Search Results

Search found 46581 results on 1864 pages for 'class selector'.

Page 316/1864 | < Previous Page | 312 313 314 315 316 317 318 319 320 321 322 323  | Next Page >

  • Model View Control Issue: Null Pointer Initialization Question [closed]

    - by David Dimalanta
    Good morning again. This is David. Please, I need an urgent help regarding control model view where I making a code that uniquely separating into groups: An Activity Java Class to Display the Interface A View and Function Java Class for Drawing Cards and Display it on the Activity Class The problem is that the result returns a Null Pointer Exception. I have initialize for the ID for Text View and Image View. Under this class "draw_deck.java". Please help me. Here's my code for draw_deck.java: package com.bodapps.inbetween.model; import android.content.Context; import android.view.View; import android.widget.ImageView; import android.widget.TextView; import com.bodapps.inbetween.R; public class draw_deck extends View { public TextView count_label; public ImageView draw_card; private int count; public draw_deck(Context context) { super(context); // TODO Auto-generated constructor stub //I have initialized two widgets for ID. I still don't get it why I got forced closed by Null Pointer Exception thing. draw_card = (ImageView) findViewById(R.id.IV_Draw_Card); count_label = (TextView) findViewById(R.id.Text_View_Count_Card); } public void draw(int s, int c, String strSuit, String strValue, Pile pile, Context context) { //super(context); //Just printing the card drawn from pile int suit, value = 1; draw_card = (ImageView) findViewById(R.id.IV_Draw_Card); count_label = (TextView) findViewById(R.id.Text_View_Count_Card); Card card; if(!pile.isEmpty()) //Setting it to IF statement displays the card one by one. { card = pile.drawFromPile(); //Need to check first if card is null. if (card != null) { //draws an extra if (card != null) { //Get suit of card to print out. suit = card.getSuit(); switch (suit) { case CardInfo.DIAMOND: strSuit = "DIAMOND"; s=0; break; case CardInfo.HEART: strSuit = "HEART"; s=1; break; case CardInfo.SPADE: strSuit = "SPADE"; s=2; break; case CardInfo.CLUB: strSuit = "CLUB"; s=3; break; } //Get value of card to print out. value = card.getValue(); switch (value) { case CardInfo.ACE: strValue = "ACE"; c=0; break; case CardInfo.TWO: c=1; break; case CardInfo.THREE: strValue = "THREE"; c=2; break; case CardInfo.FOUR: strValue = "FOUR"; c=3; break; case CardInfo.FIVE: strValue = "FIVE"; c=4; break; case CardInfo.SIX: strValue = "SIX"; c=4; break; case CardInfo.SEVEN: strValue = "SEVEN"; c=4; break; case CardInfo.EIGHT: strValue = "EIGHT"; c=4; break; case CardInfo.NINE: strValue = "NINE"; c=4; break; case CardInfo.TEN: strValue = "TEN"; c=4; break; case CardInfo.JACK: strValue = "JACK"; c=4; break; case CardInfo.QUEEN: strValue = "QUEEN"; c=4; break; case CardInfo.KING: strValue = "KING"; c=4; break; } } } }// //Below two lines of code, this is where issued the Null Pointer Exception. draw_card.setImageResource(deck[s][c]); count_label.setText(new StringBuilder(strValue).append(" of ").append(strSuit).append(String.valueOf(" " + count++)).toString()); } //Choice of Suits in a Deck public Integer[][] deck = { //Array Group 1 is [0][0] (No. of Cards: 4 - DIAMOND) { R.drawable.card_dummy_1, R.drawable.card_dummy_2, R.drawable.card_dummy_4, R.drawable.card_dummy_5, R.drawable.card_dummy_3 }, //Array Group 2 is [1][0] (No. of Cards: 4 - HEART) { R.drawable.card_dummy_1, R.drawable.card_dummy_2, R.drawable.card_dummy_4, R.drawable.card_dummy_5, R.drawable.card_dummy_3 }, //Array Group 3 is [2][0] (No. of Cards: 4 - SPADE) { R.drawable.card_dummy_1, R.drawable.card_dummy_2, R.drawable.card_dummy_4, R.drawable.card_dummy_5, R.drawable.card_dummy_3 }, //Array Group 4 is [3][0] (No. of Cards: 4 - CLUB) { R.drawable.card_dummy_1, R.drawable.card_dummy_2, R.drawable.card_dummy_4, R.drawable.card_dummy_5, R.drawable.card_dummy_3 }, }; } And this one of the activity class, Player_Mode_2.java: package com.bodapps.inbetween; import java.util.Random; import android.app.Activity; import android.app.Dialog; import android.content.Context; import android.os.Bundle; import android.view.View; import android.view.View.OnClickListener; import android.widget.Button; import android.widget.EditText; import android.widget.ImageView; import android.widget.TextView; import android.widget.Toast; import com.bodapps.inbetween.model.Card; import com.bodapps.inbetween.model.Pile; import com.bodapps.inbetween.model.draw_deck; /* * * Public class for Two-Player mode. * */ public class Player_Mode_2 extends Activity { //Image Views private ImageView draw_card; private ImageView player_1; private ImageView player_2; private ImageView icon; //Buttons private Button set_deck; //Edit Texts private EditText enter_no_of_decks; //text Views private TextView count_label; //Integer Data Types private int no_of_cards, count; private int card_multiplier; //Contexts final Context context = this; //Pile Model public Pile pile; //Card Model public Card card; //create View @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.play_2_player_mode); //-----[ Search for Views ]----- //Initialize for Image View draw_card = (ImageView) findViewById(R.id.IV_Draw_Card); player_1 = (ImageView) findViewById(R.id.IV_Player_1_Card); player_2 = (ImageView) findViewById(R.id.IV_Player_2_Card); //Initialize for Text view or Label count_label = (TextView) findViewById(R.id.Text_View_Count_Card); //-----[ Adding Values ]----- //Integer Values count = 0; no_of_cards = 0; //-----[ Adding Dialog ]----- //Initializing Dialog final Dialog deck_dialog = new Dialog(context); deck_dialog.setContentView(R.layout.dialog); deck_dialog.setTitle("Deck Dialog"); //-----[ Initializing Views for Dialog's Contents ]----- //Initialize for Edit Text enter_no_of_decks = (EditText) deck_dialog.findViewById(R.id.Edit_Text_Set_Number_of_Decks); //Initialize for Button set_deck = (Button) deck_dialog.findViewById(R.id.Button_Deck); //-----[ Setting onClickListener() ]----- //Set Event Listener for Image view draw_card.setOnClickListener(new Draw_Card_Model()); //Set Event Listener for Setting the Deck set_deck.setOnClickListener(new OnClickListener() { public void onClick(View v) { if(card_multiplier <= 8) { //Use "Integer.parseInt()" method to instantly convert from String to int value. card_multiplier = Integer.parseInt(enter_no_of_decks.getText().toString()); //Shuffling cards... pile = new Pile(card_multiplier); //Multiply no. of decks //Dismiss or close the dialog. deck_dialog.dismiss(); } else { Toast.makeText(getApplicationContext(), "Please choose a number from 1 to 8.", Toast.LENGTH_SHORT).show(); } } }); //Show dialog. deck_dialog.show(); } //Shuffling the Array public void Shuffle_Cards(Integer[][] Shuffle_Deck) { Random random = new Random(); for(int i = Shuffle_Deck[no_of_cards].length - 1; i >=0; i--) { int Index = random.nextInt(i + 1); //Simple Swapping Integer swap = Shuffle_Deck[card_multiplier-1][Index]; Shuffle_Deck[card_multiplier-1][Index] = Shuffle_Deck[card_multiplier-1][i]; Shuffle_Deck[card_multiplier-1][i] = swap; } } //Private Class for Random Card Draw private class Draw_Card_Model implements OnClickListener { public void onClick(View v) { //Just printing the card drawn from pile int suit = 0, value = 0; String strSuit = "", strValue = ""; draw_deck draw = new draw_deck(context); //This line is where issued the Null Pointer Exception. if (count == card_multiplier*52) { // A message shows up when all cards are draw out. Toast.makeText(getApplicationContext(), "All cards have been used up.", Toast.LENGTH_SHORT).show(); draw_card.setEnabled(false); } else { draw.draw(suit, value, strSuit, strValue, pile, context); count_label.setText(count); //This is where I got force closed error, although "int count" have initialized the number. This was supposed to accept in the setText() method. count++; } } } } Take note that the issues on Null Pointer Exception is the Image View and the Edit Text. I got to test it. Thanks. If you have any info about my question, let me know it frankly.

