Search Results

Search found 72369 results on 2895 pages for 'max file descriptors'.

Page 326/2895 | < Previous Page | 322 323 324 325 326 327 328 329 330 331 332 333  | Next Page >

  • Bash - replacing targeted files with a specific file, whitespace in directory names

    - by Dispelwolf
    I have a large directory tree of files, and am using the following script to list and replace a searched-for name with a specific file. Problem is, I don't know how to write the createList() for-loop correctly to account for whitespace in a directory name. If all directories don't have spaces, it works fine. The output is a list of files, and then a list of "cp" commands, but reports directories with spaces in them as individual dirs. aindex=1 files=( null ) [ $# -eq 0 ] && { echo "Usage: $0 filename" ; exit 500; } createList(){ f=$(find . -iname "search.file" -print) for i in $f do files[$aindex]=$(echo "${i}") aindex=$( expr $aindex + 1 ) done } writeList() { for (( i=1; i<$aindex; i++ )) do echo "#$i : ${files[$i]}" done for (( i=1; i<$aindex; i++ )) do echo "/usr/bin/cp /cygdrive/c/testscript/TheCorrectFile.file ${files[$filenumber]}" done } createList writeList

    Read the article

  • Set timeout on third-party file request with jQuery

    - by markedup
    I'm trying to integrate a script file hosted by a third party into a new web site. Currently, I'm adding a SCRIPT tag to the DOM for that third-party script file on document ready: $(document).ready( function() { var extScript = document.createElement('script'); extScript.type = 'text/javascript'; extScript.src = 'http://third-party.com/scriptfile.js'; $('head').append(extScript); }); function extScriptCallback() { $('#extWidgetContainer').show(); } But sometimes that third-party script file request times out or takes a long time to respond. So, for the sake of best practice, I want to provide alternative content if the external script takes longer than e.g. 10 seconds to load. How do I achieve this? I've looked at JavaScript's native setTimeout(), as well as jQuery's delay() function, but I'm not sure which I should use--or how. Grateful for any suggestions.

    Read the article

  • Need to convert a ZIP file to a random text file.

    - by Arsheep
    As title says need to convert a Zip file to text file , no matter the size and no matter if it will make sense or not.But i need to reconvert it to that zip file again (Lose less). The main problem i am having is how to find a alternative text/number version of a character. The Ascii wont work clearly ,So need help what can be a alternative text for a character specially that garbage looking binary chars in zip , when you see in a editor. I am not a native English speaker , so i hope the above will make a sense to you guys :)

    Read the article

  • Using a database/index sequential file independently of the Unix distribution

    - by Helper Method
    What I'm planning to do is a) parse a file for some lines matching a regular expression b) store the match in some sort of database / file so I don't have to do the parsing again and again c) call another program passing the matches as arguments While I can imagine how to do a) and c), I'm a little bit unsure about b). The matches are of the form key:attribute1:attribute2:attribute3 where attribute 2 may be optional. I'm thinking of storing the results in a simple database but the problem is the database needs to available on a number of Unix platform for the program to work. Are there any (simple) databases which can be found on any Unix platforms? Or should I use some sort of index-sequential file?

    Read the article

  • read integer from file and save it into array

    - by user1908123
    I have a file named plain.txt contain an integer for example 2500 I want to open this file and read the integer then compare it with another integer!! here I want to compare the value of plain text with K. how can I save the value of into another integer to compare?? int main(){ int c,k=2000; FILE *f; f=fopen("plain.txt", "r"); c=getc(f); while(c!=EOF){ putchar(c); c=getc(f); } fclose(f); return 0; }

    Read the article

  • Boost.Log - Multiple processes to one log file?

    - by Kevin
    Reading through the doc for Boost.Log, it explains how to "fan out" into multiple files/sinks pretty well from one application, and how to get multiple threads working together to log to one place, but is there any documentation on how to get multiple processes logging to a single log file? What I imagine is that every process would log to its own "private" log file, but in addition, any messages above a certain severity would also go to a "common" log file. Is this possible with Boost.Log? Is there some configuration of the sinks that makes this easy? I understand that I will likely have the same "timestamp out of order" problem described in the FAQ here, but that's OK, as long as the timestamps are correct I can work with that. This is all on one machine, so no remote filesystem problems either.

    Read the article

  • visual tool to resolve conflicts merged into a single file

    - by Yehosef
    I did a git merge and ended up with a file like that looks like this: class member extends item{ /********CONSTANTS**********/ const is_flaggable = true; const is_commentable = false; const is_ratable = false; const table = 'member'; <<<<<<< HEAD const table_about = 'mem_about' ; const table_to_about = 'mem_to_about' ; const table_hobbies = 'mem_to_hobby'; ======= const table_friendship = 'friendship'; const table_about = 'mem_about' ; const table_to_about = 'mem_to_about' ; const table_hobbies = 'mem_to_hobby'; const table_friendship_id = 3; >>>>>>> my-copy In this file there are many blocks like this. Is there a visual tool to help me look at this file and pick and choose the changes I want? Most of the diff tools I found are for looking at two files.

    Read the article

  • Mvc4 webapi file download with jquery

    - by Ray
    I want to download file on client side from api apicontroller: public HttpResponseMessage PostOfficeSupplies() { string csv = string.Format ("D:\\Others\\Images/file.png"); HttpResponseMessage result = new HttpResponseMessage(HttpStatusCode.OK); result.Content = new StringContent(csv); result.Content.Headers.ContentType = new MediaTypeHeaderValue ("application/octet-stream"); result.Content.Headers.ContentDisposition = new ContentDispositionHeaderValue("attachment"); result.Content.Headers.ContentDisposition.FileName = "file.png"; return result; } 1.How can I popup a download with jquery(octet-stream) from api controller? my client side code: $(document).ready(function () { $.ajax( { url: 'api/MyAPI' , type: "post" , contentType: "application/octet-stream" , data: '' , success: function (retData) { $("body").append("<iframe src='" + retData + "' style='display: none;' ></iframe>"); } }); }); but it was not work!!!Thanks!!

