Search Results

Search found 2108 results on 85 pages for 'clock synchronization'.

Page 32/85 | < Previous Page | 28 29 30 31 32 33 34 35 36 37 38 39  | Next Page >

  • Check if the vector is behind another or maybe opposite directions?

    - by Gilson
    I'm doing a network game and on the client side, i interpolate the client position with the server sent extrapolated position. The client has its own physics simulation wich is corrected by the server in steps. The problem is when it laggs and i 'kick' the ball, the server gets a delayed message and sends me the position backwards of the client position wich makes the ball goes back and forth. I want to ignore those and maybe compensate that on the server, not sure though. The problem is the clock difference on those case are 0.07ms or 0.10 ms wich isn't that high to ignore the message i guess. When i get the server position, i extrapolate with the clock interval * serverBallVelocity Can i check if my new ball server position is behind my actual ball vector position? I tried to use the dot product after normalized the two vectors to check if they are opposite but it ain't working properly. Any suggestions on checking that?

    Read the article

  • disable intel gpu in ubuntu 12.04

    - by small_potato
    I am wondering if there is anything to disable the intel gpu on ubuntu 12.04. I want to be able to setup dual monitor using nvidia-settings. It seems the intel gpu is used for display as suggested by sudo lshw -c display the output is *-display description: VGA compatible controller product: NVIDIA Corporation vendor: NVIDIA Corporation physical id: 0 bus info: pci@0000:01:00.0 version: a1 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress vga_controller bus_master cap_list rom configuration: driver=nvidia latency=0 resources: irq:16 memory:c0000000-c0ffffff memory:90000000-9fffffff memory:a0000000-a1ffffff ioport:4000(size=128) memory:a2000000-a207ffff *-display description: VGA compatible controller product: Haswell Integrated Graphics Controller vendor: Intel Corporation physical id: 2 bus info: pci@0000:00:02.0 version: 06 width: 64 bits clock: 33MHz capabilities: msi pm vga_controller bus_master cap_list rom configuration: driver=i915 latency=0 resources: irq:47 memory:c2000000-c23fffff memory:b0000000-bfffffff ioport:5000(size=64) I have a lenovoY410 with GT750M. It seems there is no way to turn off the intel gpu in bios either. Help please. Thanks.

    Read the article

  • Html 5 &ndash; new size units

    - by Norgean
    There are some new size units with CSS 3, which allows you to resize elements relative to the viewport size. They are vw, vh, vmin (that’s vm in IE), and perhaps vmax. (Viewport width, height, smaller of the two, larger of the two.) 8vw is 8% of the viewport width – or 205 pixels on my 2560 screen. I created a tiny demo clock which sizes the elements so that it uses the whole screen. Clock – in Norwegian, but it’s the source that is interesting… Bug: Resize does not work. Tested for IE 9 & 10 and Chrome. Firefox and Safari: does not work.

    Read the article

  • Service with intents not working. Help needed

    - by tristan202
    I need help in making my click intents work. I used to have them in my appwidgetprovider, but decided to move them into a service, but I am having trouble getting it to work. Below is the entire code from my intentservice: public class IntentService extends Service { static final String ACTION_UPDATE = "android.tristan.widget.digiclock.action.UPDATE_2"; private final static IntentFilter sIntentFilter; public int layoutID = R.layout.clock; int appWidgetIds = 0; static { sIntentFilter = new IntentFilter(); } @Override public IBinder onBind(Intent intent) { return null; } @Override public void onStart(Intent intent, int startId) { super.onStart(intent, startId); } @Override public void onCreate() { super.onCreate(); registerReceiver(onClickTop, sIntentFilter); registerReceiver(onClickBottom, sIntentFilter); Log.d("DigiClock IntentService", "IntentService Started."); } @Override public void onDestroy() { super.onDestroy(); unregisterReceiver(onClickTop); unregisterReceiver(onClickBottom); } private final BroadcastReceiver onClickTop = new BroadcastReceiver() { @Override public void onReceive(Context context, Intent intent) { if(intent.getAction().equals("android.tristan.widget.digiclock.CLICK")) { PackageManager packageManager = context.getPackageManager(); Intent alarmClockIntent = new Intent(Intent.ACTION_MAIN).addCategory(Intent.CATEGORY_LAUNCHER); String clockImpls[][] = { {"HTC Alarm Clock", "com.htc.android.worldclock", "com.htc.android.worldclock.WorldClockTabControl" }, {"Standar Alarm Clock", "com.android.deskclock", "com.android.deskclock.AlarmClock"}, {"Froyo Nexus Alarm Clock", "com.google.android.deskclock", "com.android.deskclock.DeskClock"}, {"Moto Blur Alarm Clock", "com.motorola.blur.alarmclock", "com.motorola.blur.alarmclock.AlarmClock"} }; boolean foundClockImpl = false; for(int i=0; i<clockImpls.length; i++) { String vendor = clockImpls[i][0]; String packageName = clockImpls[i][1]; String className = clockImpls[i][2]; try { ComponentName cn = new ComponentName(packageName, className); ActivityInfo aInfo = packageManager.getActivityInfo(cn, PackageManager.GET_META_DATA); alarmClockIntent.setComponent(cn); foundClockImpl = true; } catch (NameNotFoundException e) { Log.d("Error, ", vendor + " does not exist"); } } if (foundClockImpl) { Vibrator vibrator = (Vibrator) context.getSystemService(Context.VIBRATOR_SERVICE); vibrator.vibrate(50); final RemoteViews views = new RemoteViews(context.getPackageName(), layoutID); views.setOnClickPendingIntent(R.id.TopRow, PendingIntent.getActivity(context, 0, new Intent(context, DigiClock.class).setFlags(Intent.FLAG_ACTIVITY_NEW_TASK), PendingIntent.FLAG_UPDATE_CURRENT)); AppWidgetManager.getInstance(context).updateAppWidget(intent.getIntArrayExtra(AppWidgetManager.EXTRA_APPWIDGET_IDS), views); alarmClockIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK); context.startActivity(alarmClockIntent); } } } }; private final BroadcastReceiver onClickBottom = new BroadcastReceiver() { @Override public void onReceive(Context context, Intent intent) { if(intent.getAction().equals("android.tristan.widget.digiclock.CLICK_2")) { PackageManager calendarManager = context.getPackageManager(); Intent calendarIntent = new Intent(Intent.ACTION_MAIN).addCategory(Intent.CATEGORY_LAUNCHER); String calendarImpls[][] = { {"HTC Calendar", "com.htc.calendar", "com.htc.calendar.LaunchActivity" }, {"Standard Calendar", "com.android.calendar", "com.android.calendar.LaunchActivity"}, {"Moto Blur Calendar", "com.motorola.blur.calendar", "com.motorola.blur.calendar.LaunchActivity"} }; boolean foundCalendarImpl = false; for(int i=0; i<calendarImpls.length; i++) { String vendor = calendarImpls[i][0]; String packageName = calendarImpls[i][1]; String className = calendarImpls[i][2]; try { ComponentName cn = new ComponentName(packageName, className); ActivityInfo aInfo = calendarManager.getActivityInfo(cn, PackageManager.GET_META_DATA); calendarIntent.setComponent(cn); foundCalendarImpl = true; } catch (NameNotFoundException e) { Log.d("Error, ", vendor + " does not exist"); } } if (foundCalendarImpl) { Vibrator vibrator = (Vibrator) context.getSystemService(Context.VIBRATOR_SERVICE); vibrator.vibrate(50); final RemoteViews views2 = new RemoteViews(context.getPackageName(), layoutID); views2.setOnClickPendingIntent(R.id.BottomRow, PendingIntent.getActivity(context, 0, new Intent(context, DigiClock.class).setFlags(Intent.FLAG_ACTIVITY_NEW_TASK), PendingIntent.FLAG_UPDATE_CURRENT)); AppWidgetManager.getInstance(context).updateAppWidget(intent.getIntArrayExtra(AppWidgetManager.EXTRA_APPWIDGET_IDS), views2); calendarIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK); context.startActivity(calendarIntent); } } }; }; ;}; What am I doing wrong here?

