Search Results

Search found 36719 results on 1469 pages for 'value chain'.

Page 316/1469 | < Previous Page | 312 313 314 315 316 317 318 319 320 321 322 323  | Next Page >

  • When should one use "out" parameters?

    - by qegal
    In Objective-C, there are several methods like initWithContentsOfFile:encoding:error: where one passes in a reference to an NSError object for the error: parameter. In this example, the value of the NSError object passed in can change based on what goes on at runtime when the method is being called and whether the body of the method was executed in a certain way successfully. In a way I think of this NSError object as sort of like a second return value from the method, and only differs from an object anObject in the statement return anObject; in that when this statement is called, execution leaves the method. So my question is, not only in the context of error handling in Objective-C, but in general, when should one use an "out" parameter in place of returning said value in a return statement?

    Read the article

  • Oracle Fusion Middleware on YouTube

    - by Michelle Kimihira
    Now, you can watch Fusion Middleware videos on YouTube (Channel = OracleFusionMiddle). Today, we are featuring 2 customer interviews with Amit Zavery, VP of Product Management, Oracle Fusion Middleware: UL achives exponential growth using Oracle Engineered Systems Boeing transforms their supply chain process using Oracle Business Process Management Check it out today! Additional Information Product Information on Oracle.com: Oracle Fusion Middleware Follow us on Twitter and Facebook Subscribe to our regular Fusion Middleware Newsletter

    Read the article

  • Custom page sizes in paging dropdown in Telerik RadGrid

    Working with Telerik RadControls for ASP.NET AJAX is actually quite easy and the initial effort to get started with the control suite is very low. Meaning that you can easily get good result with little time. But there are usually cases where you have to go a little further and dig a little bit deeper than the standard scenarios. In this article I am going to describe how you can customize the default values (10, 20 and 50) of the drop-down list in the paging element of RadGrid. Get control over the displayed page sizes while using numeric paging... The default page sizes are good but not always good enough The paging feature in RadGrid offers you 3, well actually 4, possible page sizes in the drop-down element out-of-the box, which are 10, 20 or 50 items. You can get a fourth option by specifying a value different than the three standards for the PageSize attribute, ie. 35 or 100. The drawback in that case is that it is the initial page size. Certainly, the available choices could be more flexible or even a little bit more intelligent. For example, by taking the total count of records into consideration. There are some interesting scenarios that would justify a customized page size element: A low number of records, like 14 or similar shouldn't provide a page size of 50, A high total count of records (ie: 300+) should offer more choices, ie: 100, 200, 500, or display of all records regardless of number of records I am sure that you might have your own requirements, and I hope that the following source code snippets might be helpful. Wiring the ItemCreated event In order to adjust and manipulate the existing RadComboBox in the paging element we have to handle the OnItemCreated event of RadGrid. Simply specify your code behind method in the attribute of the RadGrid tag, like so: <telerik:RadGrid ID="RadGridLive" runat="server" AllowPaging="true" PageSize="20"    AllowSorting="true" AutoGenerateColumns="false" OnNeedDataSource="RadGridLive_NeedDataSource"    OnItemDataBound="RadGrid_ItemDataBound" OnItemCreated="RadGrid_ItemCreated">    <ClientSettings EnableRowHoverStyle="true">        <ClientEvents OnRowCreated="RowCreated" OnRowSelected="RowSelected" />        <Resizing AllowColumnResize="True" AllowRowResize="false" ResizeGridOnColumnResize="false"            ClipCellContentOnResize="true" EnableRealTimeResize="false" AllowResizeToFit="true" />        <Scrolling AllowScroll="true" ScrollHeight="360px" UseStaticHeaders="true" SaveScrollPosition="true" />        <Selecting AllowRowSelect="true" />    </ClientSettings>    <MasterTableView DataKeyNames="AdvertID">        <PagerStyle AlwaysVisible="true" Mode="NextPrevAndNumeric" />        <Columns>            <telerik:GridBoundColumn HeaderText="Listing ID" DataField="AdvertID" DataType="System.Int32"                SortExpression="AdvertID" UniqueName="AdvertID">                <HeaderStyle Width="66px" />            </telerik:GridBoundColumn>             <!--//  ... and some more columns ... -->         </Columns>    </MasterTableView></telerik:RadGrid> To provide a consistent experience for your visitors it might be helpful to display the page size selection always. This is done by setting the AlwaysVisible attribute of the PagerStyle element to true, like highlighted above. Customize the values of page size Your delegate method for the ItemCreated event should look like this: protected void RadGrid_ItemCreated(object sender, GridItemEventArgs e){    if (e.Item is GridPagerItem)    {        var dropDown = (RadComboBox)e.Item.FindControl("PageSizeComboBox");        var totalCount = ((GridPagerItem)e.Item).Paging.DataSourceCount;        var sizes = new Dictionary<string, string>() {            {"10", "10"},            {"20", "20"},            {"50", "50"}        };        if (totalCount > 100)        {            sizes.Add("100", "100");        }        if (totalCount > 200)        {            sizes.Add("200", "200");        }        sizes.Add("All", totalCount.ToString());        dropDown.Items.Clear();        foreach (var size in sizes)        {            var cboItem = new RadComboBoxItem() { Text = size.Key, Value = size.Value };            cboItem.Attributes.Add("ownerTableViewId", e.Item.OwnerTableView.ClientID);            dropDown.Items.Add(cboItem);        }        dropDown.FindItemByValue(e.Item.OwnerTableView.PageSize.ToString()).Selected = true;    }} It is important that we explicitly check the event arguments for GridPagerItem as it is the control that contains the PageSizeComboBox control that we want to manipulate. To keep the actual modification and exposure of possible page size values flexible I am filling a Dictionary with the requested 'key/value'-pairs based on the number of total records displayed in the grid. As a final step, ensure that the previously selected value is the active one using the FindItemByValue() method. Of course, there might be different requirements but I hope that the snippet above provide a first insight into customized page size value in Telerik's Grid. The Grid demos describe a more advanced approach to customize the Pager.

    Read the article

  • Array manipulation in gsettings' set command

    - by Daniel
    Is there an easy way to do array manipulation in gsettings? I am comparing gsettings to OS X's defaults command that offers the defaults domain --array key overwrite-value and defaults domain --array-add key added-value interface for manipulating arrays. As far as I can tell there is only gsettings set domain key "['overwrite-value']" available to gsettings. Not really pretty for when you want to add or remove one entry from an array. I have seen a suggestion that allow me to add to an array, but I would rather use a interface if there is one.

    Read the article

  • StringBuffer behavior in LWJGL

    - by Michael Oberlin
    Okay, I've been programming in Java for about ten years, but am entirely new to LWJGL. I have a specific problem whilst attempting to create a text console. I have built a class meant to abstract input polling to it, which (in theory) captures key presses from the Keyboard object and appends them to a StringBuilder/StringBuffer, then retrieves the completed string after receiving the ENTER key. The problem is, after I trigger the String return (currently with ESCAPE), and attempt to print it to System.out, I consistently get a blank line. I can get an appropriate string length, and I can even sample a single character out of it and get complete accuracy, but it never prints the actual string. I could swear that LWJGL slipped some kind of thread-safety trick in while I wasn't looking. Here's my code: static volatile StringBuffer command = new StringBuffer(); @Override public void chain(InputPoller poller) { this.chain = poller; } @Override public synchronized void poll() { //basic testing for modifier keys, to be used later on boolean shift = false, alt = false, control = false, superkey = false; if(Keyboard.isKeyDown(Keyboard.KEY_LSHIFT) || Keyboard.isKeyDown(Keyboard.KEY_RSHIFT)) shift = true; if(Keyboard.isKeyDown(Keyboard.KEY_LMENU) || Keyboard.isKeyDown(Keyboard.KEY_RMENU)) alt = true; if(Keyboard.isKeyDown(Keyboard.KEY_LCONTROL) || Keyboard.isKeyDown(Keyboard.KEY_RCONTROL)) control = true; if(Keyboard.isKeyDown(Keyboard.KEY_LMETA) || Keyboard.isKeyDown(Keyboard.KEY_RMETA)) superkey = true; while(Keyboard.next()) if(Keyboard.getEventKeyState()) { command.append(Keyboard.getEventCharacter()); } if (Framework.isConsoleEnabled() && Keyboard.isKeyDown(Keyboard.KEY_ESCAPE)) { System.out.println("Escape down"); System.out.println(command.length() + " characters polled"); //works System.out.println(command.toString().length()); //works System.out.println(command.toString().charAt(4)); //works System.out.println(command.toString().toCharArray()); //blank line! System.out.println(command.toString()); //blank line! Framework.disableConsole(); } //TODO: Add command construction and console management after that } } Maybe the answer's obvious and I'm just feeling tired, but I need to walk away from this for a while. If anyone sees the issue, please let me know. This machine is running the latest release of Java 7 on Ubuntu 12.04, Mate desktop environment. Many thanks.