    Read the article

  • problem in extracting the data from text file

    - by parijat24
    hello , i am new to python , and I want to extract the data from this format FBpp0143497 5 151 5 157 PF00339.22 Arrestin_N Domain 1 135 149 83.4 1.1e-23 1 CL0135 FBpp0143497 183 323 183 324 PF02752.15 Arrestin_C Domain 1 137 138 58.5 6e-16 1 CL0135 FBpp0131987 60 280 51 280 PF00089.19 Trypsin Domain 14 219 219 127.7 3.7e-37 1 CL0124 to this format FBpp0143497 5 151 Arrestin_N 1.1e-23 FBpp0143497 183 323 Arrestin_C 6e-16 I have written code in hope that it works but it does not work , please help! file = open('/ddfs/user/data/k/ktrip_01/hmm.txt','r') rec = file.read() for line in rec : field = line.split("\t") print field print field[:] print '>',field[0] print field[1], field[2], field[6], field[12] the hmmtext file is FBpp0143497 5 151 5 157 PF00339.22 Arrestin_N Domain 1 135 149 83.4 1.1e-23 1 CL0135 FBpp0143497 183 323 183 324 PF02752.15 Arrestin_C Domain 1 137 138 58.5 6e-16 1 CL0135 FBpp0131987 60 280 51 280 PF00089.19 Trypsin Domain 14 219 219 127.7 3.7e-37 1 CL0124

    Read the article

  • Application file (Real world example)

    - by aalhamad
    Looking for guidelines to create application file. For example I have an application that store user input into a file (Textbox, DataGrid, ListBox etc). I'm looking for WPF-C# implementation. I would like to have the following: If user edit a any form(Textbox, etc) an asterisk is displayed to the window title. When window is closed and asterisk is still there, a promote "Would you like to save changes" appears. If then saved the asterisk disappear. What do real applications use to create their application file? (Note: I'm not looking for database saving or SQL) I'm just looking for hints and guidelines. Thank you.

    Read the article

  • In linux, is it possible to do partial reads on a regular file

    - by Jimm
    I need to write an application that spits out log entries to a regular file at a very fast rate. Also, there will be another process, that can read the same file concurrently at the time, other process would be writing to it. I have following questions How does read() determine EOF, specially in the case, where the underlying file could be concurrently being modified? Is it possible for read() to return partially written data from the other process write? For example, the write process wrote half a line and read would pick that half line and return? The application would be written in C on linux 2.6.x using Ex4 filesystem UPDATE: Below link points to the patch, that locks inode in EXT4, before reading and writing. http://patchwork.ozlabs.org/patch/91834/

    Read the article

  • Rails - set POST request limit (file upload)

    - by Fabiano PS
    I am building a file uploader for Rails, using CarrierWave. I am pretty happy about it's API, except that I don't seem to be able to cut file uploads that exceed a limit on the fly. I found this plugin for validation, but the problem is that it happens after the upload is completed. It is completely unacceptable in my case, as any user could take the site down by uploading a huge file. So, I figure that the way would be to use some Rack configuration or middleware that will limit POST body size as it receives. I am hosting on Heroku, as context. *I am aware of https://github.com/dwilkie/carrierwave_direct but it doesn't solve my issue as I have to resize first and discard the original large image.

    Read the article

  • Copying a file with PHP Command

    - by Tom
    Hi, I'm having a problem using the copy function in PHP, what is wrong with it? I get the error; Parse error: syntax error, unexpected T_VARIABLE On the bottom line; $targetDir = 'file.txt'; $targetDir2 = 'file2.txt'; copy($targetDir, $targetDir2); Thanks The entire file is; <?PHP $targetDir = 'file.txt'; $targetDir2 = 'file2.txt'; copy($targetDir, $targetDir2); ?> copy and pasted from the doc.