    Read the article

  • Launching a WPF Window in a Separate Thread, Part 1

    - by Reed
    Typically, I strongly recommend keeping the user interface within an application’s main thread, and using multiple threads to move the actual “work” into background threads.  However, there are rare times when creating a separate, dedicated thread for a Window can be beneficial.  This is even acknowledged in the MSDN samples, such as the Multiple Windows, Multiple Threads sample.  However, doing this correctly is difficult.  Even the referenced MSDN sample has major flaws, and will fail horribly in certain scenarios.  To ease this, I wrote a small class that alleviates some of the difficulties involved. The MSDN Multiple Windows, Multiple Threads Sample shows how to launch a new thread with a WPF Window, and will work in most cases.  The sample code (commented and slightly modified) works out to the following: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { // Create and show the Window Window1 tempWindow = new Window1(); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Set the apartment state newWindowThread.SetApartmentState(ApartmentState.STA); // Make the thread a background thread newWindowThread.IsBackground = true; // Start the thread newWindowThread.Start(); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This sample creates a thread, marks it as single threaded apartment state, and starts the Dispatcher on that thread. That is the minimum requirements to get a Window displaying and handling messages correctly, but, unfortunately, has some serious flaws. The first issue – the created thread will run continuously until the application shuts down, given the code in the sample.  The problem is that the ThreadStart delegate used ends with running the Dispatcher.  However, nothing ever stops the Dispatcher processing.  The thread was created as a Background thread, which prevents it from keeping the application alive, but the Dispatcher will continue to pump dispatcher frames until the application shuts down. In order to fix this, we need to call Dispatcher.InvokeShutdown after the Window is closed.  This would require modifying the above sample to subscribe to the Window’s Closed event, and, at that point, shutdown the Dispatcher: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { Window1 tempWindow = new Window1(); // When the window closes, shut down the dispatcher tempWindow.Closed += (s,e) => Dispatcher.CurrentDispatcher.BeginInvokeShutdown(DispatcherPriority.Background); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Setup and start thread as before This eliminates the first issue.  Now, when the Window is closed, the new thread’s Dispatcher will shut itself down, which in turn will cause the thread to complete. The above code will work correctly for most situations.  However, there is still a potential problem which could arise depending on the content of the Window1 class.  This is particularly nasty, as the code could easily work for most windows, but fail on others. The problem is, at the point where the Window is constructed, there is no active SynchronizationContext.  This is unlikely to be a problem in most cases, but is an absolute requirement if there is code within the constructor of Window1 which relies on a context being in place. While this sounds like an edge case, it’s fairly common.  For example, if a BackgroundWorker is started within the constructor, or a TaskScheduler is built using TaskScheduler.FromCurrentSynchronizationContext() with the expectation of synchronizing work to the UI thread, an exception will be raised at some point.  Both of these classes rely on the existence of a proper context being installed to SynchronizationContext.Current, which happens automatically, but not until Dispatcher.Run is called.  In the above case, SynchronizationContext.Current will return null during the Window’s construction, which can cause exceptions to occur or unexpected behavior. Luckily, this is fairly easy to correct.  We need to do three things, in order, prior to creating our Window: Create and initialize the Dispatcher for the new thread manually Create a synchronization context for the thread which uses the Dispatcher Install the synchronization context Creating the Dispatcher is quite simple – The Dispatcher.CurrentDispatcher property gets the current thread’s Dispatcher and “creates a new Dispatcher if one is not already associated with the thread.”  Once we have the correct Dispatcher, we can create a SynchronizationContext which uses the dispatcher by creating a DispatcherSynchronizationContext.  Finally, this synchronization context can be installed as the current thread’s context via SynchronizationContext.SetSynchronizationContext.  These three steps can easily be added to the above via a single line of code: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { // Create our context, and install it: SynchronizationContext.SetSynchronizationContext( new DispatcherSynchronizationContext( Dispatcher.CurrentDispatcher)); Window1 tempWindow = new Window1(); // When the window closes, shut down the dispatcher tempWindow.Closed += (s,e) => Dispatcher.CurrentDispatcher.BeginInvokeShutdown(DispatcherPriority.Background); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Setup and start thread as before This now forces the synchronization context to be in place before the Window is created and correctly shuts down the Dispatcher when the window closes. However, there are quite a few steps.  In my next post, I’ll show how to make this operation more reusable by creating a class with a far simpler API…

    Read the article

  • which grabber is good enough to get 1000fps?

    - by user261002
    I have two framegrabber with a fast camera (1800+ fps). can anybody who understand the hardware, explain to me which of the following grabbers can help me more to grab 1000fps ? here are the the features of the two grabbers : Inspecta-5 Full Camera Link® Version: · Support for line scan and area cameras. · Video data rate of up to 660 Mbytes/sec. · PCI – X bus interface for 64 Bit data width and 66 MHz clock frequency. · PCI bus interface for 32 Bit data width and 33 MHz clock frequency. · 2 Gigabyte Onboard Memory for fast video streams. · Four opt coupled input- output ports for external trigger and encoder signals. · 528 Mbytes/sec. maximum data rate on the PCI–X Bus. · SDK for Windows 2000/XP SILICONSOFTWARE V-Series Camera Link : “microEnable IV VD4-CL” · Camera Pixel Clock Support 85 MHz · Area Scan Cameras 32k * 64k max. image size · Line Scan Cameras 64k max. image width · Acquisition Buffer: 512 MB DDR-RAM · Sustainable Transfer Rate (max.) 850 MBytes/sec. · microEnable SDK for Windows XP/Vista/ 7/ Linux