    Read the article

  • YouTube fullscreen not displaying

    - by pt2ph8
    For some reason YouTube videos in my website do not get the fullscreen button, even if I added the parameter allowFullScreen set to true both in the object and embed tag. Here's an example page: http://www.indievault.it/2011/11/09/indie-vault-alla-games-week-2011-online-la-video-gallery/ Just take a quick look at the source. The allowFullScreen param is there, but the button won't show. Here's an excerpt from the code in that page: <object width="540" height="325"><param name="movie" value="http://www.youtube.com/v/dvYQhJwwkgA"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="http://www.youtube.com/v/dvYQhJwwkgA" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="540" height="325"></embed </object>

    Read the article

  • Mysql query does not update row [closed]

    - by Gerculy Robert
    // Connect to server and select database. mysql_connect("$host", "$username", "$password")or die("cannot connect"); mysql_select_db("$db_name")or die("cannot select DB"); // get value of id that sent from address bar /*$id=$_GET['$usrid'];*/ // Retrieve data from database $sql="SELECT * FROM user WHERE id='$usrid'"; $result=mysql_query($sql); $rows=mysql_fetch_array($result); ?> <table width="400" border="0" cellspacing="1" cellpadding="0"> <tr> <form name="form1" method="post" action="update.php"> <td> <table width="100%" border="0" cellspacing="1" cellpadding="0"> <tr> <td>&nbsp;</td> <td colspan="3"><strong>Update site info</strong> </td> </tr> <tr> <td align="center">&nbsp;</td> <td align="center">&nbsp;</td> <td align="center">&nbsp;</td> <td align="center">&nbsp;</td> </tr> <tr> <td align="center">&nbsp;</td> <td align="center"><strong>User Name</strong></td> <td align="center"><strong>Site url</strong></td> <td align="center"><strong>Url banner</strong></td> </tr> <tr> <td>&nbsp;</td> <td align="center"> <input name="username" type="text" id="username" value="<? echo $rows['username']; ?>"> </td> <td align="center"> <input name="siteurl" type="text" id="siteurl" value="<? echo $rows['siteurl']; ?>" size="40"> </td> <td> <input name="urlbanner" type="text" id="urlbanner" value="<? echo $rows['urlbanner']; ?>" size="40"> </td> </tr> <tr> <td>&nbsp;</td> <td> <input name="id" type="hidden" id="id" value="<? echo $rows['id']; ?>"> </td> <td align="center"> <input type="submit" name="Submit" value="Submit"> </td> <td>&nbsp;</td> </tr> </table> </td> </form> </tr> </table> <?php // close connection mysql_close(); ?> // Connect to server and select database. mysql_connect("$host", "$username", "$password")or die("cannot connect"); mysql_select_db("$db_name")or die("cannot select DB"); // update data in mysql database $sql="update user SET siteurl='$siteurl', username='$username', urlbanner='$urlbanner' WHERE id=$usrid"; $result=mysql_query($sql); // if successfully updated. if($result){ echo "Successful"; echo "<BR>"; echo "<a href='edit.php'>View result</a>"; } else { echo "ERROR"; } Hello, I have this two pages wich should update 3 rows. The problem is it does not update all , only 2 . I tried over 1 hour to find the problem but nothing. The row , siteurl, is not being updated at all . The table is : varchar(255) Database and session is ok. Any idea ? It's just a simple update code , should work fine :(

    Read the article

  • DRY, string, and unit testing

    - by Rodrigue
    I have a recurring question when writing unit tests for code that involves constant string values. Let's take an example of a method/function that does some processing and returns a string containing a pre-defined constant. In python, that would be something like: STRING_TEMPLATE = "/some/constant/string/with/%s/that/needs/interpolation/" def process(some_param): # We do some meaningful work that gives us a value result = _some_meaningful_action() return STRING_TEMPLATE % result If I want to unit test process, one of my tests will check the return value. This is where I wonder what the best solution is. In my unit test, I can: apply DRY and use the already defined constant repeat myself and rewrite the entire string def test_foo_should_return_correct_url(): string_result = process() # Applying DRY and using the already defined constant assert STRING_TEMPLATE % "1234" == string_result # Repeating myself, repeating myself assert "/some/constant/string/with/1234/that/needs/interpolation/" == url The advantage I see in the former is that my test will break if I put the wrong string value in my constant. The inconvenient is that I may be rewriting the same string over and over again across different unit tests.

    Read the article

  • Protect Your Brand with Oracle Pedigree and Serialization Manager in R12.1.3

    The pharmaceutical industry is facing new challenges as counterfeit products enter the ethical drug supply chain. Companies need to better secure the movement of their branded products from manufacturing to distribution to the end customer to insure proper efficacy. Pharmaceuticals are of special targets to "knock-offs", non-authorized generics as pirated-products enter the market. Oracle Pedigree and Serialization Manager (OPSM) helps firms' better track and control their products through a unique monitoring process.

    Read the article

  • Thuzi, Outback and Azure: Tapping the Power of Facebook and the Cloud

    So you've decided to leverage social media with an application you hope will go viral. Are you prepared to log signups at a rate of 20 per minute, 1,200 per hour and 670,000 in five weeks? Can you handle 50,000 signups in one day? Here's how the Outback Steakhouse restaurant chain, in cahoots with Florida ISV Thuzi and Windows Azure, turned a free appetizer offer into a Bloomin' success--and how others are following suit.

    Read the article

  • Enterprise Planning - Part 2

    Today's networked and fast-changing economy challenges traditional spreadsheets and department-oriented planning mechanisms. To be competitive, effective planning needs to connect the organizational value chain in an integrated manner. In this podcast hear about how Oracle's Enterprise Business Planning solutions are enabling organizations to link their strategic, financial, and operational plans to achieve both vertical and horizontal alignment.

    Read the article

  • What's the difference between set, export and env and when should I use each?

    - by Oli
    Every so often I'll bash out a bash script and it strikes me there are a few ways of setting a variable: key=value env key=value export key=value When you're inside a script or a single command (for instance, I'll often chain a variable with a Wine launcher to set the right Wine prefix) these seem to be completely interchangeable but surely that can't be the case. What's the difference between these three methods and can you give me an example of when I would specifically want to use each one? Definitely related to What is the difference between `VAR=...` and `export VAR=...`? but I want to know how env fits into this too, and some examples showing the benefits of each would be nice too :)

    Read the article

  • Exploring TCP throughput with DTrace (2)

    - by user12820842
    Last time, I described how we can use the overlap in distributions of unacknowledged byte counts and send window to determine whether the peer's receive window may be too small, limiting throughput. Let's combine that comparison with a comparison of congestion window and slow start threshold, all on a per-port/per-client basis. This will help us Identify whether the congestion window or the receive window are limiting factors on throughput by comparing the distributions of congestion window and send window values to the distribution of outstanding (unacked) bytes. This will allow us to get a visual sense for how often we are thwarted in our attempts to fill the pipe due to congestion control versus the peer not being able to receive any more data. Identify whether slow start or congestion avoidance predominate by comparing the overlap in the congestion window and slow start distributions. If the slow start threshold distribution overlaps with the congestion window, we know that we have switched between slow start and congestion avoidance, possibly multiple times. Identify whether the peer's receive window is too small by comparing the distribution of outstanding unacked bytes with the send window distribution (i.e. the peer's receive window). I discussed this here. # dtrace -s tcp_window.d dtrace: script 'tcp_window.d' matched 10 probes ^C cwnd 80 10.175.96.92 value ------------- Distribution ------------- count 1024 | 0 2048 | 4 4096 | 6 8192 | 18 16384 | 36 32768 |@ 79 65536 |@ 155 131072 |@ 199 262144 |@@@ 400 524288 |@@@@@@ 798 1048576 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 3848 2097152 | 0 ssthresh 80 10.175.96.92 value ------------- Distribution ------------- count 268435456 | 0 536870912 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 5543 1073741824 | 0 unacked 80 10.175.96.92 value ------------- Distribution ------------- count -1 | 0 0 | 1 1 | 0 2 | 0 4 | 0 8 | 0 16 | 0 32 | 0 64 | 0 128 | 0 256 | 3 512 | 0 1024 | 0 2048 | 4 4096 | 9 8192 | 21 16384 | 36 32768 |@ 78 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 5391 131072 | 0 swnd 80 10.175.96.92 value ------------- Distribution ------------- count 32768 | 0 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 5543 131072 | 0 Here we are observing a large file transfer via http on the webserver. Comparing these distributions, we can observe: That slow start congestion control is in operation. The distribution of congestion window values lies below the range of slow start threshold values (which are in the 536870912+ range), so the connection is in slow start mode. Both the unacked byte count and the send window values peak in the 65536-131071 range, but the send window value distribution is narrower. This tells us that the peer TCP's receive window is not closing. The congestion window distribution peaks in the 1048576 - 2097152 range while the receive window distribution is confined to the 65536-131071 range. Since the cwnd distribution ranges as low as 2048-4095, we can see that for some of the time we have been observing the connection, congestion control has been a limiting factor on transfer, but for the majority of the time the receive window of the peer would more likely have been the limiting factor. However, we know the window has never closed as the distribution of swnd values stays within the 65536-131071 range. So all in all we have a connection that has been mildly constrained by congestion control, but for the bulk of the time we have been observing it neither congestion or peer receive window have limited throughput. Here's the script: #!/usr/sbin/dtrace -s tcp:::send / (args[4]-tcp_flags & (TH_SYN|TH_RST|TH_FIN)) == 0 / { @cwnd["cwnd", args[4]-tcp_sport, args[2]-ip_daddr] = quantize(args[3]-tcps_cwnd); @ssthresh["ssthresh", args[4]-tcp_sport, args[2]-ip_daddr] = quantize(args[3]-tcps_cwnd_ssthresh); @unacked["unacked", args[4]-tcp_sport, args[2]-ip_daddr] = quantize(args[3]-tcps_snxt - args[3]-tcps_suna); @swnd["swnd", args[4]-tcp_sport, args[2]-ip_daddr] = quantize((args[4]-tcp_window)*(1 tcps_snd_ws)); } One surprise here is that slow start is still in operation - one would assume that for a large file transfer, acknowledgements would push the congestion window up past the slow start threshold over time. The slow start threshold is in fact still close to it's initial (very high) value, so that would suggest we have not experienced any congestion (the slow start threshold is adjusted when congestion occurs). Also, the above measurements were taken early in the connection lifetime, so the congestion window did not get a changes to get bumped up to the level of the slow start threshold. A good strategy when examining these sorts of measurements for a given service (such as a webserver) would be start by examining the distributions above aggregated by port number only to get an overall feel for service performance, i.e. is congestion control or peer receive window size an issue, or are we unconstrained to fill the pipe? From there, the overlap of distributions will tell us whether to drill down into specific clients. For example if the send window distribution has multiple peaks, we may want to examine if particular clients show issues with their receive window.

