I will write a unit test for specifying the behavior of an Ajax request and will write another unit test for specifying the behavior of a normal HTTP request. Both Ajax request and normal request will be handled by a single action method. So the ASP.NET MVC action method will be execute HTTP Request object’s IsAjaxRequest method for identifying whether it is an Ajax request or not. So we have to create mock object for Request object and also have to make as a Ajax request from the unit test for verifying the behavior of an Ajax request. I have used NUnit and Moq for writing unit tests. Let me write a unit test for a Ajax request Code Snippet [Test] public void Index_AjaxRequest_Returns_Partial_With_Expense_List() {     // Arrange       Mock<HttpRequestBase> request = new Mock<HttpRequestBase>();     Mock<HttpResponseBase> response = new Mock<HttpResponseBase>();     Mock<HttpContextBase> context = new Mock<HttpContextBase>();       context.Setup(c => c.Request).Returns(request.Object);     context.Setup(c => c.Response).Returns(response.Object);     //Add XMLHttpRequest request header     request.Setup(req => req["X-Requested-With"]).         Returns("XMLHttpRequest");       IEnumerable<Expense> fakeExpenses = GetMockExpenses();     expenseRepository.Setup(x => x.GetMany(It.         IsAny<Expression<Func<Expense, bool>>>())).         Returns(fakeExpenses);     ExpenseController controller = new ExpenseController(         commandBus.Object, categoryRepository.Object,         expenseRepository.Object);     controller.ControllerContext = new ControllerContext(         context.Object, new RouteData(), controller);     // Act     var result = controller.Index(null, null) as PartialViewResult;     // Assert     Assert.AreEqual("_ExpenseList", result.ViewName);     Assert.IsNotNull(result, "View Result is null");     Assert.IsInstanceOf(typeof(IEnumerable<Expense>),             result.ViewData.Model, "Wrong View Model");     var expenses = result.ViewData.Model as IEnumerable<Expense>;     Assert.AreEqual(3, expenses.Count(),         "Got wrong number of Categories");         }   In the above unit test, we are calling Index action method of a controller named ExpenseController, which will returns a PartialView named _ExpenseList, if it is an Ajax request. We have created mock object for HTTPContextBase and setup XMLHttpRequest request header for Request object’s X-Requested-With for making it as a Ajax request. We have specified the ControllerContext property of the controller with mocked object HTTPContextBase. Code Snippet controller.ControllerContext = new ControllerContext(         context.Object, new RouteData(), controller); Let me write a unit test for a normal HTTP method Code Snippet [Test] public void Index_NormalRequest_Returns_Index_With_Expense_List() {     // Arrange               Mock<HttpRequestBase> request = new Mock<HttpRequestBase>();     Mock<HttpResponseBase> response = new Mock<HttpResponseBase>();     Mock<HttpContextBase> context = new Mock<HttpContextBase>();       context.Setup(c => c.Request).Returns(request.Object);     context.Setup(c => c.Response).Returns(response.Object);       IEnumerable<Expense> fakeExpenses = GetMockExpenses();       expenseRepository.Setup(x => x.GetMany(It.         IsAny<Expression<Func<Expense, bool>>>())).         Returns(fakeExpenses);     ExpenseController controller = new ExpenseController(         commandBus.Object, categoryRepository.Object,         expenseRepository.Object);     controller.ControllerContext = new ControllerContext(         context.Object, new RouteData(), controller);     // Act     var result = controller.Index(null, null) as ViewResult;     // Assert     Assert.AreEqual("Index", result.ViewName);     Assert.IsNotNull(result, "View Result is null");     Assert.IsInstanceOf(typeof(IEnumerable<Expense>),             result.ViewData.Model, "Wrong View Model");     var expenses = result.ViewData.Model         as IEnumerable<Expense>;     Assert.AreEqual(3, expenses.Count(),         "Got wrong number of Categories"); }   In the above unit test, we are not specifying the XMLHttpRequest request header for Request object’s X-Requested-With, so that it will be normal HTTP Request. If this is a normal request, the action method will return a ViewResult with a view template named Index. The below is the implementation of Index action method Code Snippet public ActionResult Index(DateTime? startDate, DateTime? endDate) {     //If date is not passed, take current month's first and last date     DateTime dtNow;     dtNow = DateTime.Today;     if (!startDate.HasValue)     {         startDate = new DateTime(dtNow.Year, dtNow.Month, 1);         endDate = startDate.Value.AddMonths(1).AddDays(-1);     }     //take last date of start date's month, if end date is not passed     if (startDate.HasValue && !endDate.HasValue)     {         endDate = (new DateTime(startDate.Value.Year,             startDate.Value.Month, 1)).AddMonths(1).AddDays(-1);     }     var expenses = expenseRepository.GetMany(         exp => exp.Date >= startDate && exp.Date <= endDate);     //if request is Ajax will return partial view     if (Request.IsAjaxRequest())     {         return PartialView("_ExpenseList", expenses);     }     //set start date and end date to ViewBag dictionary     ViewBag.StartDate = startDate.Value.ToShortDateString();     ViewBag.EndDate = endDate.Value.ToShortDateString();     //if request is not ajax     return View("Index",expenses); }   The index action method will returns a PartialView named _ExpenseList, if it is an Ajax request and will returns a View named Index if it is a normal request. Source Code The source code has been taken from my EFMVC app which can download from here

    Read the article

  • Metro: Grouping Items in a ListView Control

    - by Stephen.Walther
    The purpose of this blog entry is to explain how you can group list items when displaying the items in a WinJS ListView control. In particular, you learn how to group a list of products by product category. Displaying a grouped list of items in a ListView control requires completing the following steps: Create a Grouped data source from a List data source Create a Grouped Header Template Declare the ListView control so it groups the list items Creating the Grouped Data Source Normally, you bind a ListView control to a WinJS.Binding.List object. If you want to render list items in groups, then you need to bind the ListView to a grouped data source instead. The following code – contained in a file named products.js — illustrates how you can create a standard WinJS.Binding.List object from a JavaScript array and then return a grouped data source from the WinJS.Binding.List object by calling its createGrouped() method: (function () { "use strict"; // Create List data source var products = new WinJS.Binding.List([ { name: "Milk", price: 2.44, category: "Beverages" }, { name: "Oranges", price: 1.99, category: "Fruit" }, { name: "Wine", price: 8.55, category: "Beverages" }, { name: "Apples", price: 2.44, category: "Fruit" }, { name: "Steak", price: 1.99, category: "Other" }, { name: "Eggs", price: 2.44, category: "Other" }, { name: "Mushrooms", price: 1.99, category: "Other" }, { name: "Yogurt", price: 2.44, category: "Other" }, { name: "Soup", price: 1.99, category: "Other" }, { name: "Cereal", price: 2.44, category: "Other" }, { name: "Pepsi", price: 1.99, category: "Beverages" } ]); // Create grouped data source var groupedProducts = products.createGrouped( function (dataItem) { return dataItem.category; }, function (dataItem) { return { title: dataItem.category }; }, function (group1, group2) { return group1.charCodeAt(0) - group2.charCodeAt(0); } ); // Expose the grouped data source WinJS.Namespace.define("ListViewDemos", { products: groupedProducts }); })(); Notice that the createGrouped() method requires three functions as arguments: groupKey – This function associates each list item with a group. The function accepts a data item and returns a key which represents a group. In the code above, we return the value of the category property for each product. groupData – This function returns the data item displayed by the group header template. For example, in the code above, the function returns a title for the group which is displayed in the group header template. groupSorter – This function determines the order in which the groups are displayed. The code above displays the groups in alphabetical order: Beverages, Fruit, Other. Creating the Group Header Template Whenever you create a ListView control, you need to create an item template which you use to control how each list item is rendered. When grouping items in a ListView control, you also need to create a group header template. The group header template is used to render the header for each group of list items. Here’s the markup for both the item template and the group header template: <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> You should declare the two templates in the same file as you declare the ListView control – for example, the default.html file. Declaring the ListView Control The final step is to declare the ListView control. Here’s the required markup: <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> In the markup above, six properties of the ListView control are set when the control is declared. First the itemDataSource and itemTemplate are specified. Nothing new here. Next, the group data source and group header template are specified. Notice that the group data source is represented by the ListViewDemos.products.groups.dataSource property of the grouped data source. Finally, notice that the layout of the ListView is changed to Grid Layout. You are required to use Grid Layout (instead of the default List Layout) when displaying grouped items in a ListView. Here’s the entire contents of the default.html page: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewDemos</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewDemos references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script src="/js/products.js" type="text/javascript"></script> <style type="text/css"> .product { width: 200px; height: 100px; border: white solid 1px; font-size: x-large; } </style> </head> <body> <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> </body> </html> Notice that the default.html page includes a reference to the products.js file: <script src=”/js/products.js” type=”text/javascript”></script> The default.html page also contains the declarations of the item template, group header template, and ListView control. Summary The goal of this blog entry was to explain how you can group items in a ListView control. You learned how to create a grouped data source, a group header template, and declare a ListView so that it groups its list items.

    Read the article

  • How to solve exception_priv _instruction exception while running destop project? [on hold]