    Read the article

  • Spring transaction : Transaction not active

    - by Videanu Adrian
    i develop a app using struts2, spring 3.1, Jpa2 and Hibernate. From Spring i use transactions and IoC. so, i have an ajax code block that calls for a struts2 action every second (this is happening for every user that is logged into application (simultaneous users are around 20-30 at a time)). this action name is PopupAction public class PopupAction extends VActionBase implements ServletRequestAware { private static final long serialVersionUID = -293004532677112584L; private iIntermedService intermedService; private HttpServletRequest servletRequest; @Override public String execute() { Integer agentId = (Integer) session.get("USER_AGENT_ID"); Intermed iObj; try { iObj = intermedService.getIntermed(agentId,locationsString); } catch (Exception e) { logger.error("Cannot get Intermed!!! "+e.getMessage()); return ERROR; } return SUCCESS; } } and then i have the service class : @Transactional(readOnly=true) public class IntermedServiceImpl extends GenericIService<Intermed, Integer> implements iIntermedService { @Override public Intermed getIntermed (int agentId,String queueIds) throws Exception { Intermed intermedObj = null; //TODO - find a better implementation for this queueIds parameter!!!! try{ String sql = "SELECT i FROM bla bla bla.....)"; Query q = this.em.createQuery(sql); List<Intermed> iList = q.getResultList(); if (iList.size() == 1){ intermedObj = (Intermed) iList.get(0); //get latest object from DB em.refresh(intermedObj); } }catch(Exception e){ e.printStackTrace(); logger.error(e.getCause()+e.getMessage()); throw e; } return intermedObj; } } here is the spring configuration : <bean id="emfI" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"> <property name="dataSource" ref="inboundDS" /> <property name="persistenceUnitName" value="I2PU"/> <!-- GlassFish load-time weaving setup --> <property name="loadTimeWeaver"> <bean class="org.springframework.instrument.classloading.glassfish.GlassFishLoadTimeWeaver"/> </property> </bean> <tx:annotation-driven transaction-manager="txManagerI" /> <tx:advice id="txManagerInboundAdvice" transaction-manager="txManagerI"> <tx:attributes> <tx:method name="*" rollback-for="java.lang.Exception"/> </tx:attributes> </tx:advice> I have names for transactionManager because i have 3 datasources and 3 transaction managers. the problem is that my glassfish logs are full of messages like these: -- removed in order to be able to add more recent logs -- So the cause is : Caused by: java.lang.IllegalStateException: Transaction not active. But i have no idea what can cause this. Any help ? thanks Updates So i have added to @Transactional annotation the transaction manager name that he has to use, but this still does not solved my problem. I have captured a log from the time that the transaction is created until i got that exception: 2012-02-08T15:08:55.954+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (AbstractBeanFactory.java:245) - Returning cached instance of singleton bean 'txManagerVA' 2012-02-08T15:08:55.962+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (AbstractPlatformTransactionManager.java:365) - Creating new transaction with name [xxx.vs.common.services.inbound.IntermedServiceImpl.getIntermed]: PROPAGATION_REQUIRED,ISOLATION_DEFAULT,readOnly; '',-java.lang.Exception 2012-02-08T15:08:55.967+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (JpaTransactionManager.java:368) - Opened new EntityManager [org.hibernate.ejb.EntityManagerImpl@edf83f9] for JPA transaction 2012-02-08T15:08:55.976+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (JpaTransactionManager.java:400) - Exposing JPA transaction as JDBC transaction [org.springframework.orm.jpa.vendor.HibernateJpaDialect$HibernateConnectionHandle@725b979b] 2012-02-08T15:08:55.977+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionSynchronizationManager.java:193) - Bound value [org.springframework.jdbc.datasource.ConnectionHolder@4fb57177] for key [com.sun.gjc.spi.jdbc40.DataSource40@75fa4851] to thread [thread-pool-1-80(80)] 2012-02-08T15:08:55.978+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionSynchronizationManager.java:193) - Bound value [org.springframework.orm.jpa.EntityManagerHolder@112c6483] for key [org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean@47d4f12f] to thread [thread-pool-1-80(80)] 2012-02-08T15:08:55.979+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionSynchronizationManager.java:272) - Initializing transaction synchronization 2012-02-08T15:08:55.980+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionAspectSupport.java:362) - Getting transaction for [xxx.vs.common.services.inbound.IntermedServiceImpl.getIntermed] 2012-02-08T15:08:55.983+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (ExtendedEntityManagerCreator.java:423) - Starting resource local transaction on application-managed EntityManager [org.hibernate.ejb.EntityManagerImpl@46d002f4] 2012-02-08T15:08:55.984+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionSynchronizationManager.java:193) - Bound value [org.springframework.orm.jpa.ExtendedEntityManagerCreator$ExtendedEntityManagerSynchronization@797add43] for key [org.hibernate.ejb.EntityManagerImpl@46d002f4] to thread [thread-pool-1-80(80)] 2012-02-08T15:08:55.986+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (ExtendedEntityManagerCreator.java:400) - Joined local transaction 2012-02-08T15:08:55.991+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionAspectSupport.java:391) - Completing transaction for [xxx.vs.common.services.inbound.IntermedServiceImpl.getIntermed] 2012-02-08T15:08:55.992+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (AbstractPlatformTransactionManager.java:922) - Triggering beforeCommit synchronization 2012-02-08T15:08:55.994+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (AbstractPlatformTransactionManager.java:935) - Triggering beforeCompletion synchronization 2012-02-08T15:08:56.001+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionSynchronizationManager.java:243) - Removed value [org.springframework.orm.jpa.ExtendedEntityManagerCreator$ExtendedEntityManagerSynchronization@797add43] for key [org.hibernate.ejb.EntityManagerImpl@46d002f4] from thread [thread-pool-1-80(80)] 2012-02-08T15:08:56.002+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (AbstractPlatformTransactionManager.java:752) - Initiating transaction commit 2012-02-08T15:08:56.003+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (JpaTransactionManager.java:507) - Committing JPA transaction on EntityManager [org.hibernate.ejb.EntityManagerImpl@edf83f9] 2012-02-08T15:08:56.008+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (AbstractPlatformTransactionManager.java:948) - Triggering afterCommit synchronization 2012-02-08T15:08:56.010+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (AbstractPlatformTransactionManager.java:964) - Triggering afterCompletion synchronization 2012-02-08T15:08:56.011+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionSynchronizationManager.java:331) - Clearing transaction synchronization 2012-02-08T15:08:56.012+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionSynchronizationManager.java:243) - Removed value [org.springframework.orm.jpa.EntityManagerHolder@112c6483] for key [org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean@47d4f12f] from thread [thread-pool-1-80(80)] 2012-02-08T15:08:56.021+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionSynchronizationManager.java:243) - Removed value [org.springframework.jdbc.datasource.ConnectionHolder@4fb57177] for key [com.sun.gjc.spi.jdbc40.DataSource40@75fa4851] from thread [thread-pool-1-80(80)] 2012-02-08T15:08:56.021+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (JpaTransactionManager.java:593) - Closing JPA EntityManager [org.hibernate.ejb.EntityManagerImpl@edf83f9] after transaction 2012-02-08T15:08:56.022+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (EntityManagerFactoryUtils.java:343) - Closing JPA EntityManager 2012-02-08T15:08:56.023+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|ERROR [thread-pool-1-80(80)] (PopupAction.java:39) - Cannot get Intermed!!! Transaction not active; nested exception is java.lang.IllegalStateException: Transaction not active 2012-02-08T15:08:56.024+0200|SEVERE||_ThreadID=184;_ThreadName=Thread-5;|org.springframework.dao.InvalidDataAccessApiUsageException: Transaction not active; nested exception is java.lang.IllegalStateException: Transaction not active at org.springframework.orm.jpa.EntityManagerFactoryUtils.convertJpaAccessExceptionIfPossible(EntityManagerFactoryUtils.java:298) at org.springframework.orm.jpa.vendor.HibernateJpaDialect.translateExceptionIfPossible(HibernateJpaDialect.java:106) at org.springframework.orm.jpa.ExtendedEntityManagerCreator$ExtendedEntityManagerSynchronization.convertException(ExtendedEntityManagerCreator.java:501) at org.springframework.orm.jpa.ExtendedEntityManagerCreator$ExtendedEntityManagerSynchronization.afterCommit(ExtendedEntityManagerCreator.java:481) at org.springframework.transaction.support.TransactionSynchronizationUtils.invokeAfterCommit(TransactionSynchronizationUtils.java:133) at org.springframework.transaction.support.TransactionSynchronizationUtils.triggerAfterCommit(TransactionSynchronizationUtils.java:121) at org.springframework.transaction.support.AbstractPlatformTransactionManager.triggerAfterCommit(AbstractPlatformTransactionManager.java:950) at org.springframework.transaction.support.AbstractPlatformTransactionManager.processCommit(AbstractPlatformTransactionManager.java:796) at org.springframework.transaction.support.AbstractPlatformTransactionManager.commit(AbstractPlatformTransactionManager.java:723) at org.springframework.transaction.interceptor.TransactionAspectSupport.commitTransactionAfterReturning(TransactionAspectSupport.java:393) at org.springframework.transaction.interceptor.TransactionInterceptor.invoke(TransactionInterceptor.java:120) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:172) at org.springframework.aop.framework.JdkDynamicAopProxy.invoke(JdkDynamicAopProxy.java:202) at $Proxy325.getIntermed(Unknown Source) at xxx.vs.common.actions.PopupAction.execute(PopupAction.java:37) at sun.reflect.GeneratedMethodAccessor1581.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at com.opensymphony.xwork2.DefaultActionInvocation.invokeAction(DefaultActionInvocation.java:453) at com.opensymphony.xwork2.DefaultActionInvocation.invokeActionOnly(DefaultActionInvocation.java:292) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:255) at org.apache.struts2.interceptor.debugging.DebuggingInterceptor.intercept(DebuggingInterceptor.java:256) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.DefaultWorkflowInterceptor.doIntercept(DefaultWorkflowInterceptor.java:176) at com.opensymphony.xwork2.interceptor.MethodFilterInterceptor.intercept(MethodFilterInterceptor.java:98) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.validator.ValidationInterceptor.doIntercept(ValidationInterceptor.java:265) at org.apache.struts2.interceptor.validation.AnnotationValidationInterceptor.doIntercept(AnnotationValidationInterceptor.java:68) at com.opensymphony.xwork2.interceptor.MethodFilterInterceptor.intercept(MethodFilterInterceptor.java:98) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.ConversionErrorInterceptor.intercept(ConversionErrorInterceptor.java:138) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.ParametersInterceptor.doIntercept(ParametersInterceptor.java:211) at com.opensymphony.xwork2.interceptor.MethodFilterInterceptor.intercept(MethodFilterInterceptor.java:98) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.ParametersInterceptor.doIntercept(ParametersInterceptor.java:211) at com.opensymphony.xwork2.interceptor.MethodFilterInterceptor.intercept(MethodFilterInterceptor.java:98) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.StaticParametersInterceptor.intercept(StaticParametersInterceptor.java:190) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at org.apache.struts2.interceptor.MultiselectInterceptor.intercept(MultiselectInterceptor.java:75) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at org.apache.struts2.interceptor.CheckboxInterceptor.intercept(CheckboxInterceptor.java:90) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at org.apache.struts2.interceptor.FileUploadInterceptor.intercept(FileUploadInterceptor.java:243) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.ModelDrivenInterceptor.intercept(ModelDrivenInterceptor.java:100) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.ScopedModelDrivenInterceptor.intercept(ScopedModelDrivenInterceptor.java:141) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.ChainingInterceptor.intercept(ChainingInterceptor.java:145) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.PrepareInterceptor.doIntercept(PrepareInterceptor.java:171) at com.opensymphony.xwork2.interceptor.MethodFilterInterceptor.intercept(MethodFilterInterceptor.java:98) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.I18nInterceptor.intercept(I18nInterceptor.java:176) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at org.apache.struts2.interceptor.ServletConfigInterceptor.intercept(ServletConfigInterceptor.java:164) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.AliasInterceptor.intercept(AliasInterceptor.java:192) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.ExceptionMappingInterceptor.intercept(ExceptionMappingInterceptor.java:187) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at xxx.vs.common.utils.AuthenticationInterceptor.intercept(AuthenticationInterceptor.java:78) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.googlecode.sslplugin.interceptors.SSLInterceptor.intercept(SSLInterceptor.java:128) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at org.apache.struts2.impl.StrutsActionProxy.execute(StrutsActionProxy.java:54) at org.apache.struts2.dispatcher.Dispatcher.serviceAction(Dispatcher.java:510) at org.apache.struts2.dispatcher.ng.ExecuteOperations.executeAction(ExecuteOperations.java:77) at org.apache.struts2.dispatcher.ng.filter.StrutsPrepareAndExecuteFilter.doFilter(StrutsPrepareAndExecuteFilter.java:91) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:256) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:217) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:279) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:175) at org.apache.catalina.core.StandardPipeline.doInvoke(StandardPipeline.java:655) at org.apache.catalina.core.StandardPipeline.invoke(StandardPipeline.java:595) at com.sun.enterprise.web.WebPipeline.invoke(WebPipeline.java:98) at com.sun.enterprise.web.PESessionLockingStandardPipeline.invoke(PESessionLockingStandardPipeline.java:91) at org.apache.catalina 2012-02-08T15:08:56.024+0200|SEVERE||_ThreadID=184;_ThreadName=Thread-5;|.core.StandardHostValve.invoke(StandardHostValve.java:162) at org.apache.catalina.connector.CoyoteAdapter.doService(CoyoteAdapter.java:330) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:231) at com.sun.enterprise.v3.services.impl.ContainerMapper.service(ContainerMapper.java:174) at com.sun.grizzly.http.ProcessorTask.invokeAdapter(ProcessorTask.java:828) at com.sun.grizzly.http.ProcessorTask.doProcess(ProcessorTask.java:725) at com.sun.grizzly.http.ProcessorTask.process(ProcessorTask.java:1019) at com.sun.grizzly.http.DefaultProtocolFilter.execute(DefaultProtocolFilter.java:225) at com.sun.grizzly.DefaultProtocolChain.executeProtocolFilter(DefaultProtocolChain.java:137) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:104) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:90) at com.sun.grizzly.http.HttpProtocolChain.execute(HttpProtocolChain.java:79) at com.sun.grizzly.ProtocolChainContextTask.doCall(ProtocolChainContextTask.java:54) at com.sun.grizzly.SelectionKeyContextTask.call(SelectionKeyContextTask.java:59) at com.sun.grizzly.ContextTask.run(ContextTask.java:71) at com.sun.grizzly.util.AbstractThreadPool$Worker.doWork(AbstractThreadPool.java:532) at com.sun.grizzly.util.AbstractThreadPool$Worker.run(AbstractThreadPool.java:513) at java.lang.Thread.run(Thread.java:679) Caused by: java.lang.IllegalStateException: Transaction not active at org.hibernate.ejb.TransactionImpl.commit(TransactionImpl.java:69) at org.springframework.orm.jpa.ExtendedEntityManagerCreator$ExtendedEntityManagerSynchronization.afterCommit(ExtendedEntityManagerCreator.java:478) ... 93 more so again..... any ideea ?