    Read the article

  • How to write basic matrix using row and column differently

    - by kounabg
    #include<stdio.h> #include<conio.h> int main() { int a[3][3],i,j; for(i=0;i<3;i++) {printf("enter the value of row A: ",a[i]); scanf("%d",& a[i]);} for(i=0;i<3;i++) {printf("enter the value of row B: ",a[i]); scanf("%d",& a[i]);} for(i=0;i<3;i++) {printf("enter the value of row C: ",a[i]); scanf("%d",& a[i]);} } ***I did this. I want to convert it into matrix and how can I do it?

    Read the article

  • Tourism SEO

    Internet marketing of tourism products gives businesses access to a worldwide audience of potential customers. Any business involved in tourism can benefit from a comprehensive internet marketing strategy, whether it is an international lodging chain, a single Bed & Breakfast, a worldwide travel planning company, a manufacturer of luggage, or a local museum operator.

    Read the article

  • URL Rewrite – Multiple domains under one site. Part II

    - by OWScott
    I believe I have it … I’ve been meaning to put together the ultimate outgoing rule for hosting multiple domains under one site.  I finally sat down this week and setup a few test cases, and created one rule to rule them all.  In Part I of this two part series, I covered the incoming rule necessary to host a site in a subfolder of a website, while making it appear as if it’s in the root of the site.  Part II won’t work without applying Part I first, so if you haven’t read it, I encourage you to read it now. However, the incoming rule by itself doesn’t address everything.  Here’s the problem … Let’s say that we host www.site2.com in a subfolder called site2, off of masterdomain.com.  This is the same example I used in Part I.   Using an incoming rewrite rule, we are able to make a request to www.site2.com even though the site is really in the /site2 folder.  The gotcha comes with any type of path that ASP.NET generates (I’m sure other scripting technologies could do the same too).  ASP.NET thinks that the path to the root of the site is /site2, but the URL is /.  See the issue?  If ASP.NET generates a path or a redirect for us, it will always add /site2 to the URL.  That results in a path that looks something like www.site2.com/site2.  In Part I, I mentioned that you should add a condition where “{PATH_INFO} ‘does not match’ /site2”.  That allows www.site2.com/site2 and www.site2.com to both function the same.  This allows the site to always work, but if you want to hide /site2 in the URL, you need to take it one step further. One way to address this is in your code.  Ultimately this is the best bet.  Ruslan Yakushev has a great article on a few considerations that you can address in code.  I recommend giving that serious consideration.  Additionally, if you have upgraded to ASP.NET 3.5 SP1 or greater, it takes care of some of the references automatically for you. However, what if you inherit an existing application?  Or you can’t easily go through your existing site and make the code changes?  If this applies to you, read on. That’s where URL Rewrite 2.0 comes in.  With URL Rewrite 2.0, you can create an outgoing rule that will remove the /site2 before the page is sent back to the user.  This means that you can take an existing application, host it in a subfolder of your site, and ensure that the URL never reveals that it’s in a subfolder. Performance Considerations Performance overhead is something to be mindful of.  These outbound rules aren’t simply changing the server variables.  The first rule I’ll cover below needs to parse the HTML body and pull out the path (i.e. /site2) on the way through.  This will add overhead, possibly significant if you have large pages and a busy site.  In other words, your mileage may vary and you may need to test to see the impact that these rules have.  Don’t worry too much though.  For many sites, the performance impact is negligible. So, how do we do it? Creating the Outgoing Rule There are really two things to keep in mind.  First, ASP.NET applications frequently generate a URL that adds the /site2 back into the URL.  In addition to URLs, they can be in form elements, img elements and the like.  The goal is to find all of those situations and rewrite it on the way out.  Let’s call this the ‘URL problem’. Second, and similarly, ASP.NET can send a LOCATION redirect that causes a redirect back to another page.  Again, ASP.NET isn’t aware of the different URL and it will add the /site2 to the redirect.  Form Authentication is a good example on when this occurs.  Try to password protect a site running from a subfolder using forms auth and you’ll quickly find that the URL becomes www.site2.com/site2 again.  Let’s term this the ‘redirect problem’. Solving the URL Problem – Outgoing Rule #1 Let’s create a rule that removes the /site2 from any URL.  We want to remove it from relative URLs like /site2/something, or absolute URLs like http://www.site2.com/site2/something.  Most URLs that ASP.NET creates will be relative URLs, but I figure that there may be some applications that piece together a full URL, so we might as well expect that situation. Let’s get started.  First, create a new outbound rule.  You can create the rule within the /site2 folder which will reduce the performance impact of the rule.  Just a reminder that incoming rules for this situation won’t work in a subfolder … but outgoing rules will. Give it a name that makes sense to you, for example “Outgoing – URL paths”. Precondition.  If you place the rule in the subfolder, it will only run for that site and folder, so there isn’t need for a precondition.  Run it for all requests.  If you place it in the root of the site, you may want to create a precondition for HTTP_HOST = ^(www\.)?site2\.com$. For the Match section, there are a few things to consider.  For performance reasons, it’s best to match the least amount of elements that you need to accomplish the task.  For my test cases, I just needed to rewrite the <a /> tag, but you may need to rewrite any number of HTML elements.  Note that as long as you have the exclude /site2 rule in your incoming rule as I described in Part I, some elements that don’t show their URL—like your images—will work without removing the /site2 from them.  That reduces the processing needed for this rule. Leave the “matching scope” at “Response” and choose the elements that you want to change. Set the pattern to “^(?:site2|(.*//[_a-zA-Z0-9-\.]*)?/site2)(.*)”.  Make sure to replace ‘site2’ with your subfolder name in both places.  Yes, I realize this is a pretty messy looking rule, but it handles a few situations.  This rule will handle the following situations correctly: Original Rewritten using {R:1}{R:2} http://www.site2.com/site2/default.aspx http://www.site2.com/default.aspx http://www.site2.com/folder1/site2/default.aspx Won’t rewrite since it’s a sub-sub folder /site2/default.aspx /default.aspx site2/default.aspx /default.aspx /folder1/site2/default.aspx Won’t rewrite since it’s a sub-sub folder. For the conditions section, you can leave that be. Finally, for the rule, set the Action Type to “Rewrite” and set the Value to “{R:1}{R:2}”.  The {R:1} and {R:2} are back references to the sections within parentheses.  In other words, in http://domain.com/site2/something, {R:1} will be http://domain.com and {R:2} will be /something. If you view your rule from your web.config file (or applicationHost.config if it’s a global rule), it should look like this: <rule name="Outgoing - URL paths" enabled="true"> <match filterByTags="A" pattern="^(?:site2|(.*//[_a-zA-Z0-9-\.]*)?/site2)(.*)" /> <action type="Rewrite" value="{R:1}{R:2}" /> </rule> Solving the Redirect Problem Outgoing Rule #2 The second issue that we can run into is with a client-side redirect.  This is triggered by a LOCATION response header that is sent to the client.  Forms authentication is a common example.  To reproduce this, password protect your subfolder and watch how it redirects and adds the subfolder path back in. Notice in my test case the extra paths: http://site2.com/site2/login.aspx?ReturnUrl=%2fsite2%2fdefault.aspx I want to remove /site2 from both the URL and the ReturnUrl querystring value.  For semi-readability, let’s do this in 2 separate rules, one for the URL and one for the querystring. Create a second rule.  As with the previous rule, it can be created in the /site2 subfolder.  In the URL Rewrite wizard, select Outbound rules –> “Blank Rule”. Fill in the following information: Name response_location URL Precondition Don’t set Match: Matching Scope Server Variable Match: Variable Name RESPONSE_LOCATION Match: Pattern ^(?:site2|(.*//[_a-zA-Z0-9-\.]*)?/site2)(.*) Conditions Don’t set Action Type Rewrite Action Properties {R:1}{R:2} It should end up like so: <rule name="response_location URL"> <match serverVariable="RESPONSE_LOCATION" pattern="^(?:site2|(.*//[_a-zA-Z0-9-\.]*)?/site2)(.*)" /> <action type="Rewrite" value="{R:1}{R:2}" /> </rule> Outgoing Rule #3 Outgoing Rule #2 only takes care of the URL path, and not the querystring path.  Let’s create one final rule to take care of the path in the querystring to ensure that ReturnUrl=%2fsite2%2fdefault.aspx gets rewritten to ReturnUrl=%2fdefault.aspx. The %2f is the HTML encoding for forward slash (/). Create a rule like the previous one, but with the following settings: Name response_location querystring Precondition Don’t set Match: Matching Scope Server Variable Match: Variable Name RESPONSE_LOCATION Match: Pattern (.*)%2fsite2(.*) Conditions Don’t set Action Type Rewrite Action Properties {R:1}{R:2} The config should look like this: <rule name="response_location querystring"> <match serverVariable="RESPONSE_LOCATION" pattern="(.*)%2fsite2(.*)" /> <action type="Rewrite" value="{R:1}{R:2}" /> </rule> It’s possible to squeeze the last two rules into one, but it gets kind of confusing so I felt that it’s better to show it as two separate rules. Summary With the rules covered in these two parts, we’re able to have a site in a subfolder and make it appear as if it’s in the root of the site.  Not only that, we can overcome automatic redirecting that is caused by ASP.NET, other scripting technologies, and especially existing applications. Following is an example of the incoming and outgoing rules necessary for a site called www.site2.com hosted in a subfolder called /site2.  Remember that the outgoing rules can be placed in the /site2 folder instead of the in the root of the site. <rewrite> <rules> <rule name="site2.com in a subfolder" enabled="true" stopProcessing="true"> <match url=".*" /> <conditions logicalGrouping="MatchAll" trackAllCaptures="false"> <add input="{HTTP_HOST}" pattern="^(www\.)?site2\.com$" /> <add input="{PATH_INFO}" pattern="^/site2($|/)" negate="true" /> </conditions> <action type="Rewrite" url="/site2/{R:0}" /> </rule> </rules> <outboundRules> <rule name="Outgoing - URL paths" enabled="true"> <match filterByTags="A" pattern="^(?:site2|(.*//[_a-zA-Z0-9-\.]*)?/site2)(.*)" /> <action type="Rewrite" value="{R:1}{R:2}" /> </rule> <rule name="response_location URL"> <match serverVariable="RESPONSE_LOCATION" pattern="^(?:site2|(.*//[_a-zA-Z0-9-\.]*)?/site2)(.*)" /> <action type="Rewrite" value="{R:1}{R:2}" /> </rule> <rule name="response_location querystring"> <match serverVariable="RESPONSE_LOCATION" pattern="(.*)%2fsite2(.*)" /> <action type="Rewrite" value="{R:1}{R:2}" /> </rule> </outboundRules> </rewrite> If you run into any situations that aren’t caught by these rules, please let me know so I can update this to be as complete as possible. Happy URL Rewriting!