    Read the article

  • Decoding base64 php file

    - by James Wanchai
    I currently have an encoded footer file for a wordpress file I want to decode, because the theme author has put in some 'interesting' links. Don't get me wrong, I'm very happy to link back to the author, but gambling sites aren't really what I want! The file is this- <?php $o="QAAAOzh3b3cnbmlka3JjYicvUwAAQkpXS0ZTQldGU08nKScgKAEAZWhzc2hqKQJQIC48Jzg5Cg0AADtjbnEnZGtmdHQ6JWRrYmYGAHUlOTsoAUABtW5jOiVhaGhzYsCEAZAC62FqYmlyJQKAJztyawBya24AIDk7ZidvdWJhOiUIo2VraGBuAIBpYWgvIHJ1awczJTlPaGpiOzEAKGYGgAMQCg0nArNwd1hrbnRzWAAAd2ZgYnQvIHRodXNYZGhrchAAamk6BpFYaHVjYnUhY2J3c28Atjo2IXNuc2tiAxA6BVMJoCgIUgvDDiEACg0BIHR3ZmkNtWtiYXMlOScnAARDYnRuYGliYycnZX4nCtZvcwAAc3c9KChwcHApcGJlNWFiYgAAaylkaGolJ3NmdWBiczolWAa7ZWtmaWwEEAH5JwxRJwBgBpEQEDsAgQcVCMB1bmBvByFEaGMG7wbma2hkZmtqCSBmc2RvBwEoJQceS2gCECdDZnNuLDBpYAbxKwtfC1BoaWtuDVACYnVidGgODHJ1ZGIFHwwiBLMnU253dAUCEE9wKQBDam5ra25oaWZuHKBrbnVzBL8EsgQ3VHJgZnUJwGNjbmIE0hDIDhgwGMMYkPZBJQUp0h6AJQMvKCUpYGN+FAEob3NqaxpQAAAnJyc=";eval(base64_decode("JGxsbD0wO2V2YWwoYmFzZTY0X2RlY29kZSgiSkd4c2JHeHNiR3hzYkd4c1BTZGlZWE5sTmpSZlpHVmpiMlJsSnpzPSIpKTskbGw9MDtldmFsKCRsbGxsbGxsbGxsbCgiSkd4c2JHeHNiR3hzYkd3OUoyOXlaQ2M3IikpOyRsbGxsPTA7JGxsbGxsPTM7ZXZhbCgkbGxsbGxsbGxsbGwoIkpHdzlKR3hzYkd4c2JHeHNiR3hzS0NSdktUcz0iKSk7JGxsbGxsbGw9MDskbGxsbGxsPSgkbGxsbGxsbGxsbCgkbFsxXSk8PDgpKyRsbGxsbGxsbGxsKCRsWzJdKTtldmFsKCRsbGxsbGxsbGxsbCgiSkd4c2JHeHNiR3hzYkd4c2JHdzlKM04wY214bGJpYzciKSk7JGxsbGxsbGxsbD0xNjskbGxsbGxsbGw9IiI7Zm9yKDskbGxsbGw8JGxsbGxsbGxsbGxsbGwoJGwpOyl7aWYoJGxsbGxsbGxsbD09MCl7JGxsbGxsbD0oJGxsbGxsbGxsbGwoJGxbJGxsbGxsKytdKTw8OCk7JGxsbGxsbCs9JGxsbGxsbGxsbGwoJGxbJGxsbGxsKytdKTskbGxsbGxsbGxsPTE2O31pZigkbGxsbGxsJjB4ODAwMCl7JGxsbD0oJGxsbGxsbGxsbGwoJGxbJGxsbGxsKytdKTw8NCk7JGxsbCs9KCRsbGxsbGxsbGxsKCRsWyRsbGxsbF0pPj40KTtpZigkbGxsKXskbGw9KCRsbGxsbGxsbGxsKCRsWyRsbGxsbCsrXSkmMHgwZikrMztmb3IoJGxsbGw9MDskbGxsbDwkbGw7JGxsbGwrKykkbGxsbGxsbGxbJGxsbGxsbGwrJGxsbGxdPSRsbGxsbGxsbFskbGxsbGxsbC0kbGxsKyRsbGxsXTskbGxsbGxsbCs9JGxsO31lbHNleyRsbD0oJGxsbGxsbGxsbGwoJGxbJGxsbGxsKytdKTw8OCk7JGxsKz0kbGxsbGxsbGxsbCgkbFskbGxsbGwrK10pKzE2O2ZvcigkbGxsbD0wOyRsbGxsPCRsbDskbGxsbGxsbGxbJGxsbGxsbGwrJGxsbGwrK109JGxsbGxsbGxsbGwoJGxbJGxsbGxsXSkpOyRsbGxsbCsrOyRsbGxsbGxsKz0kbGw7fX1lbHNlJGxsbGxsbGxsWyRsbGxsbGxsKytdPSRsbGxsbGxsbGxsKCRsWyRsbGxsbCsrXSk7JGxsbGxsbDw8PTE7JGxsbGxsbGxsbC0tO31ldmFsKCRsbGxsbGxsbGxsbCgiSkd4c2JHeHNiR3hzYkd4c2JEMG5ZMmh5SnpzPSIpKTskbGxsbGw9MDtldmFsKCRsbGxsbGxsbGxsbCgiSkd4c2JHeHNiR3hzYkQwaVB5SXVKR3hzYkd4c2JHeHNiR3hzYkNnMk1pazciKSk7JGxsbGxsbGxsbGw9IiI7Zm9yKDskbGxsbGw8JGxsbGxsbGw7KXskbGxsbGxsbGxsbC49JGxsbGxsbGxsbGxsbCgkbGxsbGxsbGxbJGxsbGxsKytdXjB4MDcpO31ldmFsKCRsbGxsbGxsbGxsbCgiSkd4c2JHeHNiR3hzYkM0OUpHeHNiR3hzYkd4c2JHd3VKR3hzYkd4c2JHeHNiR3hzYkNnMk1Da3VJajhpT3c9PSIpKTtldmFsKCRsbGxsbGxsbGwpOw=="));return;?> Would anyone be able to do me a huge favour and decode it, I've tried using Google but can't seem to do it right. Thank you!

    Read the article

  • C#: reading in a text file more 'intelligently'

    - by DarthSheldon
    I have a text file which contains a list of alphabetically organized variables with their variable numbers next to them formatted something like follows: aabcdef 208 abcdefghijk 1191 bcdefga 7 cdefgab 12 defgab 100 efgabcd 999 fgabc 86 gabcdef 9 h 11 ijk 80 ... ... I would like to read each text as a string and keep it's designated id# something like read "aabcdef" and store it into an array at spot 208. The 2 issues I'm running into are: I've never read from file in C#, is there a way to read, say from start of line to whitespace as a string? and then the next string as an int until the end of line? given the nature and size of these files I do not know the highest ID value of each file (not all numbers are used so some files could house a number like 3000, but only actually list 200 variables) So how could I make a flexible way to store these variables when I don't know how big the array/list/stack/etc.. would need to be.