    Read the article

  • Information Driven Value Chains: Achieving Supply Chain Excellence in the 21st Century With Oracle -

    World-class supply chains can help companies achieve top line and bottom line results in today’s complex,global world.Tune into this conversation with Rick Jewell,SVP,Oracle Supply Chain Development,to hear about Oracle’s vision for world class SCM,and the latest and greatest on Oracle Supply Chain Management solutions.You will learn about Oracle’s complete,best-in-class,open and integrated solutions,which are helping companies drive profitability,achieve operational excellence,streamline innovation,and manage risk and compliance in today’s complex,global world.

    Read the article

  • C++11 Tidbits: Decltype (Part 2, trailing return type)

    - by Paolo Carlini
    Following on from last tidbit showing how the decltype operator essentially queries the type of an expression, the second part of this overview discusses how decltype can be syntactically combined with auto (itself the subject of the March 2010 tidbit). This combination can be used to specify trailing return types, also known informally as "late specified return types". Leaving aside the technical jargon, a simple example from section 8.3.5 of the C++11 standard usefully introduces this month's topic. Let's consider a template function like: template <class T, class U> ??? foo(T t, U u) { return t + u; } The question is: what should replace the question marks? The problem is that we are dealing with a template, thus we don't know at the outset the types of T and U. Even if they were restricted to be arithmetic builtin types, non-trivial rules in C++ relate the type of the sum to the types of T and U. In the past - in the GNU C++ runtime library too - programmers used to address these situations by way of rather ugly tricks involving __typeof__ which now, with decltype, could be rewritten as: template <class T, class U> decltype((*(T*)0) + (*(U*)0)) foo(T t, U u) { return t + u; } Of course the latter is guaranteed to work only for builtin arithmetic types, eg, '0' must make sense. In short: it's a hack. On the other hand, in C++11 you can use auto: template <class T, class U> auto foo(T t, U u) -> decltype(t + u) { return t + u; } This is much better. It's generic and a construct fully supported by the language. Finally, let's see a real-life example directly taken from the C++11 runtime library as implemented in GCC: template<typename _IteratorL, typename _IteratorR> inline auto operator-(const reverse_iterator<_IteratorL>& __x, const reverse_iterator<_IteratorR>& __y) -> decltype(__y.base() - __x.base()) { return __y.base() - __x.base(); } By now it should appear be completely straightforward. The availability of trailing return types in C++11 allowed fixing a real bug in the C++98 implementation of this operator (and many similar ones). In GCC, C++98 mode, this operator is: template<typename _IteratorL, typename _IteratorR> inline typename reverse_iterator<_IteratorL>::difference_type operator-(const reverse_iterator<_IteratorL>& __x, const reverse_iterator<_IteratorR>& __y) { return __y.base() - __x.base(); } This was guaranteed to work well with heterogeneous reverse_iterator types only if difference_type was the same for both types.

    Read the article

  • Where should you put constants and why?

    - by Tim Meyer
    In our mostly large applications, we usually have a only few locations for constants: One class for GUI and internal contstants (Tab Page titles, Group Box titles, calculation factors, enumerations) One class for database tables and columns (this part is generated code) plus readable names for them (manually assigned) One class for application messages (logging, message boxes etc) The constants are usually separated into different structs in those classes. In our C++ applications, the constants are only defined in the .h file and the values are assigned in the .cpp file. One of the advantages is that all strings etc are in one central place and everybody knows where to find them when something must be changed. This is especially something project managers seem to like as people come and go and this way everybody can change such trivial things without having to dig into the application's structure. Also, you can easily change the title of similar Group Boxes / Tab Pages etc at once. Another aspect is that you can just print that class and give it to a non-programmer who can check if the captions are intuitive, and if messages to the user are too detailed or too confusing etc. However, I see certain disadvantages: Every single class is tightly coupled to the constants classes Adding/Removing/Renaming/Moving a constant requires recompilation of at least 90% of the application (Note: Changing the value doesn't, at least for C++). In one of our C++ projects with 1500 classes, this means around 7 minutes of compilation time (using precompiled headers; without them it's around 50 minutes) plus around 10 minutes of linking against certain static libraries. Building a speed optimized release through the Visual Studio Compiler takes up to 3 hours. I don't know if the huge amount of class relations is the source but it might as well be. You get driven into temporarily hard-coding strings straight into code because you want to test something very quickly and don't want to wait 15 minutes just for that test (and probably every subsequent one). Everybody knows what happens to the "I will fix that later"-thoughts. Reusing a class in another project isn't always that easy (mainly due to other tight couplings, but the constants handling doesn't make it easier.) Where would you store constants like that? Also what arguments would you bring in order to convince your project manager that there are better concepts which also comply with the advantages listed above? Feel free to give a C++-specific or independent answer. PS: I know this question is kind of subjective but I honestly don't know of any better place than this site for this kind of question. Update on this project I have news on the compile time thing: Following Caleb's and gbjbaanb's posts, I split my constants file into several other files when I had time. I also eventually split my project into several libraries which was now possible much easier. Compiling this in release mode showed that the auto-generated file which contains the database definitions (table, column names and more - more than 8000 symbols) and builds up certain hashes caused the huge compile times in release mode. Deactivating MSVC's optimizer for the library which contains the DB constants now allowed us to reduce the total compile time of your Project (several applications) in release mode from up to 8 hours to less than one hour! We have yet to find out why MSVC has such a hard time optimizing these files, but for now this change relieves a lot of pressure as we no longer have to rely on nightly builds only. That fact - and other benefits, such as less tight coupling, better reuseability etc - also showed that spending time splitting up the "constants" wasn't such a bad idea after all ;-)

    Read the article

  • Should I use an interface when methods are only similar?