    Read the article

  • Passing multiple POST parameters to Web API Controller Methods

    - by Rick Strahl
    ASP.NET Web API introduces a new API for creating REST APIs and making AJAX callbacks to the server. This new API provides a host of new great functionality that unifies many of the features of many of the various AJAX/REST APIs that Microsoft created before it - ASP.NET AJAX, WCF REST specifically - and combines them into a whole more consistent API. Web API addresses many of the concerns that developers had with these older APIs, namely that it was very difficult to build consistent REST style resource APIs easily. While Web API provides many new features and makes many scenarios much easier, a lot of the focus has been on making it easier to build REST compliant APIs that are focused on resource based solutions and HTTP verbs. But  RPC style calls that are common with AJAX callbacks in Web applications, have gotten a lot less focus and there are a few scenarios that are not that obvious, especially if you're expecting Web API to provide functionality similar to ASP.NET AJAX style AJAX callbacks. RPC vs. 'Proper' REST RPC style HTTP calls mimic calling a method with parameters and returning a result. Rather than mapping explicit server side resources or 'nouns' RPC calls tend simply map a server side operation, passing in parameters and receiving a typed result where parameters and result values are marshaled over HTTP. Typically RPC calls - like SOAP calls - tend to always be POST operations rather than following HTTP conventions and using the GET/POST/PUT/DELETE etc. verbs to implicitly determine what operation needs to be fired. RPC might not be considered 'cool' anymore, but for typical private AJAX backend operations of a Web site I'd wager that a large percentage of use cases of Web API will fall towards RPC style calls rather than 'proper' REST style APIs. Web applications that have needs for things like live validation against data, filling data based on user inputs, handling small UI updates often don't lend themselves very well to limited HTTP verb usage. It might not be what the cool kids do, but I don't see RPC calls getting replaced by proper REST APIs any time soon.  Proper REST has its place - for 'real' API scenarios that manage and publish/share resources, but for more transactional operations RPC seems a better choice and much easier to implement than trying to shoehorn a boatload of endpoint methods into a few HTTP verbs. In any case Web API does a good job of providing both RPC abstraction as well as the HTTP Verb/REST abstraction. RPC works well out of the box, but there are some differences especially if you're coming from ASP.NET AJAX service or WCF Rest when it comes to multiple parameters. Action Routing for RPC Style Calls If you've looked at Web API demos you've probably seen a bunch of examples of how to create HTTP Verb based routing endpoints. Verb based routing essentially maps a controller and then uses HTTP verbs to map the methods that are called in response to HTTP requests. This works great for resource APIs but doesn't work so well when you have many operational methods in a single controller. HTTP Verb routing is limited to the few HTTP verbs available (plus separate method signatures) and - worse than that - you can't easily extend the controller with custom routes or action routing beyond that. Thankfully Web API also supports Action based routing which allows you create RPC style endpoints fairly easily:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumApi", action = "GetAblums" } ); This uses traditional MVC style {action} method routing which is different from the HTTP verb based routing you might have read a bunch about in conjunction with Web API. Action based routing like above lets you specify an end point method in a Web API controller either via the {action} parameter in the route string or via a default value for custom routes. Using routing you can pass multiple parameters either on the route itself or pass parameters on the query string, via ModelBinding or content value binding. For most common scenarios this actually works very well. As long as you are passing either a single complex type via a POST operation, or multiple simple types via query string or POST buffer, there's no issue. But if you need to pass multiple parameters as was easily done with WCF REST or ASP.NET AJAX things are not so obvious. Web API has no issue allowing for single parameter like this:[HttpPost] public string PostAlbum(Album album) { return String.Format("{0} {1:d}", album.AlbumName, album.Entered); } There are actually two ways to call this endpoint: albums/PostAlbum Using the Model Binder with plain POST values In this mechanism you're sending plain urlencoded POST values to the server which the ModelBinder then maps the parameter. Each property value is matched to each matching POST value. This works similar to the way that MVC's  ModelBinder works. Here's how you can POST using the ModelBinder and jQuery:$.ajax( { url: "albums/PostAlbum", type: "POST", data: { AlbumName: "Dirty Deeds", Entered: "5/1/2012" }, success: function (result) { alert(result); }, error: function (xhr, status, p3, p4) { var err = "Error " + " " + status + " " + p3; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); Here's what the POST data looks like for this request: The model binder and it's straight form based POST mechanism is great for posting data directly from HTML pages to model objects. It avoids having to do manual conversions for many operations and is a great boon for AJAX callback requests. Using Web API JSON Formatter The other option is to post data using a JSON string. The process for this is similar except that you create a JavaScript object and serialize it to JSON first.album = { AlbumName: "PowerAge", Entered: new Date(1977,0,1) } $.ajax( { url: "albums/PostAlbum", type: "POST", contentType: "application/json", data: JSON.stringify(album), success: function (result) { alert(result); } }); Here the data is sent using a JSON object rather than form data and the data is JSON encoded over the wire. The trace reveals that the data is sent using plain JSON (Source above), which is a little more efficient since there's no UrlEncoding that occurs. BTW, notice that WebAPI automatically deals with the date. I provided the date as a plain string, rather than a JavaScript date value and the Formatter and ModelBinder both automatically map the date propertly to the Entered DateTime property of the Album object. Passing multiple Parameters to a Web API Controller Single parameters work fine in either of these RPC scenarios and that's to be expected. ModelBinding always works against a single object because it maps a model. But what happens when you want to pass multiple parameters? Consider an API Controller method that has a signature like the following:[HttpPost] public string PostAlbum(Album album, string userToken) Here I'm asking to pass two objects to an RPC method. Is that possible? This used to be fairly straight forward either with WCF REST and ASP.NET AJAX ASMX services, but as far as I can tell this is not directly possible using a POST operation with WebAPI. There a few workarounds that you can use to make this work: Use both POST *and* QueryString Parameters in Conjunction If you have both complex and simple parameters, you can pass simple parameters on the query string. The above would actually work with: /album/PostAlbum?userToken=sekkritt but that's not always possible. In this example it might not be a good idea to pass a user token on the query string though. It also won't work if you need to pass multiple complex objects, since query string values do not support complex type mapping. They only work with simple types. Use a single Object that wraps the two Parameters If you go by service based architecture guidelines every service method should always pass and return a single value only. The input should wrap potentially multiple input parameters and the output should convey status as well as provide the result value. You typically have a xxxRequest and a xxxResponse class that wraps the inputs and outputs. Here's what this method might look like:public PostAlbumResponse PostAlbum(PostAlbumRequest request) { var album = request.Album; var userToken = request.UserToken; return new PostAlbumResponse() { IsSuccess = true, Result = String.Format("{0} {1:d} {2}", album.AlbumName, album.Entered,userToken) }; } with these support types:public class PostAlbumRequest { public Album Album { get; set; } public User User { get; set; } public string UserToken { get; set; } } public class PostAlbumResponse { public string Result { get; set; } public bool IsSuccess { get; set; } public string ErrorMessage { get; set; } }   To call this method you now have to assemble these objects on the client and send it up as JSON:var album = { AlbumName: "PowerAge", Entered: "1/1/1977" } var user = { Name: "Rick" } var userToken = "sekkritt"; $.ajax( { url: "samples/PostAlbum", type: "POST", contentType: "application/json", data: JSON.stringify({ Album: album, User: user, UserToken: userToken }), success: function (result) { alert(result.Result); } }); I assemble the individual types first and then combine them in the data: property of the $.ajax() call into the actual object passed to the server, that mimics the structure of PostAlbumRequest server class that has Album, User and UserToken properties. This works well enough but it gets tedious if you have to create Request and Response types for each method signature. If you have common parameters that are always passed (like you always pass an album or usertoken) you might be able to abstract this to use a single object that gets reused for all methods, but this gets confusing too: Overload a single 'parameter' too much and it becomes a nightmare to decipher what your method actual can use. Use JObject to parse multiple Property Values out of an Object If you recall, ASP.NET AJAX and WCF REST used a 'wrapper' object to make default AJAX calls. Rather than directly calling a service you always passed an object which contained properties for each parameter: { parm1: Value, parm2: Value2 } WCF REST/ASP.NET AJAX would then parse this top level property values and map them to the parameters of the endpoint method. This automatic type wrapping functionality is no longer available directly in Web API, but since Web API now uses JSON.NET for it's JSON serializer you can actually simulate that behavior with a little extra code. You can use the JObject class to receive a dynamic JSON result and then using the dynamic cast of JObject to walk through the child objects and even parse them into strongly typed objects. Here's how to do this on the API Controller end:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } This is clearly not as nice as having the parameters passed directly, but it works to allow you to pass multiple parameters and access them using Web API. JObject is JSON.NET's generic object container which sports a nice dynamic interface that allows you to walk through the object's properties using standard 'dot' object syntax. All you have to do is cast the object to dynamic to get access to the property interface of the JSON type. Additionally JObject also allows you to parse JObject instances into strongly typed objects, which enables us here to retrieve the two objects passed as parameters from this jquery code:var album = { AlbumName: "PowerAge", Entered: "1/1/1977" } var user = { Name: "Rick" } var userToken = "sekkritt"; $.ajax( { url: "samples/PostAlbum", type: "POST", contentType: "application/json", data: JSON.stringify({ Album: album, User: user, UserToken: userToken }), success: function (result) { alert(result); } }); Summary ASP.NET Web API brings many new features and many advantages over the older Microsoft AJAX and REST APIs, but realize that some things like passing multiple strongly typed object parameters will work a bit differently. It's not insurmountable, but just knowing what options are available to simulate this behavior is good to know. Now let me say here that it's probably not a good practice to pass a bunch of parameters to an API call. Ideally APIs should be closely factored to accept single parameters or a single content parameter at least along with some identifier parameters that can be passed on the querystring. But saying that doesn't mean that occasionally you don't run into a situation where you have the need to pass several objects to the server and all three of the options I mentioned might have merit in different situations. For now I'm sure the question of how to pass multiple parameters will come up quite a bit from people migrating WCF REST or ASP.NET AJAX code to Web API. At least there are options available to make it work.© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • C#/.NET Little Wonders: The Joy of Anonymous Types