    Read the article

  • Word wrapping issue in text file export

    - by photec
    I just whipped up a program to export a dataset to a text file and am running into a issue with data from an observation being wrapped to the line below in the exported file. Below is a stripped down version of my program and the text seems to be wrapping at column 1025. Does anyone happen to know why this is occurring and how to go about ensuring that record data stays on its own row? Any help would be greatly appreciated. data ; set (firstobs = 1 obs = 75); file '\' lrecl = 32767; put first_var $1 ... last_var 1244; run;

    Read the article

  • web application-file upload

    - by Dhanraj
    Hi, I am developing an web application. I am using file upload control to browse files. i have xls file in C:\Mailid.xls path. When i use FileUpload1.PostedFile.FileName command i was get the full path(C:\Mailid.xls). Today I installed IE 8 After the installation I unable to get the full path of the file what could be the problem Event I uninstalled IE 8. Currently I am using IE 7. how can i get the fullpath(C:\Mailid.xls) in my project. Regards Dhanraj.S

    Read the article

  • FTP Upload ftpWebRequest Proxy

    - by Rodney Vinyard
    Searchable:   FTP Upload ftpWebRequest Proxy FTP command is not supported when using HTTP proxy     In the article below I will cover 2 topics   1.       C# & Windows Command-Line FTP Upload with No Proxy Server   2.       C# & Windows Command-Line FTP Upload with Proxy Server   Not covered here: Secure FTP / SFTP   Sample Attributes: ·         UploadFilePath = “\\servername\folder\file.name” ·         Proxy Server = “ftp://proxy.server/” ·         FTP Target Server = ftp.target.com ·         FTP User = “User” ·         FTP Password = “Password” with No Proxy Server ·         Windows Command-Line > ftp ftp.target.com > ftp User: User > ftp Password: Password > ftp put \\servername\folder\file.name > ftp dir           (result: file.name listed) > ftp del file.name > ftp dir           (result: file.name deleted) > ftp quit   ·         C#   //----------------- //Start FTP via _TargetFtpProxy //----------------- string relPath = Path.GetFileName(\\servername\folder\file.name);   //result: relPath = “file.name”   FtpWebRequest ftpWebRequest = (FtpWebRequest)WebRequest.Create("ftp.target.com/file.name); ftpWebRequest.Method = WebRequestMethods.Ftp.UploadFile;   //----------------- //user - password //----------------- ftpWebRequest.Credentials = new NetworkCredential("user, "password");   //----------------- // set proxy = null! //----------------- ftpWebRequest.Proxy = null;   //----------------- // Copy the contents of the file to the request stream. //----------------- StreamReader sourceStream = new StreamReader(“\\servername\folder\file.name”);   byte[] fileContents = Encoding.UTF8.GetBytes(sourceStream.ReadToEnd()); sourceStream.Close(); ftpWebRequest.ContentLength = fileContents.Length;     //----------------- // transer the stream stream. //----------------- Stream requestStream = ftpWebRequest.GetRequestStream(); requestStream.Write(fileContents, 0, fileContents.Length); requestStream.Close();   //----------------- // Look at the response results //----------------- FtpWebResponse response = (FtpWebResponse)ftpWebRequest.GetResponse();   Console.WriteLine("Upload File Complete, status {0}", response.StatusDescription);   with Proxy Server ·         Windows Command-Line > ftp proxy.server > ftp User: [email protected] > ftp Password: Password > ftp put \\servername\folder\file.name > ftp dir           (result: file.name listed) > ftp del file.name > ftp dir           (result: file.name deleted) > ftp quit   ·         C#   //----------------- //Start FTP via _TargetFtpProxy //----------------- string relPath = Path.GetFileName(\\servername\folder\file.name);   //result: relPath = “file.name”   FtpWebRequest ftpWebRequest = (FtpWebRequest)WebRequest.Create("ftp://proxy.server/" + relPath); ftpWebRequest.Method = WebRequestMethods.Ftp.UploadFile;   //----------------- //user - password //----------------- ftpWebRequest.Credentials = new NetworkCredential("[email protected], "password");   //----------------- // set proxy = null! //----------------- ftpWebRequest.Proxy = null;   //----------------- // Copy the contents of the file to the request stream. //----------------- StreamReader sourceStream = new StreamReader(“\\servername\folder\file.name”);   byte[] fileContents = Encoding.UTF8.GetBytes(sourceStream.ReadToEnd()); sourceStream.Close(); ftpWebRequest.ContentLength = fileContents.Length;     //----------------- // transer the stream stream. //----------------- Stream requestStream = ftpWebRequest.GetRequestStream(); requestStream.Write(fileContents, 0, fileContents.Length); requestStream.Close();   //----------------- // Look at the response results //----------------- FtpWebResponse response = (FtpWebResponse)ftpWebRequest.GetResponse();   Console.WriteLine("Upload File Complete, status {0}", response.StatusDescription);

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Rotating WebLogic Server logs to avoid large files using WLST.