    - by Joshua Harris
    I was posed with the idea of creating an object that checks if a point will collide with a line: public class PointAndLineSegmentCollisionDetector { public void Collides(Point p, LineSegment s) { // ... } } This made me think that if I decided to create a Box object, then I would need a PointAndBoxCollisionDetector and a LineSegmentAndBoxCollisionDetector. I might even realize that I should have a BoxAndBoxCollisionDetector and a LineSegmentAndLineSegmentCollisionDetector. And, when I add new objects that can collide I would need to add even more of these. But, they all have a Collides method, so everything I learned about abstraction is telling me, "Make an interface." public interface CollisionDetector { public void Collides(Spatial s1, Spatial s2); } But now I have a function that only detects some abstract class or interface that is used by Point, LineSegment, Box, etc.. So if I did this then each implementation would have to to a type check to make sure that the types are the appropriate type because the collision algorithm is different for each different type match up. Another solution could be this: public class CollisionDetector { public void Collides(Point p, LineSegment s) { ... } public void Collides(LineSegment s, Box b) { ... } public void Collides(Point p, Box b) { ... } // ... } But, this could end up being a huge class that seems unwieldy, although it would have simplicity in that it is only a bunch of Collide methods. This is similar to C#'s Convert class. Which is nice because it is large, but it is simple to understand how it works. This seems to be the better solution, but I thought I should open it for discussion as a wiki to get other opinions.

    Read the article

  • Refactoring and Open / Closed principle

    - by Giorgio
    I have recently being reading a web site about clean code development (I do not put a link here because it is not in English). One of the principles advertised by this site is the Open Closed Principle: each software component should be open for extension and closed for modification. E.g., when we have implemented and tested a class, we should only modify it to fix bugs or to add new functionality (e.g. new methods that do not influence the existing ones). The existing functionality and implementation should not be changed. I normally apply this principle by defining an interface I and a corresponding implementation class A. When class A has become stable (implemented and tested), I normally do not modify it too much (possibly, not at all), i.e. If new requirements arrive (e.g. performance, or a totally new implementation of the interface) that require big changes to the code, I write a new implementation B, and keep using A as long as B is not mature. When B is mature, all that is needed is to change how I is instantiated. If the new requirements suggest a change to the interface as well, I define a new interface I' and a new implementation A'. So I, A are frozen and remain the implementation for the production system as long as I' and A' are not stable enough to replace them. So, in view of these observation, I was a bit surprised that the web page then suggested the use of complex refactorings, "... because it is not possible to write code directly in its final form." Isn't there a contradiction / conflict between enforcing the Open / Closed Principle and suggesting the use of complex refactorings as a best practice? Or the idea here is that one can use complex refactorings during the development of a class A, but when that class has been tested successfully it should be frozen?

    Read the article

  • Confusion about inheritance

    - by Samuel Adam
    I know I might get downvoted for this, but I'm really curious. I was taught that inheritance is a very powerful polymorphism tool, but I can't seem to use it well in real cases. So far, I can only use inheritance when the base class is an abstract class. Examples : If we're talking about Product and Inventory, I quickly assumed that a Product is an Inventory because a Product must be inventorized as well. But a problem occured when user wanted to sell their Inventory item. It just doesn't seem to be right to change an Inventory object to it's subtype (Product), it's almost like trying to convert a parent to it's child. Another case is Customer and Member. It is logical (at least for me) to think that a Member is a Customer with some more privileges. Same problem occurred when user wanted to upgrade an existing Customer to become a Member. A very trivial case is the Employee case. Where Manager, Clerk, etc can be derived from Employee. Still, the same upgrading issue. I tried to use composition instead for some cases, but I really wanted to know if I'm missing something for inheritance solution here. My composition solution for those cases : Create a reference of Inventory inside a Product. Here I'm making an assumption about that Product and Inventory is talking in a different context. While Product is in the context of sales (price, volume, discount, etc), Inventory is in the context of physical management (stock, movement, etc). Make a reference of Membership instead inside Customer class instead of previous inheritance solution. Therefor upgrading a Customer is only about instantiating the Customer's Membership property. This example is keep being taught in basic programming classes, but I think it's more proper to have those Manager, Clerk, etc derived from an abstract Role class and make it a property in Employee. I found it difficult to find an example of a concrete class deriving from another concrete class. Is there any inheritance solution in which I can solve those cases? Being new in this OOP thing, I really really need a guidance. Thanks!

    Read the article

  • Confused about implementing Single Responsibility Principle

    - by HichemSeeSharp
    Please bear with me if the question looks not well structured. To put you in the context of my issue: I am building an application that invoices vehicles stay duration in a parking. In addition to the stay service there are some other services. Each service has its own calculation logic. Here is an illustration (please correct me if the design is wrong): public abstract class Service { public int Id { get; set; } public bool IsActivated { get; set; } public string Name { get; set } public decimal Price { get; set; } } public class VehicleService : Service { //MTM : many to many public virtual ICollection<MTMVehicleService> Vehicles { get; set; } } public class StayService : VehicleService { } public class Vehicle { public int Id { get; set; } public string ChassisNumber { get; set; } public DateTime? EntryDate { get; set; } public DateTime? DeliveryDate { get; set; } //... public virtual ICollection<MTMVehicleService> Services{ get; set; } } Now, I am focusing on the stay service as an example: I would like to know at invoicing time which class(es) would be responsible for generating the invoice item for the service and for each vehicle? This should calculate the duration cost knowing that the duration could be invoiced partially so the like is as follows: not yet invoiced stay days * stay price per day. At this moment I have InvoiceItemsGenerator do everything but I am aware that there is a better design.