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. In the .NET 3 Framework, Microsoft introduced the concept of anonymous types, which provide a way to create a quick, compiler-generated types at the point of instantiation.  These may seem trivial, but are very handy for concisely creating lightweight, strongly-typed objects containing only read-only properties that can be used within a given scope. Creating an Anonymous Type In short, an anonymous type is a reference type that derives directly from object and is defined by its set of properties base on their names, number, types, and order given at initialization.  In addition to just holding these properties, it is also given appropriate overridden implementations for Equals() and GetHashCode() that take into account all of the properties to correctly perform property comparisons and hashing.  Also overridden is an implementation of ToString() which makes it easy to display the contents of an anonymous type instance in a fairly concise manner. To construct an anonymous type instance, you use basically the same initialization syntax as with a regular type.  So, for example, if we wanted to create an anonymous type to represent a particular point, we could do this: 1: var point = new { X = 13, Y = 7 }; Note the similarity between anonymous type initialization and regular initialization.  The main difference is that the compiler generates the type name and the properties (as readonly) based on the names and order provided, and inferring their types from the expressions they are assigned to. It is key to remember that all of those factors (number, names, types, order of properties) determine the anonymous type.  This is important, because while these two instances share the same anonymous type: 1: // same names, types, and order 2: var point1 = new { X = 13, Y = 7 }; 3: var point2 = new { X = 5, Y = 0 }; These similar ones do not: 1: var point3 = new { Y = 3, X = 5 }; // different order 2: var point4 = new { X = 3, Y = 5.0 }; // different type for Y 3: var point5 = new {MyX = 3, MyY = 5 }; // different names 4: var point6 = new { X = 1, Y = 2, Z = 3 }; // different count Limitations on Property Initialization Expressions The expression for a property in an anonymous type initialization cannot be null (though it can evaluate to null) or an anonymous function.  For example, the following are illegal: 1: // Null can't be used directly. Null reference of what type? 2: var cantUseNull = new { Value = null }; 3:  4: // Anonymous methods cannot be used. 5: var cantUseAnonymousFxn = new { Value = () => Console.WriteLine(“Can’t.”) }; Note that the restriction on null is just that you can’t use it directly as the expression, because otherwise how would it be able to determine the type?  You can, however, use it indirectly assigning a null expression such as a typed variable with the value null, or by casting null to a specific type: 1: string str = null; 2: var fineIndirectly = new { Value = str }; 3: var fineCast = new { Value = (string)null }; All of the examples above name the properties explicitly, but you can also implicitly name properties if they are being set from a property, field, or variable.  In these cases, when a field, property, or variable is used alone, and you don’t specify a property name assigned to it, the new property will have the same name.  For example: 1: int variable = 42; 2:  3: // creates two properties named varriable and Now 4: var implicitProperties = new { variable, DateTime.Now }; Is the same type as: 1: var explicitProperties = new { variable = variable, Now = DateTime.Now }; But this only works if you are using an existing field, variable, or property directly as the expression.  If you use a more complex expression then the name cannot be inferred: 1: // can't infer the name variable from variable * 2, must name explicitly 2: var wontWork = new { variable * 2, DateTime.Now }; In the example above, since we typed variable * 2, it is no longer just a variable and thus we would have to assign the property a name explicitly. ToString() on Anonymous Types One of the more trivial overrides that an anonymous type provides you is a ToString() method that prints the value of the anonymous type instance in much the same format as it was initialized (except actual values instead of expressions as appropriate of course). For example, if you had: 1: var point = new { X = 13, Y = 42 }; And then print it out: 1: Console.WriteLine(point.ToString()); You will get: 1: { X = 13, Y = 42 } While this isn’t necessarily the most stunning feature of anonymous types, it can be handy for debugging or logging values in a fairly easy to read format. Comparing Anonymous Type Instances Because anonymous types automatically create appropriate overrides of Equals() and GetHashCode() based on the underlying properties, we can reliably compare two instances or get hash codes.  For example, if we had the following 3 points: 1: var point1 = new { X = 1, Y = 2 }; 2: var point2 = new { X = 1, Y = 2 }; 3: var point3 = new { Y = 2, X = 1 }; If we compare point1 and point2 we’ll see that Equals() returns true because they overridden version of Equals() sees that the types are the same (same number, names, types, and order of properties) and that the values are the same.   In addition, because all equal objects should have the same hash code, we’ll see that the hash codes evaluate to the same as well: 1: // true, same type, same values 2: Console.WriteLine(point1.Equals(point2)); 3:  4: // true, equal anonymous type instances always have same hash code 5: Console.WriteLine(point1.GetHashCode() == point2.GetHashCode()); However, if we compare point2 and point3 we get false.  Even though the names, types, and values of the properties are the same, the order is not, thus they are two different types and cannot be compared (and thus return false).  And, since they are not equal objects (even though they have the same value) there is a good chance their hash codes are different as well (though not guaranteed): 1: // false, different types 2: Console.WriteLine(point2.Equals(point3)); 3:  4: // quite possibly false (was false on my machine) 5: Console.WriteLine(point2.GetHashCode() == point3.GetHashCode()); Using Anonymous Types Now that we’ve created instances of anonymous types, let’s actually use them.  The property names (whether implicit or explicit) are used to access the individual properties of the anonymous type.  The main thing, once again, to keep in mind is that the properties are readonly, so you cannot assign the properties a new value (note: this does not mean that instances referred to by a property are immutable – for more information check out C#/.NET Fundamentals: Returning Data Immutably in a Mutable World). Thus, if we have the following anonymous type instance: 1: var point = new { X = 13, Y = 42 }; We can get the properties as you’d expect: 1: Console.WriteLine(“The point is: ({0},{1})”, point.X, point.Y); But we cannot alter the property values: 1: // compiler error, properties are readonly 2: point.X = 99; Further, since the anonymous type name is only known by the compiler, there is no easy way to pass anonymous type instances outside of a given scope.  The only real choices are to pass them as object or dynamic.  But really that is not the intention of using anonymous types.  If you find yourself needing to pass an anonymous type outside of a given scope, you should really consider making a POCO (Plain Old CLR Type – i.e. a class that contains just properties to hold data with little/no business logic) instead. Given that, why use them at all?  Couldn’t you always just create a POCO to represent every anonymous type you needed?  Sure you could, but then you might litter your solution with many small POCO classes that have very localized uses. It turns out this is the key to when to use anonymous types to your advantage: when you just need a lightweight type in a local context to store intermediate results, consider an anonymous type – but when that result is more long-lived and used outside of the current scope, consider a POCO instead. So what do we mean by intermediate results in a local context?  Well, a classic example would be filtering down results from a LINQ expression.  For example, let’s say we had a List<Transaction>, where Transaction is defined something like: 1: public class Transaction 2: { 3: public string UserId { get; set; } 4: public DateTime At { get; set; } 5: public decimal Amount { get; set; } 6: // … 7: } And let’s say we had this data in our List<Transaction>: 1: var transactions = new List<Transaction> 2: { 3: new Transaction { UserId = "Jim", At = DateTime.Now, Amount = 2200.00m }, 4: new Transaction { UserId = "Jim", At = DateTime.Now, Amount = -1100.00m }, 5: new Transaction { UserId = "Jim", At = DateTime.Now.AddDays(-1), Amount = 900.00m }, 6: new Transaction { UserId = "John", At = DateTime.Now.AddDays(-2), Amount = 300.00m }, 7: new Transaction { UserId = "John", At = DateTime.Now, Amount = -10.00m }, 8: new Transaction { UserId = "Jane", At = DateTime.Now, Amount = 200.00m }, 9: new Transaction { UserId = "Jane", At = DateTime.Now, Amount = -50.00m }, 10: new Transaction { UserId = "Jaime", At = DateTime.Now.AddDays(-3), Amount = -100.00m }, 11: new Transaction { UserId = "Jaime", At = DateTime.Now.AddDays(-3), Amount = 300.00m }, 12: }; So let’s say we wanted to get the transactions for each day for each user.  That is, for each day we’d want to see the transactions each user performed.  We could do this very simply with a nice LINQ expression, without the need of creating any POCOs: 1: // group the transactions based on an anonymous type with properties UserId and Date: 2: byUserAndDay = transactions 3: .GroupBy(tx => new { tx.UserId, tx.At.Date }) 4: .OrderBy(grp => grp.Key.Date) 5: .ThenBy(grp => grp.Key.UserId); Now, those of you who have attempted to use custom classes as a grouping type before (such as GroupBy(), Distinct(), etc.) may have discovered the hard way that LINQ gets a lot of its speed by utilizing not on Equals(), but also GetHashCode() on the type you are grouping by.  Thus, when you use custom types for these purposes, you generally end up having to write custom Equals() and GetHashCode() implementations or you won’t get the results you were expecting (the default implementations of Equals() and GetHashCode() are reference equality and reference identity based respectively). As we said before, it turns out that anonymous types already do these critical overrides for you.  This makes them even more convenient to use!  Instead of creating a small POCO to handle this grouping, and then having to implement a custom Equals() and GetHashCode() every time, we can just take advantage of the fact that anonymous types automatically override these methods with appropriate implementations that take into account the values of all of the properties. Now, we can look at our results: 1: foreach (var group in byUserAndDay) 2: { 3: // the group’s Key is an instance of our anonymous type 4: Console.WriteLine("{0} on {1:MM/dd/yyyy} did:", group.Key.UserId, group.Key.Date); 5:  6: // each grouping contains a sequence of the items. 7: foreach (var tx in group) 8: { 9: Console.WriteLine("\t{0}", tx.Amount); 10: } 11: } And see: 1: Jaime on 06/18/2012 did: 2: -100.00 3: 300.00 4:  5: John on 06/19/2012 did: 6: 300.00 7:  8: Jim on 06/20/2012 did: 9: 900.00 10:  11: Jane on 06/21/2012 did: 12: 200.00 13: -50.00 14:  15: Jim on 06/21/2012 did: 16: 2200.00 17: -1100.00 18:  19: John on 06/21/2012 did: 20: -10.00 Again, sure we could have just built a POCO to do this, given it an appropriate Equals() and GetHashCode() method, but that would have bloated our code with so many extra lines and been more difficult to maintain if the properties change.  Summary Anonymous types are one of those Little Wonders of the .NET language that are perfect at exactly that time when you need a temporary type to hold a set of properties together for an intermediate result.  While they are not very useful beyond the scope in which they are defined, they are excellent in LINQ expressions as a way to create and us intermediary values for further expressions and analysis. Anonymous types are defined by the compiler based on the number, type, names, and order of properties created, and they automatically implement appropriate Equals() and GetHashCode() overrides (as well as ToString()) which makes them ideal for LINQ expressions where you need to create a set of properties to group, evaluate, etc. Technorati Tags: C#,CSharp,.NET,Little Wonders,Anonymous Types,LINQ