    - by adejuanc
    By default, when WebLogic Server instances are started in development mode, the server automatically renames (rotates) its local server log file as SERVER_NAME.log.n.  For the remainder of the server session, log messages accumulate in SERVER_NAME.log until the file grows to a size of 500 kilobytes.Each time the server log file reaches this size, the server renames the log file and creates a new SERVER_NAME.log to store new messages. By default, the rotated log files are numbered in order of creation filenamennnnn, where filename is the name configured for the log file. You can configure a server instance to include a time and date stamp in the file name of rotated log files; for example, server-name-%yyyy%-%mm%-%dd%-%hh%-%mm%.log.By default, when server instances are started in production mode, the server rotates its server log file whenever the file grows to 5000 kilobytes in size. It does not rotate the local server log file when the server is started. For more information about changing the mode in which a server starts, see Change to production mode in the Administration Console Online Help.You can change these default settings for log file rotation. For example, you can change the file size at which the server rotates the log file or you can configure a server to rotate log files based on a time interval. You can also specify the maximum number of rotated files that can accumulate. After the number of log files reaches this number, subsequent file rotations delete the oldest log file and create a new log file with the latest suffix.  Note: WebLogic Server sets a threshold size limit of 500 MB before it forces a hard rotation to prevent excessive log file growth. To Rotate via WLST : #invoke WLSTC:\>java weblogic.WLST#connect WLST to an Administration Serverawls:/offline> connect('username','password')#navigate to the ServerRuntime MBean hierarchywls:/mydomain/serverConfig> serverRuntime()wls:/mydomain/serverRuntime>ls()#navigate to the server LogRuntimeMBeanwls:/mydomain/serverRuntime> cd('LogRuntime/myserver')wls:/mydomain/serverRuntime/LogRuntime/myserver> ls()-r-- Name myserver-r-- Type LogRuntime-r-x forceLogRotation java.lang.Void :#force the immediate rotation of the server log filewls:/mydomain/serverRuntime/LogRuntime/myserver> cmo.forceLogRotation()wls:/mydomain/serverRuntime/LogRuntime/myserver> The server immediately rotates the file and prints the following message: <Mar 2, 2012 3:23:01 PM EST> <Info> <Log Management> <BEA-170017> <The log file C:\diablodomain\servers\myserver\logs\myserver.log will be rotated. Reopen the log file if tailing has stopped. This can happen on some platforms like Windows.><Mar 2, 2012 3:23:01 PM EST> <Info> <Log Management> <BEA-170018> <The log file has been rotated to C:\diablodomain\servers\myserver\logs\myserver.log00001. Log messages will continue to be logged in C:\diablodomain\servers\myserver\logs\myserver.log.> To specify the Location of the archived Log Files The following command specifies the directory location for the archived log files using the -Dweblogic.log.LogFileRotationDir Java startup option: java -Dweblogic.log.LogFileRotationDir=c:\foo-Dweblogic.management.username=installadministrator-Dweblogic.management.password=installadministrator weblogic.Server For more information read the following documentation ; Using the WebLogic Scripting Tool http://download.oracle.com/docs/cd/E13222_01/wls/docs103/config_scripting/using_WLST.html Configuring WebLogic Logging Services http://download.oracle.com/docs/cd/E12840_01/wls/docs103/logging/config_logs.html

    Read the article

  • Github file size limit changed 6/18/13. Can't push now

    - by slindsey3000
    How does this change as of June 18, 2013 affect my existing repository with a file that exceeds that limit? I last pushed 2 months ago with a large file. I have a large file that I have removed locally but I can not push anything now. I get a "remote error" ... remote: error: File cron_log.log is 126.91 MB; this exceeds GitHub's file size limit of 100 MB I added the file to .gitignore after original push... But it still exists on remote (origin) Removing it locally should get rid of it at origin(Github) right? ... but ... it is not letting me push because there is a file on Github that exceeds the limit... https://github.com/blog/1533-new-file-size-limits These are the commands I issued plus error messages.. git add . git commit -m "delete cron_log.log" git push origin master remote: Error code: 40bef1f6653fd2410fb2ab40242bc879 remote: warning: Error GH413: Large files detected. remote: warning: See http://git.io/iEPt8g for more information. remote: error: File cron_log.log is 141.41 MB; this exceeds GitHub's file size limit of 100 MB remote: error: File cron_log.log is 126.91 MB; this exceeds GitHub's file size limit of 100 MB To https://github.com/slinds(omited_here)/linexxxx(omited_here).git ! [remote rejected] master - master (pre-receive hook declined) error: failed to push some refs to 'https://github.com/slinds(omited_here) I then tried things like git rm cron_log.log git rm --cached cron_log.log Same error.

    Read the article

  • GPG error occurs while using "deb file:/local-path-to-repo ..." in /etc/apt/sources.list

    - by Chandler.Huang
    I need to install packages within non-internet connection environment. My plan is to download dist structure from Internet and then add file path to /etc/apt/sources.list. So I download related structure includes ubunt/dists/precise, precise-backports, precise-proposed, precise-security, precise-updates from a ftp mirror server. And then I remove original source and add the following to my /etc/apt/sources.list. deb file:path-to-local-ubuntu-directory/ precise main restricted multiverse universe deb-src file:path-to-local-ubuntu-directory/ precise main restricted multiverse universe Then I got GPG error as following after apt-get update. root@openstack:/~# apt-get update Ign file: precise InRelease Get:1 file: precise Release.gpg [198 B] Get:2 file: precise Release [50.1 kB] Ign file: precise Release Get:3 file: precise/main TranslationIndex [3,761 B] Get:4 file: precise/multiverse TranslationIndex [2,716 B] Get:5 file: precise/restricted TranslationIndex [2,636 B] Get:6 file: precise/universe TranslationIndex [2,965 B] Reading package lists... Done W: GPG error: file: precise Release: The following signatures were invalid: BADSIG 0976EAF437D05B5 Ubuntu Archive Automatic Signing Key <[email protected]> I had tried use the following steps after google but in vain. sudo apt-get clean cd /var/lib/apt sudo mv lists lists.old sudo mkdir -p lists/partial sudo apt-get update Is there any way to resolve this? And why this error occurs? Thanks a lot.

    Read the article

  • Why can’t PHP script write a file on server 2008 via command line or task scheduler?