    Read the article

  • OData &ndash; The easiest service I can create

    - by Jon Dalberg
    I wanted to create an OData service with the least amount of code so I fired up Visual Studio and got cracking. I decided to serve up a list of naughty words and make them read-only. Create a new web project. I created an empty MVC 2 application but MVC is not required for OData. Add a new WCF Data Service to the project. I named mine NastyWords.svc since I’m serving up a list of nasty words. Add a class to expose via the service: NastyWord 1: [DataServiceKey("Word")] 2: public class NastyWord 3: { 4: public string Word { get; set; } 5: }   I need to be able to uniquely identify instances of NastyWords for the DataService so I used the DataServiceKey attribute with the “Word” property as the key. I could have added an “ID” property which would have uniquely identified them and would then not need the “DataServiceKey” attribute because the DataService would apply some reflection and heuristics to guess at which property would be the unique identifier. However, the words themselves are unique so adding an “ID” property would be redundantly repetitive. Then I created a data source to expose my NastyWord objects to the service. This is just a simple class with IQueryable<T> properties exposing the entities for my service: 1: public class NastyWordsDataSource 2: { 3: private static IList<NastyWord> words = new List<NastyWord> 4: { 5: new NastyWord{ Word="crap"}, 6: new NastyWord{ Word="darn"}, 7: new NastyWord{ Word="hell"}, 8: new NastyWord{ Word="shucks"} 9: }; 10:   11: public NastyWordsDataSource() 12: { 13: NastyWords = words.AsQueryable(); 14: } 15:   16: public IQueryable<NastyWord> NastyWords { get; private set; } 17: }   Now I can go to the NastyWords.svc class and tell it which data source to use and which entities to expose: 1: public class NastyWords : DataService<NastyWordsDataSource> 2: { 3: // This method is called only once to initialize service-wide policies. 4: public static void InitializeService(DataServiceConfiguration config) 5: { 6: config.SetEntitySetAccessRule("*", EntitySetRights.AllRead); 7: config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; 8: } 9: }   Compile and browse to my NastWords.svc and weep with joy Now I can query my service just like any other OData service. Next time, I’ll modify this service to allow updates to sent so I can build up my list of nasty words. Enjoy!

    Read the article

  • Augmenting functionality of subclasses without code duplication in C++

    - by Rob W
    I have to add common functionality to some classes that share the same superclass, preferably without bloating the superclass. The simplified inheritance chain looks like this: Element -> HTMLElement -> HTMLAnchorElement Element -> SVGElement -> SVGAlement The default doSomething() method on Element is no-op by default, but there are some subclasses that need an actual implementation that requires some extra overridden methods and instance members. I cannot put a full implementation of doSomething() in Element because 1) it is only relevant for some of the subclasses, 2) its implementation has a performance impact and 3) it depends on a method that could be overridden by a class in the inheritance chain between the superclass and a subclass, e.g. SVGElement in my example. Especially because of the third point, I wanted to solve the problem using a template class, as follows (it is a kind of decorator for classes): struct Element { virtual void doSomething() {} }; // T should be an instance of Element template<class T> struct AugmentedElement : public T { // doSomething is expensive and uses T virtual void doSomething() override {} // Used by doSomething virtual bool shouldDoSomething() = 0; }; class SVGElement : public Element { /* ... */ }; class SVGAElement : public AugmentedElement<SVGElement> { // some non-trivial check bool shouldDoSomething() { /* ... */ return true; } }; // Similarly for HTMLAElement and others I looked around (in the existing (huge) codebase and on the internet), but didn't find any similar code snippets, let alone an evaluation of the effectiveness and pitfalls of this approach. Is my design the right way to go, or is there a better way to add common functionality to some subclasses of a given superclass?

    Read the article

  • Fixed Sized Buffer or Variable Buffers with C# Sockets

    - by Keagan Ladds
    I am busy designing a TCP Server class in C# that has events and allows the user of the class to define packets that the server can send a receive by registering a class that is derived from my "GenericPacket" class. My TCPListener uses Async methods such as .BeginReceive(..); My issue is that because I am using the .BeginReceive(); I need to specify a buffer size when I call the function. This means I cant read the whole packet if one of my defined packets is too big. I have thought of creating a fixed sized Header that gets read using .BeginRead(); and the read the rest using Stream.Read(); but this will lead to the whole server having to wait for this operation to complete. I would like to know if anyone has come across this before and I would appreciate any suggestions.

    Read the article

  • Group method parameter or individual parameter?

    - by Nassign
    I would like to ask on method parameters design consideration. I am usually deciding between using individual variables as parameters versus grouping them to a class or dictionary as one parameter. Is there such a rule when you should use individual parameter against using a class or a dictionary to group the parameter? Individual parameter - Straight forward, strongly typed Dictionary parameter - Very extensible, like HTTP request but cannot be strongly typed. Class parameter - Extensible by adding member to the class parameter, strongly typed. I am looking for a design reference on when to use which? Note: I am not sure if this question is valid in programmers but I definitely think it would be closed in stackoverflow, If it is still not valid, please point me to the proper page.

    Read the article

  • Designing a plug-in system

    - by madflame991
    I'm working on a Java project and I would like to add a plug-in system. More precisely, I would like to let the user design his own module, pack it into a jar, leave it in a "plugins/" subfolder of my application and be done with it. I've managed to get a child classloader to instantiate objects of classes located in external jars, but now I'm facing a design dilemma: Say Joe makes a plug-in and he packs it in joeplugin.jar. I would really like Joe to have a class named "instantiation.Factory" and I would also like everyone to have this class with this exact location and name. (This factory class obviously implements a interface that I provide and through it I get what I want from the plug-in.) If Joe wouldn't be restricted in this way I would have to look into his entire jar for some class that implements my factory interface and I don't want to imagine how complicated things get. So my question is: should I enforce a strict naming convention for this single class? I have no idea how plug-in systems work.

    Read the article

  • Spring + JSR 303 Validation group is ignored [closed]

    - by nsideras
    we have a simple bean with JSR annotations public class CustomerDTO { private static final long serialVersionUID = 1L; private Integer id; @NotEmpty(message = "{customer.firstname.empty}") private String firstName; @NotEmpty(message = "{customer.lastname.empty}") private String lastName; @NotEmpty(groups={PasswordChange.class}, message="{password.empty}") private String password; @NotEmpty(groups={PasswordChange.class}, message="{confirmation.password.empty}") private String password2; } and we have a Spring Controller @RequestMapping(value="/changePassword", method = RequestMethod.POST) public String changePassword(@Validated({ PasswordChange.class }) @ModelAttribute("customerdto") CustomerDTO customerDTO, BindingResult result, Locale locale) { logger.debug("Change Password was submitted with information: " + customerDTO.toString()); try { passwordStrengthPolicy.checkPasswordStrength(locale, customerDTO.getPassword()); if (result.hasErrors()) { return "changePassword"; } logger.debug("Calling customer service changePassword: " + customerDTO); customerOnlineNewService.changePassword(customerDTO); } catch (PasswordNotChangedException e) { logger.error("Could not change password PasswordNotChangedException: " + customerDTO.toString()); return "changePassword"; } catch (PasswordNotSecureException e) { return "changePassword"; } return createRedirectViewPath("changePassword"); } Our problem is that when changePassword is invoked the validator ignores the group(PasswordChange.class) and validates only firstName and lastName which are not in the group. Any idea? Thank you very much for your time.