    Read the article

  • Curious about IObservable? Here’s a quick example to get you started!

    - by Roman Schindlauer
    Have you heard about IObservable/IObserver support in Microsoft StreamInsight 1.1? Then you probably want to try it out. If this is your first incursion into the IObservable/IObserver pattern, this blog post is for you! StreamInsight 1.1 introduced the ability to use IEnumerable and IObservable objects as event sources and sinks. The IEnumerable case is pretty straightforward, since many data collections are already surfacing as this type. This was already covered by Colin in his blog. Creating your own IObservable event source is a little more involved but no less exciting – here is a primer: First, let’s look at a very simple Observable data source. All it does is publish an integer in regular time periods to its registered observers. (For more information on IObservable, see http://msdn.microsoft.com/en-us/library/dd990377.aspx ). sealed class RandomSubject : IObservable<int>, IDisposable {     private bool _done;     private readonly List<IObserver<int>> _observers;     private readonly Random _random;     private readonly object _sync;     private readonly Timer _timer;     private readonly int _timerPeriod;       /// <summary>     /// Random observable subject. It produces an integer in regular time periods.     /// </summary>     /// <param name="timerPeriod">Timer period (in milliseconds)</param>     public RandomSubject(int timerPeriod)     {         _done = false;         _observers = new List<IObserver<int>>();         _random = new Random();         _sync = new object();         _timer = new Timer(EmitRandomValue);         _timerPeriod = timerPeriod;         Schedule();     }       public IDisposable Subscribe(IObserver<int> observer)     {         lock (_sync)         {             _observers.Add(observer);         }         return new Subscription(this, observer);     }       public void OnNext(int value)     {         lock (_sync)         {             if (!_done)             {                 foreach (var observer in _observers)                 {                     observer.OnNext(value);                 }             }         }     }       public void OnError(Exception e)     {         lock (_sync)         {             foreach (var observer in _observers)             {                 observer.OnError(e);             }             _done = true;         }     }       public void OnCompleted()     {         lock (_sync)         {             foreach (var observer in _observers)             {                 observer.OnCompleted();             }             _done = true;         }     }       void IDisposable.Dispose()     {         _timer.Dispose();     }       private void Schedule()     {         lock (_sync)         {             if (!_done)             {                 _timer.Change(_timerPeriod, Timeout.Infinite);             }         }     }       private void EmitRandomValue(object _)     {         var value = (int)(_random.NextDouble() * 100);         Console.WriteLine("[Observable]\t" + value);         OnNext(value);         Schedule();     }       private sealed class Subscription : IDisposable     {         private readonly RandomSubject _subject;         private IObserver<int> _observer;           public Subscription(RandomSubject subject, IObserver<int> observer)         {             _subject = subject;             _observer = observer;         }           public void Dispose()         {             IObserver<int> observer = _observer;             if (null != observer)             {                 lock (_subject._sync)                 {                     _subject._observers.Remove(observer);                 }                 _observer = null;             }         }     } }   So far, so good. Now let’s write a program that consumes data emitted by the observable as a stream of point events in a Streaminsight query. First, let’s define our payload type: class Payload {     public int Value { get; set; }       public override string ToString()     {         return "[StreamInsight]\tValue: " + Value.ToString();     } }   Now, let’s write the program. First, we will instantiate the observable subject. Then we’ll use the ToPointStream() method to consume it as a stream. We can now write any query over the source - here, a simple pass-through query. class Program {     static void Main(string[] args)     {         Console.WriteLine("Starting observable source...");         using (var source = new RandomSubject(500))         {             Console.WriteLine("Started observable source.");             using (var server = Server.Create("Default"))             {                 var application = server.CreateApplication("My Application");                   var stream = source.ToPointStream(application,                     e => PointEvent.CreateInsert(DateTime.Now, new Payload { Value = e }),                     AdvanceTimeSettings.StrictlyIncreasingStartTime,                     "Observable Stream");                   var query = from e in stream                             select e;                   [...]   We’re done with consuming input and querying it! But you probably want to see the output of the query. Did you know you can turn a query into an observable subject as well? Let’s do precisely that, and exploit the Reactive Extensions for .NET (http://msdn.microsoft.com/en-us/devlabs/ee794896.aspx) to quickly visualize the output. Notice we’re subscribing “Console.WriteLine()” to the query, a pattern you may find useful for quick debugging of your queries. Reminder: you’ll need to install the Reactive Extensions for .NET (Rx for .NET Framework 4.0), and reference System.CoreEx and System.Reactive in your project.                 [...]                   Console.ReadLine();                 Console.WriteLine("Starting query...");                 using (query.ToObservable().Subscribe(Console.WriteLine))                 {                     Console.WriteLine("Started query.");                     Console.ReadLine();                     Console.WriteLine("Stopping query...");                 }                 Console.WriteLine("Stopped query.");             }             Console.ReadLine();             Console.WriteLine("Stopping observable source...");             source.OnCompleted();         }         Console.WriteLine("Stopped observable source.");     } }   We hope this blog post gets you started. And for bonus points, you can go ahead and rewrite the observable source (the RandomSubject class) using the Reactive Extensions for .NET! The entire sample project is attached to this article. Happy querying! Regards, The StreamInsight Team