    - by Haritha
    While running desktop project im getting exception_priv _instruction how to solve this??? while running this page is coming # # A fatal error has been detected by the Java Runtime Environment: # # EXCEPTION_PRIV_INSTRUCTION (0xc0000096) at pc=0x02f5a92b, pid=3012, tid=3104 # # JRE version: 7.0-b147 # Java VM: Java HotSpot(TM) Client VM (21.0-b17 mixed mode, sharing windows-x86 ) # Problematic frame: # C 0x02f5a92b # # Failed to write core dump. Minidumps are not enabled by default on client versions of Windows # # If you would like to submit a bug report, please visit: # http://bugreport.sun.com/bugreport/crash.jsp # The crash happened outside the Java Virtual Machine in native code. # See problematic frame for where to report the bug. # --------------- T H R E A D --------------- Current thread (0x02f5a800): JavaThread "LWJGL Application" [_thread_in_native, id=3104, stack(0x076f0000,0x07740000)] siginfo: ExceptionCode=0xc0000096 Registers: EAX=0x000df4f0, EBX=0x32afc180, ECX=0x000df4f0, EDX=0x00000020 ESP=0x0773f768, EBP=0x0773f790, ESI=0x32afc180, EDI=0x02f5a800 EIP=0x02f5a92b, EFLAGS=0x00010206 Top of Stack: (sp=0x0773f768) 0x0773f768: 02bd429c 02bd429c 0773f770 32afc180 0x0773f778: 0773f7b8 32b022c8 00000000 32afc180 0x0773f788: 00000000 0773f7a0 0773f7dc 00943187 0x0773f798: 229ec1c0 00948839 69081736 00000000 0x0773f7a8: 089b0048 00000000 00000014 00001406 0x0773f7b8: 00000002 0773f7bc 32afbeb0 0773f7f8 0x0773f7c8: 32b022c8 00000000 32afbf00 0773f7a0 0x0773f7d8: 0773f7f0 0773f81c 00943187 69081736 Instructions: (pc=0x02f5a92b) 0x02f5a90b: 00 43 00 00 00 00 f0 bc 02 e8 00 e9 22 40 f7 73 0x02f5a91b: 07 85 a5 94 00 90 f7 73 07 50 cc a0 6d d8 49 c0 0x02f5a92b: 6d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x02f5a93b: 00 00 00 00 00 00 00 00 00 08 80 3d 37 00 00 00 Register to memory mapping: EAX=0x000df4f0 is an unknown value EBX=0x32afc180 is an oop {method} - klass: {other class} ECX=0x000df4f0 is an unknown value EDX=0x00000020 is an unknown value ESP=0x0773f768 is pointing into the stack for thread: 0x02f5a800 EBP=0x0773f790 is pointing into the stack for thread: 0x02f5a800 ESI=0x32afc180 is an oop {method} - klass: {other class} EDI=0x02f5a800 is a thread Stack: [0x076f0000,0x07740000], sp=0x0773f768, free space=317k Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code) C 0x02f5a92b j org.lwjgl.opengl.GL11.glVertexPointer(IILjava/nio/FloatBuffer;)V+48 j com.badlogic.gdx.backends.lwjgl.LwjglGL10.glVertexPointer(IIILjava/nio/Buffer;)V+53 j com.badlogic.gdx.graphics.glutils.VertexArray.bind()V+149 j com.badlogic.gdx.graphics.Mesh.bind()V+25 j com.badlogic.gdx.graphics.Mesh.render(IIIZ)V+32 j com.badlogic.gdx.graphics.Mesh.render(III)V+8 j com.badlogic.gdx.graphics.g2d.SpriteBatch.flush()V+197 j com.badlogic.gdx.graphics.g2d.SpriteBatch.switchTexture(Lcom/badlogic/gdx/graphics/Texture;)V+1 j com.badlogic.gdx.graphics.g2d.SpriteBatch.draw(Lcom/badlogic/gdx/graphics/Texture;FFFF)V+33 j sevenseas.game.WorldRenderer.drawBob()V+54 j sevenseas.game.WorldRenderer.render()V+12 j sevenseas.game.GameClass.render(F)V+38 j com.badlogic.gdx.Game.render()V+19 j com.badlogic.gdx.backends.lwjgl.LwjglApplication.mainLoop()V+642 j com.badlogic.gdx.backends.lwjgl.LwjglApplication$1.run()V+27 v ~StubRoutines::call_stub V [jvm.dll+0x122c7e] V [jvm.dll+0x1c9c0e] V [jvm.dll+0x122e73] V [jvm.dll+0x122ed7] V [jvm.dll+0xccd1f] V [jvm.dll+0x14433f] V [jvm.dll+0x171549] C [msvcr100.dll+0x5c6de] endthreadex+0x3a C [msvcr100.dll+0x5c788] endthreadex+0xe4 C [kernel32.dll+0xb713] GetModuleFileNameA+0x1b4 Java frames: (J=compiled Java code, j=interpreted, Vv=VM code) j org.lwjgl.opengl.GL11.nglVertexPointer(IIIJJ)V+0 j org.lwjgl.opengl.GL11.glVertexPointer(IILjava/nio/FloatBuffer;)V+48 j com.badlogic.gdx.backends.lwjgl.LwjglGL10.glVertexPointer(IIILjava/nio/Buffer;)V+53 j com.badlogic.gdx.graphics.glutils.VertexArray.bind()V+149 j com.badlogic.gdx.graphics.Mesh.bind()V+25 j com.badlogic.gdx.graphics.Mesh.render(IIIZ)V+32 j com.badlogic.gdx.graphics.Mesh.render(III)V+8 j com.badlogic.gdx.graphics.g2d.SpriteBatch.flush()V+197 j com.badlogic.gdx.graphics.g2d.SpriteBatch.switchTexture(Lcom/badlogic/gdx/graphics/Texture;)V+1 j com.badlogic.gdx.graphics.g2d.SpriteBatch.draw(Lcom/badlogic/gdx/graphics/Texture;FFFF)V+33 j sevenseas.game.WorldRenderer.drawBob()V+54 j sevenseas.game.WorldRenderer.render()V+12 j sevenseas.game.GameClass.render(F)V+38 j com.badlogic.gdx.Game.render()V+19 j com.badlogic.gdx.backends.lwjgl.LwjglApplication.mainLoop()V+642 j com.badlogic.gdx.backends.lwjgl.LwjglApplication$1.run()V+27 v ~StubRoutines::call_stub --------------- P R O C E S S --------------- Java Threads: ( => current thread ) 0x003d6c00 JavaThread "DestroyJavaVM" [_thread_blocked, id=3240, stack(0x008c0000,0x00910000)] =>0x02f5a800 JavaThread "LWJGL Application" [_thread_in_native, id=3104, stack(0x076f0000,0x07740000)] 0x02bcf000 JavaThread "Service Thread" daemon [_thread_blocked, id=2612, stack(0x02e00000,0x02e50000)] 0x02bc1000 JavaThread "C1 CompilerThread0" daemon [_thread_blocked, id=2776, stack(0x02db0000,0x02e00000)] 0x02bbf400 JavaThread "Attach Listener" daemon [_thread_blocked, id=2448, stack(0x02d60000,0x02db0000)] 0x02bbe000 JavaThread "Signal Dispatcher" daemon [_thread_blocked, id=1764, stack(0x02d10000,0x02d60000)] 0x02bb8000 JavaThread "Finalizer" daemon [_thread_blocked, id=3864, stack(0x02cc0000,0x02d10000)] 0x02bb3400 JavaThread "Reference Handler" daemon [_thread_blocked, id=2424, stack(0x02c70000,0x02cc0000)] Other Threads: 0x02bb1800 VMThread [stack: 0x02c20000,0x02c70000] [id=3076] 0x02bd1000 WatcherThread [stack: 0x02e50000,0x02ea0000] [id=3276] VM state:not at safepoint (normal execution) VM Mutex/Monitor currently owned by a thread: None Heap def new generation total 4928K, used 2571K [0x229c0000, 0x22f10000, 0x27f10000) eden space 4416K, 46% used [0x229c0000, 0x22bc2e38, 0x22e10000) from space 512K, 100% used [0x22e90000, 0x22f10000, 0x22f10000) to space 512K, 0% used [0x22e10000, 0x22e10000, 0x22e90000) tenured generation total 10944K, used 634K [0x27f10000, 0x289c0000, 0x329c0000) the space 10944K, 5% used [0x27f10000, 0x27faea60, 0x27faec00, 0x289c0000) compacting perm gen total 12288K, used 1655K [0x329c0000, 0x335c0000, 0x369c0000) the space 12288K, 13% used [0x329c0000, 0x32b5dc58, 0x32b5de00, 0x335c0000) ro space 10240K, 42% used [0x369c0000, 0x36dfc660, 0x36dfc800, 0x373c0000) rw space 12288K, 53% used [0x373c0000, 0x37a38180, 0x37a38200, 0x37fc0000) Code Cache [0x00940000, 0x009d8000, 0x02940000) total_blobs=305 nmethods=80 adapters=158 free_code_cache=32183Kb largest_free_block=32955904 Dynamic libraries: 0x00400000 - 0x0042f000 C:\Program Files\Java\jre7\bin\javaw.exe 0x7c900000 - 0x7c9af000 C:\WINDOWS\system32\ntdll.dll 0x7c800000 - 0x7c8f6000 C:\WINDOWS\system32\kernel32.dll 0x77dd0000 - 0x77e6b000 C:\WINDOWS\system32\ADVAPI32.dll 0x77e70000 - 0x77f02000 C:\WINDOWS\system32\RPCRT4.dll 0x77fe0000 - 0x77ff1000 C:\WINDOWS\system32\Secur32.dll 0x7e410000 - 0x7e4a1000 C:\WINDOWS\system32\USER32.dll 0x77f10000 - 0x77f59000 C:\WINDOWS\system32\GDI32.dll 0x773d0000 - 0x774d3000 C:\WINDOWS\WinSxS\x86_Microsoft.Windows.Common-Controls_6595b64144ccf1df_6.0.2600.5512_x-ww_35d4ce83\COMCTL32.dll 0x77c10000 - 0x77c68000 C:\WINDOWS\system32\msvcrt.dll 0x77f60000 - 0x77fd6000 C:\WINDOWS\system32\SHLWAPI.dll 0x76390000 - 0x763ad000 C:\WINDOWS\system32\IMM32.DLL 0x629c0000 - 0x629c9000 C:\WINDOWS\system32\LPK.DLL 0x74d90000 - 0x74dfb000 C:\WINDOWS\system32\USP10.dll 0x78aa0000 - 0x78b5e000 C:\Program Files\Java\jre7\bin\msvcr100.dll 0x6d940000 - 0x6dc61000 C:\Program Files\Java\jre7\bin\client\jvm.dll 0x71ad0000 - 0x71ad9000 C:\WINDOWS\system32\WSOCK32.dll 0x71ab0000 - 0x71ac7000 C:\WINDOWS\system32\WS2_32.dll 0x71aa0000 - 0x71aa8000 C:\WINDOWS\system32\WS2HELP.dll 0x76b40000 - 0x76b6d000 C:\WINDOWS\system32\WINMM.dll 0x76bf0000 - 0x76bfb000 C:\WINDOWS\system32\PSAPI.DLL 0x6d8d0000 - 0x6d8dc000 C:\Program Files\Java\jre7\bin\verify.dll 0x6d370000 - 0x6d390000 C:\Program Files\Java\jre7\bin\java.dll 0x6d920000 - 0x6d933000 C:\Program Files\Java\jre7\bin\zip.dll 0x6cec0000 - 0x6cf42000 C:\Documents and Settings\7stl0225\Local Settings\Temp\libgdx7stl0225\37fe1abc\gdx.dll 0x10000000 - 0x1004c000 C:\Documents and Settings\7stl0225\Local Settings\Temp\libgdx7stl0225\52d76f2b\lwjgl.dll 0x5ed00000 - 0x5edcc000 C:\WINDOWS\system32\OPENGL32.dll 0x68b20000 - 0x68b40000 C:\WINDOWS\system32\GLU32.dll 0x73760000 - 0x737ab000 C:\WINDOWS\system32\DDRAW.dll 0x73bc0000 - 0x73bc6000 C:\WINDOWS\system32\DCIMAN32.dll 0x77c00000 - 0x77c08000 C:\WINDOWS\system32\VERSION.dll 0x070b0000 - 0x07115000 C:\DOCUME~1\7stl0225\LOCALS~1\Temp\libgdx7stl0225\52d76f2b\OpenAL32.dll 0x7c9c0000 - 0x7d1d7000 C:\WINDOWS\system32\SHELL32.dll 0x774e0000 - 0x7761d000 C:\WINDOWS\system32\ole32.dll 0x5ad70000 - 0x5ada8000 C:\WINDOWS\system32\uxtheme.dll 0x76fd0000 - 0x7704f000 C:\WINDOWS\system32\CLBCATQ.DLL 0x77050000 - 0x77115000 C:\WINDOWS\system32\COMRes.dll 0x77120000 - 0x771ab000 C:\WINDOWS\system32\OLEAUT32.dll 0x73f10000 - 0x73f6c000 C:\WINDOWS\system32\dsound.dll 0x76c30000 - 0x76c5e000 C:\WINDOWS\system32\WINTRUST.dll 0x77a80000 - 0x77b15000 C:\WINDOWS\system32\CRYPT32.dll 0x77b20000 - 0x77b32000 C:\WINDOWS\system32\MSASN1.dll 0x76c90000 - 0x76cb8000 C:\WINDOWS\system32\IMAGEHLP.dll 0x72d20000 - 0x72d29000 C:\WINDOWS\system32\wdmaud.drv 0x72d10000 - 0x72d18000 C:\WINDOWS\system32\msacm32.drv 0x77be0000 - 0x77bf5000 C:\WINDOWS\system32\MSACM32.dll 0x77bd0000 - 0x77bd7000 C:\WINDOWS\system32\midimap.dll 0x73ee0000 - 0x73ee4000 C:\WINDOWS\system32\KsUser.dll 0x755c0000 - 0x755ee000 C:\WINDOWS\system32\msctfime.ime 0x69000000 - 0x691a9000 C:\WINDOWS\system32\sisgl.dll 0x73b30000 - 0x73b45000 C:\WINDOWS\system32\mscms.dll 0x73000000 - 0x73026000 C:\WINDOWS\system32\WINSPOOL.DRV 0x66e90000 - 0x66ed1000 C:\WINDOWS\system32\icm32.dll 0x07760000 - 0x0778d000 C:\Program Files\WordWeb\WHook.dll 0x74c80000 - 0x74cac000 C:\WINDOWS\system32\OLEACC.dll 0x76080000 - 0x760e5000 C:\WINDOWS\system32\MSVCP60.dll VM Arguments: jvm_args: -Dfile.encoding=Cp1252 java_command: sevenseas.game.MainDesktop Launcher Type: SUN_STANDARD Environment Variables: PATH=C:/Program Files/Java/jre7/bin/client;C:/Program Files/Java/jre7/bin;C:/Program Files/Java/jre7/lib/i386;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\Program Files\Java\jdk1.7.0\bin;C:\eclipse; USERNAME=7stl0225 OS=Windows_NT PROCESSOR_IDENTIFIER=x86 Family 15 Model 4 Stepping 1, GenuineIntel --------------- S Y S T E M --------------- OS: Windows XP Build 2600 Service Pack 3 CPU:total 1 (1 cores per cpu, 1 threads per core) family 15 model 4 stepping 1, cmov, cx8, fxsr, mmx, sse, sse2, sse3 Memory: 4k page, physical 2031088k(939252k free), swap 3969920k(3011396k free) vm_info: Java HotSpot(TM) Client VM (21.0-b17) for windows-x86 JRE (1.7.0-b147), built on Jun 27 2011 02:25:52 by "java_re" with unknown MS VC++:1600 time: Sat Oct 26 12:35:14 2013 elapsed time: 0 seconds

    Read the article

  • CEN/CENELEC Lacks Perspective

    - by trond-arne.undheim
    Over the last few months, two of the European Standardization Organizations (ESOs), CEN and CENELEC have circulated an unfortunate position statement distorting the facts around fora and consortia. For the benefit of outsiders to this debate, let's just say that this debate regards whether and how the EU should recognize standards and specifications from certain fora and consortia based on a process evaluating the openness and transparency of such deliverables. The topic is complex, and somewhat confusing even to insiders, but nevertheless crucial to the European economy. As far as I can judge, their positions are not based on facts. This is unfortunate. For the benefit of clarity, here are some of the observations they make: a)"Most consortia are in essence driven by technology companies making hardware and software solutions, by definition very few of the largest ones are European-based". b) "Most consortia lack a European presence, relevant Committees, even those that are often cited as having stronger links with Europe, seem to lack an overall, inclusive set of participants". c) "Recognising specific consortia specifications will not resolve any concrete problems of interoperability for public authorities; interoperability depends on stringing together a range of specifications (from formal global bodies or consortia alike)". d) "Consortia already have the option to have their specifications adopted by the international formal standards bodies and many more exercise this than the two that seem to be campaigning for European recognition. Such specifications can then also be adopted as European standards." e) "Consortium specifications completely lack any process to take due and balanced account of requirements at national level - this is not important for technologies but can be a critical issue when discussing cross-border issues within the EU such as eGovernment, eHealth and so on". f) "The proposed recognition will not lead to standstill on national or European activities, nor to the adoption of the specifications as national standards in the CEN and CENELEC members (usually in their official national languages), nor to withdrawal of conflicting national standards. A big asset of the European standardization system is its coherence and lack of fragmentation." g) "We always miss concrete and specific examples of where consortia referencing are supposed to be helpful." First of all, note that ETSI, the third ESO, did not join the position. The reason is, of course, that ETSI beyond being an ESO, also has a global perspective and, moreover, does consider reality. Secondly, having produced arguments a) to g), CEN/CENELEC has the audacity to call a meeting on Friday 25 February entitled "ICT standardization - improving collaboration in Europe". This sounds very nice, but they have not set the stage for constructive debate. Rather, they demonstrate a striking lack of vision and lack of perspective. I will back this up by three facts, and leave it there. 1. Since the 1980s, global industry fora and consortia, such as IETF, W3C and OASIS have emerged as world-leading ICT standards development organizations with excellent procedures for openness and transparency in all phases of standards development, ex post and ex ante. - Practically no ICT system can be built without using fora and consortia standards (FCS). - Without using FCS, neither the Internet, upon which the EU economy depends, nor EU institutions would operate. - FCS are of high relevance for achieving and promoting interoperability and driving innovation. 2. FCS are complementary to the formally recognized standards organizations including the ESOs. - No work will be taken away from the ESOs should the EU recognize certain FCS. - Each FCS would be evaluated on its merit and on the openness of the process that produced it. ESOs would, with other stakeholders, have a say. - ESOs could potentially educate and assist European stakeholders to engage more actively and constructively with FCS. - ETSI, also an ESO, seems to clearly recognize these facts. 3. Europe and its Member States have a strong voice in several of the most relevant global industry fora and consortia. - W3C: W3C was founded in 1994 by an Englishman, Sir Tim Berners-Lee, in collaboration with CERN, the European research lab. In April 1995, INRIA (Institut National de Recherche en Informatique et Automatique) in France became the first European W3C host and in 2003, ERCIM (European Research Consortium in Informatics and Mathematics), also based in France, took over the role of European W3C host from INRIA. Today, W3C has 326 Members, 40% of which are European. Government participation is also strong, and it could be increased - a development that is very much desired by W3C. Current members of the W3C Advisory Board includes Ora Lassila (Nokia) and Charles McCathie Nevile (Opera). Nokia is Finnish company, Opera is a Norwegian company. SAP's Claus von Riegen is an alumni of the same Advisory Board. - OASIS: its membership - 30% of which is European - represents the marketplace, reflecting a balance of providers, user companies, government agencies, and non-profit organizations. In particular, about 15% of OASIS members are governments or universities. Frederick Hirsch from Nokia, Claus von Riegen from SAP AG and Charles-H. Schulz from Ars Aperta are on the Board of Directors. Nokia is a Finnish company, SAP is a German company and Ars Aperta is a French company. The Chairman of the Board is Peter Brown, who is an Independent Consultant, an Austrian citizen AND an official of the European Parliament currently on long-term leave. - IETF: The oversight of its activities is by the Internet Architecture Board (IAB), since 2007 chaired by Olaf Kolkman, a Dutch national who lives in Uithoorn, NL. Kolkman is director of NLnet Labs, a foundation chartered to develop open source software and open source standards for the Internet. Other IAB members include Marcelo Bagnulo whose affiliation is the University Carlos III of Madrid, Spain as well as Hannes Tschofenig from Nokia Siemens Networks. Nokia is a Finnish company. Siemens is a German company. Nokia Siemens is a European joint venture. - Member States: At least 17 European Member States have developed Interoperability Frameworks that include FCS, according to the EU-funded National Interoperability Framework Observatory (see list and NIFO web site on IDABC). This also means they actively procure solutions using FCS, reference FCS in their policies and even in laws. Member State reps are free to engage in FCS, and many do. It would be nice if the EU adjusted to this reality. - A huge number of European nationals work in the global IT industry, on European soil or elsewhere, whether in EU registered companies or not. CEN/CENELEC lacks perspective and has engaged in an effort to twist facts that is quite striking from a publicly funded organization. I wish them all possible success with Friday's meeting but I fear all of the most important stakeholders will not be at the table. Not because they do not wish to collaborate, but because they just have been insulted. If they do show up, it would be a gracious move, almost beyond comprehension. While I do not expect CEN/CENELEC to line up perfectly in favor of fora and consortia, I think it would be to their benefit to stick to more palatable observations. Actually, I would suggest an apology, straightening out the facts. This works among friends and it works in an organizational context. Then, we can all move on. Standardization is important. Too important to ignore. Too important to distort. The European economy depends on it. We need CEN/CENELEC. It is an important organization. But CEN/CENELEC needs fora and consortia, too.

    Read the article

  • Metro: Grouping Items in a ListView Control

    - by Stephen.Walther
    The purpose of this blog entry is to explain how you can group list items when displaying the items in a WinJS ListView control. In particular, you learn how to group a list of products by product category. Displaying a grouped list of items in a ListView control requires completing the following steps: Create a Grouped data source from a List data source Create a Grouped Header Template Declare the ListView control so it groups the list items Creating the Grouped Data Source Normally, you bind a ListView control to a WinJS.Binding.List object. If you want to render list items in groups, then you need to bind the ListView to a grouped data source instead. The following code – contained in a file named products.js — illustrates how you can create a standard WinJS.Binding.List object from a JavaScript array and then return a grouped data source from the WinJS.Binding.List object by calling its createGrouped() method: (function () { "use strict"; // Create List data source var products = new WinJS.Binding.List([ { name: "Milk", price: 2.44, category: "Beverages" }, { name: "Oranges", price: 1.99, category: "Fruit" }, { name: "Wine", price: 8.55, category: "Beverages" }, { name: "Apples", price: 2.44, category: "Fruit" }, { name: "Steak", price: 1.99, category: "Other" }, { name: "Eggs", price: 2.44, category: "Other" }, { name: "Mushrooms", price: 1.99, category: "Other" }, { name: "Yogurt", price: 2.44, category: "Other" }, { name: "Soup", price: 1.99, category: "Other" }, { name: "Cereal", price: 2.44, category: "Other" }, { name: "Pepsi", price: 1.99, category: "Beverages" } ]); // Create grouped data source var groupedProducts = products.createGrouped( function (dataItem) { return dataItem.category; }, function (dataItem) { return { title: dataItem.category }; }, function (group1, group2) { return group1.charCodeAt(0) - group2.charCodeAt(0); } ); // Expose the grouped data source WinJS.Namespace.define("ListViewDemos", { products: groupedProducts }); })(); Notice that the createGrouped() method requires three functions as arguments: groupKey – This function associates each list item with a group. The function accepts a data item and returns a key which represents a group. In the code above, we return the value of the category property for each product. groupData – This function returns the data item displayed by the group header template. For example, in the code above, the function returns a title for the group which is displayed in the group header template. groupSorter – This function determines the order in which the groups are displayed. The code above displays the groups in alphabetical order: Beverages, Fruit, Other. Creating the Group Header Template Whenever you create a ListView control, you need to create an item template which you use to control how each list item is rendered. When grouping items in a ListView control, you also need to create a group header template. The group header template is used to render the header for each group of list items. Here’s the markup for both the item template and the group header template: <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> You should declare the two templates in the same file as you declare the ListView control – for example, the default.html file. Declaring the ListView Control The final step is to declare the ListView control. Here’s the required markup: <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> In the markup above, six properties of the ListView control are set when the control is declared. First the itemDataSource and itemTemplate are specified. Nothing new here. Next, the group data source and group header template are specified. Notice that the group data source is represented by the ListViewDemos.products.groups.dataSource property of the grouped data source. Finally, notice that the layout of the ListView is changed to Grid Layout. You are required to use Grid Layout (instead of the default List Layout) when displaying grouped items in a ListView. Here’s the entire contents of the default.html page: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewDemos</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewDemos references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script src="/js/products.js" type="text/javascript"></script> <style type="text/css"> .product { width: 200px; height: 100px; border: white solid 1px; font-size: x-large; } </style> </head> <body> <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> </body> </html> Notice that the default.html page includes a reference to the products.js file: <script src=”/js/products.js” type=”text/javascript”></script> The default.html page also contains the declarations of the item template, group header template, and ListView control. Summary The goal of this blog entry was to explain how you can group items in a ListView control. You learned how to create a grouped data source, a group header template, and declare a ListView so that it groups its list items.