    Read the article

  • Web Services Example - Part 2: Programmatic

    - by Denis T
    In this edition of the ADF Mobile blog we'll tackle part 2 of our Web Service examples.  In this posting we'll take a look at using a SOAP Web Service but calling it programmatically in code and parsing the return into a bean. Getting the sample code: Just click here to download a zip of the entire project.  You can unzip it and load it into JDeveloper and deploy it either to iOS or Android.  Please follow the previous blog posts if you need help getting JDeveloper or ADF Mobile installed.  Note: This is a different workspace than WS-Part1 Defining our Web Service: Just like our first installment, we are using the same public weather forecast web service provided free by CDYNE Corporation.  Sometimes this service goes down so please ensure you know it's up before reporting this example isn't working. We're going to concentrate on the same two web service methods, GetCityForecastByZIP and GetWeatherInformation. Defing the Application: The application setup is identical to the Weather1 version.  There are some improvements to the data that is displayed as part of this example though.  Now we are able to show the associated image along with each forecast line when using the Forecast By Zip feature.  We've also added the temperature Hi/Low values into the UI. Summary of Fundamental Changes In This Application The most fundamental change is that we're binding the UI to the Bean Data Controls instead of directly to the Web Service Data Controls.  This gives us much more flexibility to control the shape of the data and allows us to do caching of the data outside of the Web Service.  This way if your application is, say offline, your bean could still populate with data from a local cache and still show you some UI as opposed to completely failing because you don't have any connectivity. In general we promote this type of programming technique with ADF Mobile to insulate your application from any issues with network connectivity. What's different with this example? We have setup the Web Service DC the same way but now we have managed beans to process the data.  The following classes define the "Model" of our application:  CityInformation-CityForecast-Forecast, WeatherInformation-WeatherDescription.  We use WeatherBean for UI interaction to the model layer.  If you look through this example, we don't really do that much with the java code except use it to grab the image URL from the weather description.  In a more realistic example, you might be using some JDBC classes to persist the data to a local database. To have a good architecture it is always good to keep your model and UI layers separate.  This gets muddied if you start to use bindings on a page invoked from Java code and this java code starts to become your "model" layer.  Since bindings are page specific, your model layer starts to become entwined with your UI.  Not good!  To help with this, we've added some utility functions that let you invoke DC methods without having a binding and thus execute methods from your "model" layer without requiring a binding in your page definition.  We do this with the invokeDataControlMethod of the AdfmfJavaUtilities class.  An example of this method call is available in line 95 of WeatherInformation.java and line 93 of CityInformation.Java. What's a GenericType? Because Web Service Data Controls (and also URL Data Controls AKA REST) use generic name/value pairs to define their structure and don't have strongly typed objects, these are actually stored internally as GenericType objects.  The GenericType class is simply a property map of name/value pairs that can be hierarchical.  There are methods like getAttribute where you supply the index of the attribute or it's string property name.  Why is this important to know?  Because invokeDataControlMethod returns GenericType objects and developers either need to parse these GenericType objects themselves or use one of our helper functions. GenericTypeBeanSerializationHelper This class does exactly what it's name implies.  It's a helper class for developers to aid in serialization of GenericTypes to/from java objects.  This is extremely handy if you have a large GenericType object with many attributes (or you're just lazy like me!) and you just want to parse it out into a real java object you can use more easily.  Here you would use the fromGenericType method.  This method takes the class of the Java object you wish to return and the GenericType as parameters.  The method then parses through each attribute in the GenericType and uses reflection to set that same attribute in the Java class.  Then the method returns that new object of the class you specified.  This is obviously very handy to avoid a lot of shuffling code between GenericType and your own Java classes.  The reverse method, toGenericType is also available when you want to go the other way.  In this case you supply the string that represents the package location in the DataControl definition (Example: "MyDC.myParams.MyCollection") and then pass in the Java object you have that holds the data and a GenericType is returned to you.  Again, it will use reflection to calculate the attributes that match between the java class and the GenericType and call the getters/setters on those. Issues and Possible Improvements: In the next installment we'll show you how to make your web service calls asynchronously so your UI will fill dynamically when the service call returns but in the meantime you show the data you have locally in your bean fed from some local cache.  This gives your users instant delivery of some data while you fetch other data in the background.

    Read the article

  • Name user object and user table correctly

    - by Marc
    It's maybe simple but I think about this every time I build a new application. How do you name the class for the current user of the application and for the orm class of the user table? Usually I have something like CurrentUser: Logged-in user, stored in session, info for last activity etc User: ORM Class (C# EF CodeFirst, but it doesn't matter) And yes, they could have the same name in different namespaces, but I don't really like that.

    Read the article

  • How do I separate codes with classes?

    - by Trycon
    I have this main class: package javagame; import org.newdawn.slick.GameContainer; import org.newdawn.slick.Graphics; import org.newdawn.slick.SlickException; import org.newdawn.slick.state.BasicGameState; import org.newdawn.slick.state.StateBasedGame; public class tests extends BasicGameState{ public boolean render=false; tests1 test = new tests1(); public tests(int test) { // TODO Auto-generated constructor stub } @Override public void init(GameContainer arg0, StateBasedGame arg1) throws SlickException { // TODO Auto-generated method stub } @Override public void render(GameContainer arg0, StateBasedGame arg1, Graphics g) throws SlickException { // TODO Auto-generated method stub if(render==true) { g.drawString("Hello",100,100); } } @Override public void update(GameContainer gc, StateBasedGame s, int delta) throws SlickException { // TODO Auto-generated method stub test.render=render; test.update(gc, s, delta); } @Override public int getID() { // TODO Auto-generated method stub return 1000; } } and its sub-class: package javagame; import org.newdawn.slick.GameContainer; import org.newdawn.slick.Input; import org.newdawn.slick.state.StateBasedGame; public class tests1 { public boolean render; public void update(GameContainer gc, StateBasedGame s, int delta) { Input input = gc.getInput(); if(input.isKeyPressed(Input.KEY_X)) { render=true; } } } I was finding a way to prevent many codes in one class. I'm new to java. When I try running my game, then when I press X, it does not work. How am I suppose to fix that?