    Read the article

  • Parsing Concerns

    - by Jesse
    If you’ve ever written an application that accepts date and/or time inputs from an external source (a person, an uploaded file, posted XML, etc.) then you’ve no doubt had to deal with parsing some text representing a date into a data structure that a computer can understand. Similarly, you’ve probably also had to take values from those same data structure and turn them back into their original formats. Most (all?) suitably modern development platforms expose some kind of parsing and formatting functionality for turning text into dates and vice versa. In .NET, the DateTime data structure exposes ‘Parse’ and ‘ToString’ methods for this purpose. This post will focus mostly on parsing, though most of the examples and suggestions below can also be applied to the ToString method. The DateTime.Parse method is pretty permissive in the values that it will accept (though apparently not as permissive as some other languages) which makes it pretty easy to take some text provided by a user and turn it into a proper DateTime instance. Here are some examples (note that the resulting DateTime values are shown using the RFC1123 format): DateTime.Parse("3/12/2010"); //Fri, 12 Mar 2010 00:00:00 GMT DateTime.Parse("2:00 AM"); //Sat, 01 Jan 2011 02:00:00 GMT (took today's date as date portion) DateTime.Parse("5-15/2010"); //Sat, 15 May 2010 00:00:00 GMT DateTime.Parse("7/8"); //Fri, 08 Jul 2011 00:00:00 GMT DateTime.Parse("Thursday, July 1, 2010"); //Thu, 01 Jul 2010 00:00:00 GMT Dealing With Inaccuracy While the DateTime struct has the ability to store a date and time value accurate down to the millisecond, most date strings provided by a user are not going to specify values with that much precision. In each of the above examples, the Parse method was provided a partial value from which to construct a proper DateTime. This means it had to go ahead and assume what you meant and fill in the missing parts of the date and time for you. This is a good thing, especially when we’re talking about taking input from a user. We can’t expect that every person using our software to provide a year, day, month, hour, minute, second, and millisecond every time they need to express a date. That said, it’s important for developers to understand what assumptions the software might be making and plan accordingly. I think the assumptions that were made in each of the above examples were pretty reasonable, though if we dig into this method a little bit deeper we’ll find that there are a lot more assumptions being made under the covers than you might have previously known. One of the biggest assumptions that the DateTime.Parse method has to make relates to the format of the date represented by the provided string. Let’s consider this example input string: ‘10-02-15’. To some people. that might look like ‘15-Feb-2010’. To others, it might be ‘02-Oct-2015’. Like many things, it depends on where you’re from. This Is America! Most cultures around the world have adopted a “little-endian” or “big-endian” formats. (Source: Date And Time Notation By Country) In this context,  a “little-endian” date format would list the date parts with the least significant first while the “big-endian” date format would list them with the most significant first. For example, a “little-endian” date would be “day-month-year” and “big-endian” would be “year-month-day”. It’s worth nothing here that ISO 8601 defines a “big-endian” format as the international standard. While I personally prefer “big-endian” style date formats, I think both styles make sense in that they follow some logical standard with respect to ordering the date parts by their significance. Here in the United States, however, we buck that trend by using what is, in comparison, a completely nonsensical format of “month/day/year”. Almost no other country in the world uses this format. I’ve been fortunate in my life to have done some international travel, so I’ve been aware of this difference for many years, but never really thought much about it. Until recently, I had been developing software for exclusively US-based audiences and remained blissfully ignorant of the different date formats employed by other countries around the world. The web application I work on is being rolled out to users in different countries, so I was recently tasked with updating it to support different date formats. As it turns out, .NET has a great mechanism for dealing with different date formats right out of the box. Supporting date formats for different cultures is actually pretty easy once you understand this mechanism. Pulling the Curtain Back On the Parse Method Have you ever taken a look at the different flavors (read: overloads) that the DateTime.Parse method comes in? In it’s simplest form, it takes a single string parameter and returns the corresponding DateTime value (if it can divine what the date value should be). You can optionally provide two additional parameters to this method: an ‘System.IFormatProvider’ and a ‘System.Globalization.DateTimeStyles’. Both of these optional parameters have some bearing on the assumptions that get made while parsing a date, but for the purposes of this article I’m going to focus on the ‘System.IFormatProvider’ parameter. The IFormatProvider exposes a single method called ‘GetFormat’ that returns an object to be used for determining the proper format for displaying and parsing things like numbers and dates. This interface plays a big role in the globalization capabilities that are built into the .NET Framework. The cornerstone of these globalization capabilities can be found in the ‘System.Globalization.CultureInfo’ class. To put it simply, the CultureInfo class is used to encapsulate information related to things like language, writing system, and date formats for a certain culture. Support for many cultures are “baked in” to the .NET Framework and there is capacity for defining custom cultures if needed (thought I’ve never delved into that). While the details of the CultureInfo class are beyond the scope of this post, so for now let me just point out that the CultureInfo class implements the IFormatInfo interface. This means that a CultureInfo instance created for a given culture can be provided to the DateTime.Parse method in order to tell it what date formats it should expect. So what happens when you don’t provide this value? Let’s crack this method open in Reflector: When no IFormatInfo parameter is provided (i.e. we use the simple DateTime.Parse(string) overload), the ‘DateTimeFormatInfo.CurrentInfo’ is used instead. Drilling down a bit further we can see the implementation of the DateTimeFormatInfo.CurrentInfo property: From this property we can determine that, in the absence of an IFormatProvider being specified, the DateTime.Parse method will assume that the provided date should be treated as if it were in the format defined by the CultureInfo object that is attached to the current thread. The culture specified by the CultureInfo instance on the current thread can vary depending on several factors, but if you’re writing an application where a single instance might be used by people from different cultures (i.e. a web application with an international user base), it’s important to know what this value is. Having a solid strategy for setting the current thread’s culture for each incoming request in an internationally used ASP .NET application is obviously important, and might make a good topic for a future post. For now, let’s think about what the implications of not having the correct culture set on the current thread. Let’s say you’re running an ASP .NET application on a server in the United States. The server was setup by English speakers in the United States, so it’s configured for US English. It exposes a web page where users can enter order data, one piece of which is an anticipated order delivery date. Most users are in the US, and therefore enter dates in a ‘month/day/year’ format. The application is using the DateTime.Parse(string) method to turn the values provided by the user into actual DateTime instances that can be stored in the database. This all works fine, because your users and your server both think of dates in the same way. Now you need to support some users in South America, where a ‘day/month/year’ format is used. The best case scenario at this point is a user will enter March 13, 2011 as ‘25/03/2011’. This would cause the call to DateTime.Parse to blow up since that value doesn’t look like a valid date in the US English culture (Note: In all likelihood you might be using the DateTime.TryParse(string) method here instead, but that method behaves the same way with regard to date formats). “But wait a minute”, you might be saying to yourself, “I thought you said that this was the best case scenario?” This scenario would prevent users from entering orders in the system, which is bad, but it could be worse! What if the order needs to be delivered a day earlier than that, on March 12, 2011? Now the user enters ‘12/03/2011’. Now the call to DateTime.Parse sees what it thinks is a valid date, but there’s just one problem: it’s not the right date. Now this order won’t get delivered until December 3, 2011. In my opinion, that kind of data corruption is a much bigger problem than having the Parse call fail. What To Do? My order entry example is a bit contrived, but I think it serves to illustrate the potential issues with accepting date input from users. There are some approaches you can take to make this easier on you and your users: Eliminate ambiguity by using a graphical date input control. I’m personally a fan of a jQuery UI Datepicker widget. It’s pretty easy to setup, can be themed to match the look and feel of your site, and has support for multiple languages and cultures. Be sure you have a way to track the culture preference of each user in your system. For a web application this could be done using something like a cookie or session state variable. Ensure that the current user’s culture is being applied correctly to DateTime formatting and parsing code. This can be accomplished by ensuring that each request has the handling thread’s CultureInfo set properly, or by using the Format and Parse method overloads that accept an IFormatProvider instance where the provided value is a CultureInfo object constructed using the current user’s culture preference. When in doubt, favor formats that are internationally recognizable. Using the string ‘2010-03-05’ is likely to be recognized as March, 5 2011 by users from most (if not all) cultures. Favor standard date format strings over custom ones. So far we’ve only talked about turning a string into a DateTime, but most of the same “gotchas” apply when doing the opposite. Consider this code: someDateValue.ToString("MM/dd/yyyy"); This will output the same string regardless of what the current thread’s culture is set to (with the exception of some cultures that don’t use the Gregorian calendar system, but that’s another issue all together). For displaying dates to users, it would be better to do this: someDateValue.ToString("d"); This standard format string of “d” will use the “short date format” as defined by the culture attached to the current thread (or provided in the IFormatProvider instance in the proper method overload). This means that it will honor the proper month/day/year, year/month/day, or day/month/year format for the culture. Knowing Your Audience The examples and suggestions shown above can go a long way toward getting an application in shape for dealing with date inputs from users in multiple cultures. There are some instances, however, where taking approaches like these would not be appropriate. In some cases, the provider or consumer of date values that pass through your application are not people, but other applications (or other portions of your own application). For example, if your site has a page that accepts a date as a query string parameter, you’ll probably want to format that date using invariant date format. Otherwise, the same URL could end up evaluating to a different page depending on the user that is viewing it. In addition, if your application exports data for consumption by other systems, it’s best to have an agreed upon format that all systems can use and that will not vary depending upon whether or not the users of the systems on either side prefer a month/day/year or day/month/year format. I’ll look more at some approaches for dealing with these situations in a future post. If you take away one thing from this post, make it an understanding of the importance of knowing where the dates that pass through your system come from and are going to. You will likely want to vary your parsing and formatting approach depending on your audience.