    Read the article

  • Project Euler #290 in python, hint please

    - by debragail
    This solution is grossly inefficient. What am I missing? #!/usr/bin/env python #coding: utf-8 import time from timestrings import * start = time.clock() maxpower = 18 count = 0 for i in range(0, 10 ** maxpower - 1): if i % 9 == 0: result1 = list(str(i)) result2 = list(str(137 * i)) sum1 = 0 for j in result1: sum1 += int(j) sum2 = 0 for j in result2: sum2 += int(j) if sum1 == sum2: print (i, sum1) count += 1 finish = time.clock() print ("Project Euler, Project 290") print () print ("Answer:", count) print ("Time:", stringifytime(finish - start))

    Read the article

  • g++ SSE intrinsics dilemma - value from intrinsic "saturates"

    - by Sriram
    Hi, I wrote a simple program to implement SSE intrinsics for computing the inner product of two large (100000 or more elements) vectors. The program compares the execution time for both, inner product computed the conventional way and using intrinsics. Everything works out fine, until I insert (just for the fun of it) an inner loop before the statement that computes the inner product. Before I go further, here is the code: //this is a sample Intrinsics program to compute inner product of two vectors and compare Intrinsics with traditional method of doing things. #include <iostream> #include <iomanip> #include <xmmintrin.h> #include <stdio.h> #include <time.h> #include <stdlib.h> using namespace std; typedef float v4sf __attribute__ ((vector_size(16))); double innerProduct(float* arr1, int len1, float* arr2, int len2) { //assume len1 = len2. float result = 0.0; for(int i = 0; i < len1; i++) { for(int j = 0; j < len1; j++) { result += (arr1[i] * arr2[i]); } } //float y = 1.23e+09; //cout << "y = " << y << endl; return result; } double sse_v4sf_innerProduct(float* arr1, int len1, float* arr2, int len2) { //assume that len1 = len2. if(len1 != len2) { cout << "Lengths not equal." << endl; exit(1); } /*steps: * 1. load a long-type (4 float) into a v4sf type data from both arrays. * 2. multiply the two. * 3. multiply the same and store result. * 4. add this to previous results. */ v4sf arr1Data, arr2Data, prevSums, multVal, xyz; //__builtin_ia32_xorps(prevSums, prevSums); //making it equal zero. //can explicitly load 0 into prevSums using loadps or storeps (Check). float temp[4] = {0.0, 0.0, 0.0, 0.0}; prevSums = __builtin_ia32_loadups(temp); float result = 0.0; for(int i = 0; i < (len1 - 3); i += 4) { for(int j = 0; j < len1; j++) { arr1Data = __builtin_ia32_loadups(&arr1[i]); arr2Data = __builtin_ia32_loadups(&arr2[i]); //store the contents of two arrays. multVal = __builtin_ia32_mulps(arr1Data, arr2Data); //multiply. xyz = __builtin_ia32_addps(multVal, prevSums); prevSums = xyz; } } //prevSums will hold the sums of 4 32-bit floating point values taken at a time. Individual entries in prevSums also need to be added. __builtin_ia32_storeups(temp, prevSums); //store prevSums into temp. cout << "Values of temp:" << endl; for(int i = 0; i < 4; i++) cout << temp[i] << endl; result += temp[0] + temp[1] + temp[2] + temp[3]; return result; } int main() { clock_t begin, end; int length = 100000; float *arr1, *arr2; double result_Conventional, result_Intrinsic; // printStats("Allocating memory."); arr1 = new float[length]; arr2 = new float[length]; // printStats("End allocation."); srand(time(NULL)); //init random seed. // printStats("Initializing array1 and array2"); begin = clock(); for(int i = 0; i < length; i++) { // for(int j = 0; j < length; j++) { // arr1[i] = rand() % 10 + 1; arr1[i] = 2.5; // arr2[i] = rand() % 10 - 1; arr2[i] = 2.5; // } } end = clock(); cout << "Time to initialize array1 and array2 = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; // printStats("Finished initialization."); // printStats("Begin inner product conventionally."); begin = clock(); result_Conventional = innerProduct(arr1, length, arr2, length); end = clock(); cout << "Time to compute inner product conventionally = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; // printStats("End inner product conventionally."); // printStats("Begin inner product using Intrinsics."); begin = clock(); result_Intrinsic = sse_v4sf_innerProduct(arr1, length, arr2, length); end = clock(); cout << "Time to compute inner product with intrinsics = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; //printStats("End inner product using Intrinsics."); cout << "Results: " << endl; cout << " result_Conventional = " << result_Conventional << endl; cout << " result_Intrinsics = " << result_Intrinsic << endl; return 0; } I use the following g++ invocation to build this: g++ -W -Wall -O2 -pedantic -march=i386 -msse intrinsics_SSE_innerProduct.C -o innerProduct Each of the loops above, in both the functions, runs a total of N^2 times. However, given that arr1 and arr2 (the two floating point vectors) are loaded with a value 2.5, the length of the array is 100,000, the result in both cases should be 6.25e+10. The results I get are: Results: result_Conventional = 6.25e+10 result_Intrinsics = 5.36871e+08 This is not all. It seems that the value returned from the function that uses intrinsics "saturates" at the value above. I tried putting other values for the elements of the array and different sizes too. But it seems that any value above 1.0 for the array contents and any size above 1000 meets with the same value we see above. Initially, I thought it might be because all operations within SSE are in floating point, but floating point should be able to store a number that is of the order of e+08. I am trying to see where I could be going wrong but cannot seem to figure it out. I am using g++ version: g++ (GCC) 4.4.1 20090725 (Red Hat 4.4.1-2). Any help on this is most welcome. Thanks, Sriram.

    Read the article

  • In FitNesse, can variables be defined in terms of other variables?

    - by Dan Haywood
    In FitNesse, can variables be defined in terms of other variables? I want to do the equivalent of: int a=3; int b=a; To make this concrete, I have a variable defining the date: !define clock.date {2/2/2009} I then want to define some other variable ${other.date} based on it, something like: !define other.date {=${clock.date}=} However, this doesn't work. Is there any way to do this?

    Read the article

  • how to increment a javascript variable title that is within a php while loop

    - by steve
    I'm building multiple countdown clocks on one page. The number of countdown clocks varies from day to day so I need to call javascript several times from within "while" code in php to produce different clocks. The following code works but it's based on knowing how many clocks are needed before I start: <script language="javascript" src="countdown.js"></script> <script language="javascript"> var cd1 = new countdown('cd1'); cd1.Div = "clock1"; cd1.TargetDate = "<?php echo "$clocktime"; ?>"; cd1.DisplayFormat = "%%D%% days, %%H%% hours, %%M%% minutes, %%S%% seconds until event AAA happens"; </script> <div id="clockwrapper"><div id="clock1">[clock]</div></div> <script language="javascript" src="countdown.js"></script> <script language="javascript"> var cd2 = new countdown('cd2'); cd2.Div = "clock2"; cd2.TargetDate = "02/01/2011 5:30:30 PM"; cd2.DisplayFormat = "%%D%% days, %%H%% hours, %%M%% minutes, %%S%% seconds until event BBB happens..."; </script> <div id="clockwrapper"><div id="clock2">[clock]</div></div> So if I keep on calling the javascript above (the code with cd1 in it) all previous "cd1" clocks change to the latest clock because it is being overwritten. Somehow I need to call javascript from within my "while" loop in php and have cd1 become cd2, then cd3 so that the clocks work as they're supposed to. How do I go about doing this? I don't know how to call the javascript several times and increment the variable cd1 within the javascript. I tried something like this but couldn't get it to work. $id=mysql_result($result,$i,"id"); while($id){ $cd = ("$cd"."$id"); ?> <script language="javascript" src="countdown.js"></script> <script language="javascript"> var <?php echo "$cd"; ?> = new countdown('<?php echo "$cd"; ?>'); .... </script> <div id="clockwrapper"><div id="<?php echo "$cd"; ?>">[clock]</div></div> <?php $id=mysql_result($result,$i,"id"); } ?> Surely there is some easy way of getting around this that I don't know about. Thanks

    Read the article

  • Employee Clocking in & Out System database

    - by user164577
    What would be the best database design for employee clocking and out? Right now I have two tables. Employee Base Table: Employee Id, relevant information like name and address, clocked in column Employee Clocked in Table: Employee id, clock in date, Clock in Time, Clocked Out Time. Is this a good way to track clocked in and clocked out? I appreciate any help

    Read the article

  • What's the fastest lookup algorithm for a key, pair data structure (i.e, a map)?

    - by truncheon
    In the following example a std::map structure is filled with 26 values from A - Z (for key) and 0 – 26 for value. The time taken (on my system) to lookup the last entry (10000000 times) is roughly 250 ms for the vector, and 125 ms for the map. (I compiled using release mode, with O3 option turned on for g++ 4.4) But if for some odd reason I wanted better performance than the std::map, what data structures and functions would I need to consider using? I apologize if the answer seems obvious to you, but I haven't had much experience in the performance critical aspects of C++ programming. #include <ctime> #include <map> #include <vector> #include <iostream> struct mystruct { char key; int value; mystruct(char k = 0, int v = 0) : key(k), value(v) { } }; int find(const std::vector<mystruct>& ref, char key) { for (std::vector<mystruct>::const_iterator i = ref.begin(); i != ref.end(); ++i) if (i->key == key) return i->value; return -1; } int main() { std::map<char, int> mymap; std::vector<mystruct> myvec; for (int i = 'a'; i < 'a' + 26; ++i) { mymap[i] = i - 'a'; myvec.push_back(mystruct(i, i - 'a')); } int pre = clock(); for (int i = 0; i < 10000000; ++i) { find(myvec, 'z'); } std::cout << "linear scan: milli " << clock() - pre << "\n"; pre = clock(); for (int i = 0; i < 10000000; ++i) { mymap['z']; } std::cout << "map scan: milli " << clock() - pre << "\n"; return 0; }

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Displaying an image on a LED matrix with a Netduino