    Read the article

  • Using Unity – Part 4

    - by nmarun
    In this part, I’ll be discussing about constructor and property or setter injection. I’ve created a new class – Product3: 1: public class Product3 : IProduct 2: { 3: public string Name { get; set; } 4: [Dependency] 5: public IDistributor Distributor { get; set; } 6: public ILogger Logger { get; set; } 7:  8: public Product3(ILogger logger) 9: { 10: Logger = logger; 11: Name = "Product 1"; 12: } 13:  14: public string WriteProductDetails() 15: { 16: StringBuilder productDetails = new StringBuilder(); 17: productDetails.AppendFormat("{0}<br/>", Name); 18: productDetails.AppendFormat("{0}<br/>", Logger.WriteLog()); 19: productDetails.AppendFormat("{0}<br/>", Distributor.WriteDistributorDetails()); 20: return productDetails.ToString(); 21: } 22: } This version has a property of type IDistributor and takes a constructor parameter of type ILogger. The IDistributor property has a Dependency attribute (Microsoft.Practices.Unity namespace) applied to it. IDistributor and its implementation are shown below: 1: public interface IDistributor 2: { 3: string WriteDistributorDetails(); 4: } 5:  6: public class Distributor : IDistributor 7: { 8: public List<string> DistributorNames = new List<string>(); 9:  10: public Distributor() 11: { 12: DistributorNames.Add("Distributor1"); 13: DistributorNames.Add("Distributor2"); 14: DistributorNames.Add("Distributor3"); 15: DistributorNames.Add("Distributor4"); 16: } 17: public string WriteDistributorDetails() 18: { 19: StringBuilder distributors = new StringBuilder(); 20: for (int i = 0; i < DistributorNames.Count; i++) 21: { 22: distributors.AppendFormat("{0}<br/>", DistributorNames[i]); 23: } 24: return distributors.ToString(); 25: } 26: } ILogger and the FileLogger have the following definition: 1: public interface ILogger 2: { 3: string WriteLog(); 4: } 5:  6: public class FileLogger : ILogger 7: { 8: public string WriteLog() 9: { 10: return string.Format("Type: {0}", GetType()); 11: } 12: } The Unity container creates an instance of the dependent class (the Distributor class) within the scope of the target object (an instance of Product3 class that will be called by doing a Resolve<IProduct>() in the calling code) and assign this dependent object to the attributed property of the target object. To add to it, property injection is a form of optional injection of dependent objects.The dependent object instance is generated before the container returns the target object. Unlike constructor injection, you must apply the appropriate attribute in the target class to initiate property injection. Let’s see how to change the config file to make this work. The first step is to add all the type aliases: 1: <typeAlias alias="Product3" type="ProductModel.Product3, ProductModel"/> 2: <typeAlias alias="ILogger" type="ProductModel.ILogger, ProductModel"/> 3: <typeAlias alias="FileLogger" type="ProductModel.FileLogger, ProductModel"/> 4: <typeAlias alias="IDistributor" type="ProductModel.IDistributor, ProductModel"/> 5: <typeAlias alias="Distributor" type="ProductModel.Distributor, ProductModel"/> Now define mappings for these aliases: 1: <type type="ILogger" mapTo="FileLogger" /> 2: <type type="IDistributor" mapTo="Distributor" /> Next step is to define the constructor and property injection in the config file: 1: <type type="IProduct" mapTo="Product3" name="ComplexProduct"> 2: <typeConfig extensionType="Microsoft.Practices.Unity.Configuration.TypeInjectionElement, Microsoft.Practices.Unity.Configuration"> 3: <constructor> 4: <param name="logger" parameterType="ILogger" /> 5: </constructor> 6: <property name="Distributor" propertyType="IDistributor"> 7: <dependency /> 8: </property> 9: </typeConfig> 10: </type> There you see a constructor element that tells there’s a property named ‘logger’ that is of type ILogger. By default, the type of ILogger gets resolved to type FileLogger. There’s also a property named ‘Distributor’ which is of type IDistributor and which will get resolved to type Distributor. On the calling side, I’ve added a new button, whose click event does the following: 1: protected void InjectionButton_Click(object sender, EventArgs e) 2: { 3: unityContainer.RegisterType<IProduct, Product3>(); 4: IProduct product3 = unityContainer.Resolve<IProduct>(); 5: productDetailsLabel.Text = product3.WriteProductDetails(); 6: } This renders the following output: This completes the part for constructor and property injection. In the next blog, I’ll talk about Arrays and Generics. Please see the code used here.

    Read the article

  • Do you leverage the benefits of the open-closed principle?

    - by Kaleb Pederson
    The open-closed principle (OCP) states that an object should be open for extension but closed for modification. I believe I understand it and use it in conjunction with SRP to create classes that do only one thing. And, I try to create many small methods that make it possible to extract out all the behavior controls into methods that may be extended or overridden in some subclass. Thus, I end up with classes that have many extension points, be it through: dependency injection and composition, events, delegation, etc. Consider the following a simple, extendable class: class PaycheckCalculator { // ... protected decimal GetOvertimeFactor() { return 2.0M; } } Now say, for example, that the OvertimeFactor changes to 1.5. Since the above class was designed to be extended, I can easily subclass and return a different OvertimeFactor. But... despite the class being designed for extension and adhering to OCP, I'll modify the single method in question, rather than subclassing and overridding the method in question and then re-wiring my objects in my IoC container. As a result I've violated part of what OCP attempts to accomplish. It feels like I'm just being lazy because the above is a bit easier. Am I misunderstanding OCP? Should I really be doing something different? Do you leverage the benefits of OCP differently? Update: based on the answers it looks like this contrived example is a poor one for a number of different reasons. The main intent of the example was to demonstrate that the class was designed to be extended by providing methods that when overridden would alter the behavior of public methods without the need for changing internal or private code. Still, I definitely misunderstood OCP.

    Read the article

  • how should I design Objects around this business requirement?

    - by brainydexter
    This is the business requirement: " A Holiday Package (e.g. New York NY Holiday Package) can be offered in different ways based on the Origin city: From New Delhi to NY From Bombay to NY NY itself ( Land package ) (Bold implies default selection) a. and b. User can fly from either New Delhi or Bombay to NY. c. NY is a Land package, where a user can reach NY by himself and is a standalone holidayPackage. " Let's say I have a class that represents HolidayPackage, Destination (aka City). public class HolidayPackage{ Destination holidayCity; ArrayList<BaseHolidayPackageVariant> variants; BaseHolidayPackageVariant defaultVariant; } public abstract class BaseHolidayPackageVariant { private Integer variantId; private HolidayPackage holidayPackage; private String holidayPackageType; } public class LandHolidayPackageVariant extends BaseHolidayPackageVariant{ } public class FlightHolidayPackageVariant extends BaseHolidayPackageVariant{ private Destination originCity; } What data structure/objects should I design to support: options a default within those options Sidenote: A HolidayPackage can also be offered in different ways based on Hotel selections. I'd like to follow a design which I can leverage to support that use case in the future. This is the backend design I have in mind.