    Read the article

  • Why Is Faulty Behaviour In The .NET Framework Not Fixed?

    - by Alois Kraus
    Here is the scenario: You have a Windows Form Application that calls a method via Invoke or BeginInvoke which throws exceptions. Now you want to find out where the error did occur and how the method has been called. Here is the output we do get when we call Begin/EndInvoke or simply Invoke The actual code that was executed was like this:         private void cInvoke_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.Invoke);         }            [MethodImpl(MethodImplOptions.NoInlining)]         void InvokingFunction(CallMode mode)         {             switch (mode)             {                 case CallMode.Invoke:                     this.Invoke(new MethodInvoker(GenerateError));   The faulting method is called GenerateError which does throw a NotImplementedException exception and wraps it in a NotSupportedException.           [MethodImpl(MethodImplOptions.NoInlining)]         void GenerateError()         {             F1();         }           private void F1()         {             try             {                 F2();             }             catch (Exception ex)             {                 throw new NotSupportedException("Outer Exception", ex);             }         }           private void F2()         {            throw new NotImplementedException("Inner Exception");         } It is clear that the method F2 and F1 did actually throw these exceptions but we do not see them in the call stack. If we directly call the InvokingFunction and catch and print the exception we can find out very easily how we did get into this situation. We see methods F1,F2,GenerateError and InvokingFunction directly in the stack trace and we see that actually two exceptions did occur. Here is for comparison what we get from Invoke/EndInvoke System.NotImplementedException: Inner Exception     StackTrace:    at System.Windows.Forms.Control.MarshaledInvoke(Control caller, Delegate method, Object[] args, Boolean synchronous)     at System.Windows.Forms.Control.Invoke(Delegate method, Object[] args)     at WindowsFormsApplication1.AppForm.InvokingFunction(CallMode mode)     at WindowsFormsApplication1.AppForm.cInvoke_Click(Object sender, EventArgs e)     at System.Windows.Forms.Control.OnClick(EventArgs e)     at System.Windows.Forms.Button.OnClick(EventArgs e) The exception message is kept but the stack starts running from our Invoke call and not from the faulting method F2. We have therefore no clue where this exception did occur! The stack starts running at the method MarshaledInvoke because the exception is rethrown with the throw catchedException which resets the stack trace. That is bad but things are even worse because if previously lets say 5 exceptions did occur .NET will return only the first (innermost) exception. That does mean that we do not only loose the original call stack but all other exceptions and all data contained therein as well. It is a pity that MS does know about this and simply closes this issue as not important. Programmers will play a lot more around with threads than before thanks to TPL, PLINQ that do come with .NET 4. Multithreading is hyped quit a lot in the press and everybody wants to use threads. But if the .NET Framework makes it nearly impossible to track down the easiest UI multithreading issue I have a problem with that. The problem has been reported but obviously not been solved. .NET 4 Beta 2 did not have changed that dreaded GetBaseException call in MarshaledInvoke to return only the innermost exception of the complete exception stack. It is really time to fix this. WPF on the other hand does the right thing and wraps the exceptions inside a TargetInvocationException which makes much more sense. But Not everybody uses WPF for its daily work and Windows forms applications will still be used for a long time. Below is the code to repro the issues shown and how the exceptions can be rendered in a meaningful way. The default Exception.ToString implementation generates a hard to interpret stack if several nested exceptions did occur. using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; using System.Threading; using System.Globalization; using System.Runtime.CompilerServices;   namespace WindowsFormsApplication1 {     public partial class AppForm : Form     {         enum CallMode         {             Direct = 0,             BeginInvoke = 1,             Invoke = 2         };           public AppForm()         {             InitializeComponent();             Thread.CurrentThread.CurrentUICulture = CultureInfo.InvariantCulture;             Application.ThreadException += new System.Threading.ThreadExceptionEventHandler(Application_ThreadException);         }           void Application_ThreadException(object sender, System.Threading.ThreadExceptionEventArgs e)         {             cOutput.Text = PrintException(e.Exception, 0, null).ToString();         }           private void cDirectUnhandled_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.Direct);         }           private void cDirectCall_Click(object sender, EventArgs e)         {             try             {                 InvokingFunction(CallMode.Direct);             }             catch (Exception ex)             {                 cOutput.Text = PrintException(ex, 0, null).ToString();             }         }           private void cInvoke_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.Invoke);         }           private void cBeginInvokeCall_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.BeginInvoke);         }           [MethodImpl(MethodImplOptions.NoInlining)]         void InvokingFunction(CallMode mode)         {             switch (mode)             {                 case CallMode.Direct:                     GenerateError();                     break;                 case CallMode.Invoke:                     this.Invoke(new MethodInvoker(GenerateError));                     break;                 case CallMode.BeginInvoke:                     IAsyncResult res = this.BeginInvoke(new MethodInvoker(GenerateError));                     this.EndInvoke(res);                     break;             }         }           [MethodImpl(MethodImplOptions.NoInlining)]         void GenerateError()         {             F1();         }           private void F1()         {             try             {                 F2();             }             catch (Exception ex)             {                 throw new NotSupportedException("Outer Exception", ex);             }         }           private void F2()         {            throw new NotImplementedException("Inner Exception");         }           StringBuilder PrintException(Exception ex, int identLevel, StringBuilder sb)         {             StringBuilder builtStr = sb;             if( builtStr == null )                 builtStr = new StringBuilder();               if( ex == null )                 return builtStr;                 WriteLine(builtStr, String.Format("{0}: {1}", ex.GetType().FullName, ex.Message), identLevel);             WriteLine(builtStr, String.Format("StackTrace: {0}", ShortenStack(ex.StackTrace)), identLevel + 1);             builtStr.AppendLine();               return PrintException(ex.InnerException, ++identLevel, builtStr);         }               void WriteLine(StringBuilder sb, string msg, int identLevel)         {             foreach (string trimmedLine in SplitToLines(msg)                                            .Select( (line) => line.Trim()) )             {                 for (int i = 0; i < identLevel; i++)                     sb.Append('\t');                 sb.Append(trimmedLine);                 sb.AppendLine();             }         }           string ShortenStack(string stack)         {             int nonAppFrames = 0;             // Skip stack frames not part of our app but include two foreign frames and skip the rest             // If our stack frame is encountered reset counter to 0             return SplitToLines(stack)                               .Where((line) =>                               {                                   nonAppFrames = line.Contains("WindowsFormsApplication1") ? 0 : nonAppFrames + 1;                                   return nonAppFrames < 3;                               })                              .Select((line) => line)                              .Aggregate("", (current, line) => current + line + Environment.NewLine);         }           static char[] NewLines = Environment.NewLine.ToCharArray();         string[] SplitToLines(string str)         {             return str.Split(NewLines, StringSplitOptions.RemoveEmptyEntries);         }     } }

    Read the article

  • Package management fails in update-manager with gzip problems and compilation errors. U12.04LTS

    - by HarveyP
    Similar to but not the same as Package management system corrupted. Cannot install or remove packages. U12.04LTS (an earlier problem) with package management system. Followed all of L. D. James suggestions in his answer to no avail. This time as well as the gzip error I am also getting compilation errors. The difference may be due to a lack of compilation in my earlier problem so it may be the same error. The packages concerned are enumerated in the output from update-manager below. Also included below that is the output from apt-get -f install apt-get autoremove gives same output. Tried update without SSL updates - 9 to install and got "Unhandled Error in aptdaemon". Output number 3 below. One at a time - output 4 - is for firefox, first in the list of packages. Falls over at libssl1.0.0 despite deselection of it from update ... Tried apt-get install --reinstall dpkg which succeeded, apt-get install --reinstall tar and apt-get install --reinstall gzip both of which failed at libssl1.0.0 as ever. (as suggested by Subv3rsion elsewhere in this forum) Now cannot apt-get update with complete success even after changing server and apt-get clean - output number 5 below ... 1). Output from update-manager The following packages will be upgraded:<> firefox firefox-globalmenu firefox-locale-en libavcodec-extra-53 libavformat53 libavutil-extra-51 libjson0 libpostproc52 libssl1.0.0 libswscale2 openssl 11 to upgrade, 0 to newly install, 0 to remove and 0 not to upgrade.<br> Need to get 0 B/46.5 MB of archives. After this operation, 1,416 kB of additional disk space will be used.<br> Do you want to continue [Y/n]? y debconf: Perl may be unconfigured (Bareword "gensym" not allowed while "strict subs" in use at /usr/lib/perl/5.14/IO/Handle.pm line 67. BEGIN not safe after errors--compilation aborted at /usr/lib/perl/5.14/IO/Handle.pm line 366. Compilation failed in require at /usr/lib/perl/5.14/IO/Seekable.pm line 9. BEGIN failed--compilation aborted at /usr/lib/perl/5.14/IO/Seekable.pm line 9. Compilation failed in require at /usr/lib/perl/5.14/IO/File.pm line 11. BEGIN failed--compilation aborted at /usr/lib/perl/5.14/IO/File.pm line 11. Compilation failed in require at /usr/share/perl/5.14/FileHandle.pm line 9. Compilation failed in require at (eval 1) line 3. BEGIN failed--compilation aborted at (eval 1) line 3. ) -- aborting (Reading database ... 160575 files and directories currently installed.) Preparing to replace libssl1.0.0 1.0.1-4ubuntu5.14 (using .../libssl1.0.0_1.0.1-4ubuntu5.15_i386.deb) ... Unpacking replacement libssl1.0.0 ... dpkg-deb (subprocess): data: internal gzip read error: '<fd:4>: data error' dpkg-deb: error: subprocess <decompress> returned error exit status 2 dpkg: error processing /var/cache/apt/archives/libssl1.0.0_1.0.1-4ubuntu5.15_i386.deb (--unpack):<br> subprocess dpkg-deb --fsys-tarfile returned error exit status 2 No apport report written because MaxReports has already been reached Bareword "gensym" not allowed while "strict subs" in use at /usr/lib/perl/5.14/IO/Handle.pm line 67. BEGIN not safe after errors--compilation aborted at /usr/lib/perl/5.14/IO/Handle.pm line 366. Compilation failed in require at /usr/lib/perl/5.14/IO/Seekable.pm line 9. BEGIN failed--compilation aborted at /usr/lib/perl/5.14/IO/Seekable.pm line 9. Compilation failed in require at /usr/lib/perl/5.14/IO/File.pm line 11. BEGIN failed--compilation aborted at /usr/lib/perl/5.14/IO/File.pm line 11. Compilation failed in require at /usr/share/perl/5.14/FileHandle.pm line 9. Compilation failed in require at /usr/share/perl5/Debconf/Template.pm line 8. BEGIN failed--compilation aborted at /usr/share/perl5/Debconf/Template.pm line 8. Compilation failed in require at /usr/share/perl5/Debconf/Question.pm line 8. BEGIN failed--compilation aborted at /usr/share/perl5/Debconf/Question.pm line 8. Compilation failed in require at /usr/share/perl5/Debconf/Config.pm line 7. BEGIN failed--compilation aborted at /usr/share/perl5/Debconf/Config.pm line 7. Compilation failed in require at /usr/share/perl5/Debconf/Log.pm line 10. Compilation failed in require at /usr/share/perl5/Debconf/Db.pm line 7. BEGIN failed--compilation aborted at /usr/share/perl5/Debconf/Db.pm line 7. Compilation failed in require at /usr/share/debconf/frontend line 6. BEGIN failed--compilation aborted at /usr/share/debconf/frontend line 6. dpkg: error whale cleanang up: subprgcess installed post-installation script returned error exit status 2 Errors were encountered while processing: /var/cache/apt/archives/libssl1.0.0_1.0.1-4ubuntu5.15_i386.deb E: Sub-process /usr/bin/dpkg returned an error code (1) 2). Output from install -f harveyp@harveyp:~$ sudo apt-get -f install [sudo] password for harveyp: Reading package lists... Done Building dependency tree Reading state information... Done 0 to upgrade, 0 to newly install, 0 to remove and 11 not to upgrade. 1 not fully installed or removed.<br> After this operation, 0 B of additional disk space will be used. E: Internal Error, No file name for libssl1.0.0 3). Unhandled error from aptdaemon Traceback (most recent call last): File "/usr/lib/python2.7/dist-packages/aptdaemon/worker.py", line 1045, in _simulate trans.unauthenticated = self.__simulate(trans) File "/usr/lib/python2.7/dist-packages/aptdaemon/worker.py", line 1160, in __simulate unauthenticated = self._get_unauthenticated() File "/usr/lib/python2.7/dist-packages/aptdaemon/worker.py", line 347, in _get_unauthenticated for pkg in self._iterate_packages(): File "/usr/lib/python2.7/dist-packages/aptdaemon/worker.py", line 1356, in _iterate_packages for enum, pkg in enumerate(self._cache): File "/usr/lib/python2.7/dist-packages/apt/cache.py", line 216, in __iter__ yield self[pkgname] File "/usr/lib/python2.7/dist-packages/apt/cache.py", line 201, in __getitem__ pkg = self._weakref[key] = Package(self, self._cache[key]) KeyError: 'librqrcode-rubq-doc 4). output from update of firefox installArchives() failed: Error in function: < Setting up libssl1.0.0 (1.0.1-4ubuntu5.14) ... Bareword "gensym" not allowed while "strict subs" in use at /usr/lib/perl/5.14/IO/Handle.pm line 67. BEGIN not safe after errors--compilation aborted at /usr/lib/perl/5.14/IO/Handle.pm line 366. Compilation failed in require at /usr/lib/perl/5.14/IO/Seekable.pm line 9. BEGIN failed--compilation aborted at /usr/lib/perl/5.14/IO/Seekable.pm line 9. Compilation failed in require at /usr/lib/perl/5.14/IO/File.pm line 11. BEGIN failed--compilation aborted at /usr/lib/perl/5.14/IO/File.pm line 11. Compilation failed in require at /usr/share/perl/5.14/FileHandle.pm line 9. Compilation failed in require at /usr/share/perl5/Debconf/Template.pm line 8. BEGIN failed--compilation aborted at /usr/share/perl5/Debconf/Template.pm line 8. Compilation failed in require at /usr/share/perl5/Debconf/Question.pm line 8. BEGIN failed--compilation aborted at /usr/share/perl5/Debconf/Question.pm line 8. Compilation failed in require at /usr/share/perl5/Debconf/Config.pm line 7. BEGIN failed--compilation aborted at /usr/share/perl5/Debconf/Config.pm line 7. Compilation failed in require at /usr/share/perl5/Debconf/Log.pm line 10. 5. output from apt-get update ...snip ... Hit http://ubuntu-archive.mirrors.free.org precise-security/multiverse Translation-en Hit http://ubuntu-archive.mirrors.free.org precise-security/restricted Translation-en Hit http://ubuntu-archive.mirrors.free.org precise-security/universe Translation-en Fetched 368 kB in 6s (59.5 kB/s) W: Failed to fetch gzip:/var/lib/apt/lists/partial/ubuntu-archive.mirrors.free.org_ubuntu_dists_precise_universe_source_Sources Hash Sum mismatch E: Some index files failed to download. They have been ignored, or old ones used instead.