    - by Bertrand Le Roy
    In the previous post, we’ve been flipping bits manually on three ports of the Netduino to simulate the data, clock and latch pins that a shift register expected. We did all that in order to control one line of a LED matrix and create a simple Knight Rider effect. It was rightly pointed out in the comments that the Netduino has built-in knowledge of the sort of serial protocol that this shift register understands through a feature called SPI. That will of course make our code a whole lot simpler, but it will also make it a whole lot faster: writing to the Netduino ports is actually not that fast, whereas SPI is very, very fast. Unfortunately, the Netduino documentation for SPI is severely lacking. Instead, we’ve been reliably using the documentation for the Fez, another .NET microcontroller. To send data through SPI, we’ll just need  to move a few wires around and update the code. SPI uses pin D11 for writing, pin D12 for reading (which we won’t do) and pin D13 for the clock. The latch pin is a parameter that can be set by the user. This is very close to the wiring we had before (data on D11, clock on D12 and latch on D13). We just have to move the latch from D13 to D10, and the clock from D12 to D13. The code that controls the shift register has slimmed down considerably with that change. Here is the new version, which I invite you to compare with what we had before: public class ShiftRegister74HC595 { protected SPI Spi; public ShiftRegister74HC595(Cpu.Pin latchPin) : this(latchPin, SPI.SPI_module.SPI1) { } public ShiftRegister74HC595(Cpu.Pin latchPin, SPI.SPI_module spiModule) { var spiConfig = new SPI.Configuration( SPI_mod: spiModule, ChipSelect_Port: latchPin, ChipSelect_ActiveState: false, ChipSelect_SetupTime: 0, ChipSelect_HoldTime: 0, Clock_IdleState: false, Clock_Edge: true, Clock_RateKHz: 1000 ); Spi = new SPI(spiConfig); } public void Write(byte buffer) { Spi.Write(new[] {buffer}); } } All we have to do here is configure SPI. The write method couldn’t be any simpler. Everything is now handled in hardware by the Netduino. We set the frequency to 1MHz, which is largely sufficient for what we’ll be doing, but it could potentially go much higher. The shift register addresses the columns of the matrix. The rows are directly wired to ports D0 to D7 of the Netduino. The code writes to only one of those eight lines at a time, which will make it fast enough. The way an image is displayed is that we light the lines one after the other so fast that persistence of vision will give the illusion of a stable image: foreach (var bitmap in matrix.MatrixBitmap) { matrix.OnRow(row, bitmap, true); matrix.OnRow(row, bitmap, false); row++; } Now there is a twist here: we need to run this code as fast as possible in order to display the image with as little flicker as possible, but we’ll eventually have other things to do. In other words, we need the code driving the display to run in the background, except when we want to change what’s being displayed. Fortunately, the .NET Micro Framework supports multithreading. In our implementation, we’ve added an Initialize method that spins a new thread that is tied to the specific instance of the matrix it’s being called on. public LedMatrix Initialize() { DisplayThread = new Thread(() => DoDisplay(this)); DisplayThread.Start(); return this; } I quite like this way to spin a thread. As you may know, there is another, built-in way to contextualize a thread by passing an object into the Start method. For the method to work, the thread must have been constructed with a ParameterizedThreadStart delegate, which takes one parameter of type object. I like to use object as little as possible, so instead I’m constructing a closure with a Lambda, currying it with the current instance. This way, everything remains strongly-typed and there’s no casting to do. Note that this method would extend perfectly to several parameters. Of note as well is the return value of Initialize, a common technique to add some fluency to the API and enabling the matrix to be instantiated and initialized in a single line: using (var matrix = new LedMS88SR74HC595().Initialize()) The “using” in the previous line is because we have implemented IDisposable so that the matrix kills the thread and clears the display when the user code is done with it: public void Dispose() { Clear(); DisplayThread.Abort(); } Thanks to the multi-threaded version of the matrix driver class, we can treat the display as a simple bitmap with a very synchronous programming model: matrix.Set(someimage); while (button.Read()) { Thread.Sleep(10); } Here, the call into Set returns immediately and from the moment the bitmap is set, the background display thread will constantly continue refreshing no matter what happens in the main thread. That enables us to wait or read a button’s port on the main thread knowing that the current image will continue displaying unperturbed and without requiring manual refreshing. We’ve effectively hidden the implementation of the display behind a convenient, synchronous-looking API. Pretty neat, eh? Before I wrap up this post, I want to talk about one small caveat of using SPI rather than driving the shift register directly: when we got to the point where we could actually display images, we noticed that they were a mirror image of what we were sending in. Oh noes! Well, the reason for it is that SPI is sending the bits in a big-endian fashion, in other words backwards. Now sure you could fix that in software by writing some bit-level code to reverse the bits we’re sending in, but there is a far more efficient solution than that. We are doing hardware here, so we can simply reverse the order in which the outputs of the shift register are connected to the columns of the matrix. That’s switching 8 wires around once, as compared to doing bit operations every time we send a line to display. All right, so bringing it all together, here is the code we need to write to display two images in succession, separated by a press on the board’s button: var button = new InputPort(Pins.ONBOARD_SW1, false, Port.ResistorMode.Disabled); using (var matrix = new LedMS88SR74HC595().Initialize()) { // Oh, prototype is so sad! var sad = new byte[] { 0x66, 0x24, 0x00, 0x18, 0x00, 0x3C, 0x42, 0x81 }; DisplayAndWait(sad, matrix, button); // Let's make it smile! var smile = new byte[] { 0x42, 0x18, 0x18, 0x81, 0x7E, 0x3C, 0x18, 0x00 }; DisplayAndWait(smile, matrix, button); } And here is a video of the prototype running: The prototype in action I’ve added an artificial delay between the display of each row of the matrix to clearly show what’s otherwise happening very fast. This way, you can clearly see each of the two images being displayed line by line. Next time, we’ll do no hardware changes, focusing instead on building a nice programming model for the matrix, with sprites, text and hardware scrolling. Fun stuff. By the way, can any of my reader guess where we’re going with all that? The code for this prototype can be downloaded here: http://weblogs.asp.net/blogs/bleroy/Samples/NetduinoLedMatrixDriver.zip

    Read the article

  • Inside the Concurrent Collections: ConcurrentBag

    - by Simon Cooper
    Unlike the other concurrent collections, ConcurrentBag does not really have a non-concurrent analogy. As stated in the MSDN documentation, ConcurrentBag is optimised for the situation where the same thread is both producing and consuming items from the collection. We'll see how this is the case as we take a closer look. Again, I recommend you have ConcurrentBag open in a decompiler for reference. Thread Statics ConcurrentBag makes heavy use of thread statics - static variables marked with ThreadStaticAttribute. This is a special attribute that instructs the CLR to scope any values assigned to or read from the variable to the executing thread, not globally within the AppDomain. This means that if two different threads assign two different values to the same thread static variable, one value will not overwrite the other, and each thread will see the value they assigned to the variable, separately to any other thread. This is a very useful function that allows for ConcurrentBag's concurrency properties. You can think of a thread static variable: [ThreadStatic] private static int m_Value; as doing the same as: private static Dictionary<Thread, int> m_Values; where the executing thread's identity is used to automatically set and retrieve the corresponding value in the dictionary. In .NET 4, this usage of ThreadStaticAttribute is encapsulated in the ThreadLocal class. Lists of lists ConcurrentBag, at its core, operates as a linked list of linked lists: Each outer list node is an instance of ThreadLocalList, and each inner list node is an instance of Node. Each outer ThreadLocalList is owned by a particular thread, accessible through the thread local m_locals variable: private ThreadLocal<ThreadLocalList<T>> m_locals It is important to note that, although the m_locals variable is thread-local, that only applies to accesses through that variable. The objects referenced by the thread (each instance of the ThreadLocalList object) are normal heap objects that are not specific to any thread. Thinking back to the Dictionary analogy above, if each value stored in the dictionary could be accessed by other means, then any thread could access the value belonging to other threads using that mechanism. Only reads and writes to the variable defined as thread-local are re-routed by the CLR according to the executing thread's identity. So, although m_locals is defined as thread-local, the m_headList, m_nextList and m_tailList variables aren't. This means that any thread can access all the thread local lists in the collection by doing a linear search through the outer linked list defined by these variables. Adding items So, onto the collection operations. First, adding items. This one's pretty simple. If the current thread doesn't already own an instance of ThreadLocalList, then one is created (or, if there are lists owned by threads that have stopped, it takes control of one of those). Then the item is added to the head of that thread's list. That's it. Don't worry, it'll get more complicated when we account for the other operations on the list! Taking & Peeking items This is where it gets tricky. If the current thread's list has items in it, then it peeks or removes the head item (not the tail item) from the local list and returns that. However, if the local list is empty, it has to go and steal another item from another list, belonging to a different thread. It iterates through all the thread local lists in the collection using the m_headList and m_nextList variables until it finds one that has items in it, and it steals one item from that list. Up to this point, the two threads had been operating completely independently. To steal an item from another thread's list, the stealing thread has to do it in such a way as to not step on the owning thread's toes. Recall how adding and removing items both operate on the head of the thread's linked list? That gives us an easy way out - a thread trying to steal items from another thread can pop in round the back of another thread's list using the m_tail variable, and steal an item from the back without the owning thread knowing anything about it. The owning thread can carry on completely independently, unaware that one of its items has been nicked. However, this only works when there are at least 3 items in the list, as that guarantees there will be at least one node between the owning thread performing operations on the list head and the thread stealing items from the tail - there's no chance of the two threads operating on the same node at the same time and causing a race condition. If there's less than three items in the list, then there does need to be some synchronization between the two threads. In this case, the lock on the ThreadLocalList object is used to mediate access to a thread's list when there's the possibility of contention. Thread synchronization In ConcurrentBag, this is done using several mechanisms: Operations performed by the owner thread only take out the lock when there are less than three items in the collection. With three or greater items, there won't be any conflict with a stealing thread operating on the tail of the list. If a lock isn't taken out, the owning thread sets the list's m_currentOp variable to a non-zero value for the duration of the operation. This indicates to all other threads that there is a non-locked operation currently occuring on that list. The stealing thread always takes out the lock, to prevent two threads trying to steal from the same list at the same time. After taking out the lock, the stealing thread spinwaits until m_currentOp has been set to zero before actually performing the steal. This ensures there won't be a conflict with the owning thread when the number of items in the list is on the 2-3 item borderline. If any add or remove operations are started in the meantime, and the list is below 3 items, those operations try to take out the list's lock and are blocked until the stealing thread has finished. This allows a thread to steal an item from another thread's list without corrupting it. What about synchronization in the collection as a whole? Collection synchronization Any thread that operates on the collection's global structure (accessing anything outside the thread local lists) has to take out the collection's global lock - m_globalListsLock. This single lock is sufficient when adding a new thread local list, as the items inside each thread's list are unaffected. However, what about operations (such as Count or ToArray) that need to access every item in the collection? In order to ensure a consistent view, all operations on the collection are stopped while the count or ToArray is performed. This is done by freezing the bag at the start, performing the global operation, and unfreezing at the end: The global lock is taken out, to prevent structural alterations to the collection. m_needSync is set to true. This notifies all the threads that they need to take out their list's lock irregardless of what operation they're doing. All the list locks are taken out in order. This blocks all locking operations on the lists. The freezing thread waits for all current lockless operations to finish by spinwaiting on each m_currentOp field. The global operation can then be performed while the bag is frozen, but no other operations can take place at the same time, as all other threads are blocked on a list's lock. Then, once the global operation has finished, the locks are released, m_needSync is unset, and normal concurrent operation resumes. Concurrent principles That's the essence of how ConcurrentBag operates. Each thread operates independently on its own local list, except when they have to steal items from another list. When stealing, only the stealing thread is forced to take out the lock; the owning thread only has to when there is the possibility of contention. And a global lock controls accesses to the structure of the collection outside the thread lists. Operations affecting the entire collection take out all locks in the collection to freeze the contents at a single point in time. So, what principles can we extract here? Threads operate independently Thread-static variables and ThreadLocal makes this easy. Threads operate entirely concurrently on their own structures; only when they need to grab data from another thread is there any thread contention. Minimised lock-taking Even when two threads need to operate on the same data structures (one thread stealing from another), they do so in such a way such that the probability of actually blocking on a lock is minimised; the owning thread always operates on the head of the list, and the stealing thread always operates on the tail. Management of lockless operations Any operations that don't take out a lock still have a 'hook' to force them to lock when necessary. This allows all operations on the collection to be stopped temporarily while a global snapshot is taken. Hopefully, such operations will be short-lived and infrequent. That's all the concurrent collections covered. I hope you've found it as informative and interesting as I have. Next, I'll be taking a closer look at ThreadLocal, which I came across while analyzing ConcurrentBag. As you'll see, the operation of this class deserves a much closer look.