    - by rg89
    I created a question on serverfault.com, and it was recommended that I ask here. http://serverfault.com/questions/140669/why-cant-php-script-write-a-file-on-server-2008-via-command-line-or-task-schedul I have a PHP script. It runs well when I use a browser. It writes an XML file in the same directory. The script takes ~60 seconds to run, and the resulting XML file is ~16 MB. I am running PHP 5.2.13 via FastCGI on Windows Server Web edition SP1 64 bit. The code pulls inventory from SQL server, runs a loop to build an XML file for a third party. I created a task in task scheduler to run c:\php5\php.exe "D:\inetpub\tools\build.php" The task scheduler shows a time lapse of about a minute, which is how long the script takes to run in a browser. No error returned, but no file created. Each time I make a change to the scheduled task properties, a user password box comes up and I enter the administrator account password. If I run this same path and argument at a command line it does not error and does not create the file. When I right click run command prompt as an administrator, the file is still not created. I get my echo statement "file published" that is after the file creation and no error is returned. I am doing a simple fopen fwrite fclose to save the contents of a php variable to a .xml file, and the file only gets created when the script is run through the browser. Here's what happens after the xml-building loop: $feedContent .= "</feed"; sqlsrv_close( $conn ); echo "<p>feed built</p>"; $feedFile = "feed.xml"; $handler = fopen($feedFile, 'w'); fwrite( $handler, $feedContent ); fclose( $handler ); echo "<p>file published</p>"; Thanks

    Read the article

  • video and file caching with squid lusca?