    Read the article

  • More Fun with C# Iterators and Generators

    - by James Michael Hare
    In my last post, I talked quite a bit about iterators and how they can be really powerful tools for filtering a list of items down to a subset of items.  This had both pros and cons over returning a full collection, which, in summary, were:   Pros: If traversal is only partial, does not have to visit rest of collection. If evaluation method is costly, only incurs that cost on elements visited. Adds little to no garbage collection pressure.    Cons: Very slight performance impact if you know caller will always consume all items in collection. And as we saw in the last post, that con for the cost was very, very small and only really became evident on very tight loops consuming very large lists completely.    One of the key items to note, though, is the garbage!  In the traditional (return a new collection) method, if you have a 1,000,000 element collection, and wish to transform or filter it in some way, you have to allocate space for that copy of the collection.  That is, say you have a collection of 1,000,000 items and you want to double every item in the collection.  Well, that means you have to allocate a collection to hold those 1,000,000 items to return, which is a lot especially if you are just going to use it once and toss it.   Iterators, though, don't have this problem.  Each time you visit the node, it would return the doubled value of the node (in this example) and not allocate a second collection of 1,000,000 doubled items.  Do you see the distinction?  In both cases, we're consuming 1,000,000 items.  But in one case we pass back each doubled item which is just an int (for example's sake) on the stack and in the other case, we allocate a list containing 1,000,000 items which then must be garbage collected.   So iterators in C# are pretty cool, eh?  Well, here's one more thing a C# iterator can do that a traditional "return a new collection" transformation can't!   It can return **unbounded** collections!   I know, I know, that smells a lot like an infinite loop, eh?  Yes and no.  Basically, you're relying on the caller to put the bounds on the list, and as long as the caller doesn't you keep going.  Consider this example:   public static class Fibonacci {     // returns the infinite fibonacci sequence     public static IEnumerable<int> Sequence()     {         int iteration = 0;         int first = 1;         int second = 1;         int current = 0;         while (true)         {             if (iteration++ < 2)             {                 current = 1;             }             else             {                 current = first + second;                 second = first;                 first = current;             }             yield return current;         }     } }   Whoa, you say!  Yes, that's an infinite loop!  What the heck is going on there?  Yes, that was intentional.  Would it be better to have a fibonacci sequence that returns only a specific number of items?  Perhaps, but that wouldn't give you the power to defer the execution to the caller.   The beauty of this function is it is as infinite as the sequence itself!  The fibonacci sequence is unbounded, and so is this method.  It will continue to return fibonacci numbers for as long as you ask for them.  Now that's not something you can do with a traditional method that would return a collection of ints representing each number.  In that case you would eventually run out of memory as you got to higher and higher numbers.  This method, though, never runs out of memory.   Now, that said, you do have to know when you use it that it is an infinite collection and bound it appropriately.  Fortunately, Linq provides a lot of these extension methods for you!   Let's say you only want the first 10 fibonacci numbers:       foreach(var fib in Fibonacci.Sequence().Take(10))     {         Console.WriteLine(fib);     }   Or let's say you only want the fibonacci numbers that are less than 100:       foreach(var fib in Fibonacci.Sequence().TakeWhile(f => f < 100))     {         Console.WriteLine(fib);     }   So, you see, one of the nice things about iterators is their power to work with virtually any size (even infinite) collections without adding the garbage collection overhead of making new collections.    You can also do fun things like this to make a more "fluent" interface for for loops:   // A set of integer generator extension methods public static class IntExtensions {     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> Every(this int start)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; ++i)         {             yield return i;         }     }     // Begins counting to infinity by the given step value, use To() to     public static IEnumerable<int> Every(this int start, int byEvery)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; i += byEvery)         {             yield return i;         }     }     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> To(this int start, int end)     {         for (var i = start; i <= end; ++i)         {             yield return i;         }     }     // Ranges the count by specifying the upper range of the count.     public static IEnumerable<int> To(this IEnumerable<int> collection, int end)     {         return collection.TakeWhile(item => item <= end);     } }   Note that there are two versions of each method.  One that starts with an int and one that starts with an IEnumerable<int>.  This is to allow more power in chaining from either an existing collection or from an int.  This lets you do things like:   // count from 1 to 30 foreach(var i in 1.To(30)) {     Console.WriteLine(i); }     // count from 1 to 10 by 2s foreach(var i in 0.Every(2).To(10)) {     Console.WriteLine(i); }     // or, if you want an infinite sequence counting by 5s until something inside breaks you out... foreach(var i in 0.Every(5)) {     if (someCondition)     {         break;     }     ... }     Yes, those are kinda play functions and not particularly useful, but they show some of the power of generators and extension methods to form a fluid interface.   So what do you think?  What are some of your favorite generators and iterators?

    Read the article

  • T4 Performance Counters explained

    - by user13346607
    Now that T4 is out for a few month some people might have wondered what details of the new pipeline you can monitor. A "cpustat -h" lists a lot of events that can be monitored, and only very few are self-explanatory. I will try to give some insight on all of them, some of these "PIC events" require an in-depth knowledge of T4 pipeline. Over time I will try to explain these, for the time being these events should simply be ignored. (Side note: some counters changed from tape-out 1.1 (*only* used in the T4 beta program) to tape-out 1.2 (used in the systems shipping today) The table only lists the tape-out 1.2 counters) 0 0 1 1058 6033 Oracle Microelectronics 50 14 7077 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;} pic name (cpustat) Prose Comment Sel-pipe-drain-cycles, Sel-0-[wait|ready], Sel-[1,2] Sel-0-wait counts cycles a strand waits to be selected. Some reasons can be counted in detail; these are: Sel-0-ready: Cycles a strand was ready but not selected, that can signal pipeline oversubscription Sel-1: Cycles only one instruction or µop was selected Sel-2: Cycles two instructions or µops were selected Sel-pipe-drain-cycles: cf. PRM footnote 8 to table 10.2 Pick-any, Pick-[0|1|2|3] Cycles one, two, three, no or at least one instruction or µop is picked Instr_FGU_crypto Number of FGU or crypto instructions executed on that vcpu Instr_ld dto. for load Instr_st dto. for store SPR_ring_ops dto. for SPR ring ops Instr_other dto. for all other instructions not listed above, PRM footnote 7 to table 10.2 lists the instructions Instr_all total number of instructions executed on that vcpu Sw_count_intr Nr of S/W count instructions on that vcpu (sethi %hi(fc000),%g0 (whatever that is))  Atomics nr of atomic ops, which are LDSTUB/a, CASA/XA, and SWAP/A SW_prefetch Nr of PREFETCH or PREFETCHA instructions Block_ld_st Block loads or store on that vcpu IC_miss_nospec, IC_miss_[L2_or_L3|local|remote]\ _hit_nospec Various I$ misses, distinguished by where they hit. All of these count per thread, but only primary events: T4 counts only the first occurence of an I$ miss on a core for a certain instruction. If one strand misses in I$ this miss is counted, but if a second strand on the same core misses while the first miss is being resolved, that second miss is not counted This flavour of I$ misses counts only misses that are caused by instruction that really commit (note the "_nospec") BTC_miss Branch target cache miss ITLB_miss ITLB misses (synchronously counted) ITLB_miss_asynch dto. but asynchronously [I|D]TLB_fill_\ [8KB|64KB|4MB|256MB|2GB|trap] H/W tablewalk events that fill ITLB or DTLB with translation for the corresponding page size. The “_trap” event occurs if the HWTW was not able to fill the corresponding TLB IC_mtag_miss, IC_mtag_miss_\ [ptag_hit|ptag_miss|\ ptag_hit_way_mismatch] I$ micro tag misses, with some options for drill down Fetch-0, Fetch-0-all fetch-0 counts nr of cycles nothing was fetched for this particular strand, fetch-0-all counts cycles nothing was fetched for all strands on a core Instr_buffer_full Cycles the instruction buffer for a strand was full, thereby preventing any fetch BTC_targ_incorrect Counts all occurences of wrongly predicted branch targets from the BTC [PQ|ROB|LB|ROB_LB|SB|\ ROB_SB|LB_SB|RB_LB_SB|\ DTLB_miss]\ _tag_wait ST_q_tag_wait is listed under sl=20. These counters monitor pipeline behaviour therefore they are not strand specific: PQ_...: cycles Rename stage waits for a Pick Queue tag (might signal memory bound workload for single thread mode, cf. Mail from Richard Smith) ROB_...: cycles Select stage waits for a ROB (ReOrderBuffer) tag LB_...: cycles Select stage waits for a Load Buffer tag SB_...: cycles Select stage waits for Store Buffer tag combinations of the above are allowed, although some of these events can overlap, the counter will only be incremented once per cycle if any of these occur DTLB_...: cycles load or store instructions wait at Pick stage for a DTLB miss tag [ID]TLB_HWTW_\ [L2_hit|L3_hit|L3_miss|all] Counters for HWTW accesses caused by either DTLB or ITLB misses. Canbe further detailed by where they hit IC_miss_L2_L3_hit, IC_miss_local_remote_remL3_hit, IC_miss I$ prefetches that were dropped because they either miss in L2$ or L3$ This variant counts misses regardless if the causing instruction commits or not DC_miss_nospec, DC_miss_[L2_L3|local|remote_L3]\ _hit_nospec D$ misses either in general or detailed by where they hit cf. the explanation for the IC_miss in two flavours for an explanation of _nospec and the reasoning for two DC_miss counters DTLB_miss_asynch counts all DTLB misses asynchronously, there is no way to count them synchronously DC_pref_drop_DC_hit, SW_pref_drop_[DC_hit|buffer_full] L1-D$ h/w prefetches that were dropped because of a D$ hit, counted per core. The others count software prefetches per strand [Full|Partial]_RAW_hit_st_[buf|q] Count events where a load wants to get data that has not yet been stored, i. e. it is still inside the pipeline. The data might be either still in the store buffer or in the store queue. If the load's data matches in the SB and in the store queue the data in buffer takes precedence of course since it is younger [IC|DC]_evict_invalid, [IC|DC|L1]_snoop_invalid, [IC|DC|L1]_invalid_all Counter for invalidated cache evictions per core St_q_tag_wait Number of cycles pipeline waits for a store queue tag, of course counted per core Data_pref_[drop_L2|drop_L3|\ hit_L2|hit_L3|\ hit_local|hit_remote] Data prefetches that can be further detailed by either why they were dropped or where they did hit St_hit_[L2|L3], St_L2_[local|remote]_C2C, St_local, St_remote Store events distinguished by where they hit or where they cause a L2 cache-to-cache transfer, i.e. either a transfer from another L2$ on the same die or from a different die DC_miss, DC_miss_\ [L2_L3|local|remote]_hit D$ misses either in general or detailed by where they hit cf. the explanation for the IC_miss in two flavours for an explanation of _nospec and the reasoning for two DC_miss counters L2_[clean|dirty]_evict Per core clean or dirty L2$ evictions L2_fill_buf_full, L2_wb_buf_full, L2_miss_buf_full Per core L2$ buffer events, all count number of cycles that this state was present L2_pipe_stall Per core cycles pipeline stalled because of L2$ Branches Count branches (Tcc, DONE, RETRY, and SIT are not counted as branches) Br_taken Counts taken branches (Tcc, DONE, RETRY, and SIT are not counted as branches) Br_mispred, Br_dir_mispred, Br_trg_mispred, Br_trg_mispred_\ [far_tbl|indir_tbl|ret_stk] Counter for various branch misprediction events.  Cycles_user counts cycles, attribute setting hpriv, nouser, sys controls addess space to count in Commit-[0|1|2], Commit-0-all, Commit-1-or-2 Number of times either no, one, or two µops commit for a strand. Commit-0-all counts number of times no µop commits for the whole core, cf. footnote 11 to table 10.2 in PRM for a more detailed explanation on how this counters interacts with the privilege levels

    Read the article

  • Using SSIS to send a HTML E-Mail Message with built-in table of Counts.

    - by Kevin Shyr
    For the record, this can be just as easily done with a .NET class with a DLL call.  The two major reasons for this ending up as a SSIS package are: There are a lot of SQL resources for maintenance, but not as many .NET developers. There is an existing automated process that links up SQL Jobs (more on that in the next post), and this is part of that process.   To start, this is what the SSIS looks like: The first part of the control flow is just for the override scenario.   In the Execute SQL Task, it calls a stored procedure, which already formats the result into XML by using "FOR XML PATH('Row'), ROOT(N'FieldingCounts')".  The result XML string looks like this: <FieldingCounts>   <Row>     <CellId>M COD</CellId>     <Mailed>64</Mailed>     <ReMailed>210</ReMailed>     <TotalMail>274</TotalMail>     <EMailed>233</EMailed>     <TotalSent>297</TotalSent>   </Row>   <Row>     <CellId>M National</CellId>     <Mailed>11</Mailed>     <ReMailed>59</ReMailed>     <TotalMail>70</TotalMail>     <EMailed>90</EMailed>     <TotalSent>101</TotalSent>   </Row>   <Row>     <CellId>U COD</CellId>     <Mailed>91</Mailed>     <ReMailed>238</ReMailed>     <TotalMail>329</TotalMail>     <EMailed>291</EMailed>     <TotalSent>382</TotalSent>   </Row>   <Row>     <CellId>U National</CellId>     <Mailed>63</Mailed>     <ReMailed>286</ReMailed>     <TotalMail>349</TotalMail>     <EMailed>374</EMailed>     <TotalSent>437</TotalSent>   </Row> </FieldingCounts>  This result is saved into an internal SSIS variable with the following settings on the General tab and the Result Set tab:   Now comes the trickier part.  We need to use the XML Task to format the XML string result into an HTML table, and I used Direct input XSLT And here is the code of XSLT: <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:output method="html" indent="yes"/>   <xsl:template match="/ROOT">         <table border="1" cellpadding="6">           <tr>             <td></td>             <td>Mailed</td>             <td>Re-mailed</td>             <td>Total Mail (Mailed, Re-mailed)</td>             <td>E-mailed</td>             <td>Total Sent (Mailed, E-mailed)</td>           </tr>           <xsl:for-each select="FieldingCounts/Row">             <tr>               <xsl:for-each select="./*">                 <td>                   <xsl:value-of select="." />                 </td>               </xsl:for-each>             </tr>           </xsl:for-each>         </table>   </xsl:template> </xsl:stylesheet>    Then a script task is used to send out an HTML email (as we are all painfully aware that SSIS Send Mail Task only sends plain text) Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 using System; using System.Data; using Microsoft.SqlServer.Dts.Runtime; using System.Windows.Forms; using System.Net.Mail; using System.Net;   namespace ST_b829a2615e714bcfb55db0ce97be3901.csproj {     [System.AddIn.AddIn("ScriptMain", Version = "1.0", Publisher = "", Description = "")]     public partial class ScriptMain : Microsoft.SqlServer.Dts.Tasks.ScriptTask.VSTARTScriptObjectModelBase     {           #region VSTA generated code         enum ScriptResults         {             Success = Microsoft.SqlServer.Dts.Runtime.DTSExecResult.Success,             Failure = Microsoft.SqlServer.Dts.Runtime.DTSExecResult.Failure         };         #endregion           public void Main()         {             String EmailMsgBody = String.Format("<HTML><BODY><P>{0}</P><P>{1}</P></BODY></HTML>"                                                 , Dts.Variables["Config_SMTP_MessageSourceText"].Value.ToString()                                                 , Dts.Variables["InternalStr_CountResultAfterXSLT"].Value.ToString());             MailMessage EmailCountMsg = new MailMessage(Dts.Variables["Config_SMTP_From"].Value.ToString().Replace(";", ",")                                                         , Dts.Variables["Config_SMTP_Success_To"].Value.ToString().Replace(";", ",")                                                         , Dts.Variables["Config_SMTP_SubjectLinePrefix"].Value.ToString() + " " + Dts.Variables["InternalStr_FieldingDate"].Value.ToString()                                                         , EmailMsgBody);             //EmailCountMsg.From.             EmailCountMsg.CC.Add(Dts.Variables["Config_SMTP_Success_CC"].Value.ToString().Replace(";", ","));             EmailCountMsg.IsBodyHtml = true;               SmtpClient SMTPForCount = new SmtpClient(Dts.Variables["Config_SMTP_ServerAddress"].Value.ToString());             SMTPForCount.Credentials = CredentialCache.DefaultNetworkCredentials;               SMTPForCount.Send(EmailCountMsg);               Dts.TaskResult = (int)ScriptResults.Success;         }     } } Note on this code: notice the email list has Replace(";", ",").  This is only here because the list is configurable in the SQL Job Step at Set Values, which does not react well with colons as email separator, but system.Net.Mail only handles comma as email separator, hence the extra replace in the string. The result is a nicely formatted email message with count information:

    Read the article

  • MVC Portable Area Modules *Without* MasterPages

    - by Steve Michelotti
    Portable Areas from MvcContrib provide a great way to build modular and composite applications on top of MVC. In short, portable areas provide a way to distribute MVC binary components as simple .NET assemblies where the aspx/ascx files are actually compiled into the assembly as embedded resources. I’ve blogged about Portable Areas in the past including this post here which talks about embedding resources and you can read more of an intro to Portable Areas here. As great as Portable Areas are, the question that seems to come up the most is: what about MasterPages? MasterPages seems to be the one thing that doesn’t work elegantly with portable areas because you specify the MasterPage in the @Page directive and it won’t use the same mechanism of the view engine so you can’t just embed them as resources. This means that you end up referencing a MasterPage that exists in the host application but not in your portable area. If you name the ContentPlaceHolderId’s correctly, it will work – but it all seems a little fragile. Ultimately, what I want is to be able to build a portable area as a module which has no knowledge of the host application. I want to be able to invoke the module by a full route on the user’s browser and it gets invoked and “automatically appears” inside the application’s visual chrome just like a MasterPage. So how could we accomplish this with portable areas? With this question in mind, I looked around at what other people are doing to address similar problems. Specifically, I immediately looked at how the Orchard team is handling this and I found it very compelling. Basically Orchard has its own custom layout/theme framework (utilizing a custom view engine) that allows you to build your module without any regard to the host. You simply decorate your controller with the [Themed] attribute and it will render with the outer chrome around it: 1: [Themed] 2: public class HomeController : Controller Here is the slide from the Orchard talk at this year MIX conference which shows how it conceptually works:   It’s pretty cool stuff.  So I figure, it must not be too difficult to incorporate this into the portable areas view engine as an optional piece of functionality. In fact, I’ll even simplify it a little – rather than have 1) Document.aspx, 2) Layout.ascx, and 3) <view>.ascx (as shown in the picture above); I’ll just have the outer page be “Chrome.aspx” and then the specific view in question. The Chrome.aspx not only takes the place of the MasterPage, but now since we’re no longer constrained by the MasterPage infrastructure, we have the choice of the Chrome.aspx living in the host or inside the portable areas as another embedded resource! Disclaimer: credit where credit is due – much of the code from this post is me re-purposing the Orchard code to suit my needs. To avoid confusion with Orchard, I’m going to refer to my implementation (which will be based on theirs) as a Chrome rather than a Theme. The first step I’ll take is to create a ChromedAttribute which adds a flag to the current HttpContext to indicate that the controller designated Chromed like this: 1: [Chromed] 2: public class HomeController : Controller The attribute itself is an MVC ActionFilter attribute: 1: public class ChromedAttribute : ActionFilterAttribute 2: { 3: public override void OnActionExecuting(ActionExecutingContext filterContext) 4: { 5: var chromedAttribute = GetChromedAttribute(filterContext.ActionDescriptor); 6: if (chromedAttribute != null) 7: { 8: filterContext.HttpContext.Items[typeof(ChromedAttribute)] = null; 9: } 10: } 11:   12: public static bool IsApplied(RequestContext context) 13: { 14: return context.HttpContext.Items.Contains(typeof(ChromedAttribute)); 15: } 16:   17: private static ChromedAttribute GetChromedAttribute(ActionDescriptor descriptor) 18: { 19: return descriptor.GetCustomAttributes(typeof(ChromedAttribute), true) 20: .Concat(descriptor.ControllerDescriptor.GetCustomAttributes(typeof(ChromedAttribute), true)) 21: .OfType<ChromedAttribute>() 22: .FirstOrDefault(); 23: } 24: } With that in place, we only have to override the FindView() method of the custom view engine with these 6 lines of code: 1: public override ViewEngineResult FindView(ControllerContext controllerContext, string viewName, string masterName, bool useCache) 2: { 3: if (ChromedAttribute.IsApplied(controllerContext.RequestContext)) 4: { 5: var bodyView = ViewEngines.Engines.FindPartialView(controllerContext, viewName); 6: var documentView = ViewEngines.Engines.FindPartialView(controllerContext, "Chrome"); 7: var chromeView = new ChromeView(bodyView, documentView); 8: return new ViewEngineResult(chromeView, this); 9: } 10:   11: // Just execute normally without applying Chromed View Engine 12: return base.FindView(controllerContext, viewName, masterName, useCache); 13: } If the view engine finds the [Chromed] attribute, it will invoke it’s own process – otherwise, it’ll just defer to the normal web forms view engine (with masterpages). The ChromeView’s primary job is to independently set the BodyContent on the view context so that it can be rendered at the appropriate place: 1: public class ChromeView : IView 2: { 3: private ViewEngineResult bodyView; 4: private ViewEngineResult documentView; 5:   6: public ChromeView(ViewEngineResult bodyView, ViewEngineResult documentView) 7: { 8: this.bodyView = bodyView; 9: this.documentView = documentView; 10: } 11:   12: public void Render(ViewContext viewContext, System.IO.TextWriter writer) 13: { 14: ChromeViewContext chromeViewContext = ChromeViewContext.From(viewContext); 15:   16: // First render the Body view to the BodyContent 17: using (var bodyViewWriter = new StringWriter()) 18: { 19: var bodyViewContext = new ViewContext(viewContext, bodyView.View, viewContext.ViewData, viewContext.TempData, bodyViewWriter); 20: this.bodyView.View.Render(bodyViewContext, bodyViewWriter); 21: chromeViewContext.BodyContent = bodyViewWriter.ToString(); 22: } 23: // Now render the Document view 24: this.documentView.View.Render(viewContext, writer); 25: } 26: } The ChromeViewContext (code excluded here) mainly just has a string property for the “BodyContent” – but it also makes sure to put itself in the HttpContext so it’s available. Finally, we created a little extension method so the module’s view can be rendered in the appropriate place: 1: public static void RenderBody(this HtmlHelper htmlHelper) 2: { 3: ChromeViewContext chromeViewContext = ChromeViewContext.From(htmlHelper.ViewContext); 4: htmlHelper.ViewContext.Writer.Write(chromeViewContext.BodyContent); 5: } At this point, the other thing left is to decide how we want to implement the Chrome.aspx page. One approach is the copy/paste the HTML from the typical Site.Master and change the main content placeholder to use the HTML helper above – this way, there are no MasterPages anywhere. Alternatively, we could even have Chrome.aspx utilize the MasterPage if we wanted (e.g., in the case where some pages are Chromed and some pages want to use traditional MasterPage): 1: <%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage" %> 2: <asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server"> 3: <% Html.RenderBody(); %> 4: </asp:Content> At this point, it’s all academic. I can create a controller like this: 1: [Chromed] 2: public class WidgetController : Controller 3: { 4: public ActionResult Index() 5: { 6: return View(); 7: } 8: } Then I’ll just create Index.ascx (a partial view) and put in the text “Inside my widget”. Now when I run the app, I can request the full route (notice the controller name of “widget” in the address bar below) and the HTML from my Index.ascx will just appear where it is supposed to.   This means no more warnings for missing MasterPages and no more need for your module to have knowledge of the host’s MasterPage placeholders. You have the option of using the Chrome.aspx in the host or providing your own while embedding it as an embedded resource itself. I’m curious to know what people think of this approach. The code above was done with my own local copy of MvcContrib so it’s not currently something you can download. At this point, these are just my initial thoughts – just incorporating some ideas for Orchard into non-Orchard apps to enable building modular/composite apps more easily. Additionally, on the flip side, I still believe that Portable Areas have potential as the module packaging story for Orchard itself.   What do you think?

    Read the article

  • What's new in Solaris 11.1?

    - by Karoly Vegh
    Solaris 11.1 is released. This is the first release update since Solaris 11 11/11, the versioning has been changed from MM/YY style to 11.1 highlighting that this is Solaris 11 Update 1.  Solaris 11 itself has been great. What's new in Solaris 11.1? Allow me to pick some new features from the What's New PDF that can be found in the official Oracle Solaris 11.1 Documentation. The updates are very numerous, I really can't include all.  I. New AI Automated Installer RBAC profiles have been introduced to enable delegation of installation tasks. II. The interactive installer now supports installing the OS to iSCSI targets. III. ASR (Auto Service Request) and OCM (Oracle Configuration Manager) have been enabled by default to proactively provide support information and create service requests to speed up support processes. This is optional and can be disabled but helps a lot in supportcases. For further information, see: http://oracle.com/goto/solarisautoreg IV. The new command svcbundle helps you to create SMF manifests without having to struggle with XML editing. (btw, do you know the interactive editprop subcommand in svccfg? The listprop/setprop subcommands are great for scripting and automating, but for an interactive property editing session try, for example, this: svccfg -s svc:/application/pkg/system-repository:default editprop )  V. pfedit: Ever wondered how to delegate editing permissions to certain files? It is well known "sudo /usr/bin/vi /etc/hosts" is not the right way, for sudo elevates the complete vi process to admin levels, and the user can "break" out of the session as root with simply starting a shell from that vi. Now, the new pfedit command provides a solution exactly to this challenge - an auditable, secure, per-user configurable editing possibility. See the pfedit man page for examples.   VI. rsyslog, the popular logging daemon (filters, SSL, formattable output, SQL collect...) has been included in Solaris 11.1 as an alternative to syslog.  VII: Zones: Solaris Zones - as a major Solaris differentiator - got lots of love in terms of new features: ZOSS - Zones on Shared Storage: Placing your zones to shared storage (FC, iSCSI) has never been this easy - via zonecfg.  parallell updates - with S11's bootenvironments updating zones was no problem and meant no downtime anyway, but still, now you can update them parallelly, a way faster update action if you are running a large number of zones. This is like parallell patching in Solaris 10, but with all the IPS/ZFS/S11 goodness.  per-zone fstype statistics: Running zones on a shared filesystems complicate the I/O debugging, since ZFS collects all the random writes and delivers them sequentially to boost performance. Now, over kstat you can find out which zone's I/O has an impact on the other ones, see the examples in the documentation: http://docs.oracle.com/cd/E26502_01/html/E29024/gmheh.html#scrolltoc Zones got RDSv3 protocol support for InfiniBand, and IPoIB support with Crossbow's anet (automatic vnic creation) feature.  NUMA I/O support for Zones: customers can now determine the NUMA I/O topology of the system from within zones.  VIII: Security got a lot of attention too:  Automated security/audit reporting, with builtin reporting templates e.g. for PCI (payment card industry) audits.  PAM is now configureable on a per-user basis instead of system wide, allowing different authentication requirements for different users  SSH in Solaris 11.1 now supports running in FIPS 140-2 mode, that is, in a U.S. government security accredited fashion.  SHA512/224 and SHA512/256 cryptographic hash functions are implemented in a FIPS-compliant way - and on a T4 implemented in silicon! That is, goverment-approved cryptography at HW-speed.  Generally, Solaris is currently under evaluation to be both FIPS and Common Criteria certified.  IX. Networking, as one of the core strengths of Solaris 11, has been extended with:  Data Center Bridging (DCB) - not only setups where network and storage share the same fabric (FCoE, anyone?) can have Quality-of-Service requirements. DCB enables peers to distinguish traffic based on priorities. Your NICs have to support DCB, see the documentation, and additional information on Wikipedia. DataLink MultiPathing, DLMP, enables link aggregation to span across multiple switches, even between those of different vendors. But there are essential differences to the good old bandwidth-aggregating LACP, see the documentation: http://docs.oracle.com/cd/E26502_01/html/E28993/gmdlu.html#scrolltoc VNIC live migration is now supported from one physical NIC to another on-the-fly  X. Data management:  FedFS, (Federated FileSystem) is new, it relies on Solaris 11's NFS referring mechanism to join separate shares of different NFS servers into a single filesystem namespace. The referring system has been there since S11 11/11, in Solaris 11.1 FedFS uses a LDAP - as the one global nameservice to bind them all.  The iSCSI initiator now uses the T4 CPU's HW-implemented CRC32 algorithm - thus improving iSCSI throughput while reducing CPU utilization on a T4 Storage locking improvements are now RAC aware, speeding up throughput with better locking-communication between nodes up to 20%!  XI: Kernel performance optimizations: The new Virtual Memory subsystem ("VM2") scales now to 100+ TB Memory ranges.  The memory predictor monitors large memory page usage, and adjust memory page sizes to applications' needs OSM, the Optimized Shared Memory allows Oracle DBs' SGA to be resized online XII: The Power Aware Dispatcher in now by default enabled, reducing power consumption of idle CPUs. Also, the LDoms' Power Management policies and the poweradm settings in Solaris 11 OS will cooperate. XIII: x86 boot: upgrade to the (Grand Unified Bootloader) GRUB2. Because grub2 differs in the configuration syntactically from grub1, one shall not edit the new grub configuration (grub.cfg) but use the new bootadm features to update it. GRUB2 adds UEFI support and also support for disks over 2TB. XIV: Improved viewing of per-CPU statistics of mpstat. This one might seem of less importance at first, but nowadays having better sorting/filtering possibilities on a periodically updated mpstat output of 256+ vCPUs can be a blessing. XV: Support for Solaris Cluster 4.1: The What's New document doesn't actually mention this one, since OSC 4.1 has not been released at the time 11.1 was. But since then it is available, and it requires Solaris 11.1. And it's only a "pkg update" away. ...aand I seriously need to stop here. There's a lot I missed, Edge Virtual Bridging, lofi tuning, ZFS sharing and crypto enhancements, USB3.0, pulseaudio, trusted extensions updates, etc - but if I mention all those then I effectively copy the What's New document. Which I recommend reading now anyway, it is a great extract of the 300+ new projects and RFE-followups in S11.1. And this blogpost is a summary of that extract.  For closing words, allow me to come back to Request For Enhancements, RFEs. Any customer can request features. Open up a Support Request, explain that this is an RFE, describe the feature you/your company desires to have in S11 implemented. The more SRs are collected for an RFE, the more chance it's got to get implemented. Feel free to provide feedback about the product, as well as about the Solaris 11.1 Documentation using the "Feedback" button there. Both the Solaris engineers and the documentation writers are eager to hear your input.Feel free to comment about this post too. Except that it's too long ;)  wbr,charlie