    Read the article

  • 13.10 - Weird WiFi connection problems - WMP300N - Broadcom BCM4321

    - by user1898041
    Just installed 13.10 on my desktop and I really like it. After having problems with getting the wifi to work, I installed it connected to the internet with an ethernet cable and added in the 3rd party software and updates as per the installation procedure. After installation was completed, I saw the wifi icon in the upper right hand corner, but it was not seeing any wifi networks. Some Googling brought me to use the 'Additional Drivers' application. It found the WMP300N Broadcom BDM4321 based pci wifi card and installed the proprietary Broadcom STA wireless driver, which may have been installed before. I'm not sure. Here is the weird part: when I start my system, wifi seems to be in some sort of suspended state where the system sees that the card exists but the card will not detect any wifi networks. It will work after booting once I 'Additional Drivers' application and then start FireFox. I know it seems weird, but this is the process I've got down to get the card to recognize wifi networks. After those applications are open for a few seconds, the card starts to function like normal (although maintaining the wifi connection is problem but most likely a seperate issue). The reason this is a problem is because this is supposed to just be a headless box managed through SSH. Here are the readouts from the common network diagnosis programs BEFORE I open 'Additional Drivers' and 'FireFox'. All commands were done with sudo. lspci 00:00.0 Host bridge: Intel Corporation 82G35 Express DRAM Controller (rev 03) 00:01.0 PCI bridge: Intel Corporation 82G35 Express PCI Express Root Port (rev 03) 00:1a.0 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #4 (rev 02) 00:1a.1 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #5 (rev 02) 00:1a.2 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #6 (rev 02) 00:1a.7 USB controller: Intel Corporation 82801I (ICH9 Family) USB2 EHCI Controller #2 (rev 02) 00:1b.0 Audio device: Intel Corporation 82801I (ICH9 Family) HD Audio Controller (rev 02) 00:1c.0 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 1 (rev 02) 00:1c.4 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 5 (rev 02) 00:1c.5 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 6 (rev 02) 00:1d.0 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #1 (rev 02) 00:1d.1 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #2 (rev 02) 00:1d.2 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #3 (rev 02) 00:1d.7 USB controller: Intel Corporation 82801I (ICH9 Family) USB2 EHCI Controller #1 (rev 02) 00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev 92) 00:1f.0 ISA bridge: Intel Corporation 82801IR (ICH9R) LPC Interface Controller (rev 02) 00:1f.2 SATA controller: Intel Corporation 82801IR/IO/IH (ICH9R/DO/DH) 6 port SATA Controller [AHCI mode] (rev 02) 00:1f.3 SMBus: Intel Corporation 82801I (ICH9 Family) SMBus Controller (rev 02) 01:00.0 VGA compatible controller: NVIDIA Corporation GT216 [GeForce GT 220] (rev a2) 01:00.1 Audio device: NVIDIA Corporation High Definition Audio Controller (rev a1) 02:00.0 Ethernet controller: Qualcomm Atheros Attansic L1 Gigabit Ethernet (rev b0) 03:00.0 IDE interface: JMicron Technology Corp. JMB368 IDE controller 05:00.0 Network controller: Broadcom Corporation BCM4321 802.11b/g/n (rev 01) 05:03.0 FireWire (IEEE 1394): VIA Technologies, Inc. VT6306/7/8 [Fire II(M)] IEEE 1394 OHCI Controller (rev c0) - lshw *-network description: Ethernet interface product: Attansic L1 Gigabit Ethernet vendor: Qualcomm Atheros physical id: 0 bus info: pci@0000:02:00.0 logical name: eth0 version: b0 serial: 00:22:15:00:a8:12 capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list rom ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=atl1 driverversion=2.1.3 latency=0 link=no multicast=yes port=twisted pair resources: irq:46 memory:feac0000-feafffff memory:feaa0000-feabffff *-network description: Wireless interface product: BCM4321 802.11b/g/n vendor: Broadcom Corporation physical id: 0 bus info: pci@0000:05:00.0 logical name: eth1 version: 01 serial: 00:23:69:d8:2b:16 width: 32 bits clock: 33MHz capabilities: bus_master ethernet physical wireless configuration: broadcast=yes driver=wl0 driverversion=6.30.223.141 (r415941) latency=64 multicast=yes wireless=IEEE 802.11abg resources: irq:16 memory:febfc000-febfffff - ifconfig eth0 Link encap:Ethernet HWaddr 00:22:15:00:a8:12 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) eth1 Link encap:Ethernet HWaddr 00:23:69:d8:2b:16 inet6 addr: fe80::223:69ff:fed8:2b16/64 Scope:Link UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:16 Base address:0xc000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:24 errors:0 dropped:0 overruns:0 frame:0 TX packets:24 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:1856 (1.8 KB) TX bytes:1856 (1.8 KB) - iwconfig eth1 IEEE 802.11abg ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=200 dBm Retry long limit:7 RTS thr:off Fragment thr:off Encryption key:off Power Management:off - iwlist scan eth1 No scan results - Here are the various commands AFTER I open 'Additional Drivers' and 'FireFox' lspci 00:00.0 Host bridge: Intel Corporation 82G35 Express DRAM Controller (rev 03) 00:01.0 PCI bridge: Intel Corporation 82G35 Express PCI Express Root Port (rev 03) 00:1a.0 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #4 (rev 02) 00:1a.1 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #5 (rev 02) 00:1a.2 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #6 (rev 02) 00:1a.7 USB controller: Intel Corporation 82801I (ICH9 Family) USB2 EHCI Controller #2 (rev 02) 00:1b.0 Audio device: Intel Corporation 82801I (ICH9 Family) HD Audio Controller (rev 02) 00:1c.0 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 1 (rev 02) 00:1c.4 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 5 (rev 02) 00:1c.5 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 6 (rev 02) 00:1d.0 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #1 (rev 02) 00:1d.1 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #2 (rev 02) 00:1d.2 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #3 (rev 02) 00:1d.7 USB controller: Intel Corporation 82801I (ICH9 Family) USB2 EHCI Controller #1 (rev 02) 00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev 92) 00:1f.0 ISA bridge: Intel Corporation 82801IR (ICH9R) LPC Interface Controller (rev 02) 00:1f.2 SATA controller: Intel Corporation 82801IR/IO/IH (ICH9R/DO/DH) 6 port SATA Controller [AHCI mode] (rev 02) 00:1f.3 SMBus: Intel Corporation 82801I (ICH9 Family) SMBus Controller (rev 02) 01:00.0 VGA compatible controller: NVIDIA Corporation GT216 [GeForce GT 220] (rev a2) 01:00.1 Audio device: NVIDIA Corporation High Definition Audio Controller (rev a1) 02:00.0 Ethernet controller: Qualcomm Atheros Attansic L1 Gigabit Ethernet (rev b0) 03:00.0 IDE interface: JMicron Technology Corp. JMB368 IDE controller 05:00.0 Network controller: Broadcom Corporation BCM4321 802.11b/g/n (rev 01) 05:03.0 FireWire (IEEE 1394): VIA Technologies, Inc. VT6306/7/8 [Fire II(M)] IEEE 1394 OHCI Controller (rev c0) - lshw *-network description: Ethernet interface product: Attansic L1 Gigabit Ethernet vendor: Qualcomm Atheros physical id: 0 bus info: pci@0000:02:00.0 logical name: eth0 version: b0 serial: 00:22:15:00:a8:12 capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list rom ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=atl1 driverversion=2.1.3 latency=0 link=no multicast=yes port=twisted pair resources: irq:46 memory:feac0000-feafffff memory:feaa0000-feabffff *-network description: Wireless interface product: BCM4321 802.11b/g/n vendor: Broadcom Corporation physical id: 0 bus info: pci@0000:05:00.0 logical name: eth1 version: 01 serial: 00:23:69:d8:2b:16 width: 32 bits clock: 33MHz capabilities: bus_master ethernet physical wireless configuration: broadcast=yes driver=wl0 driverversion=6.30.223.141 (r415941) ip=192.168.1.103 latency=64 multicast=yes wireless=IEEE 802.11abg resources: irq:16 memory:febfc000-febfffff - ifconfig eth0 Link encap:Ethernet HWaddr 00:22:15:00:a8:12 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) eth1 Link encap:Ethernet HWaddr 00:23:69:d8:2b:16 inet addr:192.168.1.103 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::223:69ff:fed8:2b16/64 Scope:Link UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:85 errors:0 dropped:0 overruns:0 frame:11901 TX packets:132 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:52641 (52.6 KB) TX bytes:19058 (19.0 KB) Interrupt:16 Base address:0xc000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:76 errors:0 dropped:0 overruns:0 frame:0 TX packets:76 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:6084 (6.0 KB) TX bytes:6084 (6.0 KB) - iwconfig eth1 IEEE 802.11abg ESSID:"BU" Mode:Managed Frequency:2.447 GHz Access Point: 00:26:F2:1F:81:02 Bit Rate=54 Mb/s Tx-Power=200 dBm Retry long limit:7 RTS thr:off Fragment thr:off Encryption key:off Power Management:off Link Quality=59/70 Signal level=-51 dBm Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:0 Invalid misc:0 Missed beacon:0 - iwlist scan A LOT OF SSIDs FOUND! - I'd like to have this problem fixed, but I'm not quite sure where to go. Been Googling a lot and can't seem to find anyone else with this problem.