    Read the article

  • Object oriented wrapper around a dll

    - by Tom Davies
    So, I'm writing a C# managed wrapper around a native dll. The dll contains several hundred functions. In most cases, the first argument to each function is an opaque handle to a type internal to the dll. So, an obvious starting point for defining some classes in the wrapper would be to define classes corresponding to each of these opaque types, with each instance holding and managing the opaque handle (passed to its constructor) Things are a little awkward when dealing with callbacks from the dll. Naturally, the callback handlers in my wrapper have to be static, but the callbacks arguments invariable contain an opaque handle. In order to get from the static callback back to an object instance, I've created a static dictionary in each class, associating handles with class instances. In the constructor of each class, an entry is put into the dictionary, and this entry is then removed in the Destructors. When I receive a callback, I can then consult the dictionary to retrieve the class instance corresponding to the opaque reference. Are there any obvious flaws to this? Something that seems to be a problem is that the existence static dictionary means that the garbage collector will not act on my class instances that are otherwise unreachable. As they are never garbage collected, they never get removed from the dictionary, so the dictionary grows. It seems I might have to manually dispose of my objects, which is something absolutely would like to avoid. Can anyone suggest a good design that allows me to avoid having to do this?

    Read the article

  • jQuery open and close nested ul nav depending on location

    - by firefusion
    I'm making a sub nav in wordpress and have a nested list style menu. An example of the HTML is below. Whichever is the current item has the li class "current_page_item". I need all child menus collapsed unless there is a current_page_item class on the parent or one of the children. <ul> <li class="current_page_item"><a href="#">Parent Item</a> <ul class="children"> <li><a href="#">Child page</a></li> <li><a href="#">Child page</a></li> <li><a href="#">Child page</a></li> <li><a href="#">Child page</a></li> </ul> </li> <li><a href="#">Parent Item</a> <ul class="children"> <li><a href="#">Child page</a></li> <li><a href="#">Child page</a></li> </ul> </li> <li><a href="#">Parent Item</a> <ul class="children"> <li><a href="#">Child page</a></li> <li><a href="#">Child page</a></li> </ul> </li> <li><a href="#">Parent Item</a></li> <li><a href="#">Parent Item</a></li> </ul> This so far, which works but i wonder if it can be improved as there is some flashing open and then closed again.... jQuery('ul.children').slideUp(); jQuery('li.current_page_item ul.children').slideDown('medium'); jQuery('li.current_page_item').parent().slideDown('medium');

    Read the article

  • I need help installing Ubuntu 11.10 to multi-drive system

    - by CookyMonzta
    I have a machine with 3 hard drives; the primary, which is 750GB (drive 0), and 2 others, each of which is 640GB (drives 1 and 2). On the last screen before the actual installation begins, this is how my hard drive configuration looks: /dev/sda [DISK0, 750GB] /dev/sda1 ntfs 104MB [Win7 System Reserved] /dev/sda2 ntfs 499,997MB [Windows 7 Pro] free space 250,052MB [This space intended for Windows 8] /dev/sdb [DISK1, 640GB] /dev/sdb1 ntfs 400,085MB [Windows XP Pro] free space 240,049MB [This space intended for Ubuntu] /dev/sdc [DISK2, 640GB] [This drive intended for various backups] free space 160,033MB /dev/sdc5 ntfs 480,101MB [Acronis Secure Zone] As you can see, I have 3 drives, all SATA. I have Win7 on my first drive (0), WinXP on my second drive (1) and a secure zone for daily backups on my third drive (2). I want to put Ubuntu 11.10 Oneiric Ocelot on the drive that also has XP. I've already used 400GB for XP and I have 240GB remaining, for which, my intention was to create a 4GB swap file and use the rest for Ubuntu itself. This is what my second hard drive looked like, for my intended setup before installation: /dev/sdb /dev/sdb5 swap 4,095MB [Linux swap] /dev/sdb6 ext4 235,951MB [Ubuntu 11.10] Needless to say, this is only the second time I have attempted to install Linux. I managed to get 7.10 Gutsy Gibbon working on an old machine. I have two problems with this installation: Ubuntu asks for a location to install the boot loader (i.e., "Device for Boot Loader Installation"). I already have a boot loader; namely, Acronis OS Selector (from Acronis Disk Director 11). So I decided to put the Ubuntu boot loader in /dev/sdb6 (where I intend to install Ubuntu), to keep it from interfering with my Acronis OS Selector. Once I hit "Install now", I ended up with the following error: "No root file system is defined. Please correct this from the partitioning menu." What am I missing? Did I attempt to put the boot loader in the wrong place? I assume I did, because as I am writing this entry, I am looking at LinuxIdentity.com's Ubuntu 11.04 Natty Narwhal magazine, and I see a screenshot (Figure 7 on Page 13) that implies that the boot loader can be installed anywhere, including the first hard drive (in the MBR, which would obviously force me to reinstall the Acronis OS Selector) or even on a floppy. But why do I get an undefined root file system error? I thought /dev/sdb6 was the root file. Obviously I'm missing something in the installation procedure. Should I try installing it in Windows using the WUBI Installer? I assume that, if I attempt to install Ubuntu from WinXP (on the second drive), it will automatically install Ubuntu on the empty partition alongside XP. But will I have the option of creating a swap partition? And what if the WUBI Installer searches all of my drives and decides to install Ubuntu on my first drive's empty partition (which I have left empty for Win8 upon its release)?