    Read the article

  • Profiling Startup Of VS2012 &ndash; SpeedTrace Profiler

    - by Alois Kraus
    SpeedTrace is a relatively unknown profiler made a company called Ipcas. A single professional license does cost 449€+VAT. For the test I did use SpeedTrace 4.5 which is currently Beta. Although it is cheaper than dotTrace it has by far the most options to influence how profiling does work. First you need to create a tracing project which does configure tracing for one process type. You can start the application directly from the profiler or (much more interesting) it does attach to a specific process when it is started. For this you need to check “Trace the specified …” radio button and enter the process name in the “Process Name of the Trace” edit box. You can even selectively enable tracing for processes with a specific command line. Then you need to activate the trace project by pressing the Activate Project button and you are ready to start VS as usual. If you want to profile the next 10 VS instances that you start you can set the Number of Processes counter to e.g. 10. This is immensely helpful if you are trying to profile only the next 5 started processes. As you can see there are many more tabs which do allow to influence tracing in a much more sophisticated way. SpeedTrace is the only profiler which does not rely entirely on the profiling Api of .NET. Instead it does modify the IL code (instrumentation on the fly) to write tracing information to disc which can later be analyzed. This approach is not only very fast but it does give you unprecedented analysis capabilities. Once the traces are collected they do show up in your workspace where you can open the trace viewer. I do skip the other windows because this view is by far the most useful one. You can sort the methods not only by Wall Clock time but also by CPU consumption and wait time which none of the other products support in their views at the same time. If you want to optimize for CPU consumption sort by CPU time. If you want to find out where most time is spent you need Clock Total time and Clock Waiting. There you can directly see if the method did take long because it did wait on something or it did really execute stuff that did take so long. Once you have found a method you want to drill deeper you can double click on a method to get to the Caller/Callee view which is similar to the JetBrains Method Grid view. But this time you do see much more. In the middle is the clicked method. Above are the methods that call you and below are the methods that you do directly call. Normally you would then start digging deeper to find the end of the chain where the slow method worth optimizing is located. But there is a shortcut. You can press the magic   button to calculate the aggregation of all called methods. This is displayed in the lower left window where you can see each method call and how long it did take. There you can also sort to see if this call stack does only contain methods (e.g. WCF connect calls which you cannot make faster) not worth optimizing. YourKit has a similar feature where it is called Callees List. In the Functions tab you have in the context menu also many other useful analysis options One really outstanding feature is the View Call History Drilldown. When you select this one you get not a sum of all method invocations but a list with the duration of each method call. This is not surprising since SpeedTrace does use tracing to get its timings. There you can get many useful graphs how this method did behave over time. Did it become slower at some point in time or was only the first call slow? The diagrams and the list will tell you that. That is all fine but what should I do when one method call was slow? I want to see from where it was coming from. No problem select the method in the list hit F10 and you get the call stack. This is a life saver if you e.g. search for serialization problems. Today Serializers are used everywhere. You want to find out from where the 5s XmlSerializer.Deserialize call did come from? Hit F10 and you get the call stack which did invoke the 5s Deserialize call. The CPU timeline tab is also useful to find out where long pauses or excessive CPU consumption did happen. Click in the graph to get the Thread Stacks window where you can get a quick overview what all threads were doing at this time. This does look like the Stack Traces feature in YourKit. Only this time you get the last called method first which helps to quickly see what all threads were executing at this moment. YourKit does generate a rather long list which can be hard to go through when you have many threads. The thread list in the middle does not give you call stacks or anything like that but you see which methods were found most often executing code by the profiler which is a good indication for methods consuming most CPU time. This does sound too good to be true? I have not told you the best part yet. The best thing about this profiler is the staff behind it. When I do see a crash or some other odd behavior I send a mail to Ipcas and I do get usually the next day a mail that the problem has been fixed and a download link to the new version. The guys at Ipcas are even so helpful to log in to your machine via a Citrix Client to help you to get started profiling your actual application you want to profile. After a 2h telco I was converted from a hater to a believer of this tool. The fast response time might also have something to do with the fact that they are actively working on 4.5 to get out of the door. But still the support is by far the best I have encountered so far. The only downside is that you should instrument your assemblies including the .NET Framework to get most accurate numbers. You can profile without doing it but then you will see very high JIT times in your process which can severely affect the correctness of the measured timings. If you do not care about exact numbers you can also enable in the main UI in the Data Trace tab logging of method arguments of primitive types. If you need to know what files at which times were opened by your application you can find it out without a debugger. Since SpeedTrace does read huge trace files in its reader you should perhaps use a 64 bit machine to be able to analyze bigger traces as well. The memory consumption of the trace reader is too high for my taste. But they did promise for the next version to come up with something much improved.

    Read the article

  • IIS 7.0 informational HTTP status codes

    - by Samir R. Bhogayta
    1xx - Informational These HTTP status codes indicate a provisional response. The client computer receives one or more 1xx responses before the client computer receives a regular response. IIS 7.0 uses the following informational HTTP status codes: 100 - Continue. 101 - Switching protocols. 2xx - Success These HTTP status codes indicate that the server successfully accepted the request. IIS 7.0 uses the following success HTTP status codes: 200 - OK. The client request has succeeded. 201 - Created. 202 - Accepted. 203 - Nonauthoritative information. 204 - No content. 205 - Reset content. 206 - Partial content. 3xx - Redirection These HTTP status codes indicate that the client browser must take more action to fulfill the request. For example, the client browser may have to request a different page on the server. Or, the client browser may have to repeat the request by using a proxy server. IIS 7.0 uses the following redirection HTTP status codes: 301 - Moved permanently. 302 - Object moved. 304 - Not modified. 307 - Temporary redirect. 4xx - Client error These HTTP status codes indicate that an error occurred and that the client browser appears to be at fault. For example, the client browser may have requested a page that does not exist. Or, the client browser may not have provided valid authentication information. IIS 7.0 uses the following client error HTTP status codes: 400 - Bad request. The request could not be understood by the server due to malformed syntax. The client should not repeat the request without modifications. IIS 7.0 defines the following HTTP status codes that indicate a more specific cause of a 400 error: 400.1 - Invalid Destination Header. 400.2 - Invalid Depth Header. 400.3 - Invalid If Header. 400.4 - Invalid Overwrite Header. 400.5 - Invalid Translate Header. 400.6 - Invalid Request Body. 400.7 - Invalid Content Length. 400.8 - Invalid Timeout. 400.9 - Invalid Lock Token. 401 - Access denied. IIS 7.0 defines several HTTP status codes that indicate a more specific cause of a 401 error. The following specific HTTP status codes are displayed in the client browser but are not displayed in the IIS log: 401.1 - Logon failed. 401.2 - Logon failed due to server configuration. 401.3 - Unauthorized due to ACL on resource. 401.4 - Authorization failed by filter. 401.5 - Authorization failed by ISAPI/CGI application. 403 - Forbidden. IIS 7.0 defines the following HTTP status codes that indicate a more specific cause of a 403 error: 403.1 - Execute access forbidden. 403.2 - Read access forbidden. 403.3 - Write access forbidden. 403.4 - SSL required. 403.5 - SSL 128 required. 403.6 - IP address rejected. 403.7 - Client certificate required. 403.8 - Site access denied. 403.9 - Forbidden: Too many clients are trying to connect to the Web server. 403.10 - Forbidden: Web server is configured to deny Execute access. 403.11 - Forbidden: Password has been changed. 403.12 - Mapper denied access. 403.13 - Client certificate revoked. 403.14 - Directory listing denied. 403.15 - Forbidden: Client access licenses have exceeded limits on the Web server. 403.16 - Client certificate is untrusted or invalid. 403.17 - Client certificate has expired or is not yet valid. 403.18 - Cannot execute requested URL in the current application pool. 403.19 - Cannot execute CGI applications for the client in this application pool. 403.20 - Forbidden: Passport logon failed. 403.21 - Forbidden: Source access denied. 403.22 - Forbidden: Infinite depth is denied. 404 - Not found. IIS 7.0 defines the following HTTP status codes that indicate a more specific cause of a 404 error: 404.0 - Not found. 404.1 - Site Not Found. 404.2 - ISAPI or CGI restriction. 404.3 - MIME type restriction. 404.4 - No handler configured. 404.5 - Denied by request filtering configuration. 404.6 - Verb denied. 404.7 - File extension denied. 404.8 - Hidden namespace. 404.9 - File attribute hidden. 404.10 - Request header too long. 404.11 - Request contains double escape sequence. 404.12 - Request contains high-bit characters. 404.13 - Content length too large. 404.14 - Request URL too long. 404.15 - Query string too long. 404.16 - DAV request sent to the static file handler. 404.17 - Dynamic content mapped to the static file handler via a wildcard MIME mapping. 404.18 - Querystring sequence denied. 404.19 - Denied by filtering rule. 405 - Method Not Allowed. 406 - Client browser does not accept the MIME type of the requested page. 408 - Request timed out. 412 - Precondition failed. 5xx - Server error These HTTP status codes indicate that the server cannot complete the request because the server encounters an error. IIS 7.0 uses the following server error HTTP status codes: 500 - Internal server error. IIS 7.0 defines the following HTTP status codes that indicate a more specific cause of a 500 error: 500.0 - Module or ISAPI error occurred. 500.11 - Application is shutting down on the Web server. 500.12 - Application is busy restarting on the Web server. 500.13 - Web server is too busy. 500.15 - Direct requests for Global.asax are not allowed. 500.19 - Configuration data is invalid. 500.21 - Module not recognized. 500.22 - An ASP.NET httpModules configuration does not apply in Managed Pipeline mode. 500.23 - An ASP.NET httpHandlers configuration does not apply in Managed Pipeline mode. 500.24 - An ASP.NET impersonation configuration does not apply in Managed Pipeline mode. 500.50 - A rewrite error occurred during RQ_BEGIN_REQUEST notification handling. A configuration or inbound rule execution error occurred. Note Here is where the distributed rules configuration is read for both inbound and outbound rules. 500.51 - A rewrite error occurred during GL_PRE_BEGIN_REQUEST notification handling. A global configuration or global rule execution error occurred. Note Here is where the global rules configuration is read. 500.52 - A rewrite error occurred during RQ_SEND_RESPONSE notification handling. An outbound rule execution occurred. 500.53 - A rewrite error occurred during RQ_RELEASE_REQUEST_STATE notification handling. An outbound rule execution error occurred. The rule is configured to be executed before the output user cache gets updated. 500.100 - Internal ASP error. 501 - Header values specify a configuration that is not implemented. 502 - Web server received an invalid response while acting as a gateway or proxy. IIS 7.0 defines the following HTTP status codes that indicate a more specific cause of a 502 error: 502.1 - CGI application timeout. 502.2 - Bad gateway. 503 - Service unavailable. IIS 7.0 defines the following HTTP status codes that indicate a more specific cause of a 503 error: 503.0 - Application pool unavailable. 503.2 - Concurrent request limit exceeded.

    Read the article

  • Spacewalk 2.0 provided to manage Oracle Linux systems

    - by wcoekaer
    Oracle Linux customers have a few options to manage and provision their servers. We provide a license to use Oracle Enterprise Manager's Linux OS management, monitoring and provisioning features without additional cost for every server that has an Oracle Linux support subscription. So there is no additional pack to license and no additional per server cost, it's all included in our Basic, Premier and Systems support subscriptions. The nice thing with Oracle Enterprise Manager is that you end up with a single management product that can manage all aspects of your software stack. You have complete insight into the applications running, you have roles and responsibilities, you have third party connectors for storage or other products and it makes it very easy and convenient to correlate data and events when something happens. If you use Oracle VM as well, you end up with a complete cloud portal with selfservice, chargeback, etc... Another, much simpler option, is just using yum. It is very easy to take a server and create directories and expose these through apache as repositories. You can have a simple yum config on each server pointing to a few specific repositories. It requires some manual effort in terms of creating directories, downloading packages and creating local repo files but it's easy to do and for many people a preferred solution. There are also a good number of customers that just connect their servers directly to ULN or to our free update server public-yum. Just to re-iterate, our public-yum servers have all the errata and updates available for free. Now we added another option. Many of our customers have switched from a competing Linux vendor and they had familiarity with their management tools. Switching to Oracle for support is very easy since we don't require changes to the installed servers but we also want to make sure there is a very easy and almost transparent switch for the management tools as well. While Oracle Enterprise Manager is our preferred way of managing systems, we now are offering Spacewalk 2.0 to our customers. The community project can be found here. We have made a few changes to ensure easy and complete support for Oracle Linux, tested it with public-yum, etc.. You can find the rpms in our public-yum repos at http://public-yum.oracle.com/repo/OracleLinux/OL6/. There are repositories for spacewalk server and then for each version (OL5,OL6) and architecture (x86 and x86-64) we have the client repositories as well. Spacewalk itself is only made available for OL6 x86-64. Documentation can be found here. I set it up myself and here are some quick steps on how you can get going in just a matter of minutes: Spacewalk Server Installation : 1) Installing an Oracle Database Use an existing Oracle Database or install a new Oracle Database (Standard or Enterprise Edition) [at this time use 11g, we will add support for 12c in the near future]. This database can be installed on the spacewalk server or on a separate remote server. While Oracle XE might work to create a small sample POC, we do not support the use of Oracle XE, spacewalk repositories can become large and create a significant database workload. Customers can use their existing database licenses, they can download the database with a trial licence from http://edelivery.oracle.com or Oracle Linux subscribers (customers) will be allowed to use the Oracle Database as a spacewalk repository as part of their Oracle Linux subscription at no additional cost. |NOTE : spacewalk requires the database to be configured with the UTF8 characterset. |Installation will fail if your database does not use UTF8. |To verify if your database is configured correctly, run the following command in sqlplus: | |select value from nls_database_parameters where parameter='NLS_CHARACTERSET'; |This should return 'AL32UTF8' 2) Configure the database schema for spacewalk Ideally, create a tablespace in the database to hold the spacewalk schema tables/data; create tablespace spacewalk datafile '/u01/app/oracle/oradata/orcl/spacewalk.dbf' size 10G autoextend on; Create the database user spacewalk (or use some other schema name) in sqlplus. example : create user spacewalk identified by spacewalk; grant connect, resource to spacewalk; grant create table, create trigger, create synonym, create view, alter session to spacewalk; grant unlimited tablespace to spacewalk; alter user spacewalk default tablespace spacewalk; 4) Spacewalk installation and configuration Spacewalk server requires an Oracle Linux 6 x86-64 system. Clients can be Oracle Linux 5 or 6, both 32- and 64bit. The server is only supported on OL6/64bit. The easiest way to get started is to do a 'Minimal' install of Oracle Linux on a server and configure the yum repository to include the spacewalk repo from public-yum. Once you have a system with a minimal install, modify your yum repo to include the spacewalk repo. Example : edit /etc/yum.repos.d/public-yum-ol.repo and add the following lines at the end of the file : [spacewalk] name=spacewalk baseurl=http://public-yum.oracle.com/repo/OracleLinux/OL6/spacewalk20/server/$basearch/ gpgkey=http://public-yum.oracle.com/RPM-GPG-KEY-oracle-ol6 gpgcheck=1 enabled=1 Install the following pre-requisite packages on your spacewalk server : oracle-instantclient11.2-basic-11.2.0.3.0-1.x86_64 oracle-instantclient11.2-sqlplus-11.2.0.3.0-1.x86_64 rpm -ivh oracle-instantclient11.2-basic-11.2.0.3.0-1.x86_64 rpm -ivh oracle-instantclient11.2-sqlplus-11.2.0.3.0-1.x86_64 The above RPMs can be found on the Oracle Technology Network website : http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html As the root user, configure the library path to include the Oracle Instant Client libraries : cd /etc/ld.so.conf.d echo /usr/lib/oracle/11.2/client64/lib oracle-instantclient11.2.conf ldconfig Install spacewalk : # yum install spacewalk-oracle The above yum command should download and install all required packages to run spacewalk on your local server. | NOTE : if you did a full, desktop or workstation installation, | you have to remove the JTA package | BEFORE installing spacewalk-oracle (rpm -e --nodeps jta) Once the installation completes, simply run the spacewalk configuration tool and you are all set. (make sure to run the command with the 2 arguments) spacewalk-setup --disconnected --external-db Answer the questions during the setup, ensure you provide the current database user (example : spacewalk) and password (example : spacewalk) and database server hostname (the standard hostname of the server on which you have deployed the Oracle database) At the end of the setup script, your spacewalk server should be fully configured and you can log into the web portal. Use your favorite browser to connect to the website : http://[spacewalkserverhostname] The very first action will be to create the main admin account.