    Read the article

  • WinSCP equivalent for Linux/Ubuntu

    - by Shashank
    I'm shifting most of my projects to a Linux machine, and one of the things that I miss is WinSCP. I've found other answers saying that nautilus, FileZilla etc. can be used for SFTP, but something that I loved about WinSCP was that it has two panes (FileZilla's got that) and I could start synchronization from any directory. Unison or Rsync could work, but I'd have to create a folder pair every time I want to sync two folders. Is there an SFTP client for Linux that has a two-paned view and allows ad-hoc synchronization? Thanks!

    Read the article

  • Ubuntu One Sync as a File Backup Solution?

    - by Jeff
    I was hoping to utilize Ubuntu One and in particular, the syncing feature within Ubuntu One to provide offsite backup for some of my files. My intention was to mark any of my folders that have important files as 'folders to synchronize' to Ubuntu One. It works great in that whenever an important file is placed in the folder, the file is copied up to Ubuntu One (hence creating a backup). However, if any of these important files are lost or accidently deleted from my computer then due to the synchronization it is also immediately deleted from Ubuntu One. This approach does not work very well to provide backup. On one hand I really like the automatic way in which the synch feature will upload any of my important files to Ubuntu One but on the other hand if I lose the file on my computer it will likely be taken off of the cloud as well (via synchronization). What approach are others taking to backup their important files to Ubuntu One? I didn't want to have to manually upload my important files to Ubuntu One and remember to upload other important files as they are created on my computer. Your thoughts and suggestions are greatly appreciated.

    Read the article

  • "Siebel2FusionCRM Integration" solution by ec4u (D)

    - by Richard Lefebvre
    ec4u, a CRM System Integration leader based in Germany and Switzerland, and an historical Oracle/Siebel partner, offers a complete "Siebel2FusionCRM Integration" solution, based on tools methodology and services. ec4u Siebel2FusionCRM Integration solution's main objectives are: Integration between Siebel (on-premise) and Fusion CRM / Marketing (“in the cloud”) Accounts, Contacts and Addresses are maintained by Sales in Siebel CRM and synchronized in real-time into Fusion CRM / Marketing CDM Processing ensures clean data for marketing campaigns (validation and deduplication) Create E-Mail marketing campaigns and newsletters in Fusion The solution features: Upsert processes figure out what information needs to be updated, inserted or terminated (deleted). However, as Siebel is the data master, it is still a one-way synchronization. Handle deleted or nullified information by terminating them in Fusion CRM (set start and end date to define the validity period) Initial load and real-time synchronization use the same processes Invocations/Operations can be repeated due to no transactional support from Fusion web services Tagging sub entries in case of 1 to N mapping (Example: Telephone number is one simple field in Siebel but in Fusion you can have multiple telephone numbers in a sub table) E-Mail-Notification in case of any error (containing error message, instance number, detailed payload) Schematron Validation Interested? Looking for more details or a partnership with ec4u for a "Siebel2FusionCRM Integration" project? Contact: Gregor Bublitz, Director Expert Services ([email protected])

    Read the article

  • JUnit Testing in Multithread Application

    - by e2bady
    This is a problem me and my team faces in almost all of the projects. Testing certain parts of the application with JUnit is not easy and you need to start early and to stick to it, but that's not the question I'm asking. The actual problem is that with n-Threads, locking, possible exceptions within the threads and shared objects the task of testing is not as simple as testing the class, but testing them under endless possible situations within threading. To be more precise, let me tell you about the design of one of our applications: When a user makes a request several threads are started that each analyse a part of the data to complete the analysis, these threads run a certain time depending on the size of the chunk of data (which are endless and of uncertain quality) to analyse, or they may fail if the data was insufficient/lacking quality. After each completed its analysis they call upon a handler which decides after each thread terminates if the collected analysis-data is sufficient to deliver an answer to the request. All of these analysers share certain parts of the applications (some parts because the instances are very big and only a certain number can be loaded into memory and those instances are reusable, some parts because they have a standing connection, where connecting takes time, ex.gr. sql connections) so locking is very common (done with reentrant-locks). While the applications runs very efficient and fast, it's not very easy to test it under real-world conditions. What we do right now is test each class and it's predefined conditions, but there are no automated tests for interlocking and synchronization, which in my opionion is not very good for quality insurances. Given this example how would you handle testing the threading, interlocking and synchronization?

    Read the article

  • Uses of persistent data structures in non-functional languages

    - by Ray Toal
    Languages that are purely functional or near-purely functional benefit from persistent data structures because they are immutable and fit well with the stateless style of functional programming. But from time to time we see libraries of persistent data structures for (state-based, OOP) languages like Java. A claim often heard in favor of persistent data structures is that because they are immutable, they are thread-safe. However, the reason that persistent data structures are thread-safe is that if one thread were to "add" an element to a persistent collection, the operation returns a new collection like the original but with the element added. Other threads therefore see the original collection. The two collections share a lot of internal state, of course -- that's why these persistent structures are efficient. But since different threads see different states of data, it would seem that persistent data structures are not in themselves sufficient to handle scenarios where one thread makes a change that is visible to other threads. For this, it seems we must use devices such as atoms, references, software transactional memory, or even classic locks and synchronization mechanisms. Why then, is the immutability of PDSs touted as something beneficial for "thread safety"? Are there any real examples where PDSs help in synchronization, or solving concurrency problems? Or are PDSs simply a way to provide a stateless interface to an object in support of a functional programming style?