    Read the article

  • apache renew ssl not working [on hold]

    - by Varun S
    Downloaded a new ssl cert from go daddy and installed the cert on apache2 server put the cert in /etc/ssl/certs/ folder put the gd_bundle.crt in the /etc/ssl/ folder private key is in /etc/ssl/private/private.key I just replaced the original files with the new files, did not replace the private key. I restarted the server but the website is still showing old certificated date. What am I doing wrong and how do i resolve it ? my httpd.conf file is empty, the certificated config is in the sites-enabled/default-ssl file the server is apache2 running ubuntu 14.04 os SSLEngine on # A self-signed (snakeoil) certificate can be created by installing # the ssl-cert package. See # /usr/share/doc/apache2.2-common/README.Debian.gz for more info. # If both key and certificate are stored in the same file, only the # SSLCertificateFile directive is needed. SSLCertificateFile /etc/ssl/certs/2b1f6d308c2f9b.crt SSLCertificateKeyFile /etc/ssl/private/private.key # Server Certificate Chain: # Point SSLCertificateChainFile at a file containing the # concatenation of PEM encoded CA certificates which form the # certificate chain for the server certificate. Alternatively # the referenced file can be the same as SSLCertificateFile # when the CA certificates are directly appended to the server # certificate for convinience. SSLCertificateChainFile /etc/ssl/gd_bundle.crt -rwxr-xr-x 1 root root 1944 Aug 16 06:34 /etc/ssl/certs/2b1f6d308c2f9b.crt -rwxr-xr-x 1 root root 3197 Aug 16 06:10 /etc/ssl/gd_bundle.crt -rw-r--r-- 1 root root 1679 Oct 3 2013 /etc/ssl/private/private.key /etc/apache2/sites-available/default-ssl: # SSLCertificateFile directive is needed. /etc/apache2/sites-available/default-ssl: SSLCertificateFile /etc/ssl/certs/2b1f6d308c2f9b.crt /etc/apache2/sites-available/default-ssl: SSLCertificateKeyFile /etc/ssl/private/private.key /etc/apache2/sites-available/default-ssl: # Point SSLCertificateChainFile at a file containing the /etc/apache2/sites-available/default-ssl: # the referenced file can be the same as SSLCertificateFile /etc/apache2/sites-available/default-ssl: SSLCertificateChainFile /etc/ssl/gd_bundle.crt /etc/apache2/sites-enabled/default-ssl: # SSLCertificateFile directive is needed. /etc/apache2/sites-enabled/default-ssl: SSLCertificateFile /etc/ssl/certs/2b1f6d308c2f9b.crt /etc/apache2/sites-enabled/default-ssl: SSLCertificateKeyFile /etc/ssl/private/private.key /etc/apache2/sites-enabled/default-ssl: # Point SSLCertificateChainFile at a file containing the /etc/apache2/sites-enabled/default-ssl: # the referenced file can be the same as SSLCertificateFile /etc/apache2/sites-enabled/default-ssl: SSLCertificateChainFile /etc/ssl/gd_bundle.crt

    Read the article

  • SPF hardfail and DKIM failure when recipient has e-mail forwarding

    - by Beaming Mel-Bin
    I configured hardfail SPF for my domain and DKIM message signing on my SMTP server. Since this is the only SMTP server that should be used for outgoing mail from my domain, I didn't foresee any complications. However, consider the following situation: I sent an e-mail message via my SMTP server to my colleague's university e-mail. The problem is that my colleague forwards his university e-mail to his GMail account. These are the headers of the message after it reaches his GMail mailbox: Received-SPF: fail (google.com: domain of [email protected] does not designate 192.168.128.100 as permitted sender) client-ip=192.168.128.100; Authentication-Results: mx.google.com; spf=hardfail (google.com: domain of [email protected] does not designate 192.168.128.100 as permitted sender) [email protected]; dkim=hardfail (test mode) [email protected] (Headers have been sanitized to protect the domains and IP addresses of the non-Google parties) GMail checks the last SMTP server in the delivery chain against my SPF and DKIM records (rightfully so). Since the last STMP server in the delivery chain was the university's server and not my server, the check results in an SPF hardfail and DKIM failure. Fortunately, GMail did not mark the message as spam but I'm concerned that this might cause a problem in the future. Is my implementation of SPF hardfail perhaps too strict? Any other recommendations or potential issues that I should be aware of? Or maybe there is a more ideal configuration for the university's e-mail forwarding procedure? I know that the forwarding server could possibly change the envelope sender but I see that getting messy.

    Read the article

  • VirtualHost not using correct SSL certificate file

    - by Shawn Welch
    I got a doozy of a setup with my virtual hosts and SSL. I found the problem, I need a solution. The problem is, the way I have my virtual hosts and server names setup, the LAST VirtualHost directive is associating the SSL certificate file with the ServerName regardless of IP address or ServerAlias. In this case, SSL on www.site1.com is using the cert file that is established on the last VirtualHost; www.site2.com. Is this how it is supposed to work? This seems to be happening because both of them are using the same ServerName; but I wouldn't think this would be a problem. I am specifically using the same ServerName for a purpose and I really can't change that. So I need a good fix for this. Yes, I could buy another UCC SSL and have them both on it but I have already done that; these are actually UCC SSLs already. They just so happen to be two different UCC SSLs. <VirtualHost 11.22.33.44:80> ServerName somename ServerAlias www.site1.com UseCanonicalName On RewriteEngine On RewriteOptions Inherit </VirtualHost> <VirtualHost 11.22.33.44:443> ServerName somename ServerAlias www.site1.com UseCanonicalName On SSLEngine on SSLCertificateFile /usr/local/apache/conf/ssl.crt/cert1.crt SSLCertificateKeyFile /usr/local/apache/conf/ssl.key/cert1.key SSLCertificateChainFile /usr/local/apache/conf/chain/gd_bundle.crt RewriteEngine On RewriteOptions Inherit </VirtualHost> <VirtualHost 55.66.77.88:80> ServerName somename ServerAlias www.site2.com UseCanonicalName On RewriteEngine On RewriteOptions Inherit </VirtualHost> <VirtualHost 55.66.77.88:443> ServerName somename ServerAlias www.site2.com UseCanonicalName On SSLEngine on SSLCertificateFile /usr/local/apache/conf/ssl.crt/cert2.crt SSLCertificateKeyFile /usr/local/apache/conf/ssl.key/cert2.key SSLCertificateChainFile /usr/local/apache/conf/chain/gd_bundle.crt RewriteEngine On RewriteOptions Inherit </VirtualHost>

    Read the article

  • Rsync when run in cron doesnt work. Rsync between Mac Os x Server and Linux Centos

    - by Brady
    I have a working rsync setup between Mac OS X Server and Linux Centos when run manually in a terminal. I enter the rsync command, it asks for the password, I enter it and off it goes, runs and completes. Now I know thats working I set out to fully automate it via cron. First off I create an SSH authorized key by running this command on the Mac server: ssh-keygen -t dsa -b 1024 -f /Users/admin/Documents/Backup/rsync-key Entering the password and then confirming it. I then copy the rsync-key.pub file accross to the linux server and place in the rsync user .ssh folder and rename to authorized_keys: /home/philosophy/.ssh/authorized_keys I then make sure that the authorized_keys file is chmod 600 in the folder chmod 700. I then setup a shell script for cron to run: #!/bin/bash RSYNC=/usr/bin/rsync SSH=/usr/bin/ssh KEY=/Users/admin/Documents/Backup/rsync-key RUSER=philosophy RHOST=example.com RPATH=data/ LPATH="/Volumes/G Technology G Speed eS/Backup" $RSYNC -avz --delete --progress -e "$SSH -i $KEY" "$LPATH" $RUSER@$RHOST:$RPATH Then give the shell file execute permissions and then add the following to the crontab using crontab -e: 29 12 * * * /Users/admin/Documents/Backup/backup.sh I check my crontab log file after the above command should run and I get this in the log and nothing else: Feb 21 12:29:00 fileserver /usr/sbin/cron[80598]: (admin) CMD (/Users/admin/Documents/Backup/backup.sh) So I asume everything has run as it should. But when I check the remote server no files have been copied accross. If I run the backup.sh file in a terminal as normal it still prompts for a password but this time its through the Mac Key chain system rather than typing into the console window. With the Mac Key Chain I can set it to save the password so that it doesnt ask for it again but Im sure when run with cron this password isnt picked up. This is where I'm asuming where rsync in cron is failing because it needs a password to connect but I thought the whole idea of making the SSH keys was to prevent the use of a password. Have I missed a step or done something wrong here? Thanks Scott

    Read the article

  • Squid with mikrotik router

    - by niren
    I tried to connect squid3 in my network to use high anonymity proxy. This is how my network is right now WAN LINK | ------------- ----------------------------- | Mikrotik Box | | Ubuntu Server with squid3 | ------------- ----------------------------- | / | / ---------------------- | Switch ( Cheap one ) | ---------------------- | | | Client1 Client2 Client3 etc. after this setup I changed squid.conf in Ubuntu server as http_port 8080 acl localhost src xxx.xxx.xxx.xxx(Ubuntu server IP) acl to_localhost dst xxx.xxx.xxx.xxx(Mikrotik router gateway) I assume that redirected http from Mikrotik router will be redirect again to Mikrotik router. uncomment access log /var/log/squid3/access.log add visible_hostname myname save squid.conf and restart squid3 server. Then I have added nat rule in Mikrotik router ip/firewall/nat 1. add chain=dstnat src_address=xxx.xxx.xxx.xxx(ununtu server IP) dst-port=80 protocol=tcp action=accept 2. add chain=dstnat src_address=xxx.xxx.xxx.xxx/28(LAN address) dst-port=80 protocol=tcp action=dst-nat to-address=xxx.xxx.xxx.xxx(ununtu server IP) to-port=8080 now I can not able to access internet from client1 system, If I remove these two nat rule then I can access internet. what is wrong I have made?

    Read the article

< Previous Page | 312 313 314 315 316 317 318 319 320 321 322 323  | Next Page >