    Read the article

  • JSP Precompilation for ADF Applications

    - by Duncan Mills
    A question that comes up from time to time, particularly in relation to build automation, is how to best pre-compile the .jspx and .jsff files in an ADF application. Thus ensuring that the app is ready to run as soon as it's installed into WebLogic. In the normal run of things, the first poor soul to hit a page pays the price and has to wait a little whilst the JSP is compiled into a servlet. Everyone else subsequently gets a free lunch. So it's a reasonable thing to want to do... Let Me List the Ways So forth to Google (other search engines are available)... which lead me to a fairly old article on WLDJ - Removing Performance Bottlenecks Through JSP Precompilation. Technololgy wise, it's somewhat out of date, but the one good point that it made is that it's really not very useful to try and use the precompile option in the weblogic.xml file. That's a really good observation - particularly if you're trying to integrate a pre-compile step into a Hudson Continuous Integration process. That same article mentioned an alternative approach for programmatic pre-compilation using weblogic.jspc. This seemed like a much more useful approach for a CI environment. However, weblogic.jspc is now obsoleted by weblogic.appc so we'll use that instead.  Thanks to Steve for the pointer there. And So To APPC APPC has documentation - always a great place to start, and supports usage both from Ant via the wlappc task and from the command line using the weblogic.appc command. In my testing I took the latter approach. Usage, as the documentation will show you, is superficially pretty simple.  The nice thing here, is that you can pass an existing EAR file (generated of course using OJDeploy) and that EAR will be updated in place with the freshly compiled servlet classes created from the JSPs. Appc takes care of all the unpacking, compiling and re-packing of the EAR for you. Neat.  So we're done right...? Not quite. The Devil is in the Detail  OK so I'm being overly dramatic but it's not all plain sailing, so here's a short guide to using weblogic.appc to compile a simple ADF application without pain.  Information You'll Need The following is based on the assumption that you have a stand-alone WLS install with the Application Development  Runtime installed and a suitable ADF enabled domain created. This could of course all be run off of a JDeveloper install as well 1. Your Weblogic home directory. Everything you need is relative to this so make a note.  In my case it's c:\builds\wls_ps4. 2. Next deploy your EAR as normal and have a peek inside it using your favourite zip management tool. First of all look at the weblogic-application.xml inside the EAR /META-INF directory. Have a look for any library references. Something like this: <library-ref>    <library-name>adf.oracle.domain</library-name> </library-ref>   Make a note of the library ref (adf.oracle.domain in this case) , you'll need that in a second. 3. Next open the nested WAR file within the EAR and then have a peek inside the weblogic.xml file in the /WEB-INF directory. Again  make a note of the library references. 4. Now start the WebLogic as per normal and run the WebLogic console app (e.g. http://localhost:7001/console). In the Domain Structure navigator, select Deployments. 5. For each of the libraries you noted down drill into the library definition and make a note of the .war, .ear or .jar that defines the library. For example, in my case adf.oracle.domain maps to "C:\ builds\ WLS_PS4\ oracle_common\ modules\ oracle. adf. model_11. 1. 1\ adf. oracle. domain. ear". Note the extra spaces that are salted throughout this string as it is displayed in the console - just to make it annoying, you'll have to strip these out. 6. Finally you'll need the location of the adfsharebean.jar. We need to pass this on the classpath for APPC so that the ADFConfigLifeCycleCallBack listener can be found. In a more complex app of your own you may need additional classpath entries as well.  Now we're ready to go, and it's a simple matter of applying the information we have gathered into the relevant command line arguments for the utility A Simple CMD File to Run APPC  Here's the stub .cmd file I'm using on Windows to run this. @echo offREM Stub weblogic.appc Runner setlocal set WLS_HOME=C:\builds\WLS_PS4 set ADF_LIB_ROOT=%WLS_HOME%\oracle_common\modulesset COMMON_LIB_ROOT=%WLS_HOME%\wlserver_10.3\common\deployable-libraries set ADF_WEBAPP=%ADF_LIB_ROOT%\oracle.adf.view_11.1.1\adf.oracle.domain.webapp.war set ADF_DOMAIN=%ADF_LIB_ROOT%\oracle.adf.model_11.1.1\adf.oracle.domain.ear set JSTL=%COMMON_LIB_ROOT%\jstl-1.2.war set JSF=%COMMON_LIB_ROOT%\jsf-1.2.war set ADF_SHARE=%ADF_LIB_ROOT%\oracle.adf.share_11.1.1\adfsharembean.jar REM Set up the WebLogic Environment so appc can be found call %WLS_HOME%\wlserver_10.3\server\bin\setWLSEnv.cmd CLS REM Now compile away!java weblogic.appc -verbose -library %ADF_WEBAPP%,%ADF_DOMAIN%,%JSTL%,%JSF% -classpath %ADF_SHARE% %1 endlocal Running the above on a target ADF .ear  file will zip through and create all of the relevant compiled classes inside your nested .war file in the \WEB-INF\classes\jsp_servlet\ directory (but don't take my word for it, run it and take a look!) And So... In the immortal words of  the Pet Shop Boys, Was It Worth It? Well, here's where you'll have to do your own testing. In  my case here, with a simple ADF application, pre-compilation shaved an non-scientific "3 Elephants" off of the initial page load time for the first access of each page. That's a pretty significant payback for such a simple step to add into your CI process, so why not give it a go.

    Read the article

  • C#/.NET Little Wonders: Comparer&lt;T&gt;.Default

    - by James Michael Hare
    I’ve been working with a wonderful team on a major release where I work, which has had the side-effect of occupying most of my spare time preparing, testing, and monitoring.  However, I do have this Little Wonder tidbit to offer today. Introduction The IComparable<T> interface is great for implementing a natural order for a data type.  It’s a very simple interface with a single method: 1: public interface IComparer<in T> 2: { 3: // Compare two instances of same type. 4: int Compare(T x, T y); 5: }  So what do we expect for the integer return value?  It’s a pseudo-relative measure of the ordering of x and y, which returns an integer value in much the same way C++ returns an integer result from the strcmp() c-style string comparison function: If x == y, returns 0. If x > y, returns > 0 (often +1, but not guaranteed) If x < y, returns < 0 (often –1, but not guaranteed) Notice that the comparison operator used to evaluate against zero should be the same comparison operator you’d use as the comparison operator between x and y.  That is, if you want to see if x > y you’d see if the result > 0. The Problem: Comparing With null Can Be Messy This gets tricky though when you have null arguments.  According to the MSDN, a null value should be considered equal to a null value, and a null value should be less than a non-null value.  So taking this into account we’d expect this instead: If x == y (or both null), return 0. If x > y (or y only is null), return > 0. If x < y (or x only is null), return < 0. But here’s the problem – if x is null, what happens when we attempt to call CompareTo() off of x? 1: // what happens if x is null? 2: x.CompareTo(y); It’s pretty obvious we’ll get a NullReferenceException here.  Now, we could guard against this before calling CompareTo(): 1: int result; 2:  3: // first check to see if lhs is null. 4: if (x == null) 5: { 6: // if lhs null, check rhs to decide on return value. 7: if (y == null) 8: { 9: result = 0; 10: } 11: else 12: { 13: result = -1; 14: } 15: } 16: else 17: { 18: // CompareTo() should handle a null y correctly and return > 0 if so. 19: result = x.CompareTo(y); 20: } Of course, we could shorten this with the ternary operator (?:), but even then it’s ugly repetitive code: 1: int result = (x == null) 2: ? ((y == null) ? 0 : -1) 3: : x.CompareTo(y); Fortunately, the null issues can be cleaned up by drafting in an external Comparer.  The Soltuion: Comparer<T>.Default You can always develop your own instance of IComparer<T> for the job of comparing two items of the same type.  The nice thing about a IComparer is its is independent of the things you are comparing, so this makes it great for comparing in an alternative order to the natural order of items, or when one or both of the items may be null. 1: public class NullableIntComparer : IComparer<int?> 2: { 3: public int Compare(int? x, int? y) 4: { 5: return (x == null) 6: ? ((y == null) ? 0 : -1) 7: : x.Value.CompareTo(y); 8: } 9: }  Now, if you want a custom sort -- especially on large-grained objects with different possible sort fields -- this is the best option you have.  But if you just want to take advantage of the natural ordering of the type, there is an easier way.  If the type you want to compare already implements IComparable<T> or if the type is System.Nullable<T> where T implements IComparable, there is a class in the System.Collections.Generic namespace called Comparer<T> which exposes a property called Default that will create a singleton that represents the default comparer for items of that type.  For example: 1: // compares integers 2: var intComparer = Comparer<int>.Default; 3:  4: // compares DateTime values 5: var dateTimeComparer = Comparer<DateTime>.Default; 6:  7: // compares nullable doubles using the null rules! 8: var nullableDoubleComparer = Comparer<double?>.Default;  This helps you avoid having to remember the messy null logic and makes it to compare objects where you don’t know if one or more of the values is null. This works especially well when creating say an IComparer<T> implementation for a large-grained class that may or may not contain a field.  For example, let’s say you want to create a sorting comparer for a stock open price, but if the market the stock is trading in hasn’t opened yet, the open price will be null.  We could handle this (assuming a reasonable Quote definition) like: 1: public class Quote 2: { 3: // the opening price of the symbol quoted 4: public double? Open { get; set; } 5:  6: // ticker symbol 7: public string Symbol { get; set; } 8:  9: // etc. 10: } 11:  12: public class OpenPriceQuoteComparer : IComparer<Quote> 13: { 14: // Compares two quotes by opening price 15: public int Compare(Quote x, Quote y) 16: { 17: return Comparer<double?>.Default.Compare(x.Open, y.Open); 18: } 19: } Summary Defining a custom comparer is often needed for non-natural ordering or defining alternative orderings, but when you just want to compare two items that are IComparable<T> and account for null behavior, you can use the Comparer<T>.Default comparer generator and you’ll never have to worry about correct null value sorting again.     Technorati Tags: C#,.NET,Little Wonders,BlackRabbitCoder,IComparable,Comparer

    Read the article

  • NUMA-aware placement of communication variables

    - by Dave
    For classic NUMA-aware programming I'm typically most concerned about simple cold, capacity and compulsory misses and whether we can satisfy the miss by locally connected memory or whether we have to pull the line from its home node over the coherent interconnect -- we'd like to minimize channel contention and conserve interconnect bandwidth. That is, for this style of programming we're quite aware of where memory is homed relative to the threads that will be accessing it. Ideally, a page is collocated on the node with the thread that's expected to most frequently access the page, as simple misses on the page can be satisfied without resorting to transferring the line over the interconnect. The default "first touch" NUMA page placement policy tends to work reasonable well in this regard. When a virtual page is first accessed, the operating system will attempt to provision and map that virtual page to a physical page allocated from the node where the accessing thread is running. It's worth noting that the node-level memory interleaving granularity is usually a multiple of the page size, so we can say that a given page P resides on some node N. That is, the memory underlying a page resides on just one node. But when thinking about accesses to heavily-written communication variables we normally consider what caches the lines underlying such variables might be resident in, and in what states. We want to minimize coherence misses and cache probe activity and interconnect traffic in general. I don't usually give much thought to the location of the home NUMA node underlying such highly shared variables. On a SPARC T5440, for instance, which consists of 4 T2+ processors connected by a central coherence hub, the home node and placement of heavily accessed communication variables has very little impact on performance. The variables are frequently accessed so likely in M-state in some cache, and the location of the home node is of little consequence because a requester can use cache-to-cache transfers to get the line. Or at least that's what I thought. Recently, though, I was exploring a simple shared memory point-to-point communication model where a client writes a request into a request mailbox and then busy-waits on a response variable. It's a simple example of delegation based on message passing. The server polls the request mailbox, and having fetched a new request value, performs some operation and then writes a reply value into the response variable. As noted above, on a T5440 performance is insensitive to the placement of the communication variables -- the request and response mailbox words. But on a Sun/Oracle X4800 I noticed that was not the case and that NUMA placement of the communication variables was actually quite important. For background an X4800 system consists of 8 Intel X7560 Xeons . Each package (socket) has 8 cores with 2 contexts per core, so the system is 8x8x2. Each package is also a NUMA node and has locally attached memory. Every package has 3 point-to-point QPI links for cache coherence, and the system is configured with a twisted ladder "mobius" topology. The cache coherence fabric is glueless -- there's not central arbiter or coherence hub. The maximum distance between any two nodes is just 2 hops over the QPI links. For any given node, 3 other nodes are 1 hop distant and the remaining 4 nodes are 2 hops distant. Using a single request (client) thread and a single response (server) thread, a benchmark harness explored all permutations of NUMA placement for the two threads and the two communication variables, measuring the average round-trip-time and throughput rate between the client and server. In this benchmark the server simply acts as a simple transponder, writing the request value plus 1 back into the reply field, so there's no particular computation phase and we're only measuring communication overheads. In addition to varying the placement of communication variables over pairs of nodes, we also explored variations where both variables were placed on one page (and thus on one node) -- either on the same cache line or different cache lines -- while varying the node where the variables reside along with the placement of the threads. The key observation was that if the client and server threads were on different nodes, then the best placement of variables was to have the request variable (written by the client and read by the server) reside on the same node as the client thread, and to place the response variable (written by the server and read by the client) on the same node as the server. That is, if you have a variable that's to be written by one thread and read by another, it should be homed with the writer thread. For our simple client-server model that means using split request and response communication variables with unidirectional message flow on a given page. This can yield up to twice the throughput of less favorable placement strategies. Our X4800 uses the QPI 1.0 protocol with source-based snooping. Briefly, when node A needs to probe a cache line it fires off snoop requests to all the nodes in the system. Those recipients then forward their response not to the original requester, but to the home node H of the cache line. H waits for and collects the responses, adjudicates and resolves conflicts and ensures memory-model ordering, and then sends a definitive reply back to the original requester A. If some node B needed to transfer the line to A, it will do so by cache-to-cache transfer and let H know about the disposition of the cache line. A needs to wait for the authoritative response from H. So if a thread on node A wants to write a value to be read by a thread on node B, the latency is dependent on the distances between A, B, and H. We observe the best performance when the written-to variable is co-homed with the writer A. That is, we want H and A to be the same node, as the writer doesn't need the home to respond over the QPI link, as the writer and the home reside on the very same node. With architecturally informed placement of communication variables we eliminate at least one QPI hop from the critical path. Newer Intel processors use the QPI 1.1 coherence protocol with home-based snooping. As noted above, under source-snooping a requester broadcasts snoop requests to all nodes. Those nodes send their response to the home node of the location, which provides memory ordering, reconciles conflicts, etc., and then posts a definitive reply to the requester. In home-based snooping the snoop probe goes directly to the home node and are not broadcast. The home node can consult snoop filters -- if present -- and send out requests to retrieve the line if necessary. The 3rd party owner of the line, if any, can respond either to the home or the original requester (or even to both) according to the protocol policies. There are myriad variations that have been implemented, and unfortunately vendor terminology doesn't always agree between vendors or with the academic taxonomy papers. The key is that home-snooping enables the use of a snoop filter to reduce interconnect traffic. And while home-snooping might have a longer critical path (latency) than source-based snooping, it also may require fewer messages and less overall bandwidth. It'll be interesting to reprise these experiments on a platform with home-based snooping. While collecting data I also noticed that there are placement concerns even in the seemingly trivial case when both threads and both variables reside on a single node. Internally, the cores on each X7560 package are connected by an internal ring. (Actually there are multiple contra-rotating rings). And the last-level on-chip cache (LLC) is partitioned in banks or slices, which with each slice being associated with a core on the ring topology. A hardware hash function associates each physical address with a specific home bank. Thus we face distance and topology concerns even for intra-package communications, although the latencies are not nearly the magnitude we see inter-package. I've not seen such communication distance artifacts on the T2+, where the cache banks are connected to the cores via a high-speed crossbar instead of a ring -- communication latencies seem more regular.