    Read the article

  • Annotation Processor for Superclass Sensitive Actions

    - by Geertjan
    Someone creating superclass sensitive actions should need to specify only the following things: The condition under which the popup menu item should be available, i.e., the condition under which the action is relevant. And, for superclass sensitive actions, the condition is the name of a superclass. I.e., if I'm creating an action that should only be invokable if the class implements "org.openide.windows.TopComponent",  then that fully qualified name is the condition. The position in the list of Java class popup menus where the new menu item should be found, relative to the existing menu items. The display name. The path to the action folder where the new action is registered in the Central Registry. The code that should be executed when the action is invoked. In other words, the code for the enablement (which, in this case, means the visibility of the popup menu item when you right-click on the Java class) should be handled generically, under the hood, and not every time all over again in each action that needs this special kind of enablement. So, here's the usage of my newly created @SuperclassBasedActionAnnotation, where you should note that the DataObject must be in the Lookup, since the action will only be available to be invoked when you right-click on a Java source file (i.e., text/x-java) in an explorer view: import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import org.netbeans.sbas.annotations.SuperclassBasedActionAnnotation; import org.openide.awt.StatusDisplayer; import org.openide.loaders.DataObject; import org.openide.util.NbBundle; import org.openide.util.Utilities; @SuperclassBasedActionAnnotation( position=30, displayName="#CTL_BrandTopComponentAction", path="File", type="org.openide.windows.TopComponent") @NbBundle.Messages("CTL_BrandTopComponentAction=Brand") public class BrandTopComponentAction implements ActionListener { private final DataObject context; public BrandTopComponentAction() { context = Utilities.actionsGlobalContext().lookup(DataObject.class); } @Override public void actionPerformed(ActionEvent ev) { String message = context.getPrimaryFile().getPath(); StatusDisplayer.getDefault().setStatusText(message); } } That implies I've created (in a separate module to where it is used) a new annotation. Here's the definition: package org.netbeans.sbas.annotations; import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target; @Retention(RetentionPolicy.SOURCE) @Target(ElementType.TYPE) public @interface SuperclassBasedActionAnnotation { String type(); String path(); int position(); String displayName(); } And here's the processor: package org.netbeans.sbas.annotations; import java.util.Set; import javax.annotation.processing.Processor; import javax.annotation.processing.RoundEnvironment; import javax.annotation.processing.SupportedAnnotationTypes; import javax.annotation.processing.SupportedSourceVersion; import javax.lang.model.SourceVersion; import javax.lang.model.element.Element; import javax.lang.model.element.TypeElement; import javax.lang.model.util.Elements; import org.openide.filesystems.annotations.LayerBuilder.File; import org.openide.filesystems.annotations.LayerGeneratingProcessor; import org.openide.filesystems.annotations.LayerGenerationException; import org.openide.util.lookup.ServiceProvider; @ServiceProvider(service = Processor.class) @SupportedAnnotationTypes("org.netbeans.sbas.annotations.SuperclassBasedActionAnnotation") @SupportedSourceVersion(SourceVersion.RELEASE_6) public class SuperclassBasedActionProcessor extends LayerGeneratingProcessor { @Override protected boolean handleProcess(Set annotations, RoundEnvironment roundEnv) throws LayerGenerationException { Elements elements = processingEnv.getElementUtils(); for (Element e : roundEnv.getElementsAnnotatedWith(SuperclassBasedActionAnnotation.class)) { TypeElement clazz = (TypeElement) e; SuperclassBasedActionAnnotation mpm = clazz.getAnnotation(SuperclassBasedActionAnnotation.class); String teName = elements.getBinaryName(clazz).toString(); String originalFile = "Actions/" + mpm.path() + "/" + teName.replace('.', '-') + ".instance"; File actionFile = layer(e).file( originalFile). bundlevalue("displayName", mpm.displayName()). methodvalue("instanceCreate", "org.netbeans.sbas.annotations.SuperclassSensitiveAction", "create"). stringvalue("type", mpm.type()). newvalue("delegate", teName); actionFile.write(); File javaPopupFile = layer(e).file( "Loaders/text/x-java/Actions/" + teName.replace('.', '-') + ".shadow"). stringvalue("originalFile", originalFile). intvalue("position", mpm.position()); javaPopupFile.write(); } return true; } } The "SuperclassSensitiveAction" referred to in the code above is unchanged from how I had it in yesterday's blog entry. When I build the module containing two action listeners that use my new annotation, the generated layer file looks as follows, which is identical to the layer file entries I hard coded yesterday: <folder name="Actions"> <folder name="File"> <file name="org-netbeans-sbas-impl-ActionListenerSensitiveAction.instance"> <attr name="displayName" stringvalue="Process Action Listener"/> <attr methodvalue="org.netbeans.sbas.annotations.SuperclassSensitiveAction.create" name="instanceCreate"/> <attr name="type" stringvalue="java.awt.event.ActionListener"/> <attr name="delegate" newvalue="org.netbeans.sbas.impl.ActionListenerSensitiveAction"/> </file> <file name="org-netbeans-sbas-impl-BrandTopComponentAction.instance"> <attr bundlevalue="org.netbeans.sbas.impl.Bundle#CTL_BrandTopComponentAction" name="displayName"/> <attr methodvalue="org.netbeans.sbas.annotations.SuperclassSensitiveAction.create" name="instanceCreate"/> <attr name="type" stringvalue="org.openide.windows.TopComponent"/> <attr name="delegate" newvalue="org.netbeans.sbas.impl.BrandTopComponentAction"/> </file> </folder> </folder> <folder name="Loaders"> <folder name="text"> <folder name="x-java"> <folder name="Actions"> <file name="org-netbeans-sbas-impl-ActionListenerSensitiveAction.shadow"> <attr name="originalFile" stringvalue="Actions/File/org-netbeans-sbas-impl-ActionListenerSensitiveAction.instance"/> <attr intvalue="10" name="position"/> </file> <file name="org-netbeans-sbas-impl-BrandTopComponentAction.shadow"> <attr name="originalFile" stringvalue="Actions/File/org-netbeans-sbas-impl-BrandTopComponentAction.instance"/> <attr intvalue="30" name="position"/> </file> </folder> </folder> </folder> </folder>

    Read the article

  • Thunderbird cant open due to GLiB Error

    - by Elli
    i recently updated Lubuntu to 13.10 and now after some days Thunderbird stopped working. It just won't open. When i try to open it with the terminal i get the following text: user@user-rechner:~$ thunderbird (process:6231): GLib-CRITICAL **: g_slice_set_config: assertion 'sys_page_size == 0' failed (thunderbird:6231): GLib-GObject-WARNING **: Attempt to add property GnomeProgram::sm-connect after class was initialised (thunderbird:6231): GLib-GObject-WARNING **: Attempt to add property GnomeProgram::show-crash-dialog after class was initialised (thunderbird:6231): GLib-GObject-WARNING **: Attempt to add property GnomeProgram::display after class was initialised (thunderbird:6231): GLib-GObject-WARNING **: Attempt to add property GnomeProgram::default-icon after class was initialised GNOME-Tastaturkürzel-Verzeichnis »/home/user/.gnome2/accels« konnte nicht angelegt werden: Keine Berechtigung (Translation: gnome shortcut-directory could not be created - no permission) Now i reinstalled it once, deleted this .thunderbird folder in my home directory and it still won't work. I hope someone can help me. Thanks.

    Read the article

< Previous Page | 312 313 314 315 316 317 318 319 320 321 322 323  | Next Page >