    Read the article

  • OpenGL basics: calling glDrawElements once per object

    - by Bethor
    Hi all, continuing on from my explorations of the basics of OpenGL (see this question), I'm trying to figure out the basic principles of drawing a scene with OpenGL. I am trying to render a simple cube repeated n times in every direction. My method appears to yield terrible performance : 1000 cubes brings performance below 50fps (on a QuadroFX 1800, roughly a GeForce 9600GT). My method for drawing these cubes is as follows: done once: set up a vertex buffer and array buffer containing my cube vertices in model space set up an array buffer indexing the cube for drawing as 12 triangles done for each frame: update uniform values used by the vertex shader to move all cubes at once done for each cube, for each frame: update uniform values used by the vertex shader to move each cube to its position call glDrawElements to draw the positioned cube Is this a sane method ? If not, how does one go about something like this ? I'm guessing I need to minimize calls to glUniform, glDrawElements, or both, but I'm not sure how to do that. Full code for my little test : (depends on gletools and pyglet) I'm aware that my init code (at least) is really ugly; I'm concerned with the rendering code for each frame right now, I'll move to something a little less insane for the creation of the vertex buffers and such later on. import pyglet from pyglet.gl import * from pyglet.window import key from numpy import deg2rad, tan from gletools import ShaderProgram, FragmentShader, VertexShader, GeometryShader vertexData = [-0.5, -0.5, -0.5, 1.0, -0.5, 0.5, -0.5, 1.0, 0.5, -0.5, -0.5, 1.0, 0.5, 0.5, -0.5, 1.0, -0.5, -0.5, 0.5, 1.0, -0.5, 0.5, 0.5, 1.0, 0.5, -0.5, 0.5, 1.0, 0.5, 0.5, 0.5, 1.0] elementArray = [2, 1, 0, 1, 2, 3,## back face 4, 7, 6, 4, 5, 7,## front face 1, 3, 5, 3, 7, 5,## top face 2, 0, 4, 2, 4, 6,## bottom face 1, 5, 4, 0, 1, 4,## left face 6, 7, 3, 6, 3, 2]## right face def toGLArray(input): return (GLfloat*len(input))(*input) def toGLushortArray(input): return (GLushort*len(input))(*input) def initPerspectiveMatrix(aspectRatio = 1.0, fov = 45): frustumScale = 1.0 / tan(deg2rad(fov) / 2.0) fzNear = 0.5 fzFar = 300.0 perspectiveMatrix = [frustumScale*aspectRatio, 0.0 , 0.0 , 0.0 , 0.0 , frustumScale, 0.0 , 0.0 , 0.0 , 0.0 , (fzFar+fzNear)/(fzNear-fzFar) , -1.0, 0.0 , 0.0 , (2*fzFar*fzNear)/(fzNear-fzFar), 0.0 ] return perspectiveMatrix class ModelObject(object): vbo = GLuint() vao = GLuint() eao = GLuint() initDone = False verticesPool = [] indexPool = [] def __init__(self, vertices, indexing): super(ModelObject, self).__init__() if not ModelObject.initDone: glGenVertexArrays(1, ModelObject.vao) glGenBuffers(1, ModelObject.vbo) glGenBuffers(1, ModelObject.eao) glBindVertexArray(ModelObject.vao) initDone = True self.numIndices = len(indexing) self.offsetIntoVerticesPool = len(ModelObject.verticesPool) ModelObject.verticesPool.extend(vertices) self.offsetIntoElementArray = len(ModelObject.indexPool) ModelObject.indexPool.extend(indexing) glBindBuffer(GL_ARRAY_BUFFER, ModelObject.vbo) glEnableVertexAttribArray(0) #position glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0, 0) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ModelObject.eao) glBufferData(GL_ARRAY_BUFFER, len(ModelObject.verticesPool)*4, toGLArray(ModelObject.verticesPool), GL_STREAM_DRAW) glBufferData(GL_ELEMENT_ARRAY_BUFFER, len(ModelObject.indexPool)*2, toGLushortArray(ModelObject.indexPool), GL_STREAM_DRAW) def draw(self): glDrawElements(GL_TRIANGLES, self.numIndices, GL_UNSIGNED_SHORT, self.offsetIntoElementArray) class PositionedObject(object): def __init__(self, mesh, pos, objOffsetUf): super(PositionedObject, self).__init__() self.mesh = mesh self.pos = pos self.objOffsetUf = objOffsetUf def draw(self): glUniform3f(self.objOffsetUf, self.pos[0], self.pos[1], self.pos[2]) self.mesh.draw() w = 800 h = 600 AR = float(h)/float(w) window = pyglet.window.Window(width=w, height=h, vsync=False) window.set_exclusive_mouse(True) pyglet.clock.set_fps_limit(None) ## input forward = [False] left = [False] back = [False] right = [False] up = [False] down = [False] inputs = {key.Z: forward, key.Q: left, key.S: back, key.D: right, key.UP: forward, key.LEFT: left, key.DOWN: back, key.RIGHT: right, key.PAGEUP: up, key.PAGEDOWN: down} ## camera camX = 0.0 camY = 0.0 camZ = -1.0 def simulate(delta): global camZ, camX, camY scale = 10.0 move = scale*delta if forward[0]: camZ += move if back[0]: camZ += -move if left[0]: camX += move if right[0]: camX += -move if up[0]: camY += move if down[0]: camY += -move pyglet.clock.schedule(simulate) @window.event def on_key_press(symbol, modifiers): global forward, back, left, right, up, down if symbol in inputs.keys(): inputs[symbol][0] = True @window.event def on_key_release(symbol, modifiers): global forward, back, left, right, up, down if symbol in inputs.keys(): inputs[symbol][0] = False ## uniforms for shaders camOffsetUf = GLuint() objOffsetUf = GLuint() perspectiveMatrixUf = GLuint() camRotationUf = GLuint() program = ShaderProgram( VertexShader(''' #version 330 layout(location = 0) in vec4 objCoord; uniform vec3 objOffset; uniform vec3 cameraOffset; uniform mat4 perspMx; void main() { mat4 translateCamera = mat4(1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, cameraOffset.x, cameraOffset.y, cameraOffset.z, 1.0f); mat4 translateObject = mat4(1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, objOffset.x, objOffset.y, objOffset.z, 1.0f); vec4 modelCoord = objCoord; vec4 positionedModel = translateObject*modelCoord; vec4 cameraPos = translateCamera*positionedModel; gl_Position = perspMx * cameraPos; }'''), FragmentShader(''' #version 330 out vec4 outputColor; const vec4 fillColor = vec4(1.0f, 1.0f, 1.0f, 1.0f); void main() { outputColor = fillColor; }''') ) shapes = [] def init(): global camOffsetUf, objOffsetUf with program: camOffsetUf = glGetUniformLocation(program.id, "cameraOffset") objOffsetUf = glGetUniformLocation(program.id, "objOffset") perspectiveMatrixUf = glGetUniformLocation(program.id, "perspMx") glUniformMatrix4fv(perspectiveMatrixUf, 1, GL_FALSE, toGLArray(initPerspectiveMatrix(AR))) obj = ModelObject(vertexData, elementArray) nb = 20 for i in range(nb): for j in range(nb): for k in range(nb): shapes.append(PositionedObject(obj, (float(i*2), float(j*2), float(k*2)), objOffsetUf)) glEnable(GL_CULL_FACE) glCullFace(GL_BACK) glFrontFace(GL_CW) glEnable(GL_DEPTH_TEST) glDepthMask(GL_TRUE) glDepthFunc(GL_LEQUAL) glDepthRange(0.0, 1.0) glClearDepth(1.0) def update(dt): print pyglet.clock.get_fps() pyglet.clock.schedule_interval(update, 1.0) @window.event def on_draw(): with program: pyglet.clock.tick() glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT) glUniform3f(camOffsetUf, camX, camY, camZ) for shape in shapes: shape.draw() init() pyglet.app.run()

    Read the article

  • Getting an Error Trying to Create an Object in Python

    - by Nick Rogers
    I am trying to create an object from a class in python but I am getting an Error, "e_tank = EnemyTank() TypeError: 'Group' object is not callable" I am not sure what this means, I have tried Google but I couldn't get a clear answer on what is causing this error. Does anyone understand why I am unable to create an object from my EnemyTank Class? Here is my code: #Image Variables bg = 'bg.jpg' bunk = 'bunker.png' enemytank = 'enemy-tank.png' #Import Pygame Modules import pygame, sys from pygame.locals import * #Initializing the Screen pygame.init() screen = pygame.display.set_mode((640,360), 0, 32) background = pygame.image.load(bg).convert() bunker_x, bunker_y = (160,0) class EnemyTank(pygame.sprite.Sprite): e_tank = pygame.image.load(enemytank).convert_alpha() def __init__(self, startpos): pygame.sprite.Sprite.__init__(self, self.groups) self.pos = startpos self.image = EnemyTank.image self.rect = self.image.get_rect() def update(self): self.rect.center = self.pos class Bunker(pygame.sprite.Sprite): bunker = pygame.image.load(bunk).convert_alpha() def __init__(self, startpos): pygame.spriter.Sprite.__init__(self, self.groups) self.pos = startpos self.image = Bunker.image self.rect = self.image.get_rect() def getCollisionObjects(self, EnemyTank): if (EnemyTank not in self._allgroup, False): return False self._allgroup.remove(EnemyTank) result = pygame.sprite.spritecollide(EnemyTank, self._allgroup, False) self._allgroup.add(EnemyTank) def update(self): self.rect.center = self.pos #Setting Up The Animation x = 0 clock = pygame.time.Clock() speed = 250 allgroup = pygame.sprite.Group() EnemyTank = allgroup Bunker = allgroup e_tank = EnemyTank() bunker = Bunker()5 #Main Loop while True: for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() screen.blit(background, (0,0)) screen.blit(bunker, (bunker_x, bunker_y)) screen.blit(e_tank, (x, 0)) pygame.display.flip() #Animation milli = clock.tick() seconds = milli/1000. dm = seconds*speed x += dm if x>640: x=0 #Update the Screen pygame.display.update()

    Read the article

  • ScriptSharp ClockLabel example with 0.6.2

    - by Hugh Powell
    Hi folks, I'm developing in Visual Studio 2010 and I've just downloaded and installed Script# 0.6.2 for VS 2010. I'm trying to follow the clock example in the Read Me pdf but can't get it to compile. I've created a new Script# Class Library project inside my solution called Clock, renamed the .cs file to ClockBehaviour and added the following code as per the example: using System; using System.DHTML; using ScriptFX; using ScriptFX.UI; namespace Clock { public class ClockBehavior : Behavior { private int _intervalCookie; public ClockBehavior(DOMElement domElement, string id) : base(domElement, id) { _intervalCookie = Window.SetInterval(OnTimer, 1000); } public override void Dispose() { if (_intervalCookie != 0) { Window.ClearInterval(_intervalCookie); } base.Dispose(); } private void OnTimer() { DateTime dateTime = new DateTime(); DOMElement.InnerHTML = dateTime.Format("T"); } } } When I try and compile the project I get errors saying that the System.DHMTL, ScriptFX and ScriptFX.UI namespaces could not be found (and some others, but I guess by fixing these errors the others will fall out). It feels like I'm not referencing the correct projects/dlls. In the References for the project I have mscorlib and Script.Web. I've tried using the object browser find the classes (such as Behavior) in other namespaces but with no luck. I've added all of the .dlls from the ScriptSharp folder in Program Files but the namespaces still can't be found. Any help would be very much appreciated, Thanks, Hugh

    Read the article

< Previous Page | 28 29 30 31 32 33 34 35 36 37 38 39  | Next Page >