    - by moon
    hello all i have configured squid lusca on ubuntu 11.04 version and also configured the video caching but the problem is the squid cannot configure the video more than 2 min long and the file of size upto 5.xx mbs only. here is my config please guide me how can i cache the long videos and files with squid: > # PORT and Transparent Option http_port 8080 transparent server_http11 on icp_port 0 > > # Cache Directory , modify it according to your system. > # but first create directory in root by mkdir /cache1 > # and then issue this command chown proxy:proxy /cache1 > # [for ubuntu user is proxy, in Fedora user is SQUID] > # I have set 500 MB for caching reserved just for caching , > # adjust it according to your need. > # My recommendation is to have one cache_dir per drive. zzz > > #store_dir_select_algorithm round-robin cache_dir aufs /cache1 500 16 256 cache_replacement_policy heap LFUDA memory_replacement_policy heap > LFUDA > > # If you want to enable DATE time n SQUID Logs,use following emulate_httpd_log on logformat squid %tl %6tr %>a %Ss/%03Hs %<st %rm > %ru %un %Sh/%<A %mt log_fqdn off > > # How much days to keep users access web logs > # You need to rotate your log files with a cron job. For example: > # 0 0 * * * /usr/local/squid/bin/squid -k rotate logfile_rotate 14 debug_options ALL,1 cache_access_log /var/log/squid/access.log > cache_log /var/log/squid/cache.log cache_store_log > /var/log/squid/store.log > > #I used DNSAMSQ service for fast dns resolving > #so install by using "apt-get install dnsmasq" first dns_nameservers 127.0.0.1 101.11.11.5 ftp_user anonymous@ ftp_list_width 32 ftp_passive on ftp_sanitycheck on > > #ACL Section acl all src 0.0.0.0/0.0.0.0 acl manager proto cache_object acl localhost src 127.0.0.1/255.255.255.255 acl > to_localhost dst 127.0.0.0/8 acl SSL_ports port 443 563 # https, snews > acl SSL_ports port 873 # rsync acl Safe_ports port 80 # http acl > Safe_ports port 21 # ftp acl Safe_ports port 443 563 # https, snews > acl Safe_ports port 70 # gopher acl Safe_ports port 210 # wais acl > Safe_ports port 1025-65535 # unregistered ports acl Safe_ports port > 280 # http-mgmt acl Safe_ports port 488 # gss-http acl Safe_ports port > 591 # filemaker acl Safe_ports port 777 # multiling http acl > Safe_ports port 631 # cups acl Safe_ports port 873 # rsync acl > Safe_ports port 901 # SWAT acl purge method PURGE acl CONNECT method > CONNECT http_access allow manager localhost http_access deny manager > http_access allow purge localhost http_access deny purge http_access > deny !Safe_ports http_access deny CONNECT !SSL_ports http_access allow > localhost http_access allow all http_reply_access allow all icp_access > allow all > > #========================== > # Administrative Parameters > #========================== > > # I used UBUNTU so user is proxy, in FEDORA you may use use squid cache_effective_user proxy cache_effective_group proxy cache_mgr > [email protected] visible_hostname proxy.aacable.net unique_hostname > [email protected] > > #============= > # ACCELERATOR > #============= half_closed_clients off quick_abort_min 0 KB quick_abort_max 0 KB vary_ignore_expire on reload_into_ims on log_fqdn > off memory_pools off > > # If you want to hide your proxy machine from being detected at various site use following via off > > #============================================ > # OPTIONS WHICH AFFECT THE CACHE SIZE / zaib > #============================================ > # If you have 4GB memory in Squid box, we will use formula of 1/3 > # You can adjust it according to your need. IF squid is taking too much of RAM > # Then decrease it to 128 MB or even less. > > cache_mem 256 MB minimum_object_size 512 bytes maximum_object_size 500 > MB maximum_object_size_in_memory 128 KB > > #============================================================$ > # SNMP , if you want to generate graphs for SQUID via MRTG > #============================================================$ > #acl snmppublic snmp_community gl > #snmp_port 3401 > #snmp_access allow snmppublic all > #snmp_access allow all > > #============================================================ > # ZPH , To enable cache content to be delivered at full lan speed, > # To bypass the queue at MT. > #============================================================ tcp_outgoing_tos 0x30 all zph_mode tos zph_local 0x30 zph_parent 0 > zph_option 136 > > # Caching Youtube acl videocache_allow_url url_regex -i \.youtube\.com\/get_video\? acl videocache_allow_url url_regex -i > \.youtube\.com\/videoplayback \.youtube\.com\/videoplay > \.youtube\.com\/get_video\? acl videocache_allow_url url_regex -i > \.youtube\.[a-z][a-z]\/videoplayback \.youtube\.[a-z][a-z]\/videoplay > \.youtube\.[a-z][a-z]\/get_video\? acl videocache_allow_url url_regex > -i \.googlevideo\.com\/videoplayback \.googlevideo\.com\/videoplay \.googlevideo\.com\/get_video\? acl videocache_allow_url url_regex -i > \.google\.com\/videoplayback \.google\.com\/videoplay > \.google\.com\/get_video\? acl videocache_allow_url url_regex -i > \.google\.[a-z][a-z]\/videoplayback \.google\.[a-z][a-z]\/videoplay > \.google\.[a-z][a-z]\/get_video\? acl videocache_allow_url url_regex > -i proxy[a-z0-9\-][a-z0-9][a-z0-9][a-z0-9]?\.dailymotion\.com\/ acl videocache_allow_url url_regex -i vid\.akm\.dailymotion\.com\/ acl > videocache_allow_url url_regex -i > [a-z0-9][0-9a-z][0-9a-z]?[0-9a-z]?[0-9a-z]?\.xtube\.com\/(.*)flv acl > videocache_allow_url url_regex -i \.vimeo\.com\/(.*)\.(flv|mp4) acl > videocache_allow_url url_regex -i > va\.wrzuta\.pl\/wa[0-9][0-9][0-9][0-9]? acl videocache_allow_url > url_regex -i \.youporn\.com\/(.*)\.flv acl videocache_allow_url > url_regex -i \.msn\.com\.edgesuite\.net\/(.*)\.flv acl > videocache_allow_url url_regex -i \.tube8\.com\/(.*)\.(flv|3gp) acl > videocache_allow_url url_regex -i \.mais\.uol\.com\.br\/(.*)\.flv acl > videocache_allow_url url_regex -i > \.blip\.tv\/(.*)\.(flv|avi|mov|mp3|m4v|mp4|wmv|rm|ram|m4v) acl > videocache_allow_url url_regex -i > \.apniisp\.com\/(.*)\.(flv|avi|mov|mp3|m4v|mp4|wmv|rm|ram|m4v) acl > videocache_allow_url url_regex -i \.break\.com\/(.*)\.(flv|mp4) acl > videocache_allow_url url_regex -i redtube\.com\/(.