    Read the article

  • RiverTrail - JavaScript GPPGU Data Parallelism

    - by JoshReuben
    Where is WebCL ? The Khronos WebCL working group is working on a JavaScript binding to the OpenCL standard so that HTML 5 compliant browsers can host GPGPU web apps – e.g. for image processing or physics for WebGL games - http://www.khronos.org/webcl/ . While Nokia & Samsung have some protype WebCL APIs, Intel has one-upped them with a higher level of abstraction: RiverTrail. Intro to RiverTrail Intel Labs JavaScript RiverTrail provides GPU accelerated SIMD data-parallelism in web applications via a familiar JavaScript programming paradigm. It extends JavaScript with simple deterministic data-parallel constructs that are translated at runtime into a low-level hardware abstraction layer. With its high-level JS API, programmers do not have to learn a new language or explicitly manage threads, orchestrate shared data synchronization or scheduling. It has been proposed as a draft specification to ECMA a (known as ECMA strawman). RiverTrail runs in all popular browsers (except I.E. of course). To get started, download a prebuilt version https://github.com/downloads/RiverTrail/RiverTrail/rivertrail-0.17.xpi , install Intel's OpenCL SDK http://www.intel.com/go/opencl and try out the interactive River Trail shell http://rivertrail.github.com/interactive For a video overview, see  http://www.youtube.com/watch?v=jueg6zB5XaM . ParallelArray the ParallelArray type is the central component of this API & is a JS object that contains ordered collections of scalars – i.e. multidimensional uniform arrays. A shape property describes the dimensionality and size– e.g. a 2D RGBA image will have shape [height, width, 4]. ParallelArrays are immutable & fluent – they are manipulated by invoking methods on them which produce new ParallelArray objects. ParallelArray supports several constructors over arrays, functions & even the canvas. // Create an empty Parallel Array var pa = new ParallelArray(); // pa0 = <>   // Create a ParallelArray out of a nested JS array. // Note that the inner arrays are also ParallelArrays var pa = new ParallelArray([ [0,1], [2,3], [4,5] ]); // pa1 = <<0,1>, <2,3>, <4.5>>   // Create a two-dimensional ParallelArray with shape [3, 2] using the comprehension constructor var pa = new ParallelArray([3, 2], function(iv){return iv[0] * iv[1];}); // pa7 = <<0,0>, <0,1>, <0,2>>   // Create a ParallelArray from canvas.  This creates a PA with shape [w, h, 4], var pa = new ParallelArray(canvas); // pa8 = CanvasPixelArray   ParallelArray exposes fluent API functions that take an elemental JS function for data manipulation: map, combine, scan, filter, and scatter that return a new ParallelArray. Other functions are scalar - reduce  returns a scalar value & get returns the value located at a given index. The onus is on the developer to ensure that the elemental function does not defeat data parallelization optimization (avoid global var manipulation, recursion). For reduce & scan, order is not guaranteed - the onus is on the dev to provide an elemental function that is commutative and associative so that scan will be deterministic – E.g. Sum is associative, but Avg is not. map Applies a provided elemental function to each element of the source array and stores the result in the corresponding position in the result array. The map method is shape preserving & index free - can not inspect neighboring values. // Adding one to each element. var source = new ParallelArray([1,2,3,4,5]); var plusOne = source.map(function inc(v) {     return v+1; }); //<2,3,4,5,6> combine Combine is similar to map, except an index is provided. This allows elemental functions to access elements from the source array relative to the one at the current index position. While the map method operates on the outermost dimension only, combine, can choose how deep to traverse - it provides a depth argument to specify the number of dimensions it iterates over. The elemental function of combine accesses the source array & the current index within it - element is computed by calling the get method of the source ParallelArray object with index i as argument. It requires more code but is more expressive. var source = new ParallelArray([1,2,3,4,5]); var plusOne = source.combine(function inc(i) { return this.get(i)+1; }); reduce reduces the elements from an array to a single scalar result – e.g. Sum. // Calculate the sum of the elements var source = new ParallelArray([1,2,3,4,5]); var sum = source.reduce(function plus(a,b) { return a+b; }); scan Like reduce, but stores the intermediate results – return a ParallelArray whose ith elements is the results of using the elemental function to reduce the elements between 0 and I in the original ParallelArray. // do a partial sum var source = new ParallelArray([1,2,3,4,5]); var psum = source.scan(function plus(a,b) { return a+b; }); //<1, 3, 6, 10, 15> scatter a reordering function - specify for a certain source index where it should be stored in the result array. An optional conflict function can prevent an exception if two source values are assigned the same position of the result: var source = new ParallelArray([1,2,3,4,5]); var reorder = source.scatter([4,0,3,1,2]); // <2, 4, 5, 3, 1> // if there is a conflict use the max. use 33 as a default value. var reorder = source.scatter([4,0,3,4,2], 33, function max(a, b) {return a>b?a:b; }); //<2, 33, 5, 3, 4> filter // filter out values that are not even var source = new ParallelArray([1,2,3,4,5]); var even = source.filter(function even(iv) { return (this.get(iv) % 2) == 0; }); // <2,4> Flatten used to collapse the outer dimensions of an array into a single dimension. pa = new ParallelArray([ [1,2], [3,4] ]); // <<1,2>,<3,4>> pa.flatten(); // <1,2,3,4> Partition used to restore the original shape of the array. var pa = new ParallelArray([1,2,3,4]); // <1,2,3,4> pa.partition(2); // <<1,2>,<3,4>> Get return value found at the indices or undefined if no such value exists. var pa = new ParallelArray([0,1,2,3,4], [10,11,12,13,14], [20,21,22,23,24]) pa.get([1,1]); // 11 pa.get([1]); // <10,11,12,13,14>

    Read the article

  • CodePlex Daily Summary for Sunday, August 03, 2014

    CodePlex Daily Summary for Sunday, August 03, 2014Popular ReleasesBoxStarter: Boxstarter 2.4.76: Running the Setup.bat file will install Chocolatey if not present and then install the Boxstarter modules.GMare: GMare Beta 1.2: Features Added: - Instance painting by holding the alt key down while pressing the left mouse button - Functionality to the binary exporter so that backgrounds from image files can be used - On the binary exporter background information can be edited manually now - Update to the GMare binary read GML script - Game Maker Studio export - Import from GMare project. Multiple options to import desired properties of a .gmpx - 10 undo/redo levels instead of 5 is now the default - New preferences dia...Json.NET: Json.NET 6.0 Release 4: New feature - Added Merge to LINQ to JSON New feature - Added JValue.CreateNull and JValue.CreateUndefined New feature - Added Windows Phone 8.1 support to .NET 4.0 portable assembly New feature - Added OverrideCreator to JsonObjectContract New feature - Added support for overriding the creation of interfaces and abstract types New feature - Added support for reading UUID BSON binary values as a Guid New feature - Added MetadataPropertyHandling.Ignore New feature - Improv...SQL Server Dialog: SQL Server Dialog: Input server, user and password Show folder and file in treeview Customize icon Filter file extension Skip system generate folder and fileAitso-a platform for spatial optimization and based on artificial immune systems: Aitso_0.14.08.01: Aitso0.14.08.01Installer.zipVidCoder: 1.5.24 Beta: Added NL-Means denoiser. Updated HandBrake core to SVN 6254. Added extra error handling to DVD player code to avoid a crash when the player was moved.AutoUpdater.NET : Auto update library for VB.NET and C# Developer: AutoUpdater.NET 1.3: Fixed problem in DownloadUpdateDialog where download continues even if you close the dialog. Added support for new url field for 64 bit application setup. AutoUpdater.NET will decide which download url to use by looking at the value of IntPtr.Size. Added German translation provided by Rene Kannegiesser. Now developer can handle update logic herself using event suggested by ricorx7. Added italian translation provided by Gianluca Mariani. Fixed bug that prevents Application from exiti...SEToolbox: SEToolbox 01.041.012 Release 1: Added voxel material textures to read in with mods. Fixed missing texture replacements for mods. Fixed rounding issue in raytrace code. Fixed repair issue with corrupt checkpoint file. Fixed issue with updated SE binaries 01.041.012 using new container configuration.Magick.NET: Magick.NET 6.8.9.601: Magick.NET linked with ImageMagick 6.8.9.6 Breaking changes: - Changed arguments for the Map method of MagickImage. - QuantizeSettings uses Riemersma by default.Multiple Threads TCP Server: Project: this Project is based on VS 2013, .net freamwork 4.0, you can open it by vs 2010 or laterAricie Shared: Aricie.Shared Version 1.8.00: Version 1.8.0 - Release Notes New: Expression Builder to design Flee Expressions New: Cryptographic helpers and configuration classes Improvement: Many fixes and improvements with property editor Improvement: Token Replace Property explorer now has a restricted mode for additional security Improvement: Better variables, types and object manipulation Fixed: smart file and flee bugs Fixed: Removed Exception while trying to read unsuported files Improvement: several performance twe...Accesorios de sitios Torrent en Español para Synology Download Station: Pack de Torrents en Español 6.0.0: Agregado los módulos de DivXTotal, el módulo de búsqueda depende del de alojamiento para bajar las series Utiliza el rss: http://www.divxtotal.com/rss.php DbEntry.Net (Leafing Framework): DbEntry.Net 4.2: DbEntry.Net is a lightweight Object Relational Mapping (ORM) database access compnent for .Net 4.0+. It has clearly and easily programing interface for ORM and sql directly, and supoorted Access, Sql Server, MySql, SQLite, Firebird, PostgreSQL and Oracle. It also provide a Ruby On Rails style MVC framework. Asp.Net DataSource and a simple IoC. DbEntry.Net.v4.2.Setup.zip include the setup package. DbEntry.Net.v4.2.Src.zip include source files and unit tests. DbEntry.Net.v4.2.Samples.zip ...Azure Storage Explorer: Azure Storage Explorer 6 Preview 1: Welcome to Azure Storage Explorer 6 Preview 1 This is the first release of the latest Azure Storage Explorer, code-named Phoenix. What's New?Here are some important things to know about version 6: Open Source Now being run as a full open source project. Full source code on CodePlex. Collaboration encouraged! Updated Code Base Brand-new code base (WPF/C#/.NET 4.5) Visual Studio 2013 solution (previously VS2010) Uses the Task Parallel Library (TPL) for asynchronous background operat...Wsus Package Publisher: release v1.3.1407.29: Updated WPP to recognize the very latest console version. Some files was missing into the latest release of WPP which lead to crash when trying to make a custom update. Add a workaround to avoid clipboard modification when double-clicking on a label when creating a custom update. Add the ability to publish detectoids. (This feature is still in a BETA phase. Packages relying on these detectoids to determine which computers need to be updated, may apply to all computers).VG-Ripper & PG-Ripper: PG-Ripper 1.4.32: changes NEW: Added Support for 'ImgMega.com' links NEW: Added Support for 'ImgCandy.net' links NEW: Added Support for 'ImgPit.com' links NEW: Added Support for 'Img.yt' links FIXED: 'Radikal.ru' links FIXED: 'ImageTeam.org' links FIXED: 'ImgSee.com' links FIXED: 'Img.yt' linksAsp.Net MVC-4,Entity Framework and JQGrid Demo with Todo List WebApplication: Asp.Net MVC-4,Entity Framework and JQGrid Demo: Asp.Net MVC-4,Entity Framework and JQGrid Demo with simple Todo List WebApplication, Overview TodoList is a simple web application to create, store and modify Todo tasks to be maintained by the users, which comprises of following fields to the user (Task Name, Task Description, Severity, Target Date, Task Status). TodoList web application is created using MVC - 4 architecture, code-first Entity Framework (ORM) and Jqgrid for displaying the data.Waterfox: Waterfox 31.0 Portable: New features in Waterfox 31.0: Added support for Unicode 7.0 Experimental support for WebCL New features in Firefox 31.0:New Add the search field to the new tab page Support of Prefer:Safe http header for parental control mozilla::pkix as default certificate verifier Block malware from downloaded files Block malware from downloaded files audio/video .ogg and .pdf files handled by Firefox if no application specified Changed Removal of the CAPS infrastructure for specifying site-sp...SuperSocket, an extensible socket server framework: SuperSocket 1.6.3: The changes below are included in this release: fixed an exception when collect a server's status but it has been stopped fixed a bug that can cause an exception in case of sending data when the connection dropped already fixed the log4net missing issue for a QuickStart project fixed a warning in a QuickStart projectYnote Classic: Ynote Classic 2.8.5 Beta: Several Changes - Multiple Carets and Multiple Selections - Improved Startup Time - Improved Syntax Highlighting - Search Improvements - Shell Command - Improved StabilityNew ProjectsCreek: Creek is a Collection of many C# Frameworks and my ownSpeaking Speedometer (android): Simple speaking speedometerT125Protocol { Alpha version }: implement T125 Protocol for communicate with a mainframe.Unix Time: This library provides a System.UnixTime as a new Type providing conversion between Unix Time and .NET DateTime.

    Read the article

  • Book Review: Brownfield Application Development in .NET

    - by DotNetBlues
    I recently finished reading the book Brownfield Application Development in .NET by Kyle Baley and Donald Belcham.  The book is available from Manning.  First off, let me say that I'm a huge fan of Manning as a publisher.  I've found their books to be top-quality, over all.  As a Kindle owner, I also appreciate getting an ebook copy along with the dead tree copy.  I find ebooks to be much more convenient to read, but hard-copies are easier to reference. The book covers, surprisingly enough, working with brownfield applications.  Which is well and good, if that term has meaning to you.  It didn't for me.  Without retreading a chunk of the first chapter, the authors break code bases into three broad categories: greenfield, brownfield, and legacy.  Greenfield is, essentially, new development that hasn't had time to rust and is (hopefully) being approached with some discipline.  Legacy applications are those that are more or less stable and functional, that do not expect to see a lot of work done to them, and are more likely to be replaced than reworked. Brownfield code is the gray (brown?) area between the two and the authors argue, quite effectively, that it is the most likely state for an application to be in.  Brownfield code has, in some way, been allowed to tarnish around the edges and can be difficult to work with.  Although I hadn't realized it, most of the code I've worked on has been brownfield.  Sometimes, there's talk of scrapping and starting over.  Sometimes, the team dismisses increased discipline as ivory tower nonsense.  And, sometimes, I've been the ignorant culprit vexing my future self. The book is broken into two major sections, plus an introduction chapter and an appendix.  The first section covers what the authors refer to as "The Ecosystem" which consists of version control, build and integration, testing, metrics, and defect management.  The second section is on actually writing code for brownfield applications and discusses object-oriented principles, architecture, external dependencies, and, of course, how to deal with these when coming into an existing code base. The ecosystem section is just shy of 140 pages long and brings some real meat to the matter.  The focus on "pain points" immediately sets the tone as problem-solution, rather than academic.  The authors also approach some of the topics from a different angle than some essays I've read on similar topics.  For example, the chapter on automated testing is on just that -- automated testing.  It's all well and good to criticize a project as conflating integration tests with unit tests, but it really doesn't make anyone's life better.  The discussion on testing is more focused on the "right" level of testing for existing projects.  Sometimes, an integration test is the best you can do without gutting a section of functional code.  Even if you can sell other developers and/or management on doing so, it doesn't actually provide benefit to your customers to rewrite code that works.  This isn't to say the authors encourage sloppy coding.  Far from it.  Just that they point out the wisdom of ignoring the sleeping bear until after you deal with the snarling wolf. The other sections take a similarly real-world, workable approach to the pain points they address.  As the section moves from technical solutions like version control and continuous integration (CI) to the softer, process issues of metrics and defect tracking, the authors begin to gently suggest moving toward a zero defect count.  While that really sounds like an unreasonable goal for a lot of ongoing projects, it's quite apparent that the authors have first-hand experience with taming some gruesome projects.  The suggestions are grounded and workable, and the difficulty of some situations is explicitly acknowledged. I have to admit that I started getting bored by the end of the ecosystem section.  No matter how valuable I think a good project manager or business analyst is to a successful ALM, at the end of the day, I'm a gear-head.  Also, while I agreed with a lot of the ecosystem ideas, in theory, I didn't necessarily feel that a lot of the single-developer projects that I'm often involved in really needed that level of rigor.  It's only after reading the sidebars and commentary in the coding section that I had the context for the arguments made in favor of a strong ecosystem supporting the development process.  That isn't to say that I didn't support good product management -- indeed, I've probably pushed too hard, on occasion, for a strong ALM outside of just development.  This book gave me deeper insight into why some corners shouldn't be cut and how damaging certain sins of omission can be. The code section, though, kept me engaged for its entirety.  Many technical books can be used as reference material from day one.  The authors were clear, however, that this book is not one of these.  The first chapter of the section (chapter seven, over all) addresses object oriented (OO) practices.  I've read any number of definitions, discussions, and treatises on OO.  None of the chapter was new to me, but it was a good review, and I'm of the opinion that it's good to review the foundations of what you do, from time to time, so I didn't mind. The remainder of the book is really just about how to apply OOP to existing code -- and, just because all your code exists in classes does not mean that it's object oriented.  That topic has the potential to be extremely condescending, but the authors miraculously managed to never once make me feel like a dolt or that they were wagging their finger at me for my prior sins.  Instead, they continue the "pain points" and problem-solution presentation to give concrete examples of how to apply some pretty academic-sounding ideas.  That's a point worth emphasizing, as my experience with most OO discussions is that they stay in the academic realm.  This book gives some very, very good explanations of why things like the Liskov Substitution Principle exist and why a corporate programmer should even care.  Even if you know, with absolute certainty, that you'll never have to work on an existing code-base, I would recommend this book just for the clarity it provides on OOP. This book goes beyond just theory, or even real-world application.  It presents some methods for fixing problems that any developer can, and probably will, encounter in the wild.  First, the authors address refactoring application layers and internal dependencies.  Then, they take you through those layers from the UI to the data access layer and external dependencies.  Finally, they come full circle to tie it all back to the overall process.  By the time the book is done, you're left with a lot of ideas, but also a reasonable plan to begin to improve an existing project structure. Throughout the book, it's apparent that the authors have their own preferred methodology (TDD and domain-driven design), as well as some preferred tools.  The "Our .NET Toolbox" is something of a neon sign pointing to that latter point.  They do not beat the reader over the head with anything resembling a "One True Way" mentality.  Even for the most emphatic points, the tone is quite congenial and helpful.  With some of the near-theological divides that exist within the tech community, I found this to be one of the more remarkable characteristics of the book.  Although the authors favor tools that might be considered Alt.NET, there is no reason the advice and techniques given couldn't be quite successful in a pure Microsoft shop with Team Foundation Server.  For that matter, even though the book specifically addresses .NET, it could be applied to a Java and Oracle shop, as well.

    Read the article

< Previous Page | 307 308 309 310 311 312 313 314 315 316 317 318  | Next Page >