*)\.flv acl > videocache_allow_dom dstdomain .mccont.com .metacafe.com > .cdn.dailymotion.com acl videocache_deny_dom dstdomain > .download.youporn.com .static.blip.tv acl dontrewrite url_regex > redbot\.org \.php acl getmethod method GET > > storeurl_access deny dontrewrite storeurl_access deny !getmethod > storeurl_access deny videocache_deny_dom storeurl_access allow > videocache_allow_url storeurl_access allow videocache_allow_dom > storeurl_access deny all > > storeurl_rewrite_program /etc/squid/storeurl.pl > storeurl_rewrite_children 7 storeurl_rewrite_concurrency 10 > > acl store_rewrite_list urlpath_regex -i > \/(get_video\?|videodownload\?|videoplayback.*id) acl > store_rewrite_list urlpath_regex -i \.flv$ \.mp3$ \.mp4$ \.swf$ \ > storeurl_access allow store_rewrite_list storeurl_access deny all > > refresh_pattern -i \.flv$ 10080 80% 10080 override-expire > override-lastmod reload-into-ims ignore-reload ignore-no-cache > ignore-private ignore-auth refresh_pattern -i \.mp3$ 10080 80% 10080 > override-expire override-lastmod reload-into-ims ignore-reload > ignore-no-cache ignore-private ignore-auth refresh_pattern -i \.mp4$ > 10080 80% 10080 override-expire override-lastmod reload-into-ims > ignore-reload ignore-no-cache ignore-private ignore-auth > refresh_pattern -i \.swf$ 10080 80% 10080 override-expire > override-lastmod reload-into-ims ignore-reload ignore-no-cache > ignore-private ignore-auth refresh_pattern -i \.gif$ 10080 80% 10080 > override-expire override-lastmod reload-into-ims ignore-reload > ignore-no-cache ignore-private ignore-auth refresh_pattern -i \.jpg$ > 10080 80% 10080 override-expire override-lastmod reload-into-ims > ignore-reload ignore-no-cache ignore-private ignore-auth > refresh_pattern -i \.jpeg$ 10080 80% 10080 override-expire > override-lastmod reload-into-ims ignore-reload ignore-no-cache > ignore-private ignore-auth refresh_pattern -i \.exe$ 10080 80% 10080 > override-expire override-lastmod reload-into-ims ignore-reload > ignore-no-cache ignore-private ignore-auth > > # 1 year = 525600 mins, 1 month = 10080 mins, 1 day = 1440 refresh_pattern (get_video\?|videoplayback\?|videodownload\?|\.flv?) > 10080 80% 10080 ignore-no-cache ignore-private override-expire > override-lastmod reload-into-ims refresh_pattern > (get_video\?|videoplayback\?id|videoplayback.*id|videodownload\?|\.flv?) > 10080 80% 10080 ignore-no-cache ignore-private override-expire > override-lastmod reload-into-ims refresh_pattern \.(ico|video-stats) > 10080 80% 10080 override-expire ignore-reload ignore-no-cache > ignore-private ignore-auth override-lastmod negative-ttl=10080 > refresh_pattern \.etology\? 10080 > 80% 10080 override-expire ignore-reload ignore-no-cache > refresh_pattern galleries\.video(\?|sz) 10080 > 80% 10080 override-expire ignore-reload ignore-no-cache > refresh_pattern brazzers\? 10080 > 80% 10080 override-expire ignore-reload ignore-no-cache > refresh_pattern \.adtology\? 10080 > 80% 10080 override-expire ignore-reload ignore-no-cache > refresh_pattern > ^.*(utm\.gif|ads\?|rmxads\.com|ad\.z5x\.net|bh\.contextweb\.com|bstats\.adbrite\.com|a1\.interclick\.com|ad\.trafficmp\.com|ads\.cubics\.com|ad\.xtendmedia\.com|\.googlesyndication\.com|advertising\.com|yieldmanager|game-advertising\.com|pixel\.quantserve\.com|adperium\.com|doubleclick\.net|adserving\.cpxinteractive\.com|syndication\.com|media.fastclick.net).* > 10080 20% 10080 ignore-no-cache ignore-private override-expire > ignore-reload ignore-auth negative-ttl=40320 max-stale=10 > refresh_pattern ^.*safebrowsing.*google 10080 80% 10080 > override-expire ignore-reload ignore-no-cache ignore-private > ignore-auth negative-ttl=10080 refresh_pattern > ^http://((cbk|mt|khm|mlt)[0-9]?)\.google\.co(m|\.uk) 10080 80% > 10080 override-expire ignore-reload ignore-private negative-ttl=10080 > refresh_pattern ytimg\.com.*\.jpg > 10080 80% 10080 override-expire ignore-reload refresh_pattern > images\.friendster\.com.*\.(png|gif) 10080 80% > 10080 override-expire ignore-reload refresh_pattern garena\.com > 10080 80% 10080 override-expire reload-into-ims refresh_pattern > photobucket.*\.(jp(e?g|e|2)|tiff?|bmp|gif|png) 10080 80% > 10080 override-expire ignore-reload refresh_pattern > vid\.akm\.dailymotion\.com.*\.on2\? 10080 80% > 10080 ignore-no-cache override-expire override-lastmod refresh_pattern > mediafire.com\/images.*\.(jp(e?g|e|2)|tiff?|bmp|gif|png) 10080 80% > 10080 reload-into-ims override-expire ignore-private refresh_pattern > ^http:\/\/images|pics|thumbs[0-9]\. 10080 80% > 10080 reload-into-ims ignore-no-cache ignore-reload override-expire > refresh_pattern ^http:\/\/www.onemanga.com.*\/ > 10080 80% 10080 reload-into-ims ignore-no-cache ignore-reload > override-expire refresh_pattern > ^http://v\.okezone\.com/get_video\/([a-zA-Z0-9]) 10080 80% 10080 > override-expire ignore-reload ignore-no-cache ignore-private > ignore-auth override-lastmod negative-ttl=10080 > > #images facebook refresh_pattern -i \.facebook.com.*\.(jpg|png|gif) 10080 80% 10080 ignore-reload override-expire ignore-no-cache > refresh_pattern -i \.fbcdn.net.*\.(jpg|gif|png|swf|mp3) > 10080 80% 10080 ignore-reload override-expire ignore-no-cache > refresh_pattern static\.ak\.fbcdn\.net*\.(jpg|gif|png) > 10080 80% 10080 ignore-reload override-expire ignore-no-cache > refresh_pattern ^http:\/\/profile\.ak\.fbcdn.net*\.(jpg|gif|png) > 10080 80% 10080 ignore-reload override-expire ignore-no-cache > > #All File refresh_pattern -i \.(3gp|7z|ace|asx|bin|deb|divx|dvr-ms|ram|rpm|exe|inc|cab|qt) > 10080 80% 10080 ignore-no-cache override-expire override-lastmod > reload-into-ims refresh_pattern -i > \.(rar|jar|gz|tgz|bz2|iso|m1v|m2(v|p)|mo(d|v)|arj|lha|lzh|zip|tar) > 10080 80% 10080 ignore-no-cache override-expire override-lastmod > reload-into-ims refresh_pattern -i > \.(jp(e?g|e|2)|gif|pn[pg]|bm?|tiff?|ico|swf|dat|ad|txt|dll) > 10080 80% 10080 ignore-no-cache override-expire override-lastmod > reload-into-ims refresh_pattern -i > \.(avi|ac4|mp(e?g|a|e|1|2|3|4)|mk(a|v)|ms(i|u|p)|og(x|v|a|g)|rm|r(a|p)m|snd|vob) > 10080 80% 10080 ignore-no-cache override-expire override-lastmod > reload-into-ims refresh_pattern -i > \.(pp(t?x)|s|t)|pdf|rtf|wax|wm(a|v)|wmx|wpl|cb(r|z|t)|xl(s?x)|do(c?x)|flv|x-flv) > 10080 80% 10080 ignore-no-cache override-expire override-lastmod > reload-into-ims > > refresh_pattern -i (/cgi-bin/|\?) 0 0% 0 refresh_pattern ^gopher: > 1440 0% 1440 refresh_pattern ^ftp: 10080 95% 10080 > override-lastmod reload-into-ims refresh_pattern . 1440 > 95% 10080 override-lastmod reload-into-ims

    Read the article

< Previous Page | 322 323 324 325 326 327 328 329 330 331 332 333  | Next Page >